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Abstract

This paper is concerned with eigenvalue approaches for the pole-zero

calculations of the transfer function of a linear time-invariant network.

Combinatorial and sparse matrix algorithms are fully used to increase

numerical accuracy and computational speed in the two-sets-of-eigenvalues

approach. Some matrix decomposition-reduction algorithms are presented

to simplify and stabilize the numerical eigenvalue-finding procedures.
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I. Introduction

Sandberg and So have presented a two-sets-of eigenvalues approach

to the determination of poles and zeros of a transfer function [1]. This ,

approach begins with the state-space representation
,>

sx « Ax + Bu (1)

y • Cx + du (2)

where s is the differential operator. As is well known, the poles of the

transfer function can be computed as the eigenvalues of A. They have pre-

*sented an algorithm for obtaining a matrix A whose eigenvalues are zeros

of the transfer function. As an independent work, Pottle also has con

sidered the same problem [2] based on the concept of "inverse system" [3].

The eigenvalues of A and A are calculated by means of Francis QR method

[4] ch. 8, [5], which is considered to be the best available by numerical

analysts. The main advantage of the eigenvalue approach over those based

on calculating polynomial coefficients is that the former is much more

numerically stable in the sense of sensitivity than the latter [4] pp.

413-423.

It is the purpose of this paper to present some combinatorial and

numerical procedures for increasing numerical accuracy and computational

speed in the two-sets-of-eigenvalues approach. One of the disadvantages

of the existing methods is that the eigenvalue-finding stage often en

counters singular matrices due to topological structure of the network. ^

If it is the case, there is no way to estimate accuracy in terms of rela

tive errors. Another disadvantage arises when the given single-input
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single-output system is a cascade of several 2-port blocks. Such a situ

ation is very likely in practice, and it is well-known that the numerator

polynomial can be decomposed into a product of several factors, each of

which corresponds to a block. The existing methods are not suitable for

the factorization of the numerator polynomials.

These disadvantages are caused by the formulation of the transfer

function in terms of the A, B, C, d matrices. More specifically, the

combinatorial structure of these matrices would not keep the information

on number of zeros at zero and/or infinity frequencies and on decomposa-

bility of the numerator polynomial. To overcome these problems, the

presented method formulates the transfer function as a ratio of the de

terminants of two sparse matrices, called denominator and numerator

tableaus . These tableaus correspond to the most primitive set of net

work equations: node-edge incidence relation, Ohm's law and input-

output configuration.

In this paper, several combinatorial and numerical techniques are

presented to decompose or reduce the tableaus taking advantage of their

sparseness structure. This approach enables us to obtain a nonsingular

matrix whose eigenvalues are the poles, and a set of nonsingular matrices

whose eigenvalues are the nonzero, finite transfer zeros. With this,

the eigenvalue calculations are much simplified.

In Section II, the outline of the presented approach is briefly

sketched. In subsequent sections, details of the combinatorial and

numerical algorithms are described.
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II. Sparse Tableau Formulation

First of all, let us define some notations. A real matrix is de

noted by a capital letter. An identity matrix is denoted by I, and a

subscript is attached, if necessary, to specify its dimension. The de

terminant, inverse and transpose of amatrix, say M, is denoted by det M,

M"1, and MT, respectively. In addition to real values, the differential

operator, denoted by s, is involved in matrix operations treated in this

paper. Any matrix involving s is denoted by a capital letter with a ~

above it. Throughout this paper, we assume that the given network con-
. 2

sists of resistors, inductors and capacitors without mutual coupling
3

and that the input-output pair is specified as shown in Fig. 1 . The

following variables and matrices are involved in the system to be ana

lyzed.

v (v ,v) : voltages across resistors (inductors, capacitors)
~R ~L ~C

v : vT &[(vR)T, (vL)T, (vc)T]

4
p : node voltages with 2' as the reference

i (i j^) : currents through resistors (inductors, capacitors)

j : value of the current source

i : i1 - tcyT. a/' <yTi
q(<j)) : charges (fluxes) of capacitors (inductors)

T A r T T ,T T T,
z :z=[v,p,i,q,<M
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G(L,C) : branch conductance (inductance, capacitance) matrix

[FT*F.Jr ] : incidence matrix relating the edges (including the current
•L. J-

4
source) to the nodes (excluding lf)

F : incidence matrix relating the edges (excluding the current

4
source) to the nodes (excluding 2f)

The equations which associate the input with the output are the

following.

Input Equation: u = j (3)

Kirchhoff's Current Law: Fi +F^'j=0 (4)

Kirchhoff's Voltage Law: -y + [F ]T p=Q (5)

-iR + GvR = 0 (6)

Ohm's Law: -J + LJL = 0 (7)

-q + Cyc = 0 (8)

-v_ + s<j> = 0 (9)

Differential Equation:

-iP + sq = 0 (10)

Output Equation: y - p« = 0 (11^
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Combining (3) ~ (11), the input-output relation is expressed in the

matrix form,

1 1 — —

u

= M

y

0 z

Then the transfer function is given by

y = det N
u

det M

(12)

(13)

where N is a submatrix of M obtained by deleting the first row and column

from M. In subsequent discussions, M and N will be referred to as de

nominator and numerator tableaus, respectively.

The problem of pole-zero calculations is essentially that of finding

the set of complex values of s which satisfies

det U = 0, (14)

where U has the following structure ,

U =

P j Q
(15)

R| 8I£-T

The algorithms to be described in this paper enable us to obtain a real

matrix U which satisfies

det U:= s°-det[sI _£ -U];
0 °°

det U 4 0

-6-
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where := means that, for all s, the two sides are equal to within a con

stant multiplier. Once det U is transformed into the form of (16),

eigenvalues of U together with I superfluous zeros constitute the so

lutions of (14) . This paper is not concerned with how the eigenvalues

of a matrix are calculated.

