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Abstract

This paper considers multi-input multi-output feedback systems

characterized by y «= G*e and e = u - y. Theorem I shows that if the closed

loop impulse response H is stable in the sense that H € ,J{ (o), then

G(s) = P(s)[Q(s)]"1 where P(s), Q(s) are also in^nxn(a). Theorem II gives

necessary and sufficient conditions for HS,^nxn(a). Finally Theorem III

gives necessary and sufficient condition for stability when G(s) has a finite

number of multiple poles in Re s > a: the case where the leading term of the

Laurent expansion at each of these poles is singular is treated in detail.
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I. Introduction

This paper considers linear time-invariant feedback systems with n

inputs and n outputs. As it will become apparent, there is no loss of

generality in taking the feedback to be unity. The input u, output y

and error e are functions from R , (defined as [O,00)), to M or corre

sponding distributions on IR+. The open loop system is of the convolu

tion type so that we have

(1) y = G*e

(2) e = u-y

G is an nxn matrix whose elements are distributions on R ,. We use G to
+

denote the map G: e h- G*e.

We shall repeatedly use the convolution algebra c#(o*) [1,2]: f is

said to be in <Jko) iff f(t) = 0 for t < 0 and

(3) f(t) *fa(t) +]Tfi<5(t-ti)
0

00

where fa(t)e"at GL(0,~), f± eR for all l.^J^I e <°° and
0

0 = tQ < t- < t„ ... . Thus f is a distribution of order 0 with support

on R . An n-vector v (nxn matrix A) is said to be in <Jk fa) LA (g))

iff all its elements are in <J^o). Let £ denote the Laplace transform

of f: f belongs to the convolution algebra (j4(tf) if and only if f belongs

to the algebra{Jk(o) (with pointwise product). Similarly, v^J (a),

£e Jnxn(a).
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Recently M. Vidyasagar [5] has shown that the class of systems (1),

(2) where

(4) G(s) = P(s)[Q(s)]"1

with P,Q€ ^A (a) is very useful for distributed networks for example,

and he extended some stability results of Desoer, Wu, Baker, Vakharia and

Lam [1,2,3,10]. In Theorem I below we prove that, under very mild as

sumptions on G and on the closed loop system, if the closed loop impulse

response H e (^Anxn(a) then G is of the form (4). Theorem I is also an

extension of a result of Nasburg and Baker [4]: the extension is in two

directions, first, the n-input n-output case is considered and, second,

the requirements on G are greatly relaxed. Theorem II is a straight

forward extension of a result of [4]: it shows the importance of the

systems considered by Vidyasagar in the sense that H e^ (a) if and

only if G is of the form (4). Finally Theorem III gives the necessary

and sufficient conditions for stability of the closed loop system when

G is of the form (4) with a finite number of poles of finite order in

Re s > o. This theorem culminates a series of investigations starting

with [1,2,3,7]. Note that except for [7], all previous work could only

prove sufficiency.

II. The relation between G and fl.

Theorem I

Let G be an nxn matrix whose elements are distributions with support on

IR . Suppose that in a neighborhood of the origin, say V C R , G includes
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at most 5-functions (i.e. on V, it is a distribution of at most order 0).

For the system defined by (1) and (2), assume that the closed loop response

H exists and is uniquely defined by

(5) H + G*H = G.

Under these conditions, if H € {J( (a) , then

(a) G is Laplace transformable and for some o >_a, Ge^A (a).

A

(b) G is of the form

(6) G(s) = P(s)[Q(s)]"1 for Re s >a

where £(•) and Q(.) € Jk^io).
(c) G can at most have a countable number of poles in Re s > a.

Comment. This theorem shows that under mild conditions on G regarding

its behavior near t = 0; once the closed loop system is well-defined and

"stable", then G is necessarily of the form (6), can at most have poles

in the strip a < Re s < a and is analytic for Re s j> a.

Proof.

(a) By assumption, H is of the form

H(t) =Ha(t) +y^H,6(t-t4)
i=0

where 0=tn<t1<t9<... . By assumption G can at most have an impulse

at the origin. By the Abelian theorem of the Laplace transform [11] and
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the properties of distributions, if G has an impulse G_ at t - 0,

G(s) -*- GQ as s •*• » with Re s -*• «>. Clearly from (5), if G is the zero

matrix, then HQ = 0. If GQ ^ 0, then by balancing impulses at the

origin in (5) we have (I + GQ)HQ = G_. By assumption H, hence H0, is

uniquely defined by (5), hence det(I + Gn) £ 0. Furthermore by direct

calculation, (I - HQ)(I + GQ) = I, so that det[I - HQ] j 0.

