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ABSTRACT

Necessary and sufficient conditions are obtained for the existence

and uniqueness of solutions for strictly increasing resistive networks

and a general class of increasing resistive networks. They are also

necessary and sufficient for the existence of solutions for increasing

resistive networks. These conditions are sufficient for the existence

of solutions for eventually strictly increasing resistive networks, and

for a class of eventually increasing resistive networks. The conditions

are circuit-theoretic and can readily be used as a criterion in design.

The dependence of solutions on the inputs is studied and also a bounded-

input bounded-solution result is presented. Existence and uniqueness

results for monotone RLC networks are obtained by viewing them as combi

nations of three one-element-kind subnetworks. Finally two algorithms

are given for testing the conditions.
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I, Introduction

In this paper we present some fundamental results on nonlinear net

works with uncoupled, monotone-increasing, but not necessarily surjective

characteristics. Necessary and sufficient conditions are obtained for

the existence and uniqueness of solutions for strictly increasing re

sistive networks and a general class of increasing resistive networks.

In such cases, the solution depends continuously on the inputs. These

conditions are also necessary and sufficient for the existence of solu

tions for increasing resistive networks. They are sufficient for the

existence of solutions for eventually strictly increasing resistive net

works, and for a class of eventually increasing resistive networks. The

dependence of these solutions on the inputs is then studied and a bounded-

input bounded-solution result is presented. Existence and uniqueness

results for monotone RLC networks are obtained by viewing them as com

binations of three one-element-kind subnetworks. Finally two algorithms

are given for testing the conditions.

The nature of our necessary and sufficient conditions is circuit-

theoretic in the sense that they are checked by considering the network

topology and the element characteristics rather than evaluating determi

nants, or eigenvalues, etc. Moreover, in case one of the conditions

fail, the proposed algorithms will pinpoint where the network needs to

be modified.

Nonlinear monotone resistive networks were studied by Duffin

T21early in 1946. Later Desoer and Katzenelson1 considered monotone

increasing resistive networks and a class of RLC networks. They have

given sufficient conditions for the existence and uniqueness of so-
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lutions. Since many semiconductor devices have monotone characteristics,

networks with monotone nonlinearities have received considerable attention.

Sandberg and Willson have made significant advances both theoreti

cally and computationally on networks with strictly increasing nonline

arities. The research reported here was stimulated by the work of Sand

berg and Willson and is a generalization of the work of Desoer and Katze-

nelson.

Proofs of the theorems are included in the text because they improve

the understanding of the results. For ease of reference, we state three

theorems in Appendix I, In Appendix II, we derive two lemmas which are

used in the proof of Theorem 1.

II. Formulation

1. Resistors

In this paper, we define a resistor as a two-terminal element that,

at any instant time t, is characterized by a continuous f which maps the

real line R into itself and a = f(p), where either p is the branch-

voltage and a the branch-current, or vice versa. If p is the branch-

voltage, we say that the resistor is voltage-controlled (v.c); on the

other hand, if p is the branch-current, we say that the resistor is

current-controlled (c.c). Such resistors are thus not-necessarily-

linear, not-necessarily-time-invariant, uncoupled, and either v.c. or

c.c. (and possibly both). In the considerations that follow, conditions

are examined for fixed t, so that we formulate, for simplicity, as if the

resistors were time-invariant.

A resistor is snid to be Increasing if its characteristic f satisfies
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f(p )>_ f(p )whenever p2 >_ P^, strictly increasing if f(p2) >f(p±)
whenever p2 >P-. Aresistor is said to be eventually (strictly)
increasing if its characteristic is (strictly) increasing on {p € R|

|p| > M} for some M, which depends on the resistor under consideration.

We say that a resistor is of type U if its characteristic has the

property that f(p) •> - as. p+-and f(p) - --as p--• ;of l^pejl

if either (i) f(p) -• - » as p+ - » and |f(p) |<B for some B as p -* ~,

or (ii) |f(p)| <Bfor some B as p•> -» and £(p) •*- - as p-*- «>; of type B

if |f(p)| <M as |p| + -.

Clearly the set of all increasing (resp. strictly increasing, even

tually increasing, eventually strictly increasing) resistors can be parti

tioned into type U, type H, and type B resistors.

2. Network

LetcJJ be an interconnection of a finite number of resistors. With

out loss of generality, Jlf is assumed to have a connected and nonseparable

graph. If lN inherently has some independent sources, they may be re

garded as increasing resistors, or, by source transformation [7, pp. 409-

412], be absorbed in the resistive branches.

3. Network topology

Let the network variables be partitioned into (vy, vq) and (iv,ic)>

where subscripts v and c denote those corresponding to the v.c. resistors

and c.c. resistors, respectively.1 Let us pick atree which contains the

1In the case where a resistor is both v.c. and c.c, we can assign it to
either class.
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maximum number of v.c. resistors. If lA) contains any type H resistor,

let the reference direction for that branch be so chosen that |f(p)| < M

for some M as p -* °°, The fundamental loop matrix B and the fundamental

2
cutset matrix Q corresponding to such a choice of tree take the form :

B = vJl

Q = vt

ct

vZ cl vt ct

0I

LO

T
--F

w

L. 0

w

F F
vc cc

-F

vc

•T

cc

I 0

0 I-J

where subscript £ (resp. t) denotes links (resp. tree-branches); hence

the double-subscript v£, for example, denotes v.c. link resistors. Ac

cording to this partition, we have

vJt

vt

cl

ct

V <V

1 (v )
vt v vt'

Vc* (ic£}

V (i )
ct v ct'

4. Independent sources

There are two ways of applying independent sources to a network:

"Superscript T denotes transpose of a matrix.
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namely, pliers entry and soldering-iron entry. By pliers entry we mean

that we enter the network by cutting any branch of the network and con

necting the two terminals of a source to the terminals created by the

cut. By soldering-iron entry we mean that we enter the network by con

necting the two terminals of a source to any two nodes of the network.

Throughout the following, we apply a voltage source only by a pliers

entry and a current source only by a soldering-iron entry.