Basically, the size of U is reduced by the following three operations

i) Pivotal condensation

As long as there exists a non-singular submatrix, say A, in the P-

part of U, we can reduce the dimension of U by means of the following

identity,

det

A } B

C • D

= det A •dettD-CA*"^]. (17)

ii) Elimination of s

When the submatrix P of U is singular, i.e. the degree of the poly

nomial det U is less than I, then we can eliminate some differential

operators.

iii) Extraction of s

When U is singular at s = 0, then we can extract some differential

operators as factors of the polynomial det U.

ii) and iii) will be discussed in detail in sections III and IV.

From the viewpoint of efficiency in reducing a matrix by the above-

mentioned operations, we should take the matrix sparseness structure into

consideration. In the special case when all the matrix entries involved

in the reduction procedures depend only on the topology of a network, no
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numerical calculation is involved because of the total unimodularity

of incidence matrices . This type of operation is combinatorial in

nature. Zero entries resulted from such an operation are independent

of the values of network elements. On the other hand, if some entries

depending on the values of network elements are involved in the re

duction process, floating-point zeros due to numerical cancellation may

be formed in the resulting matrix. We may call this type of operations

numerical operations. As far as sparseness structure is concerned, these

floating-point zeros are regarded as non-zero entries. In order to pre

serve sparseness of matrices and to avoid unnecessary round-off errors,

combinatorial reduction should be performed prior to numerical reduction.

The procedure for calculating the poles and the zeros of (13) con

sists of the following five parts.

Part 1

The denominator tableau is reduced as follows

m0
det M := s det[si -M];

m

m = I -mn -m , (18)
0 °°

where m and m^ are nonnegative integers such that mQ + m^ <_ I. This

part will be discussed in Section V.

Part 2

If the network is a cascade of two or more 2-port blocks, the numer

ator tableau is factored as follows.
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det N = IT det N. .

k- k

This part will be discussed in Section VI.

Part 3

For each block, det N, is reduced to the form,

det N. :
k

00
m.

= s det

3\w>~\ I~Bk
m {

i
i
i

r •

Jk> = /k> JU JUm = x. —m-. —m ,
0 <»

(19)

(20)

where £ is the number of inductors and capacitors in the k block,

00 .00 00 ^ (k) „ 0(k)and til: and m^ are nonnegative integers such that m^ + m^ <_ JL

As an auxiliary calculation for extracting transfer zeros at s = 0,

det N, is reduced to the following form using another reduction procedure

det N, :•
k

where

,(k) (k)
ii -m - .

s » det

s I (k) ~K
m

Ck

-9-
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dk



'^

<
(22)

^dk "dk -Sc^l

This part will be discussed in Section VII.

Part 4

Whenever d, = 0 and/or d' = 0, (20) is further reduced as follows.
1C K.

m0O . n0O
m0 0det Nfc:= s det[sl (k) - Nfc];

(k) „ m00 n(k) 00n - m -nQ -n^ ,

(23)

where n*j ' and n^ 'are nonnegative integers such that nQ +n^ <_ m

This part will be discussed in Section VIII.

Part 5

Combining (18) , (19) and (23), we have

where

n. I dettSln(k>_Vy •= 0 k n
det[si -M]

m

oo /*-\oo"0 =E*0 +£n

-10-
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and

n =Vm(k) +Vn(k) -m (26)
00 -J j CO £ J 00 00

give the number of transfer zeros at s = 0 and s = «>, respectively. The

number of transfer zeros at finite nonzero values of s is given by

vr ) - m-nQ-n^. (27)

Now'the remaining procedure is to obtain the eigenvalues of M and each

N , which is not treated in this paper.
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III. First Elimination and Extraction of s

This section presents a technique to eliminate and extract some

differential operators from a matrix characterized by (15). The follow

ing two lemmas are used as formulas to perform these operations.

[Lemma 1]

Let U. and U_ be two square matrices characterized by Fig. 2 (a)

and (b), respectively. Then

det U =(-1)P det U3. (28)

4
Proof Let U„ be the result of pivotal condensations on U.. taking r -

2
c position as pivots. Then we have from (17) that

det 01 -(-l)y det fi2. (29)

U9 is simply obtained from U- by 1) deleting the rows r and columns c ,
5 3 Aand 2) replacing 0 at r -c position with sR. Now U3 can be regarded

4
as the matrix obtained from fL by subtracting the columns c , post-

multiplied by R, from the columns c . Then as is well-known in linear

algebra,

det U2 = det U . (30)

Combining (29) and (30), we have (28). Q.E.D.
6

This formula shows that u differential operators are eliminated

from U without involving numerical operations.

-12-
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[Lemma 2]

A. A
Let U, and Ufi be two square matrices characterized by Fig. 2(c)

and (d), respectively, where Q is a nonsingular square matrix of

dimension v such that

Q ~Q Cf1*} = 0. (31)

Then,

det U. = sy det U,. (32)

Proof Let U- be the matrix obtained from U, by replacing Q , Q and

4-1
0 in the rows r with 0, 0 and -sQ Q , respectively. Then Uc is re-

garded as the matrix obtained from U, by subtracting the rows r , pre-

-1 4
multiplied by Q Q , from the rows r . Thus we have

det fi*4 = det U . (33)

4 3
Now the pivotal condensations on U taking r -c position as pivots

result in Ufi. From (17), we have

det 05 =sy U6. (34)

Combining (33) and (34), we have (32). Q.E.D.