The function I - H(s) is analytic and bounded for Re s > a, and

tends to I - H. as s -*• °° with Re s -*• ». Consequently, there exists a

O > O such that

(7) infjdetfl - H(s)]| > 0 .
Re 8>a

From (5), if G had a Laplace transform, we would have H + GH = G. Now

by (7), H(s)[I - H(s)] € (J\ (a), so G(s) is equal to that function,

by the uniqueness of the convolution algebra of distributions on R,.

(b) Since H(s) is analytic for Re s > a, [I - H(s)] has at most a

countable number of poles in Re s > a and by analytic continuation

(8) G(s) = H(s)[I - H(s)]'1 for Re s > a.

a . - y\

Choose P(s) = H(s), Q(s) • I - H(s). Thus (b) and (c) have been estab

lished. n
v

Remark. It is important to reflect on the fact that under the conditions

of Theorem I, we have

[I + G(s)][I - H(s)] - I for Re s > o.
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This expression emphasizes the symmetrical role played by JJ and g: g is

obtained from G by a negative feedback of I; g is obtained from Q by a

negative feedback of -I (to cancel the preceding one!).

Theorem II

Let G be an nxn matrix whose elements are Laplace transformable distri

butions with support in R . For the system defined by (1) and (2),

A

assume that the closed loop transfer function H is well-defined for

A

almost all s in the half plane of convergence of G; i.e.

(9) H(s) = G(s)[I+G(s)]"1

for almost all s in the half-plane of convergence of G(»)» Under these

conditions,

(10) H€im(o)

A

if and only if there exists P, Qe o4nxn(a) such that

(11) G(s) -P(s)[Q(s)]"1

and

(12) inf |det[P(s) + Q(s)]| > 0.
Re s>a

Proof:

Necessity. From (9) by algebra

G(s) » H(s)[I - H(s)]"1 for Re s>a
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Choose PCs) - H(s) e .JF^io) and Q(s) * I - H(s) e Jlnxn(a), by (10).

Since P + Q » I, (12) holds.

Sufficiency. From (9) and (11)

H(s) =P(s)[P(s) + Q(s)]"1,

A A

In view of (12) H e •J\axn(ka) as the product of two elements of >J* (a).
n

A

Remark. It is clear from (11) that a given G does not define the ordered

pair (P,Q) uniquely; for example, they might have a matrix as right common

factor. In order to be able to express the condition (12) in a form which

depends on G only, we impose the Vidyasagar no-cancellation condition (N)

[5]: the ordered pair (a,b) where a,b: (C -*• <D is said to satisfy the

no-cancellation condition on a set A C C iff, for all sequences {s. } in

A, a(s.) -*• 0 implies that lim inf|b(s,)| > 0.

It is then easy to show that, [5], if (det §(s), det[P(s) + Q(s)])

satisfies (N) on Re s > a, then (12) is equivalent to inf |det[I + G(s)]| > 0,
Re s>a

III. Necessary and Sufficient Conditions for Stability.

A

We consider first and in detail the case where G has a single pole p

of order m in Re s > o. The extension to the case of a finite number of

poles is straightforward.

We consider the open loop transfer function

m-1

(13) G(s) -̂ j R1(s-p)"m+i +G0(s)
i-0
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where Re p>0, G ^>JfiCaai{a)9 rQ »rank R <nand R± (i - 0,1,..., m-1)

are nxn matrices with complex coefficients. We start by pointing out some

facts which will streamline the proof.

Fact 1. Let

^)s|;iMje)"(14) Rfcb) sl> :k(s-p> ""*l (Sr) 5 • = 1-"

then fi(-r-) is nxn complex polynomial matrix in (jfj) of degree m. This

is obvious by considering the Laurent expansion of *(j^) about s=-a.

Fact 2. (Smith canonical form [12]). For the nxn polynomial matrix

&(-T"-) there exist unimodular (i.e. with nonzero constant determinant)

polynomial matrices in (-JJj) viz. ^pj) and ^\^J »such that:

<") «c&) H±) *&) -

v
r n-r

£/ 1where i) r=rank of &(^fe) morder of the largest minor of &(-^) whose
determinant is not equal to the zero polynomial;

n ^ / 1 \ii) a.Mj-) j=1,2,..., rare the invariant polynomials of R(jjj)

and each polynomial a. (•) divides a.+1(')f j= 1,2,..., r-1;

iii) the diagonal matrix in the R.H.S. of (15) can be obtained by

elementary operations.
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Fact 3. The polynomial matrices p(-t-~) and 6Y-~) e --^""(cr) and their
inverses are polynomial matrices in (~x") also in {Jx (a).

