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Abstract

This paper considers multi-input multi-output discrete-time feedback

systems characterized by y = G*e and e = u-y. Theorem I shows that if the

closed loop impulse response H is stable in the sense that H e l ^ (p),

then G(z) = S(z)[D(z)]~1 where N(z), D(z) are in I v(p). Theorem II gives
n*n

necessary and sufficient conditions for HG H (p). Finally Theorem III

gives necessary and sufficient conditions for stability when 6(z) has a

finite number of multiple poles in |z| ^ p: the case where the leading

term of the Laurent expansion at each of these poles is singular is treated

in detail.
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I Introduction

This paper considers discrete-time linear time-invariant feedback

systems with n inputs and n outputs. It is of course closely related to

the corresponding paper [1] which deals with the continuous-time case.

In view of the simpler analytic nature of the present problems, some of

the results are sharper and the proofs use more elementary tools. For

the convenience of the reader, the present paper is as self-contained as

possible.

For the feedback system under consideration, the input u, output y

and error e are sequences mapping Z (the set of nonnegative integers)

into R . The open loop system is of the convolution type so that we

have

(1) y = G*£

(2) e = u-y .

G.is specified by a sequence of real n*n matrices {G.} ; thus (1) is

m

equivalent to y = y G . e., for m = 0,1,2,... . We use G to denote
m im^ m—i i

i=0

the map G: en- G*e. As it will become apparent, there is no loss of

generality in taking the feedback to be unity as we did in (2).

We shall repeatedly use the convolution algebra % (p); f is said to

be in ^(p) iff

(3) f = (f0,flf£2>...)
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where f € R for all i and y |f |p < ». The product of two elements
i=0

m

f> g e £ (p) Is given by their convolution: (f*g) =7 f . g. and it
m J^^t m—i 1

i=0

is easy to show f*g € l (p). The case p = 1, is handled in [2]. An n

1 1
vector v (nxn matrix A) is said to be in I (p) (A (p)) iff all its

n nxn

1
elements are in £ (p). Let f denote the z-transform of f, i.e. f(z) =

00

V* -i 1 ~
7 f. z : f belongs to the convolution algebra £ (p) iff f belongs to

i=0

the algebra I (p) (with pointwise product). Similarly v e I (p) , AG

n*n

One of the most interesting results of this paper is to show the

overwhelming importance of systems described by (1) and (2) where

(4) G(z) = N(z)[D(z)]"1

with N, D € l ^ (p). This class has been studied by M. Vidyasagar [4].

In theorem I below it is proved that once the closed loop impulse response

1 *
H is well defined, then, if H G fc (p), it follows that G is of the form

n*n

(4). Theorem I uses an observation of Nasburg and Baker [5] who considered

single-input single-output continuous-time systems. Theorem II is a straight

forward extension of a result of [5]: it shows the importance of the sys

tems considered by Vidyasagar in the sense that H € a (p) if and only if

G is of the form (4). Finally theorem III gives the necessary and sufficient

conditions for stability of the closed loop system when G is of the form (4)

with a finite number of poles in |z| >_ p. This work completely solves the
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problem considered in the recent papers of Desoer, Wu and Lam [2,3]

II. The Relation Between G and H.

We shall use repeatedly following lemma

Lemma I

^1 , v ., 7-1 ^ zlLet A£f (p), then A e JT (p) if and only if inf Idet A(z) I > 0.
nxnVK/* nxnVK/ J i i '|z|>p

This is easy to establish by slightly modifying the proof of lemma 2 in

[2].

Theorem I

00

Let G be a sequence of real nxn matrices {G.} . For the system defined
i=0

by (1) and (2) assume that the closed-loop impulse response exists and is

uniquely defined by

(5) H + G*H = G .

Under these conditions, if H € % (p), then
' nxn

(a) G is z-transformable and for some finite p > p, GGH (p).
— nxn

(b) G is of the form

(6) G(z) =N(z)[D(z)]"1 for |z| >p

where N(-) and D(-) e l1^ (p) .
' nxn

(c) G can at most have a finite number of poles in any annulus of the

form p + e <_ |z| <_ p where e > 0 with p + e < p,
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Comment

This theorem shows that once the closed loop system is well-defined and

"stable", then G is necessarily of the form (6), can at most have a finite

number of poles in any annulus of the form p + £ <_ |z| <^ p and-is analytic

for |z| > p.