This formula enables us to extract y differential operators from

4 5 12
U,. And if the submatrix determined by rows r , r and columns c , c

is totally unimodular, no numerical calculation is involved.
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IV. Further Elimination and Extraction of s

This section is concerned with techniques to reduce the polynomial

to the form

^(s) = detBf441

n0
ijj(s):= s det[sl -N];

n = m—nrt—n ,
0 «>

(35)

(36)

where n^ and nn, respectively, are the number of eliminated and extracted
9

differential operators. We assume that A is non-singular . And, if all

the superfluous roots of i/;(s) " 0 have been extracted, N should also be

non-singular.

First, we recall the formulas, which are available in [1] and [8],

for determining n^ and nn. For convenience, we give them in an alter

native form using the following sequence of real numbers.

r c(o) = o

C(D = d

«< e(i) = CAi"2B ;i>_ 2 (37)

C(-l) = CA^B-d

C(-i) = CA^B ;i > 2
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[Lemma 3]

n is equal to the integer such that cO^+1) ^ 0 and £(i) =0 for

all i = 0, 1, •••, n .

[Lemma 4]

n. is equal to the integer such that

C(-nQ-l) f o and c(-i) = 0 for all i = 0, 1, •••, nQ.

In order to extract all the zero roots of iji(s) = 0, we use the

following formula presented by Ishizaki [8].

[Lemma 5]

Let 0(s) be the polynomial defined by

0(s) = det

then

where

,(0)

(0)

SI -A
m

(0)
-B

(0)

,(0) d<°>J,

n

iKs) = s °-0(s),

A(0) - A, B(0) -B and

-n.

; nQ = 0

> nn I1'

; n = 0
0

; nil.

-15-
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By means of this lemma, the problem of putting ^(s) into the form of

(36) is reduced to that of putting 6(s) into the form of

6(s):= det[si -N] (42)

It is clear from (39) that 6(s) is of degree m-n^n^. Now we shall

give a numerical procedure for eliminating (n^+ng) differential operators

from (38) when (n +nft) > 1. As long as the system to be analyzed is non-
00 [j —

trivial, B^°' has at least one nonzero entry. Without loss of generality,

we assume that the 1st entry b£ 'of B^ is nonzero. Let ^ be the 1st
entry of C^ and a^0' be the 1-1 entry of A^ . For any matrix, say A,
we use A and A. to denote the 1st row and column, respectively, of A.

— is attached to the left or the right of a matrix, it
If the subscript 1

indicates the deletion of the 1st row or column, respectively. Now we

shall state the following theorem.

[Theorem 1]

6(s) = det

where

si -A<°>
m 1

" c<°> I 0

I R(0)
1 B

r A(1) =_Al°>
1 1

b<0)det
(1)

si ,-A
m-1

,(D

b«»T
B(0) A(0)

1 1

.<» = E(1) +
(0)

A<« B^0)

-16-
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(0)

1 E<D . AW) .^1 B(0)
b}°) I

A

1 1

C(1) = C(0)

v d(1) = c(0) + -±— C(0) B(0)^d ci +b(0) CT TB

(46)

(47)

(48)

Proof By permuting rows and columns of the original matrix, we have

6(s) = -det

si , - A<°> | - A(0) | - B(0>
1 1 _j_ I

C<°>
1

C<°> | 0
- a(0)

1 1

s-a(0) i -b(0)all j bl

(0)Performing the pivotal condensation taking -b| y as the pivot, we have

8(8) = b<0)det

si . - A(1) im-1 TT

,(0)

- E
(1) ^.. b<°>

(0)

,(0)

By adding the left-hand side columns, post-multiplied by , . _B
b£ ^1

to the rightmost column, we have (43). Q.E.D,

Remark

An alternative formula to this theorem has been presented by Sand-
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herg-So II]. As will be compared in Appendix A, their formula involves

additional calculations.

It is clear that d vanishes again if n + n. > 2. In general,
\ w oo U

Theorem 1 can be repeated (n^+n ) times. While differential operators

-,. ^ J 1. aOO „0O r.00 „(k) , ,(k) , n 0are eliminated one by one, Av , Bv , Ev , C and dv '; k = 1, 2,

••', n + nrt are successively defined as in Theorem 1. Finally, it
00 (_}

terminates when (38) is reduced into

6(s):= det

(n+n )
sI _^ a °n +nn - A

CO o

<w

-B
<noo+n0)

<noo+n0)

(nco+n0) J
; d * 0 (49)

As an immediate consequence of Theorem 1, we have the following formula.

[Corollary]

d(B^.Ic«)u(0»i
n -Hn^-l

oo o
(0) (50)

where b is the product of the nonzero entries of B , B , •••,
(n+n -1)
B , which are chosen for processing the calculation of (43).
(n^+nj ,Qn
C in (49) is simply obtained from CK J by deleting its (n^+n )

(k)
entries corresponding to the chosen nonzero entries of B ; k = 0,1, *

n +n -1.
oo o

Now the desired nonsingular matrix N is obtained by

„ .(n +nA) 1
N = A » 0 -

(W

-18-
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Unlike the procedure described in Section III, numerical operations

must be involved in the extraction or elimination of differential oper

ators using Theorem 1. However, we can determine the integers n and
00

nQ in a combinatorial way as will be shown in Appendix C. Thus, we

are able to terminate the iterative reduction procedure correctly.
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V. Reduction of Denominator Tableau

The matrices, whose eigenvalues give the poles of a transfer func

tion, are not unique. As is well-known in state-space technique, the

A-matrix is one of such matrices. Particularly, if we choose a set of

state-variables in the sense of degrees of freedom [9], we can obtain

a non-singular A-matrix. Then m^ and m- in (18) are given by

m = number of independent C-only loops and L-only cutsets. (52)

mn = number of independent C-only cutsets and L-only loops. (53)

In this section, we shall give an efficient reduction procedure to

obtain M from M, which corresponds to the state-space technique presented

in [10].

