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ABSTRACT

This paper deals with nonlinear resistive networks which can be

characterized by the equation f(x) = y where f(») is a continuous, piece-

wise-linear mapping of Rn into itself, x is a point in Rn and represents

a set of chosen network variables, and y is an arbitrary point in Rn and

represents the input to the network. New theorems on the existence of

solutions together with a convergent method for obtaining at least one

of the solutions are given. The second part of the paper is concerned

with an efficient computational algorithm which is especially suited for

analysis of large piecewise-linear networks. The effectiveness of the

method in terms of the number of computation and data handling and

storage is demonstrated.
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A Sparse Matrix Method for

Analysis of Piecewise-Linear Resistive Networks

T. Fujisawa, E. S. Kuh and T. Ohtsuki

1. Introduction

The problem of analysis and design of large-scale nonlinear resistive

networks is becoming of widespread interest. One encounters such a prob

lem not only in electric or electronic circuits but also in hydraulic

networks, structural analysis, numerical integration and economic model

ing [1-5]. Because of the size of equations usually involved, it is

crucial to devise an efficient computational method for finding the

solutions. Recently, a number of theoretical results have been found

concerning the question of the existence and uniqueness of solutions

[6-10], It turns out that these results not only provide a basic under

standing on inherent properties of networks which possess a unique so

lution but also are of paramount importance in obtaining convergent com

putational algorithms.

In this paper we shall confine our study to piecewise-linear resis

tive networks. The paper can be divided into two parts, in the first

part (Sections 2 and 3) we extend the theory of piecewise-linear resis

tive networks as developed by Fujisawa and Kuh in Reference [10]. New

theorems on the existence of solutions (not necessarily unique) are pre

sented and a convergent method of finding at least one of the solutions

is given. With these results, the applicability of the piecewise-linear
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method is enlarged to include not only all networks with unique solution

but also a broad class of networks which possess multiple solutions.

The second part of this paper (Sections 4 and 5) is concerned with

an efficient computational algorithm which is especially suited for

analysis of large piecewise-linear networks. The problem is essentially

solving linear equations A3 = a for successive A's. However, there

exists a special relation between two successive ATs. which is imposed

by a key property of continuous, piecewise-linear functions developed in

Section 3. For readers who are primarily interested in the new algor

ithm, it is not necessary to understand fully the first part of the

paper.

The solution method which is based on the idea developed by Bennett

[11] is presented in Section 4. The method depends on the conventional

Gaussian elimination but takes advantage of the key property of con

tinuous, piecewise-linear functions; consequently, it is more efficient

than either of the two existing methods, namely: (i) using Gaussian

elimination at each step and (ii) finding the inverse of the modified

matrix at each step. The proof of the new formulas together with a quick

review of the Gaussian elimination method is given in Appendix 2. In

Section 5, we demonstrate the effectiveness of the method when the matrix

is sparse. The data structure for the computer program is discussed in

some length. An example which illustrates the advantage of the method

is given.

2. Existence of solutions.

Piecewise-linear resistive networks are assumed to be characterized

by equations of the form:
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?Q0 - y (1)

where f is a continuous * piecewise-linear function which maps Rn into

itself, x is a point in R and represents a set of chosen network

variables, and £ is an arbitrary point in R and represents the input

to the network.

For a continuous, piecewise-linear function f, the whole space Rn

is divided into a finite number of polyhedral regions by a finite number

of boundary hyperplanes. A typical boundary hyperplane can be charac

terized by the following equation:

T
r x = const. (2)

where r is the normal vector of the hyperplane. In each region, say

region m (denoted by R ) the piecewise-linear function f is represented

by linear equations:

A(m)x +w(m) -Z, >- 1, 2, •••, (3)

(m)
where A is a constant nxn matrix (called Jacobian matrix for convenience)

/_\

and w is a constant n-vector, both defined in region R . It is assumed
m

that there are altogether I regions in the x-space.

It is crucial to note that continuity of the function imposes a

constraint on the Jacobian matrices of any two neighboring regions.

Suppose that two neighboring regions, say R- and R«, have a common boun

dary hyperplane H as shown in Fig. 1. For f to be continuous on H it is

necessary and sufficient that on the boundary where
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T
r A x = 0 (4)

A(2) A x- A(1) A x (5)

Furthermore, it is easy to see that the above constraint is satisfied if

and only if

A<2> -A<« = crT (6)

where c is an arbitrary constant n-vector. The above relation indicates

that the difference of the Jacobian matrices of two neighboring regions

is a dyad of a specific form. This turns out to be a key property of

continuous, piecewise-linear functions, which plays a major role in the

theory and computation of piecewise-linear networks.

The key property in Eq. (6) together with the well-known determinant

formula

det(l+PQ) = det(l+QP) (7)

gives the following useful relation between the determinants of Jacobian

matrices of two neighboring regions:

det A(2) =det(l+crTA(1) )det A(1)

= K det A(1) (8)

where

K-1+ rTA(1)" c (9)
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is a scalar constant.

In the following we shall first review briefly some important con

cepts of global homeomorphism of continuous, piecewise-linear mappings

as developed in Reference [10]. Special attention will be given to

properties of the function at a boundary hyperplane. Two new theorems

on existence of solutions will be presented.

A continuous function f is said to be a homeomorphism of R onto

itself if and only if Equation (1) has a unique solution for all v. The

necessary and sufficient conditions for f to be a homeomorphism as stated

by Holzmann and Liu are [7]: (i) f is a local homeomorphism for all y,

and (ii) lim 11 fCx) II = «> as Uxll •*• ». The local homeomorphism at x is de

fined as follows: There exists a neighborhood of x which is mapped

homeomorphically onto a neighborhood of f(x). For continuous, piecewise-

linear functions it is not difficult to see that condition (ii) is auto

matically satisfied if, in all regions,

det A(m) i 0, m= 1, 2, •••, *,. (10)

With this assumption, we only need to study condition (i). In this re

spect, Fujisawa and Kuh gave the following theorem [10]:

Theorem 1. Let f be a continuous, piecewise-linear mapping of R into

itself. A necessary and sufficient condition for f to be a homeomorp

hism of R onto itself is that, for any unit vector a and for any x e R ,

there exists one and only one nonzero vector $(ot,x) such that

f(x+v$) = f(x) + va (11)
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for all sufficiently small positive v.