Proof
——^—— 00

Note that His of the form H=(Hq,^,...) and ^^ |H±|p~ <», where |-|
i=0

denotes any matrix norm. From (5), H + GQH = GQ so that, since HQ is

uniquely defined, det(I+G ) $ 0. This implies det(I-HQ) t 0 because (5)

implies that (I+G )(I-HQ) = I. Since H(z) -*» HQ as. |z| -»• «>, there exists

a finite p" >_ p such that det[I-H(z)] ^ 0 for |z| > p. Since G(z) =

H(z)[I-H(z)]" , conclusion (a) follows and, using analytic continuation

into the annulus p < |z| _< p, (6) follows with N = H and D = I-H. Since

by assumption H e l (p) , N and D ^ l (p), so conclusion (c) follows easily
nxn nxn

by contradiction; note that the elements of 6 are analytic in the compact

annulus p + e<_|z|^p. n

Remark

1) Observe that under the conditions of theorem I we have [I+G(z)]

[I-H(z)] = I for |z| > p. Thus H and G play a symmetrical role:

H is obtained from Q by negative feedback of I;

G is obtained from H by negative feedback of -I.

2) A little more can be said about the poles of G(z):

G(z) = N(z)[D(z)]""1 = N(z)Adj[D(z)]/det[D(z)] .
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The function <j>: z h- det[5(z)J is analytic and bounded in |z| > p; further

more, lim det[D(z)] = det D- = det(I-Hn) ^ 0. Therefore, by a theorem of
II 0 0|z|-*»

[9], <\> has either a finite number of zeros in |z| > p, or else it has an

00

infinite sequence of them {p. }°° such that / ^(l-p/|p4 |) < «>. Thus G(z)
i=l r*i

i=l

has either a finite number of poles in |z| > p or else it has an infinite

sequence of them and all accumulation points of this sequence lie on |z| = p

Theorem II

Let G be a sequence of nxn real matrices which is z-transformable. For

the system defined by (1) and (2) assume that the closed-loop transfer

function H is well-defined for almost all z in the domain of convergence

of G; more precisely,

(7) fi(z) = e(z)[i+e(Z)]"1

for almost all z in the domain of convergence of G(*)» Under these con

ditions ,

(8) H € A* (p)
nxn

if and only if there exists N, DGJ w (p) such that
J ' nxn

(9) G(z) = N(z)[D(z)]"1

and

(10) inf|det[N(z)+D(z)]| > 0 .
|z|>p
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Proof

Necessity By (8), H(z) is analytic and bounded in |z| > p. Equation (7)

is equivalent to 6(z) = fl(z)[I-fi(z)]" ,So (9) and (10) follow with N = H,

D = I-H.

Sufficiency By assumption N and D € l (p) and (7) gives H(z) = N(z)
nxn

-1
[N(z)+D(z)] . By lemma I, (10) implies that the second factor is in

1 w (p). Therefore fl(z) e 1 (p) as a product of two factors in this
nxn nxn

algebra. n

Remark

As in the continuous-time case, (9) does not determine the ordered pair

(N,D) uniquely for a given 6. In order that condition (10) depend only

on G we may, as Vidyasagar, impose on the pair (N,D) a no-cancellation

condition [1,4].

III. Necessary and Sufficient Conditions for Stability.

We consider first and in detail the case where G has a single pole

p of order m in |z|^ p.

We consider the open loop transfer function

m-1

(ID G(z) =̂ R± (z-p)"1^1 +GQ(z)
i=0

where |p| > p > 0, G (z) e I (p) r = rank Rn < n and R. are nxn matrices
— U nxn 0 0 — i

with complex coefficients. To streamline proofs, we state some preliminary

facts.
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Fact 1. Let

(12) l(l/z) ^J R^z-p)"^((z^/z)1
\i=0 /

then R(l/z) is a polynomial matrix in (1/z) of degree m.

Fact 2. (Smith Canonical form [7]). For the nxn polynomial matrix R(l/z)

there exist unimodular (i.e. with nonzero constant determinant) polynomial

matrices in (1/z) viz. P(l/z) and Q(l/z), such that:

(13) Q(l/z)R(l/z)P(l/z) =

diag{aa1(l/z),...,3j(1/z),...,ar(l/z), 0,0,...,0}

r n-r

where i) r = rank of R(l/z) = order of the largest minor of R(l/z) whose

determinant is not equal to the zero polynomial; ii) a.(1/z), j = l,2,...,r

are the invariant polynomials of R(l/z) and each polynomial a (•) divides

a.+1(*), j = 1,2,..., r-1; iii) the diagonal matrix on the R.H.S. of (13)

can be obtained by elementary operations.