Step 1: There are two singleton rows in M determined by j and y; the

rows corresponding to (3) and (11), respectively. Obviously, the de

letion of these two rows and columns does not change the determinant

except for the sign.

Step 2: We enlarge the matrix by introducing the additional variables

* *

<J> and q such that

<J> -<{,* = 0 (54)

q - q* = 0 (55)

and by replacing (9) and (10) by

-20-



y + s<f> « 0 C56)

*

•lc - s3 = 9 • (57)

This operation does not change the determinant, either.

Step__3: We eliminate all the columns corresponding to p by means of

pivotal condensations. Then (5) is reduced to the form of

~?& +¥\ =?' (58)

where vfc and v^ denote the voltages of tree-branches and links, re

spectively, of a tree. The pivots are chosen from (F )T in such away

that as many rows corresponding to capacitors and as few rows corres

ponding to inductors as possible are deleted. This is a matrix inter

pretation of the graph-theoretic procedure of finding a C-normal tree

[10].

T
Using the principal part F of the fundamental loop matrix, we can

replace (4) by

it + Fh " 9 <59>

without changing the determinant except for the sign.

Step 4: We eliminate all the capacitor currents in i and all the in

ductor voltages in v^ by means of pivotal condensations, where the

pivots are taken within the identity submatrix determined by either

(59) and i or (58) and v0.
^t ~)L
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Step 5: The structure of the matrix at this stage is characterized by

Fig. 2(a), where columns c correspond to the independent set of C-only

loops and L-only cutsets. Now Lemma 1 enables us to reduce the matrix

into the form shown by Fig. 2(b), while m^ differential operators are

eliminated. Note that each column of c in u*3 in Fig. 2(b) corresponds

to a linear combination of capacitor charges or inductor fluxes. Next,

the variables in $ and q corresponding to C-only loops or L-only cut-

sets are eliminated by taking pivots at r - c position of U3 in Fig.

2(b).

Step 6: Now we can arrange the matrix into the form of Fig. 2(c), where

0 can be found by means of an L-normal tree [10]. And using Lemma 2,
xvv

we can reduce the matrix into the form of Fig. 2(d), while mQ differen

tial operators are extracted. Note that the rows r correspond to the

linear dependencies among the currents of C-only cutsets or among the

voltages of L-only loops. It should also be noted that the columns c

in Fig. 2(d) correspond to the set of state-variables defined in eqs. (36)

and (37) of [10]. At this stage M has been reduced in the form,

« mo
det M:= s L4-9--

R ! si
m

(60)

Step 7: The desired matrix M is obtained by

M = RP^Q. (61)

Unlike the procedures from Step 1 to 6, some numerical calculations should

be involved in (61). The efficiency and accuracy in the calculation of

-22-



(61) are improved by taking advantage of the following decomposition.

i) If the rows and columns are arranged in such a way that those cor

responding to resistors are placed first and those corresponding to in

ductors are placed next, then P has a block upper triangular form as

follows:

PR!
P =

0

X

I
I

i o
-J
I

(62)

Note that (62) corresponds to the representation of a state equation in

terms of three one-element-kind networks as in Fig. 1 of [10].

ii) In many cases, PR, P^ or P can be further decomposed into ablock

diagonal form, where each diagonal block corresponds to an unhinged sub

network of the one-element-kind networks.

iii) If an unhinged subnetwork consists only of one element, the cor

responding diagonal block can be arranged into an upper triangular form.

Remarks

The three-stage decomposition described above gives the Dulmage-

Mendelsohn canonical representation of the P-part, and it is shown that

this decomposition is essentially unique [11]. This decomposition indicates

to us, when we calculate (61), to take the pivots in the diagonal blocks of

P. This pivoting strategy is very important for both efficiency and accuracy

[12].
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Example 1

A 2-port with an inductor and four capacitors are shown in Fig. 3(a).

By taking apair of C-normal tree Tc and L-normal tree TL, we reduce the

denominator tableau up to Step 6. The matrix of Fig. 3(b) with deletion

of the last row and column corresponds to the matrix in the right-hand

side of (60). As we can see, one of the differential operator is elimi

nated and another is extracted, i.e. mQ = m^ = 1. The three-stage de

composition of P is also illustrated.

-24-



VI. Factorization of Numerator Tableau

Before reducing N to N, it is advantageous to decompose N into a

block-triangular form. With this, we can work on matrices of smaller

dimension. This section is concerned with how to block-triangularize

N. Let us consider the following theorem.

[Theorem 2]

If a 2-port is a cascade of two blocks as shown in Fig. 4, then N

can be arranged in the upper block-triangular form as follows,

N =

Nl *12"
(63)

N2.

where fi. and N? are two nontrivial square matrices.

Proof We arrange the matrix so that the following rows and columns de

termine N?. The rows, i.e. equations, of N„ consist of i) 3 voltage

equations for all branches in Block (2), ii) (v+v?) current equations

at all nodes, in Block (2) except 3 and 3', iii) 3 Ohm's laws for all

branches in Block (2), iv) X differential equations for all reactive

elements in Block (2) and v) the output equation. The columns, i.e.

variables, of'ft- consist of i) 23 branch voltages and currents in

Block (2), ii) (v+v'+l) node voltages of all the nodes in Block (2).

and iii) X charges and fluxes of all the reactive elements in Block (2).

With this arrangement, N„ is a square matrix of dimension (2&+X+v+v'+l).