5. Network equations

Let e (resp. e ) denote the voltage-source vector around fundamen-
v c

tal loops defined by v.c. (resp. c.c.) resistive links; jv(resp.jc) denote

the current-source vector across fundamental cutset defined by v.c.

(resp. c.c.) resistive tree-branches. Kirchhoff laws are thus expressed

by

i - F i = i
ct cc cZ Jc

v „ + F v . = e
vZ w vt v

vn+F v+F v=e
cZ cc ct vc vt (

T T
i - F i - F i =i
vt w vZ vc c£ Ji

(2a)

(2b)

Substitute (1) into (2) and eliminate ±ct and v^, we obtain two

equations in terms of v and i _:

-F 10 0
w

0 0 I F
CQj

i „(-F v . + e )
•vZ vv vt v

£vt <*vt>

c
v (F i „+ j )
ct cc cZ Jcx
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6, Notations

To simplify presentation, we sometimes write (3) in the form:

C 9?"(CTx+u) + Sx = y (3')

where

x =

u =

c =

vt

"c£

0

0

jc
L J

e Rm : y =

e Rr ; 9T =

V
sRm

vZ
: Rr - Rr

vt

cZ

ct

-F 10 0
w

0 OIF

mxr
6 R S = 0 -F

vc

CC_I
F 0
vc

m

fflxm
Ifi?

Rm denotes Euclidean m-space with scalar product <x|y > ~2jVil and
k=l

m
1/2

norm IIxll = (> x )

We

k=l

sometimes consider the map G: K x IK -»- R defined by

G(x,u) = C(f3f(CTx+u) + Sx. (4)

Note that S is a real skew-symmetric matrix, C is a matrix of full

•' • Trank, and 9? is a "diagonal" map, i.e., rj(z) = [^(z^ ••• fr(zr)] •

The zero element in Rm is denoted by 6. The null space of a matrix S

is denoted by^\l(S), i.e.,^\|(S) = {x|Sx = 6>. D][G(x,u) denotes the
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derivative map of G(»,u) evaluated at x.

Let us define the cone

<T}(£f) = {z e Rr| ph- H9T(pz)II is bounded on [1,-)} (5)

Clearly z= (z-,...z )E^B^) if and only if z± =0whenever f± is of

type U; z. >_ 0 whenever f. is of type H (Note that by our convention

|f (p) | <Mas p +•), and z = any real number whenever f is of type

B.

By a solution of a network, we mean a set of branch-voltages and

branch-currents x = (v,i) (including currents in the voltage sources and

voltages across the current-sources) that satisfies both Kirchhoff laws

and the branch characteristics. By an input, we mean an independent-

source vector y = (e ,e ,j ,j ). We say that a solution depends contin

uously on the inputs iff considering x as a function of u, i.e., x = xG-0 »

X(*) is a continuous function on 1^ .

A set of branches belonging to a loop (resp. cutset) in a directed

graph is said to be similarly directed if we can assign a reference di

rection to the loop (resp. cutset) such that the direction of each branch

in the set agrees with the reference direction of the loop (resp. cutset).

III. Strictly Increasing Resistive Networks

In this section we prove Theorem 1 for strictly increasing resistive

networks. We first prove two lemmas, which, taken together, assert that

Theorem 1 is true if all resistor characteristics are C (in such case,

the dependence of the unique solution on the inputs is C ). Then in the

proof of Theorem 1 we show that with the aid of two lemmas in Appendix

II, the C assumption can be dropped.
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Theorem 1. (Existence, uniqueness, and continuous dependence)

LetoM be a finite network made of strictly increasing, continuous,

and uncoupled resistors. Then for all independent voltage sources with

pliers entries and for all independent current sources with soldering-iron

entries, the network oA) has one and only one solution and this solution

depends continuously on the inputs if and only if the following conditions

(i) and (ii) hold:

(i) every loop made of c.c. resistors either contains at least one type

U c.c. resistor or if not, then it contains at least two type H c.c.

resistors and not all such type H c.c. resistors are similarly directed.

(ii) every cutset made of v.c. resistors either contains at least one

type U v.c. resistor or if not, then it contains at least two type H

v.c. resistors and not all such type H ViC. resistors are similarly

directed.

Comments (a) Uniqueness follows directly (by Tellegen's theorem) from

the strictly increasing property of the characteristics.

(b) Condition (i) and (ii) are dual of each other.

(c) If there is a loop (resp. cutset) of type B c.c. (resp. v.c.) re

sistors, then condition (i) (resp. condition (ii)) does not hold; If

there is a loop (resp. cutset) of type B and type H c.c. (resp. v.c.)

resistors, in which all type H resistors are similarly directed, then

condition (i) (resp. condition (ii)) does not hold.

(d) Condition (i) (resp. (ii)) is equivalent to: (ia) (resp. (iia))

there is no loop (resp. cutset) of only type B c.c. (resp. v.c.) resistors;
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(ib) (resp. (iib)) for every type H c.c. (resp. v.c.) resistor b there is

a cutset (resp. loop) containing b, and made of v.c, type U c.c, and

type H cc. (resp. c.c, type U v.c, and type H v.c.) resistors, in

which all type H cc. (resp. v.c) resistors are similarly directed. (By

the Colored Arc Lemma (App. JO).

Lemma 1. Consider equation (3f)

G(x,u) = C^^x+u) + Sx =y

Suppose that each f. is C and strictly increasing. If

{x g Rm|cTx g q5(C£ and x g^A((s)} = {e} ,

then there is a unique C function $: Rr x Rm + Rm9 satisfying

G(Ku,y),y) = y, ¥y G Rm, Vu G Rr. (equivalently, Vu G lRr, G(-,u)

is a diffeomorphism from Rm onto Rm).