Fact 3. The polynomial matrices P(l/z) and Q(l/z) *= % (p) and their in-
-——-—••— nxn

verses are polynomial matrices also in % (p).
nxn

Fact 4. Let 3 (•) j = l,2,...,r be as in (13) and let rQ be the rank of

R., then
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,(a)

(14) a (1/p) * 0 for 1 <_ j <_rQ;

a.(l/p) = 0 for rQ + 1 <_ j <.r;

(b) by the factorization of the last r-r_ polynomials

(15) a. (1/z) =b.(l/z)((z-p)/z) 3 for rQ +1 <_ j <_ r,

where c. is the order of the zero of £.(•) at z = p; £.(•) is a polynomial

with

(16) b.(l/p) ^ 0, and

l<c ,1<c ,„ < ... < c .
~ ro+1 ~ ro+2 " " r

Remark

The c. may be larger than m (in fact c <^ rm) and are monotonically in

creasing. Thus the c -m's may take on any sign. Therefore partition the

index set K = {rn+l> rn+2,...,r} into:

(17) K_ = {rQ+l, rQ+2,...,a} = {j|l <_ c. <m}

(18) KQ = {a+1, a+2,...,3> = {j|c =m}

(19) K+ = {3+1, 3+2,...,r} = {j|c > m}

We are now ready for theorem III.
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Theorem III

Let G(z) be given by (11) and let P(l/z) and Q(l/z) be the polynomial

matrices defined in (13). Suppose that the index-sets K_, KQ, K+, as

defined in (17)-(19) are not empty.

Consider the partitioning

n-a

a { Ln(z) L12(*>
(20) Q(l/z)[I+GQ(z)]P(l/z) =

n-a { LL21(2) L22(2)j

and let £.(•) be the polynomials defined in (15). Under these conditions,

(21) h e jT (p)
nxn

if and only if

(22) inf |det[I+G(z)]| > 0
z|>p

and at the pole p the following condition holds

(C) det{L22(p) + diag[ba+1(l/p),..., b^l/p) ,0,0,... ,0]} t 0

Proof

Sufficiency. Note that (21) is equivalent to [I+G(z)]~ e &nxn(p), which

by fact 3 is again equivalent to {Q(l/z) [I+6(z) ]P(l/z}~ e !>nXnM• Take

now as multiplier
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MCz)

m-c .- m—c ,« m—c
rft+l rrt+2 a

m „., Nm „, »m „, x 0 „, s 0
(23) diag{§(z) ,§(z) ,...,§(z) , §(z) w ,§(z) v ,...,s(z)

•v ' V.

with

(24) §(z) = ((z-p)/z) 6 i1(p).

As in the continuous-time case [1], write

— —v^
r« a-r,

{Q(l/z)[I+G(z)]P(l/z)}"1 - M(z)N(z)~1

1,1,...,!}

n-a

Then using the facts above, lemma I and (22)-(24), a detailed calculation

shows that, as a consequence of (C), N(z) G £, (p); since M(z) is also

in this algebra, the claim follows. n

Necessity. By assumption H € i (p).

(22) follows immediately by [6].

To establish (C) we use contradiction. We show that if the L.H.S. of (c)

2

is zero, then there exists an input u € l (p) which results in an error e

2
and thus an output y = u-e which is not in I (p). This is a contradiction

2 1 2because u G £, (p) and H e %^ (p) imply y = H*u e £ (p) (This is an easy

extension of lemma 1 of [2] where p = 1 has been handled) . The z-trans-

forms of e and u are related by
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C25) II+G(z)]e(z) « ii(z).

Multiplying (25) on the left by Q(l/z) and setting

(26) N(z) = Q(l/z)[I+G(z)]P(l/z)M(z)

(27) u(z) = Q(l/z)u(z)

(28) e(z) = P(l/z)M(z)e(z)

we obtain

(29) N(z)e(z) = u(z)

Observe that

(30)

where

With

(32)

M(z) o i(z)m A(z)

—Cy. +i *"cr +1 ~*~
(31) A(z) = diag{l,l,...,l, S(z) ° ,§(z) 0 ,...,§(z) a,

V . . -^
a-r

0

-m „., x-m -m-
s(z) ,s(z) ,...,s(z) }
V ^ •—'

n-a

Nx(z) =Q(l/z)f^R1(z-p)"m+ijP(l/z)M(z)

(33) N2(z) - Q(l/z)[I+e0(z)]P(l/z)fi(z)
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(26) and (11) imply

(34) N(z) = Nx(z) + N2(z)

By (32), (30), (31), (24), (12), (13), (15) and (18)

(35) Nx(z) =D1(z) 0 D2(z)

where

(36)

(37)

D1(z) = diag{ai(l/z),a2(l/z),.

r«

.,ar (i/z),

0 j

br +1d/z) ,6r +2(l/z) ,... ,6 (1/z)}

a-r.