This arrangement also implies that the submatrix at the southwest

corner consists only of zero entries. Q.E.D,

-25-



Remarks

Theorem 2 shows that the determinant calculation of N is reduced to

those of N^ and N^, which are of relatively small size. As we can see

from the proof, the specific choice of the reference nodes given in

Fig. 4 is essential to the block-triangular decomposition of N.

For the efficiency of subsequent numerical analyses, it is desir

able to decompose the network into a cascade of minimal 2-ports . In

Appendix B, the outline of our algorithm for this purpose is described.

If a 2-port block consists only of one element, the corresponding

diagonal block of N is further arranged into an upper triangular form.

Then the result gives the Dulmage-Mendelsohn canonical representation

[11] of N.

Example 2

Fig. 5 shows a network and the corresponding upper block-triangular-

ized N. It can be seen that each diagonal block of N corresponds to a

2-port in the cascaded network.
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VII. First Reduction of Numerator Tableau

In the following sections, we drop the superscript k and the super

script (k) from the notations as in (19), since each diagonal block of

the numerator tableau can be discussed independently. We simply denote

a diagonal block of the numerator tableau to be analyzed by N. For con

venience, we use the enlarged matrix ft- as defined below.

~o i y i -r

•A

Nl = Z ! N i 0

~t—r—
JL i 0 i OJ

(64)

Then, as we can see, N.. has the same determinant as N for any Y and Z.

If, in particular, Y and Z are chosen so that they represent the inci

dence relations at the input node 1 and at the output node 2, respec

tively, then N. has exactly the same structure as the numerator tableau

of the network which consists only of this block with the same input-

output configuration as in Fig. 1. Furthermore, noting that the first

column of N- corresponds to the node voltage of 2, we can see that the

deletions of the last row and column results, with pertinent permuta

tions, in the reduced denominator tableau at the end of Step 1 of

Section V.

Now we can apply the procedure of Steps 2-6 in Section V to reduce

N to the form of

det N:=
0

s det

P| Q !
-r—i u

si !*l HS_

i V i wJ

-27-
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in the same way as for the reduction of M into (60), except that the

additional calculations for the last row and column of N are involved.

The matrix above can be viewed as the state-space representation of a

single-input single-output system, where its last column and row cor

respond to the input and the output, respectively. By performing pivo

tal condensations with respect to P based on the decomposition in Step

7, the desired matrices A, B, C, d in (20) are obtained.

In the subsequent discussions, (65) with the three-stage decompo

sition of P will be referred as normal form canonical representation

of a state equation.

Example 3

We consider the same 2-port as for Example 1. Although this is not

a minimal 2-port, we regard it as a block. Processing Steps 2-6, we

obtain the normal form canonical representation as shown in Fig. 3(b).

If we take the pivots in the diagonal blocks, the sparceness struc

ture of A, B, C, d will be

A

_C d_

X X X J X

X X x j 0

0 X x 1 0

0 X x ! 0

(66)

Once each diagonal block of the numerator tableau has been reduced

to the form of (35), we can perform the further reduction based on the

procedure described in Section IV. Before using the algorithm of

Theorem 1, we should detect nf by means of the sequence defined by (37),
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which means we should obtain A . If A is calculated by performing

Gaussian eliminations on A, then each member of the sequence c(-l),

C(-2), ••• will be some small number when it should be zero. Here we

have to decide whether the small, but nonzero floating point number

should be treated as zero or not. For example the calculated result of

d-CA B would, when n. ^ 0, be a very small number rather than pure zero

due to the floating-point arithmetic. To avoid this, we shall take ad

vantage of the A-inverse form suggested by Ishizaki [8].

The A-inverse form of the state equation

is defined by

~sx~| "A ! B" x "

--1 = 1
• -1-

.uj _C ! d_ _y_

Ibh sx

u :f id'j

(67)

(68)

where AT, Bf, C and d' are given by (22) with removal of the subscript

k.

In the remainder of this section, we describe the procedure to ob

tain A', B1, CT, d' matrices from the original numerator tableau, rather

than from the A, B, C, d matrices.

As in the normal form representation, we start from the matrix N.

defined by (64). Then we apply the procedure of Steps 2-7 in Section V

with the following modifications.

Step 2f: (54) and (35) are replaced by "
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[
*

yL - vL = 0 (54)'

*c - i*= ? (55)'

(56) and (57) are replaced by

{
-<j> + s"1 v =0 (56)'

^ -q + s"1 i* =0 (57) '

— 0 ~

The determinant of the enlarged matrix is equal to s det N.

Step 3f: In the pivotal condensations for obtaining F, the priority

order of choosing capacitors and inductors is reversed. That is, the

corresponding tree is an L-normal tree [10] in place of a C-normal tree.

Step 4T: v and i are eliminated by taking pivots at the identity sub-

matrices determined by (54)' and (55)f.

Step 5': The structure of the matrix at this stage is characterized by

the transpose of fL in Fig. 2(a) except that s is replaced by s , where

2
the rows c correspond to the linear dependencies among the currents of

C-only cutsets or among the voltages of L-only loops. By Lemma 1, m_

inverse differential operators are eliminated.