Proofj (1) Claim: D;LG(x,u) is nonsingular, ¥x G Rm, Vu G Rr, Dif

ferentiating (4), D1G(x,u) =C[d95T(CTx+u)JCT +S. Since each component
of 9} is strictly increasing, [D?T(C x+u)] is diagonal and positive defi

nite for all (x,u). Suppose D G(x,u) were singular for some (x,u), then

there would be a £ ¥> 6 such that [D G]£ = 6. Note that £ ¥ 6 implies

C £ f 9because C is of full rank. Consider £T[D G]£ = ?TC[DC^]CTC = 9,

which contradicts that [d9}] is positive definite. Therefore, D G(x,u)

is nonsingular for all (x,u).

r / • i(2) Claim: OxB -*«>=> llG(x,u)H -> « Vu G R . (i.e., lioi any sequence {x }

such that IIx il -* « implies llG(xi,u)i ->- », Vu ^ 1R r).
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Let z = C x, z £ IK , hence any sequence {x } defines a sequence

{z } in K , where z = C x . Let us partition IK into its 2 orthants,

i r
{z } will accordingly be partitioned into at most 2 subsequences. Note

T ithat C contains an identity matrix, thus {x } -»• « if and only if

Hz II -»• °° and hence at least one of the subsequences is unbounded. We

will first consider {z|z *= ^o(Tj)} which is a closed convex cone consisting

of the union of several orthants, and show that Hz II -> » with z G Q^Crjf)

implies that the corresponding HG(x ,u)H -»• °°. Then we consider each

orthant for which {z|z ^ ^(T?)} and show that the same fact holds.

(a) Consider {z|z £ wo(£P and z = C x}, for such x 4 6 we have

x ^ O'VI(S). We are going to show an equivalent condition of II xll -*-«>=>

Hg(x,u)H -> «>, namely; given any M > 0,3 N > 0 such that p > N =• HG(p£,u)H

> M V CT£ e Cg (CJ) with Dgll = 1. Now

Hg(p5,u)II ip flsgH - IIoil • il vT(pcTc+u)H

Since CT£ ^^(^T), Dell • H9T( CT£+u)H is bounded, say by $. Note that

{x|c x £ o(yJ)} is closed and (s| Ogll = 1} is compact, hence the set

Z= {Z\ flgll =1 and CT£ eCR(£$} is compact. Moreover II S?0 is a con

tinuous function and Hs^O > 0 on the compact set £. Therefore,

inf HS^ll = m > 0

So llG(p^,u)ll >_ mp - 3. Thus given any M, if p > —-, then llG(p£,u)H > M

vc e z.

(b) Let © be any orthant of lRr in which z= CTx ^^Cr}). Let {z1},

z = C x , be a sequence in (0 such that Hz II •> °°.
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Case 1. For all jsuch that fj(zj) is of type H in the unbounded half

or of type U, the sequence {|zj|}" is bounded. Again, we have
3 i=l

Hg(x\u)II > IISx1!! - Hell •ligRcV+u)!!

The second term is bounded in this case. Hence if we show IISx'H -»- «>

then we are done. Observe that Km =JU(S) 0 ^AI(S)-1 and the map S

restricted to^Aks)1- is abijection ofeAf(S)-1- onto^P(S). [18,p.572]

Let x1 =n1 + p1, where n1 €JU(s) and p1 Gcjlks)-1-. We are going to show

by contradiction that the assumption 11x11+°° implies that Up H•* °°, but

Sx1 = Sp1 so HSx1!! also -»- «» . Suppose Hx1!! -> «> and Up1!! is bounded, hence

Un1!! -*• co. Note that Qfrf) is a closed cone and {z |z =Cx and x^^\|(S)}

is also a closed cone. By assumption the intersection of these two closed

cones contains only {0}, let

6= inf05-nO where D?8 = 1 and Z, €<£<$f)

II nil = 1 and n = CTx, x G_AI(S).

we have 6 > 0. Hence

and d •* • as Hn1!! •*» ». But this requires that at least one of the com

ponents of A1 goes to infinity. Clearly this branch variable belongs

to a resistor of type H in the unbounded half or of type U. But

z1 = c1*1 =cV1 + cVS and since by assumption such {z1} are bounded, to

compensate we must have UcVtl -»» », hence Up1!! -* °°, we reach the desired

contradiction.

Case 2. There is ajsuch that |z*| +«and |fjUj)l +°°- Recall that
z1 is either abranch-voltage or abranch-current and fj<zj) ls the
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corresponding branch-current or branch-voltage. Call the branch for which

Iz1! -»- °° and If. Cz^) I+ °° the branch b.. In the orthant 0, each
1 j1 ' J J ' J

2^(1=1,2,...) has a definite sign. Let us reassign the reference direc

tions of each type H and of each type U resistor in accordance with the

associated sign in the orthant so that if z, is a branch-voltage (resp.

branch-current) and f, is a type H or a type H v.c. (res. c.c.) resistor,

the reference direction is so chosen that the branch-voltage (resp. branch

current) z, (measured with respect to the new reference direction) is

positive whenever z is in the orthant (0. Now we have three kinds of

branches in the graph, namely (i) type U and type H(v.c and c.c.) resistors,

for which we have assigned directions, (ii) type B c.c. resistors, (iii)

type B v.c resistors. By the Colored Arc Lemma one of the following

alternatives must occur;

Alternative I:. There is a loop $£ containing b., of type U and type H

fy.c. and c.c.) resistors, all of which are similarly-directed, and of type

B c.c. resistors.

Alternative II: There is a cutset Q, containing b., of type U and type H

(v.c. and c.c) resistors, all of which are similarly-directed, and of type

B v.c. resistors.

If Alt.I occurs, note that the branch-voltage of a type U or a type H

v.c. resistor agrees with the reference direction and the branch-voltage

of a type U or a type H c.c. resistor either agrees with the reference

direction (the direction of its current flow) or, if it is opposite to the

reference direction, is bounded. Moreover, the voltage in a type B c.c.

resistor is bounded. Hence, in order that KVL be satisfied for 5l , we
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have to have a unbounded voltage source e to compensate the unbounded
c

voltage in b . Dually if Alt. II occurs, we need a unbounded current

source j to compensate the unbounded current in b.. Therefore, in either

case OGCxStOll =D(Jv»ec)D + °° •

Thus, it follows from Global Implicit Function Theorem [App. I] that there

is a unique C1 function *: "Rr xlRm -> lRm satisfying G($(u,y),u) = y.