Let us discuss the implication of this theorem. Obviously, if x

is an inner point of a region, say Rm> then det A ^0 guarantees

local homeomorphism; and the condition in Eq. (11) of the theorem is

satisfied with $ = AW a.

Next, take the case in which x lies on one and only one boundary

hyperplane (called simple boundary.) With reference to Fig. 1, consider

a point x on the simple boundary hyperplane H of the two neighboring

regions R- and R„. For a given unit vector a, according to Theorem 1,

homeomorphism is equivalent to the existence of a unique nonzero vector

g which may lie in R_, R« or on the boundary. As shown in Fig. 1, we

define

h =A(1)_1a (12a)

in R- and

h2 Aa<2)_1o <l2b>

in R.. By means o£ the key property in Eq. (6), we can derive a relation

between the two vectors:

h2 =A(2) a-(A(1)+crT) a

-1 .,.-1 - ,«-! "I T (1)"1
- [A^ -AW c(rTA(1) eU) rTA(1) Ja

-h-|A^"^ •(")
..1 K. ~ ~- -J.
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In the above, we have used the well-known Householder's formula

(F-KJLM)"1 = F"1 -F"1G(MF"1G+L""1) MF"1 (14)

and the identity in (9) , From (13), we obtain

i\ • i ?\ <15)

where, from (8), we recall that K gives the ratio of the two determinants

of the neighboring Jacobian matrices. In the following, we shall assume

that K > 0, i.e. the determinants of the Jacobian matrices of two neigh

boring regions have the same sign. For a given a, we compute h^ accord-
Ting to (12a); clearly, there exist three possibilities, namely: (i) r h^ < 0,

(ii) r1^ >0, and (iii) r1^ =0.
Under case (i), rTh- <0; from Eq. (15) rt}2 <0, which implies that

there exists no such h« in R«. The unique vector $ is simply h^ in R^.

Under case (ii), rTh- > 0; from Eq. (15) r h0 > 0, thus the unique § is

simply h2 in R«. Under case (iii), both h^ and h2 lie on the boundary;

Eq. (15) requires that h- and h must have the same direction, and the

continuity of the function requires that h- » h2. Thus the unique 3 Is

the vector h. = h„ on the boundary.

It is easy to see that if K < 0, then Theorem 1 cannot be satisfied.

Therefore, we have demonstrated that if a point x lies on a simple boun

dary, the condition in Eq. (11) of Theorem 1 is satisfied if and only if

K > 0, that is, the determinants of Jacobian matrices of the two neighbor

ing regions have the same sign.

The discussion above might suggest that a necessary and sufficient
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condition for f to be a homeomorphism of R onto itself is the following:

det Ar 9 det A , •••, det A> ' are all positive or all negative. How

ever, a counter example given in [10] indicates that this is not the case.

The crux lies in situations that x is on more than one boundary. Under

such a situation, x may not satisy the condition of Theorem 1 even if

all determinants of Jacobian matrices to which x belongs have the same

sign. If the function f is continuously differentiable, let the Jacobian

matrix be J, then det J(x) V 0 implies local homeomorphism at x. How

ever, as far as we know there exists no corresponding statement in the

continuous, piecewise-linear case. In Reference [10], Fujisawa and Kuh

gave the following sufficient condition for homeomorphism, which, inci-

dently, is of considerable interests from computation point of view as

will be indicated in Section 4.

Theorem 2. Let f be a continuous, piecewise-linear mapping of R into

itself, and let A£m' denote the leading minor of order kof Am,that
is, the matrix composed of the first k rows and k columns of A . The

mapping f is a homeomorphism of R onto itself, if, for each k = 1, 2, •••

n, the determinants of the k*k matrices

a(D a(2) ... .(*>
\ >\ ' • *k •

do not vanish and have the same sign.

Clearly, the above condition is satisfied by matrices which are

[12]positive or negative definite and matrices of Class Pu (matrices with

all positive principal minors). The application of interchange of rows
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and columns, can be made to further extend the applicability of the above

theorem. It should be emphasized nevertheless that the condition in the

theorem is only sufficient but not necessary.

On the other hand, if we back track the determinant sign conditions

discussed earlier, we can state the following two theroems concerning

not of homeomorphism but of existence of solutions. The proof of the

theorems are given in Appendix 1, and their application is given in

Section 3.

.n
Theorem 3. Let f be a continuous, piecewise-linear mapping of R into

itself. Then there exists at least one solution x to an arbitary x if

det A^m\ m« 1, 2, •••, I are all positive or all negative.

In Section 3, the above condition will he referred to frequently;

therefore, for convenience, the condition is henceforth referred to as

"condition (A)".

Theorem 4. Under the same assumptions as in Theorem 3, (i.e. condition

(A)), for any unit vector a and any point x, there exists at least one

nonzero vector 3 such that f(x+v§) = f(x) + va for all sufficiently small

positive v.

3. Solution Method.

In 1965, Katzenelson considered piecewise-linear resistive networks

of a special class in which all resistors are uncoupled and are of strictly

monotonically increasing type, and he developed a convergent computational

algorithm^131. The piecewise-linear approach was further extended to

include more general cases by Chua1-1 and Ohtsuki and Yoshida

Recently, the Katzenelson algorithm has been used in computing the solu-
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tion of resistive networks of much broader class ' . In particular,

Fujisawa and Run have shown that the algorithm can be applied to Eq.