Step 6': The structure of the matrix is characterized by the transpose

-1
of U, in Fig. 2(c) except that s is replaced by s , where Q can be

found by means of a C-normal tree. By Lemma 2, m inverse differential

-30-



operators are extracted. Note that columns r, correspond to the inde

pendent set of C-only loops and L-only cutsets. The columns r corres

pond to the time derivative of state-variables defined in eqs. (36) and

(37) of [10]. At this stage, N has been reduced in the form

Jl-m

det N:=.s

—l

P' i 9* i
-4 uf

Rf

i
i
i
i

V

s -1!
m

1
1
1

1
1 wf

(65) »

Step 7T: Suppose the same pair of T and T is used for deriving both

(65) and (65)T, then the desired matrices A1, B', C1 and df are obtained

by taking Pf as pivots.

i)f If the rows and columns are arranged in such a way that those cor

responding to inductors are placed first and those corresponding capaci

tors are placed next, P1 has another block upper triangular form as

follows:

pf = 0 i Pf
• c

X'

(62)'

PR

Note that (62)f corresponds to the A-inverse form of state equation in

Fig. 1(b) of [8].

The block-diagonal decomposition of P', P' and P1 as in ii) may be
K ij C

possible depending on the topological structure of the network. This

decomposition of P1 also gives the Dulmage-Mendelsohn canonical repre

sentation.
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In the subsequent discussions, (65)' with the three-stage decomposi

tion of P' will be referred as A-inverse form canonical representation

of a state equation.

Example 4

We consider the same network and choose the same pair of T£ and TL

as in Example 3. The A-inverse form of state equation is shown in Fig.

3(c). If we take the pivots in the diagonal blocks, the sparseness

structure of A', B?, C, d' will be

AT

l

i

=

CT ' d'

—

0 X x | 0

X X X j X

X X X j X

0 0 x ' 0

(66)'

Note that if (67)f was calculated by (22) using A, B, C, d, it would be

a full matrix due to floating point arithmetic.
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VIII. Further Reduction of Numerator Tableau

In this section, we assume that each diagonal block of the numerator

tableau has been reduced to the forms of (20) and (21). In order to

further reduce (20) to the form of (23), the procedure described in

Section IV is used.

When we are to determine nQ, the A-inverse form reduction (21) is

used. In terms of A', B1, C and d1, the sequence c(-i); i > 1 defined

by (37) is represented by

{
?(-l) = - d1

(67)

C(-i) =- Cl(A')i~2B'; i> 2.

The row matrix C in (40) can also be represented in terms of the

A-inverse form as follows.

C(0) =-C'(A') ° ;nQ >1. (68)

In order to obtain £(-i) for i= 3 ~ (nQ+l) efficiently when n >_ 2,

A1 is successively post-multiplied to CT and then the row matrix

Cf(Af) and the column matrix B' are multiplied together for each i.

This process terminates at i = (nn+l), when

V1C(-nQ-l) = C'(A') U BW 0. (69)

The intermediate result of the calculation of (69), i.e. before BT is

post-multiplied, gives the matrix C .
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The sequence c(i); i > 1 are calculated using A, B, C, d matrices.

Thus, (20) is used for determining n
00

Once n and C have been obtained, the numerator tableau can be

represented by

mo+no
det N:= s 6(s), (70)

where 6(s) is defined by (38). Now (n^+n ) differential operators are

eliminated from (38) which is further reduced to the form of (49),

using Theorem 1 (n^+n.) times. In each repetition of the algorithm of

(k)
Theorem 1, it is not necessary to calculate d ; k = 1, 2, ••*,

(n +nft-l) because they are known to be zero. From the corollary of
(n+n0)

Theorem 1, d is given by (50). As is clear from the definition

of 0(s), the matrices for A-inverse form are not required when nn = 0.

(0) ~noIf n_ >_ 1, they are required only to evaluate C = CA . In this

case, (50) can be replaced by

d

b d ; n~ " °
J (71)

L r CA °° B; n >1

using (40). Hence d can be calculated using the matrices of the

normal form only. Finally, the desired matrix N is obtained by (51).

At the same time, n^ differential operators are eliminated and n~ dif

ferential operators are extracted. It should be noted here that n and

n_ are the number of transfer zeros at s = » and s = 0, respectively,
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caused by the 2~port block under consideration.

The transfer zeros at s - «> or s = 0 are caused by topological

structure of the network unless some special dependencies exist among

the element values. This type of transfer zeros involves no numerical

calculation in determining n^ and n using (37) and (67), respectively

The topological structures which cause zeros at s = » and s = 0 are

illustrated in Fig. 6(a) and (b), respectively. In Appendix C, the

relation between this kind of topological structure and the sparseness

structure of A, B, C, d matrices and A1, B', C', d* matrices are.dis

cussed. And it is shown that n and n_ can be determined in a combi-
00 (J

natorial way.
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IX. Conclusions

An efficient procedure for calculating transfer functions based on

the two-set-of-eigenvalues approach has been presented. Poles are identi

fied as eigenvalues of a nonsingular matrix, while zeros at finite, non

zero frequencies are identified as eigenvalues of a set of nonsingular

matrices.

The presented approach is essentially based on state-space technique.

In addition, sparse matrix techniques are fully used so that factori

zation of the numerator polynomial and transfer zeros at 0 or » fre

quencies can be determined in a combinatorial way. This increases

numerical accuracy and reduces problem complexity. The matrix decompo

sition and reduction algorithms make the existing state-space methods good

for practical uses, as far as pole-zero calculation is concerned.

The results obtained in this paper can readily be extended to net

works having mutual couplings or controlled sources.
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Appendix A: Comparison of Theorem 1 with Sanberg-So Algorithm

The following theorem, which is equivalent to Theorem 1 of [1], is

an alternative of Theorem 1 of this paper.

[Theorem 1?]

where

6(s) =b£0) det
(1)

si --A
m-1

-B
(1)

(1)

(D* = A(D . JL
b<°> I

B(0)c(1)

B(1)* - B(1) -*
(1)

b<°> 1
(0)

Proof is straightforward from the identity

m-1

0

B<°>/b<°> "si ,-aW i -B(1)_m-1 |
(1)* i (1)*si -,-A^ j -B^ }

m-1 }

C(D j d(«_ c(1> 1 d(1>.