Lemma 2 If conditions (i) and (ii) of Theorem 1 hold, then

0 A {x G Rm|cTx GCR(C# and xG0\)(S)} = {6}.

Proof: Note that x = (x.,x2) ^ o if and only if

and

-F
w

_ I J

ri

FT
L. CCJ

xieCB/£vA' FvcXl = e
vt

*2 6^c,
ct-

f x_ = e
vc 2

(6a)

(6b)

We are going to show that if x= (x^x^ G b, then x]L - 0 and x2 - 6,

Recall that x- = v and x2 = i^.

(1) Let x? be a vector satisfying (6b), if we let (6,x2) to be the link

currents of r^\(, then KCL requires that the branch-current vector i to be

i = I 0 6 = 0

0 I -X2. X2
T

F
w

FT
VC

TF1 x0
vc 2

0 Fx
cc

T
¥ x_

L cc 2
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Interpreting (6b) in (7), it -demands that the branch-currents in all

v.c. resistors, and type U cc. resistors be zero; and the direction of

the actual current flow through any type H c.c. resistor is identical to

the preassigned reference direction. We are going to show that these

conditions, together with condition (i) of Theorem 1, will force all the

branch-currents to be zero. As far as KCL is concerned, those v.c. and

type U c.c resistors with zero currents can be removed. It follows from

Comment (d) (or the Fact in Sec. VIII) that condition (i) of Theorem 1

implies that in the remaining network for each type H c.c resistor b there

is a cutset containing b, of similarly-directed type H c.c resistors. Since

the actual current flows in these resistors are the same as their reference

directions, KCL requires that all branch-currents in type H c.c. resistors

be zero. Next remove all type H resistors. In the remaining network which

is made of only type B c.c. resistors, there is no loop by condition (i),

hence all currents in type B c.c. resistors are also zero. Therefore,

x2 = 0.

(2) Dually one can show that condition (ii) implies that any vector ^

satisfying (6a) must be zero. n

Remark: Lemma 1 and Lemma 2 remain valid if we replace "if" by "if and

only if".

Proof of Theorem 1

=> By contradiction. Clearly if there is a loop (resp. cutset) of type

B c.c. (resp. v.c.) resistors or a loop (resp. cutset) of type H and type

B c.c. (resp. v.c.) resistors, in which all type H c.c. (resp. v.c.)

resistors are similarly directed, then for some input vector (u,y), KVL
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(resp. KCL) could not be satisfied,

•*= We are going to show that for all u, G(* ,u) is a homeomorphism from

Rm onto Rm.

(1) Claim: G(«,u) is injective. Suppose not; then for some u, there

exist x f x such that G(x,u) = G(x,u). Thus

T-.C[?J(C xrhi) - 9]T(C x+u)] + S(x-x) = 0

— T
Premultiply by [x-x] , obtain

<CT(x-x)|9£(CTx+u) -9^(CTx+u) > = 0

But each component of 9T is strictly increasing, hence we reach contradic

tion.

(2) Claim: G(«,u) is surjective. For a fixed u, given any £ > 0, let

us construct, following Lemma Al, [App. II] for each resistor character-

1 k °°
istic f. in CJT, a sequence of strictly increasing C functions {f^j^

fi<p> - ft<p> I <israr v" e ^

Let <r¥k =(ix

,fk
r

and G(x,u) =Cr^cVu) +Sx

Thus i^co-qrcoi <^hr ^eRr>kll ell

-16-



hence Dg (x,u) -G(x,u)H <£ Vx G Rm, k=1,2,3...

Note that Lemma 1 and Lemma 2 assert that the conditions (i) and (ii)

imply that G, (• ,u) is a diffeomorphism (hence, homeomorphism) for each

k, it then follows from Lemma A2 [App. II] that G(«,u) is surjective.

(3) Claim: G(» ,u) is a homeomorphism. Brouwerfs Domain Invariance

Theorem [8,pp XXIX 1-2] states that a bijective continuous function is

a homeomorphism, hence G(«,u) is a homeomorphism Vu ^ IK . It then follows

from the Global Implicit Function Theorem that there is a unique contin

uous function ft: 1R r x IRm -> lRm satisfying G(ft(u,y),u) = y, Vu <=1Rr,

Vy G 1Rm. Once x = (v t,i J is known, all (v,i) will be given by simple
J Vt CZ

substitution into Kirchhoff laws (2a) and resistor characterisitcs (1).

Finally the dependence of (v,i) on (u,y) is continuous since (1) and (2a)

are all continuous maps. a

IV. Increasing Resistive Networks

In this section we allow the resistors to be increasing, but not

necessarily strictly increasing. The conditions (i) and (ii) of Theorem

1 are also the necessary and sufficient conditions for the existence of

solutions for increasing resistive networks (Theorem 2). With some addi

tional restriction on the topology of the network it is shown in Theorem

3 that these conditions are again necessary and sufficient for the exis

tence and uniqueness of solutions for a general class of increasing re

sistive networks.

Theorem 2 (Existence)

Let ^| be a finite network made of increasing, continuous, and un-
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coupled resistors. Then for all independent voltage sources with pliers

entries and for all independent current sources with soldering-iron entries,

the network (J\l has at least one solution if and only if conditions (i) and

(ii) of Theorem 1 hold.

Proof: ** Same as Proof of Theorem 1.

*= Note that the function f in Lemma Al is only required to be increas

ing, hence in the proof of Theorem 1 the part that G(«,u) is surjective

for all u applies to here too. However in the present case, we cannot

guarantee uniqueness nor continuous dependence. n

Theorem 3. (Existence, uniqueness, and continuous dependence)

Let (_A) be a finite network made of increasing, continuous, and un

coupled resistors. Suppose that (Jll satisfies conditions (U^) and (Uc):

(U ) every loop made of c.c. resistors contains at least one strictly in-

creasing resistor;

(U ) every cutset made of v.c. resistors contains at least one strictly
c

increasing resistor.