(1) and it always converges to a solution as long as the equation has a

unique solution for an arbitrary input y. In other words, homeomorphism

implies the convergence of the algorithm. Then one might ask the follow

ing question: Does the algorithm always converge to a solution under

the assumption that there exists at least one solution to any input? The

answer is no as a later example will illustrate. Instead, we can state

the following theorem.

Theorem 5. The Katzenelson algorithm converges within I steps to a so

lution if Condition (A) is satisfied, i.e.,

det A(m), m- 1, •••, £•

are all positive or all negative.

In the following paragraphs a proof of the above theorem is given

together with a review of the essence of the Katzenelson algorithm.

The problem is to find a solution of Eq. (1) for a given input v .

(1)To begin, choose an arbitrary point xv which is an inner point of a

region, say R-. In Rx the equation which characterizes the network is

A(1)x + w(1) -y (16)

(1)Substituting x into the above, we obtain

A(iy« +„(« . ?(d a?)

which usually differs from the given y . Denote the line segment joining
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implies K >0 because of Eq. (8). Therefore, if condition (A) is satis

fied, then

x(2>(X)=x(2)+XA(2)"V-y(2)), X>0 (19)

is the portion of the solution curve in R2»

In case (ii) in which x^ lies on more than one boundary hyper-

planes as shown in Fig. 3, we have to make use of Theorem 4 to prove that
(2)

the solution curve can be extended into a certain region beyond x

Now define a=y* -y^2\ then it follows from Theorem 4 that there

exists at least one nonzero vector 3 such that

f(x(2) +v3) -l(2) + va (20)

for all sufficiently small positive v. The underlying assumption is of

course that the condition (A) is satisfied. One can determine the region

in which x^ + v3 is contained for all sufficiently small positive v.
(2) * (2}The region is denoted by R2. Then, 3=Av (y -yv ') and, as before,

Eq. (19) gives an extension of the solution curve.

As mentioned earlier, a point of the intersection of more than one

boundary hyperplanes is called a corner. The observations made above

then indicate that if the condition (A) is satisfied the solution curve

is always extended into another region when it hits a boundary regardless

of whether the curve hits a corner or not. Since there exists only a

finite number of regions in the x-space, therefore, the proof of Theorem

5 can be completed if it is shown that the solution curve never comes

back to a region which the curve once traversed. This is shown as fol-
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y and y in the y-space by L . The problem is then reduced to one

of determining a continuous curve, that is really a polygonal curve,

starting with x in the x-space such that f gives a one-to-one corre

spondence between the set of points of the curve in the x-space and the

set L in the y-space. Then, the other end point of the curve is a so

lution.

The portion of the solution curve which lies in R. is determined by

x^V) =*(1) +xa^'V - ?(1)> (")
where A>0is aparameter. If x^ (̂1) happens to be in R^9 then x (1)

is the desired solution. The line segment joining x^ and x (1) is

the solution curve and the algorithm terminates here. If, otherwise,

the value of X has to be determined so that x^ '(X) lies on the boundary

of R . Denote such value of Xby X^ ' and define x^ = 3T '(A*" ') and

y/2^ =f(x(2)). The line segment joining x^ and x(2) is thus the first
portion of the desired solution curve. The next step is to extend the

(2)
solution curve beyond x

(2)
There are two cases to be considered separately: (i) x lies on

(2)
a simple boundary, and (ii) x lies on more than one boundary hyper-

(2)
planes, or stated in another way x is at a corner.

(2)In case (i), suppose that xv ' lies on the boundary hyperplane H1

which is common to regions R., and R2 as shown in Fig. 2. Define h^ =

A(1>~y-y(1)> and h2 =A(2>_1(y*-y(1)) =cA^'V-y^) where cis a
positive constant equal to Hy -y 'fl/Oy -yK 'h Clearly rv b^ > 0,

and hence from Eq. (11) r(1)Th2 >0if K>0. However, condition (A),
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(k)
lows: Suppose that the solution curve enters region R. at x and leaves

it at x and that the curve later enters the same region at x as is

illustrated in Fig. 4. Clearly these three points x^ , x- ' and x J
(k+1) (k)

do not lie on a line. Therefore, the two vectors x x and

x J - x are linearly independent whereas their images under linear

(k) * (1)mapping Av ' are both constant multipliers of vector y - y and hence

(k.)
are linearly dependent. This contradicts the assumption that A is

non-singular. This completes the proof of Theorem 5.

We now present a simple example in which condition (A) is not

satisfied, yet the equation has at least a solution for any input. It

is seen that the Katzenelson algorithm does not work.

Example. Consider a scalar function f(x) of a single variable x as

shown in Fig. 5. It is easily seen that there exists at least one so

lution of the equation f(x) = y for any given y. There are three regions,

namely: R- = (-~,0], R2 = [0,1], and R3 = [l,00). In these regions

A^ = 1, A^ ' = -1, and A^ = 1 are the slopes of the respective seg

ments. Thus the function does not satisfy the condition (A). Suppose

* (1)
that the input is y =2 and that we start at x = -1. Then the so

lution curve starting with x on the real line hits the boundary x = 0.

The curve can not be extended into region R« because the value of f(x)

increases for -1 4 x < 0 and decreases for x 4 0. This indicates that

the existence of solution does not generally imply the convergence of

the Katzenelson algorithm.

There remain two computational problems to be investigated. The

first one is the corner problem. When a solution curve hits a corner,
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there exists, theoretically, at least one vector 3 as given in Eq. (20).

The problem from computational point of view is how to find such a 3.

Fujisawa and Kuh gave a systematic perturbation method which forces the

solution curve to cross a simple boundary hyperplane at a time

This method always works but is rather tedious. Probably the best way

in practice is to make a small move each time a corner is reached so

that the modified solution curve does not hit any corner.