Fact 4.

Let a (•) j = 1,2,..., r be as in (15) and let rfl be the rank of R0, then

(a)

(16) {
a (l/(p+a)) = 0 for rQ + 1 < j <r by definition of rQ;

Sjd/Cp+a)) t 0 for 1 <j <rQ ;

(b)

<17) ^)^j(i^)(S)Jforro+1l^r
Cd

where c. is the order of the zero of a.(•) at s = p;

fi.(•) is a polynomial with

(18) fij(l/(p+a)) ^0, (see [13]), and

11 cr()+1 <cro+2 1 ... <V

Proof. Set s«p in (15) and note that the L.H.S. becomes Q(l/(p+a))

-mRQ(p+a) P(l/(p+a)). Since P(') and Q(«) are unimodular, exactly (r-rQ)

polynomials a.(•) are zero at s=p. By ii) of (15) a.(l/(p+a)) - 0 for

rQ + 1 £ j £ r. Hence (16) and (17) follow with the properties of the

latter as a consequence of ii) of (15). n

Remark. Note that the exponents c in (17) may, for some j, be larger
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than m (in fact c < rm).
r — ' .

Therefore, since the c. are monotonically increasing and since c.-m

may be of any sign, partition the index set K = {rQ+l,rQ+2,... ,r} into

(19)

(20)

(21)

K {r0+l,r0+2,...,a} - {j|l <c <m}

KQ »" {a+l,a+2,...,3> o {j|c om}

K+ = {3+1,3+2,...,r} = {j|c >m}

We are now ready for Theorem III.

Theorem III.

Let G(s) be given by (13) and let *(-+-) and §(-+-) be the polynomial

matrices defined in (15). Suppose that the index-sets K_, KQ, K , as

defined in (19)-(21), are not empty.

Consider the partitioning

a n-a

<22> $(&) i»V-»*fc5)
Lu(8)

UL2X(8)

L12(s)

L22(8)

and let 6 (•) be the polynomials defined in (17). Under these conditions,

(10)
HeJ^nxn(a)

if and only if
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(23) inf |det[I+G(s)]| > 0
Res>a

and

(C) det{L22(p) + diag[Bori.1(l/(p+a)),...,63a/(p+a)),0,0,:..,0]} t 0,

Proof.

Sufficiency. Since I - H(s) =» [I+G(s)]~ ,we need only to show that

(24) [I+G^)]"1^ J^ifl) .

By fact 3, (24) is equivalent to

Introduce now the following multiplier:

(25) M(s) 6

with

rA+l rn+2 m-c
km a, Nm a/ j a, s 0 a/_x U a/~\ adiag{2(s)m,2(s)ra,...,S(sr,^(s) v ,2(s) v ,...,£(s) "O^'-j^

r0 0

(26) Us) -f=J e uA(a) .

By (19) and (26)

(27) M(s) e ^""(c) .
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Remark that

-1

{$(& [I+d(8)^)} "*<->*<«>_1 ""ere

(28) N(s) A{^) [I4€(8)]P(^)} M(s) .

Clearly by (27) we are done if we can show that

N(8)_1 e J^ia) .

Therefore by a reasoning of [2], we prove that N(s) £ Jx (a) and

inf |det N(s)| > 0.
Res>a

Rewrite (25), therefore

(29) M(s) - z(s)m £(s) where

(30) £(s) =

"Cr„+1 ~°r„+2 -c
diag{l,l,...,l,S(s) ° ,£(s) ° ,...,£(s) "z(srm,z(s)"m,...,S(srm}

\^—LSK. V.
"V

rQ a-rQ n-a

By (28), (13), (29), (30), (26), (14), (15), (17) and (20), we obtain

(31) N(s) « N^s) + N2(s) where

(a)

(32) ^(s) - 61(s) © 62(s) with
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(33) D^s) -

diag{ai(i+i)^2(i+i)' •••̂ fey•v+ife)-v+2fe)-•••̂ oty}
-y -y

r« a-r
0

(34) D2(s) =

Diag{*o*l(i+l)'V2(i+l)'" '*p(i*j f3+i(iii)g(s)
V

3-a

c3+rm

%+2&™B*Z~a- •' •'fir(iTa)2<8)Cr"m'0'0 °J
"V"
r-3

and (b)

(35) N2(s) =Q(£) [I+G0(8)]p(i^)M(8) .

Immediately

(36) N(s) € -^""(o).

N.,(s) e Jx^^io) because all its elements e >Jx(o) (indeed all its

nonzero elements are polynomials in (-T-) because there are no negative
A

powers of z(s) by (21)) and N2(s) e J^ip) by fact 3, (13) and (27).