D2(z) =

diag{6a+1(l/z),6a+2(l/z),...,63(l/z), S <l/z)fl(z) 3+1 ,b (l/z)s(z)C8+2 ",
J \ -

3-a

t • > ,br(l/s
c -

s)s(z)
•m

» 0 >o,••.

n-r

,0}

r--3

By (33), (20), (23) and (24)

(38)

a n-a

a { -*u(.) | L12(«)"
N2(z) -

n-a { _K21(z)Tl22(z)_
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where

(39) Ku(p) = 0

(40) K21(p) = 0 .

Furthermore by (36), (14) and (16)

(41) det D1(p) t 0

and by (37), (16), (24) and (19)

(42) "(C) not true" is equivalent to det(D (p) + t99(p)) = 0

In order to establish the contradiction, using (42) we can pick a nonzero

vector nG Cn"~a in the null space of I>2(p) + L22(p), thus

(43) [D2(p) + L22(p)]n = 0

Pick now the vector ^£ 1 such that

(44) S=-[^(p)]"1 L12(p)n

which is well-defined because of (41) and because all elements of L12(z)

are members of I (p). Hence, setting

(45) e(z) =

u(z) =

z-p
_n_

ux(z)

Lu2(z)_j

}a

}n-a
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C29), (34), (35) and (38) imply

(46) tL^z) = {[D1(z) + Kn(z)K + L12(z)n}(z/(Z-p))

W) u2(z) = {Kn(z)C + [D2(z) + L22(z)]n}(z/(z-p)).

Observe that because of (39)-(40) and (43)-(44) the expressions between

the braces in the R.H.S. of (46)-(47) have a first order zero at p. Hence,

since all elements of the matrices contained in these expressions belong

to I (p), u(z) is well-behaved and bounded at p. These remarks and the

properties of the components of u (z) and u_(z) imply that u(z) is analytic

for |z| > p, bounded for |z| >_ p, continuous for |z| = p and as |z| -»-«>,

u(z) -»• uQ a finite constant vector. The Laurent expansion of u(z) about

z = 0, [8, Sec. 9.14], reads

u(z) = y.\z for lzl >p;
k=0

using the uniform continuity of u in the compact annulus p <_ |z| <_ p + 1

we obtain

k "\ =!t ( "(Pej9)ejk6d8-

Observe that the u,p k = 0,1,2,... are Fourrier coefficients of u(peJ )

on [-iT,ir]. Now, since u(peJ ) is bounded and continuous on [-it,it], it

[) be!
4 Q O

follows that u(peJ ) belongs to the Hilbertspace L [-tt,tt]. Furthermore
n
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1k6« 2
the set {e~ }. is an orthonormal Hilbert basis for L [-tt,tt]. Hence

——zr Jc=—°°

Parsevalfs equality, [8,Sec. 6.5],^ lujjV"2* ="^ I |u(p .ej9) 12d6 <-,

— -2
It follows therefore that u(z) £ £ (p). Furthermore by (27) and fact 3

G(z) e £2(p) or
n

(48) ue £2(p).
n

Finally by (45), (28), (23)-(24) and since P(l/z) is unimodular, e(z)/z

has a pole at p with nonzero residue. Since |p| >_ p

(49) e£ A2(p)
n

and by (48)-(49) we have shown the contradiction we were after. n

Remarks.

1) The theorem above describes in detail what happens when K__, K_, K

are nonempty. When one or more of these sets are empty the required modi

fications of (C) of the multiplier M(z) are straightforward.

2) In case there are £ poles at p , p„, ..., p of order m-, m , ...,

m with absolute value larger than or equal to p, one uses a product of

multipliers like M(z) one for each pole. Condition (C) is used to check

that det N(z) does not vanish at z = p. Therefore for the more general

case an appropriate condition (C) is required at each pole.
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