Under these conditions, for all independent voltage sources with pliers

entries and for all independent current sources with soldering-iron entries,

the network has one and only one solution and this solution depends con

tinuously on the inputs if and only if conditions (i) and (ii) of

Theorem 1 hold.

Remarks: (a) Physically condition (Uc) can be explained as follows.

Suppose there is a cutset of v.c. resistors in which none of the re-
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sistors is strictly increasing. By choosing appropriate voltage sources,

we can place the operating point of each resistor in the cutset to be in

the interior of an interval where its characteristic is constant. If we

change the branch-voltages in the cutset by the same sufficiently small

amount Av so that the corresponding current in each resistor remains the

same, then we have another solution which is identical to the preceding

one except for the branch-voltages of the cutset which differ by Av.

Dually for condition (U ). Therefore, only when conditions (U£) and (Uc)

are satisfied, one can expect for uniqueness.

(b) If there exists a tree for the network such that all its tree

branches are c.c. and all its links are v.c, then clearly conditions

(U ) and (U ), as well as conditions (i) and (ii) of Theorem 1 are satis-
Xt c

fied. Hence the result of Desoer and Katzenelson [ 2; Theorem I] is

a special case of Theorem 3.

Proof of Theorem 3

We need only to show that G(«,u) is infective for all u G R . By

contradiction. Suppose not, there is an input (u,y) for which G(x,u) =

G(x,u) = y and x ^ x. Now x and x each specifies a unique set of branch-

voltages and branch currents, so (v,i) ^ (v,i), but they satisfy Kirchhoff

— T —
laws and the branch characteristics. By Tellegen Theorem, (v-v) (i-i) = 0,

r

i.e., 7 Av, Ai, = 0. Since resistor characteristics are increasing,
' &.J k k

k=l

Av, Ai, = 0 for k = l,2,...r. Therefore (a) along every loop in which
k k

Ai. 4 0, all Av. = 0 and (b) for every cutset in which Av. ^ 0, all Ai. = 0,
i i j j

In case (a) the loop can not contain a v.c. resistor because for v.c.
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resistors, Ai, ^ 0 implies Av, ^ 0, so (a) can only happen if all resistors

in the loop are c.c. However, condition (U ) requires in such a loop

there is a strictly increasing resistor for which Ai, ^ 0 implies Av, / 0.

Hence Ai, «= 0, for all k = l,...r. Dually for case (b) , hence Av, = 0,

for k » l,..,r. This contradicts x ^ x. n

Remark: In Theorem 3, if all resistor characteristics are C , then the

dependence of the unique solution on the inputs is C . Note that, by

comparing with Lemmas 1 and 2, all we need to show in this case is that

D-G(x,u) is still nonsingular for all (x,u). Suppose D1G(x,u) were

singular for some (x,u), hence there would exist a £ ¥ 0 such that

C(D^(CTx+u)) CT c+ CC = 0.

Now, let us consider the small-signal equivalent circuitJV)s ofJU at

(x,u). The Kirchhoff laws foro^L are expressed by

C(D^(CTx+u)) CT Ax + CAx = 0

where Ax = (Av ,Ai „). However, we have just shown that conditions (U )
vt cZ K

and (U ) imply that Ax = 0, hence C = 0 and we reach a contradiction.

V. Eventually Increasing Resistive Networks

Sandberg and Willson'"6-' have developed atechnique whereby the exis

tence of solutions can be asserted, given only the asymptotic behavior of

the characteristics. Applying their technique, we have the following

Corollary.

Corollary 1. (Existence)

LetJW be a finite network made of eventually strictly increasing
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(resp. eventually increasing), continuous, and uncoupled resistors. Sup

pose jy satisfies conditions (i) and (ii) of Theorem 1 (resp. conditions

(i) and (ii) of Theorem 1 and conditions (U^) and (Uc) of Theorem 3).

Then for all independent voltage sources with pliers entries and for all

independent current sources with soldering-iron entries, the network ^Jvl

has at least one solution.

Proof: Since there is a M > 0 such that for k = l,2,...r, fk(zk) is

(strictly) increasing on |z, | > M. Let us define

sk(zk} =W K\>K

= f(M) - f(-M)^+f(M) Hhf(-M) || <M
8k^ k; 2 M 2 ' k1 -

Let Q(z) = [g.Cz,),... g^.(zj] T

U(x,u) = CQ(CTx+u) + Sx

V(x,u) =C[9T(CTx+u) - g(CTx+u)]

Consider a given u. Let z = C x+u, z G IP^ , Note that U(*,u) is a

homeomorphism from Rm onto Rm, by Theorem 1 (resp. Theorem 3), and V(*,u):

Rm ->• Rm is acontinuous map. Now HV(x,u)H <_ BC« OyF(z) - Q(z)H. Since
by construction, each component of [yJ(z) - Q^z^ satisfies for k = l,...r,

l^'k* ' 8k(zk}l - ,maX Jfk(zk> - \(zk>\ " akZkl£M
Vz. g R

k

THence IIV(x,u)H <_ 0CD -II ctB ,Vx G R"1 where a= (^...a ) . Since U(* ,u) is

a homeomorphism, by Global Inverse Function Theorem1" ' , given any N > 0
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3 k such that II xll > k => HU(x,u)U >_ N. Set N = 2(1 Cll •Hall ,we have

«V(x,u)!l <_j HU(x,u)H whenever Hxll > k.

Then apply a theorem of Sandberg and Willson [App. I] the corollary is

thus proved. n

VI. Boundedness

For resistive networks, the next basic question, besides the exis

tence and uniqueness of solutions, is the dependence of solutions on the

inputs. In the existence and uniqueness Theorems 1 and 3, the results

state that the solutions depend continuously on the inputs. We would

like to know the dependence of solutions on the inputs for the existence

Theorem 2 and Corollary 1. Theorem 4 below asserts that in those cases

bounded inputs produce bounded solutions. Not all resistive networks

which have continuous characteristics and which have a solution for all

inputs have this bounded-input bounded-solution property. Consider a cc,

resistor with the characteristic v = i sin i connected to an independent

voltage source e: for each e^ 1R ,there are infinitely many solutions

larger than any prescribed number.