Finally by (23) and since P(~"T-) and Q(~t-) are unimodular

inf |det Q(^) [1+6(8)3^(^)1 >0.
Res>a
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Hence, since by (25)-(26) det M(s) has only one zero for Re s > a i.e. at

p, we obtain with (28)

(37) inf|det N(s)| > 0
seu

where U is the half plane Re 8 > a with a small neighborhood of p deleted.

Consider now det N(p).

Remark that by (35), (22) and (25)-(26)

(38)

with

(39)

(40)

N„(s) = L

Ku(p) = 0

a

gn(8) L12(8)

K21(8> L22(8)_

K21(p) =* 0 .

Thus by (31), (32), (38)-(40)

det N(p) » det D^p) det[L22(p) + D2(p)] with

by (33), (16) and (18)

(41) det D1(p) t 0

and by (34), (18), (26) and (21)
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(42) detl£22(p) + D2(p)] =

det{L22(p) + diagieoH.1(l/(p+a)),...,^(l/(p+a)),0,...,0]}

which is nonzero by (C). Hence

(43) det N(p) t 0 .

Since N(s) is continuous in Re s > a, (36), (37) and (43) imply that

[^(s)]"1^ J^ia) . Q.E.D. «

a /l nxn
Necessity. H € {Jx (a) by assumption.

(23) follows immediately by [6].

To establish (C) we use contradiction. So by (42) suppose that

det[L«2(p) + fL(p)] =0. We are going to show that, for some input

u€ L2a[0,«>) (i.e. u(t) e"at e L2[0,a))» the system defined by (l)-(2) has
n n — - - ---

Oct
an error e and thus also an output y = u - e not in L [0,°°). This is a

contradiction because u€La[0,°°) and He(_Anxn(cr) imply y=H*u e L2a[0,°°),

[1] [2].

The Laplace transforms of e and u are related by

(44) [I + G(s)]S(s) = <Hs) .

Multiply (44) on the left by Q(-jT") and define the n-vectors e(s) and

u(s) by

£/ 1(45) P(^) M(s) e(s) -e(s)

£/ 1(46) Q(^) Q(s) -u(s)

By (44)-(46) and (28) obtain
-15-



(47) N(s) e(s) - u(s) .

A A n—ot
Because det[L„«(p) + D_(p)] ° 0 we can pick a nonzero vector r) G <£ in

the null space of [L„„(p) + D«(p)], hence

(48) [L22(p) + D2(p)]n = 0 .

Pick now the vector £ e <E such that

(49) 5£-[S^p)]"*1 £12(p)n

which is well defined because of (41) and the fact that all elements of

L-2 are in <Jx(o).

Hence with

(50) I(8)=AQ'
and

(51) u(s) =1

o^sA >a

u2(s)/|n-a

and (47), (31), (32), (38), we obtain

(52) u^s) -' {[^(s) + fcn(s)K + L12(s)n}/(s-p)

(53) u2(s) -' {K21(s)c- + [D2(s) + L22(s)]n}/(s-p) .
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All the components of the numerators of (52) and (53) are in {J((o); by

virtue of (39)-(40) and (48)-(49) they have at least a first order zero

at p. Therefore u-(s) and u«(s) are well behaved and bounded at s = p.

Thus u(s) is analytic for Res > o*, bounded on Res >^ O and as |u)| •+• °°:

|u(Re s+ jco) | is at most Of—j for any fixed Re s_J^ 0.

It follows therefore that the components of u(s) are the Laplace trans-

Off

forms of elements of L [O,00) [14]. From fact 3 and (46) we conclude

that the same is true for the components of u(s), hence

(54) u€ L2a[0,oo) .

d/ 1Finally by (45), (50), (25)-(26) and since n^0 and ?(-+-) is unimodular,

there exists at least one component of e(s) which has a nonzero residue at p,

Thus

(55) e? L2a[0,«>)

and by (54) and (55) we have established a contradiction. Q.E.D.

n

Remarks.

1) The theorem above describes in detail what happens when K_, K-, K

are nonempty. When one or more of these sets are empty the required

A

modifications of (C) and of the multiplier M(s) are straightforward.

2) In case there are I poles at p-, p«,..., p. of order m_, nu,..., m.

with real part larger than or equal to a, one uses a product of
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multipliers like M(s), one for each pole. Condition (C) is used only

to check that det N(s) does not vanish at s • p. Therefore for the more

general case an appropriate condition (C) is required at each pole.

3) We have checked that these techniques can be applied in a straightforward

manner for the discrete-time case, thus providing a generalization to the

work of Desoer, Wu and Lam [8,9,10].
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