The second computational problem is how to best compute the direction

/i\-l * /•» \ f9"\~"l * (2)
vectors Av ' (y -y ), Av ' (y -y ), •••. The straightforward way

(I)""1 (2)"1
of computing inverses Av ' , Av , ••• each time without using any

[12]
of the previous information is obviously inefficient. Katzenelson

proposed to use the following relation based on the Householder's formula:

^r1. ^D"1 tl. i cr\w-\ (21)
"is. "~ ~

where A^ ' and A^ are related to each other as in Eq. (6). Once A
(2)"1 (3)"1

is inverted, the inverses of the succeeding Jacobians A , A , ••

are obtained successively by the repeated use of the formula (21). We

can continue the process until the accumulation of numerical errors be

comes significant. This method takes advantage of the key property in

Eq. (6) of continuous piecewise-linear functions and is definitely more

efficient than finding the inverse matrices from scratch at each step.

However, it should be pointed out that in large-scale networks, the

Jacobian matrix is usually sparse. As is well-known, sparse matrix, if

it is irreduceable, becomes full after inversion . Since sparse
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matrix technique is crucial in solving large systems of equations, any

method which depends on finding the inverse of a large matrix is totally

impractical. What is needed is the triangular factorization of a matrix

based on Gaussian elimination. Thus a conceivable scheme is to use

Gaussian elimination each time when we need to solve equations A 3 = a.

This scheme can be used to exploit the sparsity and thus cut down both

the computing time and storage space drastically. However, the con

ventional Gaussian elimination scheme does not exploit the special re

lation of successive Jacobian matrices, a key property of continuous

piecewise-linear functions.

According to the arguments made above we need to seek a method which

not only takes advantage of the sparsity but also uses the key-property

of continuous, piecewise-linear functions. In the following section

such a method is presented. It is demonstrated that the method is more

efficient than the one using Householder's formula in the case of full-

matrix. It is also more efficient than Gaussian elimination in the case

of sparce-matrix.

Finally, it should be remarked that under condition (A) multiple

solutions may exist. By applying the Katzenelson algorithm once, we can

only find one of the solutions. The process must be repeated with new

initial guesses in order to find the other solutions.

4. Triangular!zation of matrices modified by dyads.

The problem in this section is to compute the triangular factori

zation of the matrix

A* = A+ crT (22)
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from that of A. In Eq. (22)

A= [a±j] (23)

is an nxn nonsingular matrix,

c= [c1,c2,---,cn] (24)

and

r = [rltr29'"$vn] (25)

are n-dimensional column vectors. Thus A can be expressed as

A* » [a.. + c.r.] (26)
ij i J

The underlying assumption is that A has been factored by means of

Gaussian elimination and the following form is obtained:

U = T T - ••• T.A (27)
~n-n-l ~1~

where U « [u. .] is an upper triangular matrix with unit elements on the

diagonal and T, is equal to the identity matrix except for the k-th

column which is of the form:

i0'-"'0'ttt'tfcfi,k'""'tiJT <28>

The objective is to find the triangular factorization of A , if it exists,

and to obtain

U » T T , ••' T.A (29)
~n~n-l ~1~
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based on the known factorization of Eq. (27). It should be mentioned

that in 1965 Bennett considered a more general problem of obtaining the

* T
triangular factorizationof A = A + X G Y from that of A, where X and

Y are n x m matrices, and m « n . In his approach, Bennett assumes

that A has been decomposed into the matrix triple product L D U where L

is a lower triangular matrix with unit elements on the diagonal , U an

upper triangular matrix with unit elements on the diagonal, and D a

diagonal matrix. After A is modified to become A , the corresponding

it it it it

factorization of A into L D U is derived. In our problem, we deal

T
only with the case where A is modified by a dyad c r and we prefer to

use the Gaussian elimination form rather than L D U factorization. The

method is presented in this section with its proof in Appendix II. In

Section 5, special considerations are given for the sparse matrix case.

Before stating the main theorem which contains all the formulas,

we need to introduce three sets of auziliary variables: two lower

triangular matrices C and R, and a diagonal matrix p. First

C =

(0)

(0) (1)

(0) r^> r(2)
C3 C3

(0) (1) (2)
n

L
n

-17-
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where

c<°> A c .i- l, 2, n (31)

(k) A Jk-1) + (k-1) fk-1 •••, n-1
i i ik k [i s k+1, •••, n

Note that the first column of C is the given vector c. The k-th column

is given by a vector of n-k+1 dimension, whose elements are specified by

the elements of the k-1 th column and t . of T . Similarly, for the R

matrix, we have

1(0)

R «

where

(0) (1)
r2 r2

«.(0) r(D r(2)
.(k-1)
k .

(0) .(1) ^.(3)
n

r
(k-1) ^ (n-1)
n

r
nn n

rj(0> •Tj5 3"!» 2» '"» n

(k) A (k-1) (k-1)
r^ » r; - r.
J J k Ukj; {

k « 1, ••*, n-1

j o k+1, •••, n

The diagonal matrix D is specified by its k-th element

(33)

(34)

(35)

^K-i^^M^V^-1'2'-'11 (36)

Theorem 6. The modified matrix A can be triangularized if the diagonal
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matrix D is nonsingular, i.e.,

dfc 4 0, k = 1, 2, ..« n

and the elements of T
~n

it it it
T, ••• T, and U are given by

k-1

'kk

*

fcik * tik

'kk kk

r(k-l)t
rk Lkk

(k-1)r(k-1) t2
kk

k - 1, 2,

(k) ri-krH. ••', n

1 ' Ik =1, •••, n-1

, ^"'̂ kk (k) Pek+1' •-•«
^kJ^J-^-V-" 'U-l. -,n-l

(37)

(38)

(39)

(40)

A proof is given in Appendix II.

it

In this section, sparsity of A and A is not considered. We treat

instead the general full matrix case. We shall first give the complete

details of the computation procedure. Next we compare our method with

that which is based on the Householder's formula and which is based on

the conventional Gaussian elimination.