In Theorem 4, we do not require that resistor characteristics be

increasing, nor even eventually increasing.

Theorem 4. Let.-JV) be a finite network made of continuous, and uncoupled

resistors. Each resistor is required to be either of type U, or type H,

or type B. Suppose that conditions (i) and (ii) of Theorem 1 hold.

Suppose that for some independent voltage sources connected with pliers

entries and for some independent current-sources with soldering-iron

entries, the network has solutions. Under these conditions, if for some
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B <», the inputs satisfy |e |<B and |jk| <B1 for all k, then

there exists a B < » such that all network solutions satisfy |v, I < B«
2 k1 2

3and |i. |< B2» for all k.

Proof: Consider the network equation

G(x,u) = C <tT(CTx+u) + Sx = y.

An equivalent statement of the conclusion of the theorem is that if for

some B. < «>, H(u,y)U <_ B- then there exists a JL < °° such that Hxll _< B^.

Clearly this is true if 0x0 -»• «> implies 0(u,y)0 -* ». We are going to

show this by contradiction. Let {x } be a sequence with Hxll -> «, let

{u } and {y1} be two corresponding sequences such that G iJ(C x -hi )

+ Sx1 = y1 is satisfied, and suppose {(u ,y )} is bounded; hence in

particular {u1} is bounded. Lemma 2 states that if conditions (i) and

(ii) of Theorem 1 hold then the assumption {x|c xeQfrf) and x Go\!(S)}

= {0}, of Lemma 1 holds. Note that in part (2) of the proof of Lemma 1

we have shown that for any fixed u, 0x0 -*-«=> Hg(x,u)H = OyO + «>. Observe

that in that proof in fact we only require (i) u remains bounded, (2)

each resistor is either of type U, or type H, or type B. Hence if

1x1 •* » and Hu1!! remains bounded, then we must have 0y II -»•«>. Thus a

contradiction is reached. n

VII. Monotone RLC Networks

The natural framework for considering general nonlinear networks is

provided by the differentiable_maniJold^ ' . However, in

3
Here we use e, (resp.j, ) to denote the magnitude of an independent
voltage (resp. current ) source; v, (resp. i, ) to denote the branch-
voltage (resp. branch-current) of a resistor.
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many special cases, the manifold of configuration space is diffeomorphic

to a linear vector space, such networks can then be characterized by a

differential equation in normal form,

An RLC network can be considered as a connection of three one-

element-kind subnetworks. Therefore, our results on resistive networks

(in fact, on one-element-kind networks) leads directly to the Theorem 5

below, which considers increasing RLC networks. Let us first define the

class of inductors and capacitors under consideration.

We define a capacitor (resp. inductor) as a two-terminal ele

ment that is characterized by a C function f which maps the real

line IR into itself and a = f(p), where either p is the branch-voltage

(resp. flux) and a the stored charge (resp. branch-current), or vice versa.

If p is the branch-voltage (resp. flux) we say that the capacitor (resp.

inductor) is voltage-controlled (resp. flux-controlled), abbreviated v.c.

(resp. <|>.c); on the other hand, if p is its stored charge (resp. branch-

current), we say that it is charge-controlled (resp. current-controlled),

abbreviated q.c (resp. c.c). We define increasing (resp. strictly in

creasing, eventually increasing, eventually strictly increasing, type U,

type H, type B) capacitor or inductor according to its characteristic,

as was done for resistors.

Theorem 5. (State equations for monotone RLC networks)

Let ^j\\ be a finite network made of increasing, time-varying, uncoupled

resistors, inductors, and capacitors. Thus all characteristics have the

form a = f(p,t) and we assume that f is C both in p and t. Let us derive

from v_Al three subnetworks:
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<JU (inductive subnetwork): replace by short-circuits all elements,
JLi

except inductors, of cj\|.

(Aj (capacitive subnetwork): remove all elements, except capacitors,

of oW.

^\( (resistive subnetwork): replace by short-circuits all capacitors
R

and remove all inductors, ofcjvl.

Suppose that inJ^L (resp. <_Aic, JWR) »the conditions (a)-(d) are satis

fied:

(a) every loop made of cc. inductors (resp. q.c capacitors, c.c.

resistors) contains at least one which is strictly increasing;

(b) every cutset made of <j).c inductors (resp. v.c. capacitors, v.c.

resistors) contains at least one which is strictly increasing;

(c) every loop made of c.c. inductors (resp. q.c. capacitors, c.c.

resistors) either contains at least one type U inductor (resp. capacitor,

resistor) or if not, then it contains at least two type H inductors (resp.

capacitors, resistors) and not all such type H inductors (resp. capacitors,

resistors) are similarly directed.

(d) every cutset made of <{>.c inductors (resp. v.c capacitors, v.c

resistors) either contains at least one type U inductor (resp. capacitor,

resistor) or if not, then it contains at least two type H inductors (resp.

capacitors, resistors) and not all such type H inductors (resp. capacitors,

resistors) are similarly directed. Suppose that independent sources

Self-loop is regarded as a loop.

A cutset may contain only a single branch, in which case, we call it
an "open branch".
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are all regulated functions [13, p. 145] of time. Under these conditions,

for all independent voltage sources with pliers entries and for all inde

pendent current sources with soldering-iron entries, and given any initial

time tQ and any initial conditions, the network JW has one and only one so

lution on some nonvanishing interval [trt,t ).
0 a

Proof: First pick a normal tree and let the subscripts S,R,L (resp.