Combining (A2) and (A3) with (44) and (45), we have

aU>*._a(o>_ i j(0)(A«))+c(i))
11 b£u; 1 11

^ =E«+iT(A«-^I,I (0)

-37-

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)



Thus the calculations of (A5) and (A6) involve 2(m-1) more additions or

subtractions than those of (44) and (45). On the other hand, Theorems

1 and lf theoretically give the same result as far as the matrix N in

(42) is concerned. For example, when d ^ 0,

H. A<i>*. i ,cu* ccd . a(d _ i Bd)ca).
dU' dK '

(A7)

(A7) shows that the second terms of (A2) and (A3) are cancelled out

finally.

The second terms of (A2) and (A3) do not make much difference in

computation speed. As we can see from (A5) and (A6) , however, Theorem 1

is more desirable than Theorem 1' in the sense of keeping sparseness of

the matrix and avoiding unnecessary round-off errors.
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Appendix B: Decomposition of a 2HPort into a Cascade of Minimal 2-Ports

Dulmage and Mendelsohn presented an efficient method for blockr

triangularization of a matrix 113]. However, their algorithm is too

general to apply to the numerator tableau N, since N is related to Ohm's

laws which have nothing to do with decomposability of the 2-port network,

The only information required here is the incidence relation of the net

work and specification of input-output pair.

Now we recall that Dulmage-Mendelsohn algorithm consists of two

steps, namely, (1) finding a complete matching and (2) determining a

partial ordering, which is unique, of the diagonal blocks of N.

The complete matching involved in the first step corresponds to

a pair of node-disjoint paths going from input to output. Such a pair

always exists unless the given 2-port is hinged. In the simple case

where the 2-port is common grounded, the grounded node is regarded as

one of the paths. To find a path, which does not pass through the

grounded node, is a very simple task. In the general case, a pair of

node-disjoint paths can be found using, for example, the algorithm pre

sented by Frisch [14].

Such a pair of node-disjoint paths has an important property that

these two paths go through any node pairs which separate output from

input. By means of the incidence matrix, we can easily find the set

of such node pairs, so that the given 2-port is decomposed into a cas

cade of several 2-ports. The ordering of these 2-ports is determined

by that of the node-pairs with respect to the pair of node-disjoint

paths. When a 2-port block determined by the above-mentioned node
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pairs, has only two terminals we decompose it into a parallel connection

of twc-terminal networks. With this, the set of minimal 2-port blocks is

determined. Now each minimal 2-port block corresponds to a diagonal

block of the Dulmage-Mendelsohn canonical representation of N.
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Appendix C; Combinatorial Determination of n^ and nQ

First of all, we shall recall the normal form canonical represen

tation given in (65) and the two*-stage decomposition of P. If there

exists a subnetwork characterized by Fig. 6(a), it is clear that the

sparseness structure has the property

w = VU = 0. (CI)

Thus we can combinatorially check whether or not d = 0, i.e. n^ >_ 1.

In order to consider the case of n > 2, we shall partition the set
00 ~—

of diagonal blocks of P into subsets {A±; i = 1, 2, •••,v> and {I\;

i = 0, 1, 2, •••jv} and the set of state variables x into subsets

{x ; i = 1, 2, •••,v>. These subsets are successively defined in

the following way. For the time being we assume that there is no C-only

cutset nor L-only loop.

Tn: set of diagonal blocks of PD such that the submatrices of U de-
0 R

termined by rows of these diagonal blocks are nonzero.

x^ : set of state-variables such that the submatrices of R or U de

termined by the rows of x and the columns of TQ or u are nonzero,

A.. : set of diagonal blocks of P or P such that the submatrices of Q
1 Li C

determined by their rows and the columns of x are nonzero.

T-: set of diagonal blocks of P such that the submatrices of P deter

mined by their rows and the columns of A- are nonzero.
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xC2)i set of state-variables such that the submatrices of Rdetermined

by the rows of xC2) and the columns of K± or 1^ are nonzero.
...

Finally, this sequence terminates at i-v, when the submatrix of V
(v+1) . H

determined by the columns of Ay or Tv is nonzero. Let x ,A^
F be the remainders of x, of the diagonal blocks of PL or Pc and of
v+1 "" (v)
the diagonal blocks of PR, respectively. Then we replace x ,Ay and

x(V+1) ,Av UVl and Fv °rv+l' "sPectively- "ith thiS'(v)

ujld' {rl} are regarded as apartitioning of the set of reactive elements
ana resistive elements into vand (v+1) subsets, respectively. This parti-
tioning has the following properties.

Pi: Each A contains aset of inductors and/or capacitors which consti
tutes a topological structure characterized by Fig. 6(a).

P2: A and x(i); i-1, 2, —, vare nonempty, while r± may be an

empty set.

P3: All the capacitors (inductors) in aC-only loop (L-only cutset)

belongs to only one of A^s.

P4: This partitioning is unique independent of the choice of set of

state-variables.

Based on this partioning, the 2-port block can be represented as a

cascade connection of several subnetworks as shown in Fig. 7(a), where,
for simplicity, the case of v-4is illustrated. From Fig 7(a) we see
that i) x(1) is afunction of only u, x(1) and x(2),ii) x(i); i-2, 3.
••• v-i~is afunction of only x^. x<» and x<i+H iii) *M ^a
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function of only x and x and iv) y is a function of only x

Therefore the sparseness structure of A, B, C, d matrices in (20) is

characterized by Fig. 7(b). The sparseness structure of A can be re

ferred as a block-tridiagonal form, and v is equal to the number of

blocks. Now comparing this sparceness structure with the definition

of the sequence ?(i); i ^_ 2, we see that v is equal to the number of

C(i)!s which vanish independently of the numerical values of A, B, C,

d matrices. It should be noted here that, the pivoting strategy sug

gested by the two-stage decomposition of P is essential to keeping this

sparseness structure.