For efficient use of computer storage, non-trivial entries of U and

T's are packed in a two dimensional array as follows:

A( , ) - [T\U]

11

:21
i

i

«

:nl

ui2 Uln

H2 " U2n

t _ t
n2 nn
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where A( , ) is the name of the array in programming. Two one-dimensional

arrays named C( ) and R( ) are used to initially store c and r, re

spectively. One more variable named D initially stores dft. As the

computational process proceeds, entries of A( , ), C( ), R( ) and D

*

are replaced by new ones successively and A( , ) finally gives t.. and

* *

u.. for A .
ij

Initially, A( , ) contains (41), C( ) contains elements in the

given vector c, i.e., [c£ ', •••, c^ '], R( )contains similarly
[r5 ,••*, r^ '] and Dcontains dQ. In the beginning of the k-th

step A( , ) contains the following

11
- - - u

l,k-l

*

k-1,k-1

*

k,k-l

'k-1,1

*

:k,l

n,l

t

t

t
n,n-l

u
l,k

- - - u
l,n

Tc-l,k " K-l,n

'kk K,n

i

I N i

t . t
n,k nn

(42)

„ n, x + a r (0) (D (k"D ,.<k-1>i p/ ^and C( ) contains [c^ , c2 , ..., c, , ..., cn J, R( )

contains [r^0), r£1}, •••, r^k"1), •••, r^k-1)] and Dcontains dfcrl-
Note that C( ) and R( ) contains, respectively, the diagonal

entries of matrices C and R for columns 1 ••'• k and the non-zero entries

of the k-th column.

At the k-th stage, the following computation is done successively

(i) For i = k+1, n

(k). (k-D +1 (k-D
i x lk k

-20-
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(k) m (k-1) _ (k-D (44)
i i k Hci

These replace the last (n-k)-entries of C( ) and R( ), respectively.

dk =*k-i+ Vkk-1) (47)

8k - Sk/dk (48>

Pk -r£ \ (49)

(k-1) ,^sqk - <£ ;gk (50)

The value of d, replaces the content of D immediately after it has

been computed. Of course, the condition d, $ 0 has to be checked. The

variables f, , d, (or e, ), g, , p, and q, are considered as temporary

variables whose values are saved only in the k-th step and are used to

cut down the arithmetic operation.

(iii) Finally t^. t^.^. ••-, tn>fc and u^^, •••, u^ are

computed and used for updating the content of array A( , ).

4 • ^ - Vk (5ia)

or

4 =Vk (51b)
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For i = k+1, •••, n

lik= eik - v£ <52>

"ki - \i+ vi <53>

This completes the computation of the k-th step. Finally, at the n-th

step, it is seen that only t needs to be calculated.
nn

Now comparison is made for the use of Householder's formula and

that of our method. Let the number of additions and/or subtractions

be N^, the number of multiplications be NM and the number of divisions

be N . For the new method, these numbers are estimated as follows:

NA -2n2, NM "2n2 and ND -n (54)

Table I indicates how much we can gain from the use of the new method

compared with that of the Householder's formula in full-matrix case.

If one uses the conventional Gaussian elimination each time in full-

matrix case, then the necessary arithmetic operation count amounts to

3 2
the order of n /3 whereas in our method it is of order n . Table

II gives exact operation counts for n = 6, 7, 8 and indicates that if

n >_ 7 the new method is superior. The difference becomes very signifi

cant as n is large. However, it should be pointed out that this gain

in computing time partly is offset by sacrificing numerical accuracy.

If the conventional Gaussian elimination is applied to Jacobian matrices

each time, a complete control of numerical error can be achieved, for

[17]
instance, by using partial or complete pivoting . On the other hand,
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Table I. Comparison of Householder's

Formula and the New Method.

Initial inversion

or triangularization

Each Modification

+ , * + X T

Householder's
formula

3
n

3
n n 3n2 3n2 1

New

method
1 3

3n
1 3

3n
n 2n2 2n2 n
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in the use of the new method, we have to keep the same pivoting order as

the initial Jacobian matrix used at the first step, which may not be

optimal for the succeeding matrices. Furthermore, the round-off error

tends to accumulate as the process goes on. In this respect the obser

vation in the following paragraphs is important.

In appendix II it is shown that 1/t^ = (^/dg) (X/t^) ,l/*22 "

(d2/dx) (l/t22), ..., l/t*n =(Vdn-1} (1/tnn) are the PivotinS elements
fl7lfor the original A. It is well known1 J that if these pivot elements

are small compared with other elements, then the numerical accuracy of

triangularization can not be good. Therefore, a plausible policy is to

set a lower bound for these ratios ^/d^ c^/d^ •••, ^/d^. ^^ the

bound is violated, we scratch the process and restart the process by

applying Gaussian elimination to the Jacobian matrix at this stage where

a new solution is obtained by using a new pivoting order.

In Appendix II, we point out that the application of the Gaussian
[17]

elimination is possible if the leading principal minors do not vanish

If otherwise, one has to interchange rows and columns to obtain

a triangularization. Under the assumption that the condition (A) is

satisfied, the above interchange, i.e., pivoting, is usually necessary.

Furthermore, the change in pivoting orders may be needed from time to

time as the process progresses. In this respect Theorem 2 is very inter

esting for it guarantees the applicability of Gaussian elimination with

out using interchange of rows and columns. As a matter of fact the lead

ing minor of order kof A* is the product of dfc and the corresponding

minor of A. Hence the condition of Theorem 2 in terms of leading princi

pal minors gurantees the condition in Eq. (37) of Theorem 6.
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Table II. Comparison of Gaussian Elimination

and the New Method.

Gaussian New Method

n + X + X

6 55 85 72(66)* 88

7 91 133 98(91)* 117

8 140 196 128(120)* 150

Using Eq. (51b).