C,G,T) correspond to link (resp. tree-branch) capacitors, resistors, and

inductors; so that the fundamental loop matrix takes the form:

I 0 0 Fsc 0 0

0 I 0 FRC FRG 0

0 0 I FT„ F,„ F
LC LG

F
LrJ

Define a set of state variables as:
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q = qc - Fsc qs

* = *l + FLr *r

If the following three sets of equations (L), (C), and (R) possess* unique

solutions for i , v , i , and v in terms of q, <{>, and t; i.e., iL =

iL(*,t), vc = vc(q,t), iR = iR(Vc(q,t), iL(<J>,0, t), and vQ =vG(Vc(q,t),

jL((J),t), t) , then the network J\j is characterized by differential

equations in (q,<J>), [See ref. 17, p. 61-65], namely

*= FRC VVq>t}' *!,<♦>*>•'> + FLC h**'* + jC(t)

<j> = - FT_ vp(vn(q,t), L($,t),t) - F v (q,t) + e (t)
LG Gv C LC C

rn FLr] n>Ti= *

IJ
< Kr I] Thl " hM

[]
(D

vVww10 =e

r

[I Fsc]rvsi = es(t)

t:
i t -fsc i] RcT = i

c:
(C)

v.VVVW10 = e
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r

t1 V [Ve1 =Vc +eR(t)

i-fL i] rvi = & iT. + jrct) w< RG iJ TU M. L JG'

13
Jr<VWg^ =e

where we use fL (resp. fc,fR) to denote inductor (resp. capacitor, resistor)
characteristics. Note that if we consider the right hand sides as inputs,

the first two sets of equations of (L) (resp. (C), (R)) are precisely KVL

and KCL forJML (resp JUC>. JUR). Therefore, by the Remark following the

proof of Theorem 3,7 conditions (a)-(d) on^\lL (respo\lc) imply that ±L
o

(resp v ) is uniquely determined by (<j>, JL(t), t) (resp (q,eg(t),t)) and

the dependence is C1. Thus, i^ =±L(4>,ti) (resp vq =vc(q,t)), where ±L
(resp v) is C1 in (J) (resp q). Moreover, since JL(t) (resp eg(t)) is a

regulated function, i (resp vc) is a regulated function of t. Condi

tions (a)-(d) on0MR imply that iR =VVV^ and VG =VVV^
where iR and vQ are C1 in (yQy\) and regulated in t. Hence iR =
ij^Cq.O, iL(<J>,t), t) =iR(q,(f),t) and vQ =v6(vc(q,t), ^UsO, t) =
vG(q,<|),t) where iR and vQ are C in (q,<f>) and regulated in t. The

Theorem then follows from the Fundamental Theorem of differential euqa-

tions [13, pp. 285-289].

In the time-varying case, we will have CrjRc x+u,t) + Sx = y. By
assumption 9^ is C1 in t. In applying Global Implicit Function Theorem,
consider G(x,u,t) : Rm * 1R -* IR .

8Note that the solutions exist even if <|>.c self-loops (resp. c.c. open-
branches) of JIL (resp. JUC) are not increasing; and v.c self-loops and
c.c. open-branches ofJR are not increasing.
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Remark: In comparison with the result of Desoer and Katzenelson [2,

Theorem IV], we note that their circuit-theoretic conditions are suf

ficient for conditions (a)-(d); we require that characteristics be

differentiable, however.

VIII. Algorithms

We propose two efficient algorithms for checking conditions (i) and

(ii) of Theorem 1. First, we present an immediate consequence of the

Colored Arc Lemma.

Fact. Condition (i) (resp. (ii)) of Theorem 1 holds if and only if, after

removing all v.c. and type U c.c. resistors (resp. replacing by short-

circuits all cc. and type U v.c. resistors),

(A) every loop (resp. cutset) contains at least one type H c.c. (resp. v.c.)
resistor.

(B) for every type H c.c. (resp. v.c) resistor b, there is a similarly-

directed cutset (resp. loop) of type H c.c. (resp. v.c.) resitors,

containing b.

Algorithm 1. (For checking condition (i))

Step 1) Remove all v.c. and type Uc.c. resistors from^A).

Remove all "open branches".

Call the resultant network^Q, set i=0.

Step 2) IfoW has a type Hcc. resistor go to (4), else go to (3).
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Step 3) If oM. has a loop, output condition (i) is not satisfied.

(There is a loop inv_AI of type B c.c. resistors)

else output:condition (i) holds.
a

(This conclusion follows in view of the foregoing Fact.)

Step 4) Pick a type H c.c. resistor b, directed from, say, node nQ to node n^

Set V- = {n.^, set k = 1.

Step 5) If there is a type H c.c. resistor directed from some node in V^ to

a node t not in Vk, go to (6),

otherwise if there is a type B c.c. resistor connecting some node in Vfc

and a node t not in V,, go to (6),

else go to (7).

Step 6) If t= nQ, outputcondition (i) is not satisfied.

(There is a loop of type H and type B c.c. resistors, in which all

type H resistors are similarly directed)

else set V, ,. = V. U {t}, set k = k+1, go to (5).

Step 7) Remove all resistors which have only one terminal node in Vfc.

Call the resultant network ^i+1» set i=i+l» g° to (2)•
(There is acutset, in ^MQ> containing b, of similarly-directed type H

c.c. resistors. We may remove them from further consideration).

Algorithm 2. (For checking condition (ii))

Step 1) Replace all c.c. resistors and type Uv.c. resistors in J\i by

short-circuits and identify any two nodes connected by a short-

circuit.

Remove all self loops.

Call the resultant network ^,'V Q, set 1=0.
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Step 2) If oW. has a type H v.c. resistor, go to (4); else go to (3).

Step 3) If oM. has a type B v.c. resistor, output:condition (ii) is not satisfied

(There is a cutset in (Jvl of type B v.c resistors)

else output:condition (ii) holds.

(This conclusion follows in view of the foregoing Fact.)

Step 4) Pick a type H v.c. resistor b, directed from, say node n to node n^

set k = 1.

Step 5) If there is a type H v.c. resistor directed from node n, to some node

t, go to (6)

else outputjcondition (ii) is not satisfied.

(There is a type H v.c. resistor which is not in a loop, invJVL, of

similarly-directed type H v.c. resistors, this violates con

dition (B)).

Step 6) If t •** n. for 0£ j < k, set nk+1 = t, k = k+1 go to (5);

else go to (7).