In the general cases where C-only cutsets and/or L-only loops exist,

12
some restrictions are imposed on choosing the set of state-variables

Suppose, there exists a C-only cutset spreading through two or more

A.fs, then one of the state-variables should be eliminated. If the
i '

state-variable correspond to the leftmost A is eliminated, the resul

tant sparseness structure is characterized by Fig. 7(c). The sparseness

structure of A can be referred to as a block upper Hessenberg form. Now

we see that the number of blocks v is still equal to the number of c(i)'s

which vanish. More specifically, nonzero entries above the diagonal

blocks do not affect the c(i)'s from vanishing, as far as combinatorial

properties are concerned. The same consideration is required for L-only

loops. Now, from the sparseness structure of A, B and C, we have

v=nwJ (C2)

where it is assumed that there is no special dependency among the element

values. Note that there is no need to actually arrange the matrix in the
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form of Fig. 7(b) or (c), since the calculations of £(i) are independent

of the ordering of rows and columns of the A, B, C, d matrices.

By the same way as in the case of the normal form, the A-inverse

form canonical representation (65)' uniquely defines a partitioning of

diagonal blocks of P'. Suppose P^ and P^ are decomposed into v' subsets

{A'; j = 1, 2, ••,,v,>, then we have

V = nQ. (C3)

And the sparseness structure of A' is also a block tridiagonal or block

upper Hessenberg form with v' blocks. The properties of Up are the

same as {A } except that the roles of inductors and capacitors are inter

changed. For example, each V± contains aset of inductors and/or capaci

tors which constitutes a topological structure characterized by Fig. 6(b)

Finally, we shall list up the restrictions on choosing a pair of

C-normal tree T and L-normal tree TL, so that the corresponding set of

state-variables is consistent with (C2) and (C3), simultaneously.

Rl: All inductor (capacitors) contained in Tc(TL) are also contained in

T (T ). This is required for obtaining A, B, C, d matrices and
L c

A1, B', C, d' matrices, (see [10]).

R2: Each inductor (capacitor) not contained (contained) in Tc U TL

(T n TT) belongs to A. such that no inductor (capacitor) in the
c L 1

corresponding L-only loop (C-only cutset) belongs to any Aa; a < i.

This is required for (C2) to be valid.
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R3: Each inductor (capacitor) contained (not contained) in T O T
c l

(Tc U TL) belongs to A! such that no inductor (capacitor) in the

corresponding L-only cutset (C-only loop) belongs to any A1; $ < j.
3

This is required for (C3) to be valid.

A pair of T^ and TL which satisfies the above requirements is simply

obtained i) by taking an arbitrary pair of T and T satisfying Rl, ii)

by modifying TL based on {A^ so that R2 is satisfied and iii) by modi

fying T based on {A.1} so that R3 is satisfied.
*- J
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1. The presented method can be viewed as an application of the sparse

tableau approach [6] to the special problem of pole-zero calculations.

2. This assumption is imposed in order to simplify the discussion. Actually

our results are applicable to more general networks with controlled

sources, although some additional considerations are required.

3. Modification of the formulation for another input-output configulation

such as the voltage source drive is trivial.

4. This specific choice of the reference nodes is essential to the

factorization of the numerator polynomial, which will be discussed

in Section VI. If the input and output are common grounded, say

1f = 2', this grounded node can be taken as the reference for both

voltage and current equations.

5. In the original tableaus A and ft, T is a zero matrix and 9, is the

number of capacitors and inductors in the network.
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6. We assume that the eigenvalues are calculated by Francis QR algo

rithm [4] ch. 8, 15].

7. The incidence matrix of a graph is known to be totally unimodular.

It is also known that, if a matrix of the form

A | B
-4-

C 'D^

is totally unimodular, then so are A~ B, CA~ and D-CA~ B [7].

8. This auxiliary procedure is for obtaining A^ ,B^ ' ,C^ ' and

d without calculating the inverse of A . This increases the

accuracy of the calculations involved in the next part.

9. The formula given in Lemma 2 guarantees the nonsingularity of A,

unless particular dependencies exist among the element values of

the network.

10. Minimal 2-port is a 2-port which cannot be decomposed into a cascade

of two or more 2-port blocks.

11. The former (latter) is a subnetwork which separates the output from

the input when capacitors (inductors) are short-circuited and inductors

(capacitors) are open-circuited.

12. There is no restriction if each C-only cutset or L-only loop exists

within one of A.'s.
l
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Fig. 3 Canonical representations of the state equation of a 2-port

(a) a 2-port (b) normal form (c) A-inverse form
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U= J Block (I)

3
-O

Block (2)

2
-O

y = p.

a) l' : current reference 2': voltage reference
b) 1=* f , 2*2' , 3*3'
c) /3= number of branches in Block (2)

X = number of L's and C's in Block (2)
i) = number of nodes in Block (2) except 2, Z\ 3 and 3'

d) , f 0 if 2 = 3, 2' = 3'
0 = < I if 2 * 3, 2' = 3"

2 if 2 * 3, 2" ^ 3'

Fig. 4 Cascade connection of two 2-ports
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Fig. 6 Topological structures causing transfer zeros at
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(a) s = oo (b) s = 0
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Fig. 7 Sparseness structure of A, B, C, d

(a) Partitioning of set of network elements

(b) block-tridiagonal form

(c) upper block-Hessenberg form
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