-25-



5. Sparse matrix method.

The method described in the preceeding section provides a very

efficient means of exploiting sparseness if the sparseness structure of

the Jacobian matrices is fixed in the entire course of computation. This

is the case in the analysis of piecewise-linear resistive networks. The

it

fixed sparseness implies that A and A have the same zero locations, or

a.,. = 0 =» c.r. = 0 (55)
ij i J

it

With the same sparsity structure for A and A , assuming no numerical

cancellation, we may state that [T\U] and [T \U ] have the same sparsity

structure, i.e.,

t±j (or u±j) =0<> t*j (or u*^) =0 (56)

Therefore when the first Jacobian matrix is triangularized, the sparse

ness structure of the triangular form, that is, zero-nonzero pattern of t..

and u,. is determined. Thereafter we only have to store and operate
ij

on nonzero elements.

Before going into the discussion of data structure and computer

program, we give a comparison of the arithmetic operation counts of the

sparse Gaussian elimination and of the new method. The sparse Gaussian

elimination is no different from the usual Gaussian elimination method

except that it skips all trivial calculations such as 0 + k = k and

ri8i
0*k • 0 . Let yt denote the number of nonzero entries of the k-th

'k

column of T, , and let p, denote the number of nonzero entries of the
~k k

k-th row of U. Then, the number of multiplications for sparse Gaussian

-26-



elimination is essentially

n-1

Hi"L(VkV»k>' (57)
k=l

whereas that of the new method, by the most conservative estimate, is

n-1

N
2

k=l

2Z w • (58)

From Eqs. (57) and (58) we conclude that with rare exceptions the new

method is much more efficient than sparse Gaussian scheme. One of the

exceptions is a full tridiagonal matrix case, where both algorithms

provide a process of order n. For the purpose of testing the sparse

matrix version of the new method, a sparse matrix of order 57, which

was posed in Fig. 1 of [18] was processed as an example. The exact

number of arithmetic operations involved was counted by computer simu

lation for ten different pairs of c and r, which were chosen so that they

were consistent with the sparseness structure of A. In Table III the

results are summarized and compared with the operation count for sparse

Gaussian elimination. Thus a considerable amount of saving on machine

time may be expected by the use of our method.

(k)
In the computer program developed by the present authors, c. and

(k)
r]* are stored in two one-dimensional arrays C( ) and R( ) as in

the full-matrix case: However, the following three one-dimensional

*

arrays are used to compactly pack nontrivial entries of t.,, u.., t..

*

and u..:
ij
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DT( ): Initially t-.,, ..., t are stored, and finally replaced

by t..,•••, t .
7 11 nn

T( ): Initially off-diagonal nonzero entries t.. are stored

*

column-wise, and finally replaced by t...

U( ): Initially off-diagonal nonzero entries u are stored

it

row-wise, and finally replaced by u...

The arrays T( ) and U( ) pack all nonzero off-diagonal entries

t... u.,, and therefore we need to devise a method to locate the address
ij ij

where t,,. or u,. is stored. To be more specific, we have to locate the
ij ij

address £, i.e. the £-th position in the array T( ), where t , is

stored. In other words, t., = T(£). The following four one-dimensional

arrays provide a means necessary for address computation. In order to

understand our scheme, the example in Table IV is given. Note that the

nonzero elements of the matrix [T\ U] are marked by cross in (a). The

four arrays are defined and illustrated as follows:

5( ): £(k) gives the position in the array T( ) where the

first nonzero entry of t,- ,, •••, t . is found. In the example, for

k «= 1, 5(1) = 1. For k = 2 to 6, there is only one such nonzero entry

for each column, thus T( ) stores the nonzero entry successively in

order. For k = 7, there are two nonzero entries, we have £(7) = 7 and

the next two entries in T( ) contain tg_ and tg_. Therefore, for

k » 8, C(3) = 9, and T(9) contains t.g. If there are no nonzero entry
*

in the k-th column, £(k) gives a special symbol to indicate the fact.

*

It should be pointed out that if the original matrix is irreduciable,
this never happens.
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a( ): aOl) = i, if tfc is stored in T(£) ,that is T(£) = t±k. In

the figure (c) , for example, a(l) = 4, which indicates that T(l) = t^.

Thus a( ) gives the designation of the row of the nonzero entry of the

lower triangular half of [T\ U].

The remaining two arrays n( ) and g( ) are similarly defined, which

give the address location of u, i«

n( ): n(k) gives the position in the array U( ) where the first

nonzero entry of u^ k+1 •••, u^ is found.

6( ): 3U) = i if D(A) - u^

The order in which nonzero entries of t ,u±, are stored is con

sistent with the computation procedure (43)-(53). Therefore, the numerical

computation can be performed in the same way as that in the full-matrix

case. However, trivial operations due to zero t ,u^., are automatically

skipped in tracing down T( ) and U( ). Other trivial computations

caused by zero entries of c^,rjk\ are also skipped simply by testing
whether or not c£k) =0and r^k) =0. Unlike sparse Gaussian elimi
nation, address computation in the method developed here is very simple.

The storage requirement for the computer program under consider

ation can be estimated by the lengths of various one-dimensional arrays.

Let m be the number of nonzero elements of t and u , and n be the

order of A. Then the storage requirement is estimated to be

(m+2n) floating-point numbers

+ (m+2n) integers (58)

One of the main advantages of the new method is the surprisingly small

storage required to represent the sparseness structure. Note that, if
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*
we are to use Gaussian elimination for A , it is necessary to have non-

trivial searching procedures for computing addresses in order to write

data in or to read data out. If one wishes to avoid the search, some

other redundant processing is needed. For instance, a program called

GNSO generates a long, linear sequence of FORTRAN statements called

SOLVE . Once SOLVE is obtained, it can eliminate all searching pro

cedures and thus speed up the process provided that the core memory is

not overloaded by its length. As is mentioned in the foregoing section,

the pivoting order may have to be changed from time to time. In that

case, each time GNSO has to be called for into operation; thus overall

economy is questionable.