Step 7) Identify node n , n -, ... n, , t and remove all self-loops.

(There is a loop in^AL of similarly-directed type H v.c. re

sistors. We may disregard them from further consideration, i.e.,

shrink them down into a node).

If j > 1, set k = j and go to (5);

else call the resultant network ^A'^, set i= i+1, go to (2).

(The loop contains b, we have to start again).
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Appendix I

[9 14]
Palais Global Implicit Function Theorem *

Let G: Rm xRr •> Rm be continuous (resp. Ck, 1 <_ k <_ »). Given

G(x,u) = y there exists a unique continuous (resp. C) function *: IR *

Rr + Rm such that G(Ky,u),u) = y Vu e Rr, Vy e Rm if and only if

9
(i) G(* ,u) is a local homeomorphism (resp. local diffeomorphism ) from

(Rm onto Rm, vx g Rm, vu e Rr.

(ii) V fixed u e Rr, llG(x,u)U -*• » whenever II xll -»• °°.

Minty's Colored Arc Lemma '

Let ^Al be a directed graph whose branches are partitioned into three

sets (or colored with three colors) A, B, and C, and let b e B. Then

there exists one and only one of the following:

(i) There is a loop, containing b, of branches in A and B only, in which

all branches of B are similarly directed,

(ii) There is a cutset, containing b, of branches in B and C only, in

which all branches of B are similarly directed.

F61
Sandberg and Willson's Theorem

Let U be a homeomorphism from Rm onto R^, and let V be a continuous

map from Rm into Rm with the property that there exist real numbers

0 < c < 1 and M > 0 such that for all IIxll > M,

9 By inverse function theorem, G(-,u) is a local diffeomorphism from R
onto fl^m Vx € F^mj Vu e Rr if and only if D][G(x,u) is nonsingular
Vx e Rm, Vu e Rr.
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IIV(x)H <_cIIU(x)H

Then for each y G ll^m there exists at least one x e R such that

U(x) '+ V(x) = y.
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Appendix II

Lemma AI. Let f: IR ->- R be a continuous and increasing function. Then

given any e>0 there exists a strictly increasing C function f : ff? +

IR such that

|f(p) - fe(p)| <e Vpe R

Proof: By construction. First assume that f is continuous and strictly

increasing. Consider the compact interval I = [n,n+l], n is an integer.

fis uniformly continuous on I ,hence J 6n such that |p1 - p2| <&n=>

|f(p ) - f(p )I<T v P-i» Po G x • Without loss of generality, we may

take 6 to be the inverse of a positive integer. Now construct a piece-
n

wise linear function h(p) on I such that h(p) = f(p) for p = n, n + «n,..

n+1, and linear between any two consecutive points. Repeating the con

struction for all n, we obtain a piecewise linear, strictly increasing

function h: R -* R and |h(p) -f(p)|if Vp e R. Now we round off

the corners of h by circular arcs with radius l/(86n) for corners inside

I and (8 min{6 ,6 .,))^1 for corners at n, the result is astrictly in-
V n+1

creasing C1 function fe such that |f(p) - f£(p)| <j Vp G ^'

Suppose now that f is only increasing. Then the piecewise linear

approximation h constructed above may have line segments with zero slope.

So it needs modification to make h a piecewise linear, strictly increasing

function h.. .

case 1) h(p) <= c on [ct,B]. Let p^ p2 be the points where f(px) =
10c-| and f(p2) =c+|. Let h^p) on [plfP2l be the straight line

connecting (pj, c - ^-) and (p£, c+^ .
10If such points can not be found, reduce -j- to -g, and so on.
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case 2) h(p) B con [a,00). Let p be the point where h(p ) = c - -r .
-A(p-P;L) 4

Let h (p) on £p ,«») to be h (p) = c - 7- e ,where A = — h'^).

case 3) h(p) = c on (-00,00). Let h1(p) = -j- tanh p + c.

Clearly |h (p) - f(p)| <\ Vp ^ R. Round off corners of t^, we obtain

fe and |f£(p) - f(p)| < e VpGi^.

Lemma A2. Let fyX} be a sequence of homeomorphisms from R onto R ,

andVj: lRn •* Rn is continuous. If for a given e > 0, 0<9k(x) -

(rTCx)II <|-, Vx G Rn, for k = 1,2, •••. Then ^ is a surjective map

and the inverse image under \f of any bounded set is a bounded set.

Proof: (1) First we show that.f (B) is bounded whenever B^R is

bounded. Suppose not, then there exists an unbounded sequence {£ } -*- °°

and O^CS )0 <Mfor i=1,2, ••. Since ^k^±) -<tTCC±)H <£ Vi.

lltJ.^ )0 <11^(5.)H +|- <M+£. But9^k is ahomeomorphism, from

Global Inverse Function Theorem, II £J ->• °° ^ Ht-K (£.)" -»• ». We reach
1 k 1

contradiction.

(2) We will show that given any y £ IR , there exists an x £ IB n

such that ^J-OO = y» Let x, be the points satisfying TJWx.) = y.

Consider the sequence {x, }. We claim that it is bounded. Since for all

positive integer k, D^ftx^,) -^0^)1 <5-, so ^'(x^ll <llyll +~. Hence
{x, } is in the inverse image under Vjf of a bounded set, thus it is boun

ded by (1). Therefore, {x, } has a convergent subsequence, {x }, say
_ _ i

converging to x. Now we claim f(x) = y. Indeed,
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ly -yT(x)U ="v^/v) -^(x)
i i

<

• vvk. ...
1 i

fyk.(\.) - ^(\ )»+||^c\ >-^cx)

<f +tl^rfe^ )-^(x)
i i

Since ^-f is continuous, and x, -> x as k. -*• °°. The right-hand side can
i

be made as small as we please by picking k. large enough, hence

lly -9ftx)ll = 0, i.e., y = <#(x) . n
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FIGURE CAPTIONS

(a). Type U resistor: f(p) unbounded as p grows without bound,

(b) Type H resistor: f(p) bounded on a half real line.

(c) Type B resistor: f(p) bounded on the whole real line.
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