Another important aspect of our method lies in its easy de-

composability of data structure, which is needed if data overloads the

core memory. The data are stored linearly from the top to the bottom

of T( ) and U( ) in accordance with the sequence of computation in

Eqs. (43)-(53). Thus, the interchange of data between core and back up

memory is very simple. The ordering of t and u is also consistent

with the forward and backward substitutions. It should be noted that

the fundamental operation in Gaussian elimination

4?-r)+tik4ri);^>k (6o)

is inconsistent with this decomposability requirement. Generally t±k and

a5k"^ are stored near the top, while a£. 's are located near the bottom

of the array.
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Table III

Cases nonzero c!s nonzero r!s
3

+ X

Initial Sparse Gaussian Elimination 665 1237

1
cl rl

396 468

2
c6 r46

163 208

3 c2 rl
376 446

4 C43 r18
169 217

5 c57 r57
2 5

6 crc2 rl'r2,r8,r9,rll,r12

r14,r43,r44,r45

396 468

7 C32,C33,C34,C35,C36,C37

C38,C39,C40,C41,C42

r42 219 277

8 C19,C20,C21'C22,C29 r19,r20'r21,r22,r29
379 463

9 C32,C33'C34,C35,C42 r32,r33,r34,r35,r42 356 434

10 C47'C48,C49'C50'C57 r47,r48,r49,r50'r57
112 145
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Appendix I

Proof of Theorems 3 and 4

Proof of Theorem 3. First some general observations need to be made to

clarify the nature of continuous piecewise-linear mapping f. Each

region is a convex polyhedron, either bounded or unbounded. It is to

be noted that f is an affine transformation A^x + w my in each

region R . It follows that the image of each region under mapping f
m

is also either a bounded closed polyhedron or an unbounded closed poly

hedron. Therefore the range space f(Rn) is the finite union of convex

closed polyhedra.

The proof is by contradiction. Assume that f(R ) does not fill

up the whole space Rn. Then there exists an (n-1)-dimensional face F

which is a boundary of f(Rn) as is illustrated in Fig. 6. The face F

is a finite union of the images of some (n-1)-dimensional boundary

*

faces of regions in the x-space. Hence there exists a point ^ € F

*

which lies on F but not on any other faces and a point x which lies

*

on one and only one boundary hyperplane in the x-space such that y »

it
f(x ). Let a be the outward normal vector of face F. By assumption

it
y is on F but not on any other faces, and hence there exists a positive

constant e > 0 such that

y + va £ f(Rn) for 0 < v < e (1-1)

Though the image of each region is convex, their sum f(R ) may not be

convex. Hence one can not say x + vo £ f(R ) for all v > 0.
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6, Conclusion.

In this paper we considered two problems on piecewise-linear re

sistive networks. First, we developed two new theorems concerning the

existence of solutions and presented a convergent method for finding

at least one of the solutions. The result can be concisely stated in

terms of the determinants of the Jacobian matrices. Essentially, if,

in all regions, the determinants are nonzero and have the same sign,

there exists at least one solution for an arbitrary input; and the

Katzenelson algorithm can be used to find a solution. This extends

the early work of Fujisawa and Kuh on networks with a unique solution.

The question to be asked next is of course for the case in which all

Jacobian matrices are nonsingular but have either positive or negative

determinants.

The second problem which we presented deals with the development

of an efficient computational algorithm for solving large, piecewise-

linear, resistive networks. The problem is essentially to solve succes

sively linear equations A $ « a, for i = 1, 2, •••, in which two

successive A 's differ by a matrix of rank one. The method is based

on the triangular factorization of modified matrices developed by Bennett,

which make use of Gaussian elimination and takes advantage of the key

property that A.'s possess. When, in addition, the matrices are sparse

and have the same sparsity structure, the method is extremely efficient

in terms of the required number of arithmatic operations as well as data

handling and storage. The method can be used for problems other than

networks, for example, linear programming.

The computation for our example was done on IBM 1800. We acknowledge

the programming assistance of Mr. James Sporal.
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Appendix II

+

Gaussian elimination and proof of Theorem 6.

The nature of Gaussian elimination can be best seen by examining

its major first step. Let

A*A^.[{0,1

t(0)
lll

.(0)

^(0)T

o(0)

(II-l)

where a and b are n-1 dimension column vectors and G , is an

(n-1) x (n-1) matrix. Assuming that a^- is nonzero an elementary row

operation results in the following:

*i a ?i * •

1

11 1

0

a<°> |
1

(0)
lll

,(0)T

-for
11

A(1) -[ag>]
(H-2)

It should be pointed out that the notation used here is independent of
that of Sec. 2 when we considered matrices at different regions. Here

superscripts are used to denote iteration steps.
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*

As x lies on one and only one boundary hyperplane, there exists a

*

neighborhood V of x which is mapped homeomorphically onto a neighbor-

*

hood of y . This contradicts Eq. (1-1). Thus the proof is complete.

Proof of Theorem 4. From the arguments in Section 2 it is clear that

the statement of the theorem is true if either x is an interior point

or it lies on a simple boundary.

Let us assume that point x lies on mutually distinct boundary

hyperplanes H-, •••, H, . The property to prove is a local property

at x and hence it can be assumed that hyperplanes other than these

above do not exist. This is equivalent to the consideration of a modi-

*

fied continuous piecewise-linear function f which is obtained by ex-

* n
tending the local property of f at x to the whole space R , It is

*

clear that if f satisfies the condition of Theorem 3, then f does

* n
too. Therefore f is a homeomorphism of R onto itself due to Theorem

3. Therefore, for any unit vector a, there exists at least one non-zero

vector 3 such that

f*(x*+v3) = f*(x*) + va (1-2)

*

for all v > 0. Since f and f coincide with each other in a neighbor-

*
hood of x , (1-2) is valid for f for sufficiently small positive v.

This completes the proof.
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where

and

1 U12

0 1 u
23

0 0 1

'kk (k-1)
*kk

u
In

l2n

\,k+l \n

A<k> - [a«]

^•-•uT^ tkk;issk+1» '"•»

(k-1) . ...
\j =^k^j ; j = k+1> "'•• n

^.^H.^.i.J-w,-,.:ik *kj

(II-9)

(11-10)

(II-ll)

(H-12)

In the above, it is seen that the term a/, = -— is used as the
kk

pivoting element at each step, and, by assumption, it is nonzero. Thus

t,, is well defined. It is also of interest to point out the following

(k-1)
property of the matrix A in terms of a,. •: The leading principal

'kk
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where

A« - G<°> 1_ a(0) b(0)
(0) °
lll

(H-3)

According to the terminology used in Section 4 for T's and U, the above

relations can be written as

and

11 (0)
all

t = — a t • i = 2 ..♦ n
^il ail .11' X *' ' n

Uij =^.l^'^ =2' n

(H-4)

(II-5)

(H-6)

<})-^0)+t11^>,i.J-2...... «I-7)

For the k-th step, the general formulas are:

^k " >A-1

1 0

0 1

o_o tkk 0— 0

'fcU.k1— °

0 0 t . 0 1
nk

1 U12

0 1 U23

0 - - 0 1

0 0

-37-
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where

.») +i. c(0)_(0)an +dQ ci ri

a<0) +1 (0)_(0)
~ do£i r^
a(0) + 1_ c(0) (0)
all +d0 cl rl

1

(,(o)+i_c(o)5(0y

4!)+^°M0)

0 A*(1) - [a*f>]
(11-16)

A*(D a G(0) + 1_ c(0)r(0)T _
d0-l ~1

(a
(0) +1 c(0)r(0)Vb(o) +i_ (0) (0)

d0 =1 '1 y> d0 -1 --1 )
a<°> +k. ,(0)r(0)all d0 cl rl

(0)

In (11-17)

A<« +

(0)

/c<°> _ fi_ J°\ /r(«) fk_ h(o\(Si a(0) * )fi a(o) » )

•2} +h0 4°M0)

AU) + 1 <l)r<l)
dl - -

cd) A (0)
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(0)

,(0) ~
lll

(II-17)
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minor of order k, i.e. the determinant which is formed by the first k

rows and first k columns of A, is equal to

all a22
t(k-l) o 1
kk tllt22 "" tkk

(11-13)

Thus another way of stating that t,, is well defined for k = 1, 2, ••*, n

is the nonvanishing of all the leading principal minors of A.

The problem at hand is to obtain the Guassian triangularization of

A where

A* A A*(0) = A(0) + crT A A(0) + JL. c(0)r(0) (II.14)
d0 ~ "

*(0)
As in Eq. (II-l), we may write A as follows:

*(0) _

t(0)+i_c(0)r(0)
lll dQ cl rl

a(0) +l_c(0)r(0)
a + d0 ~1 rl

L

J0>T +i- n^h^h~ +d^cl £l

G(0) + l (0) (0)
d0 .1 -1

(H-15)

T .(0) A r (0) (0), is the (n-1)-vector containing the lastwhere cj =[c2 ,•••, cn ] ^
n-1 elements of c(0) and r[0) =[r<0), ••-, rn°}] is the (n-l)-vector
containing the last n-1 elements of r \ Then the major first step for

A*<°> is

* * *
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and (Q)

,(1) A (0) fl (0) m-l<n

aii

Comparing these with Eqs. (30)-(35), we recognize that c is the second

column vector of the triangular matrix C and r is the second column

vector of R in Section 4. Furthermore using these formulas in Section 4

and Eqs. (II-4)-(II-7), we can easily prove the following:

„* dotll dl tll " 'll

c(0) (0) 2
1 1 11

dl

*(0) +f
d0

-WW
-I 1

JO) r(0)9(i)

a(0) + i-
11 d0 ci ri all dlall

b<°> +f
d0

c(0)_(0)
l =i

jo) jo) a)
b c_ r

*(0) 'A«(0)
311 Vlla(0) + i-

11 d0
„«»,«>)
cl rl

(11-20)

(H-21)

(11-22)

From (11-21) and (11-22), if we take the i-th term and the j-th term,

respectively, we obtain

r(0)t
* 1 11 Cl)'il-^Ll--^' -1-2' •••'» (II-23)

* 1 11 (1)and u =u±j + Xd •LX rK±J; j =» 2, -\ n (11-24)
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Eqs. (11-20), (11-23) and (11-24) correspond to Eqs. (38)-(40) in

Theorem 6 for k « 1.

The next step is to start with Eq. (11-17) and perform the second

Gaussian elimination step. The proof for k = 2 is identical with the

above. Extending this step we can state that Eqs. (38)-(40) hold for

any k » 1, 2, •••, n.

As we mentioned before, the underlying assumption is that the given

matrix A can be triangularized, i.e., a\ =-— $ 0 for k « 1, 2, •••,
kk

n. Thus t,, , for k = 1, 2, •••, n must be well defined in order to be

able to perform the Gaussian elimination without reordering the rows and

*

columns. In terms of the modified matrix A , the corresponding condition

*

is that t,, , for k = 1, 2, •••, n are well defined. Since

* dk-l
t = t"kk d^ kk

the condition is satisfied if and only if d, ^ 0, for k = 1, 2, *•*, n.

This completes the proof of Theorem 6.
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Fig. 1. Boundary hyperplanes between two neighboring regions.



y

/vr

H.

Fig. 2. Construction of the solution curve,
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Fig. 3. Solution curve hitting a corner.
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Fig. 4. A solution curve reenters region R, .
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Fig. 5. A continuous piecewise-linear function which has at least

one solution for all inputs.
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Fig. 6. Multi-dimensional illustration of the range space f(R ).
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