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Consider a linear time invariant network consisting of RLC and of

dependent and independent sources. The value of one of the independent

sources is the input, e , and the value of a network variable, eQ, is

the output. Let Z be the impedance of one of the networks branches or the

gain of one of the independent sources. We are interested in the effect

eQ(ja))
that changes in Z have on the transfer function, H, H = —,. N .& ei(jw)

One way to summarize such information is to consider the transfer

function as a function of both the frequency to and the parameter Z and

to plot |h| and *H as a function of to for Z = Z , Z^, ..., etc. (Fig. 1).

Such plots are usually generated by a digital computer and are

used as a sensitivity type study which aids the circuit designer to pick

a suitable value for Z.

It is clear that such plots can be obtained for more than one

parameter. However, usually the number of parameters used is small,

one, two, or at most three, since it is very difficult to get any

insight when many parameters vary simultaneously.

There are several algorithms which can be used to calculate such

plots. The most common one writes the network equations and for each

value of W and Z solves the simultaneous linear equations by means

of Gauss elimination [1]. The basic idea in the method presented here

is to compute a symbolic expression for the transfer function as a

function of s and Z. Once a symbolic expression is available, the value

of H(s,Z) for any range of to and Z can be easily obtained.

For networks of the type considered here (excluding degenerated

cases) H(s,Z) has the form



P-(s)Z + 0-(s)
H(s,z) = 1P2(s)Z + Q2(s)

where P , P„, Q , Q are polynomials in s. Thus, a symbolic analysis

amounts to a method of calculating the coefficients of these polynomials

and a computer program that produces the required plots for any range

of co and Z.

The method of getting the symbolic expression is an extension of

a method by Pottle [2]. In his work Pottle indicated that the method

has numerical troubles. One of our motivations in studying the method

was to find out exactly where and why numerical problems appear and, if

possible, overcome them. We wrote a program [3] (Elliot 503, 39 bit

words) and studied the problem experimentally by calculating critical

parts of the algorithm on a computer with a larger word size (CDC 6400,

60 bit word, double and triple precision). The results suggested

several improvements which have been introduced and are discussed here.

In the following the method is first introduced and the discussion

of numerical problems comes second.

The Transfer Function

In the following the transfer function is calculated as a function

of s and one parameter, Z. Similar derivation can be made for more than

one parameter.

Let us first assume that Z is the impedance of one of the network

branches. Let e« and -i? denote the voltage and current of the branch.

Consider the network n obtained by replacing the element Z with a voltage

-2-



source e«. Let u = I 1be the input vector for n and x = I . 1 be
1 " \e2 / VW

the output vector. Except in degenerated cases [2,5] one can write

state equations which describe the network behavior. Let these equa

tions be

q(t) = Aq(t) + Bu(t) (1)

x(t) = Cq(t) + Du(t) (2)

We have a third equation at our disposal;

e9(s)Z(s) -~ ^ (3)

When Z is a branch impedance, we can chose either voltage or cur

rent as input variable at © (5) of Fig. 2. The other variable becomes

the output variable. A small change is needed when we consider a con

trolled source. The change is illustrated in Fig. 3. In this example

r is the branch which is extracted from the network. Note that in
m

this example the input admittance at © © can be zero and in order to

avoid problems the voltage should be chosen as an input variable and the

current as output variable.

Taking the Laplace transform of the state equation, assuming ini

tial conditions are zero, we get

x(s) = {C(Is - A)"1 B + D}u(s).

Denote:

* -1
A = (Is - A) ;

B = (b.JO, b and b are column vectors;
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e
in

= I 1 I >c- and c9 are row vectors;
VcJ X

dll d12
D = \ I , d., are scalars.

d21 d22 ' ^

y(s) = x
z(s) *

Using the above notations we get

e0(s) \ ^ /c1A*b1+dn c/b2+d12 \ / ein(s)
i2(s)/ Vc./b.^ c2A*b2+d22/ \ e2(s)

and using (3)

eQ(s) (c1A*b1+d11)y(s)+(c1A*b1+d11)(c^^+d^-^A^+d^)(c^b^d^)
%n(s) (c2A*b2+d22)+y(s)

(4)+

*

Since A is a ratio of polynomials in s the equation can be brought to

the form

eQ(s) P1(s) y(s) + Q1(s)
e^ (s) P.(s) y(s) + Q9(s)
in z z

t
It might be of interest to note that (4) has the following interpre
tation

} JL. wlien e2=0> 1 .v(s) . J 0 wlien y open circuit,1 fInput admittance at ©
Jl^JILJ^sL*0^ .^^ __LLin _7_*_0 J [when eln =0
{Input admittance at © ©1 +

when e. =0 J y(S)
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where P;,(s), P2(s), Q1(s) and Q2(s) are polynomials. To get the coef

ficient of the polynomials one has to invert (Is - A). Fortunately

this can be done rather simply using a formula by Soriau and Framme [4]

Let A be an (nxn) matrix and let

(is - a)-1 - m
g(s)

where

T(s) =TQ sn 1+T sn 2+ ... +Tn-1 ;

T., i = 0, ...» n-1 are (nxn) matrices, with constant elements,

g(s) = s + g1 s + ... + gn

The g and T. can be calculated as following:

Tn = I (I denotes the (nxn) unit matrix);

for k = 1, ..., n

;k =- itrace(T^j A)

Tk " Vl k + I\-

The last equation calculated for k = n yields zero for T ,

0 = T - A + g I
n-1 °n

and provides a possibility to check and estimate the amount of error
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accumulated during the calculation.

Thus, the calculation of a symbolic expression proceeds in three

steps:

(1) Deriving state equations for the network;

(2) Calculating inverse of (Is - A);

(3) Using equation (4) for getting the result.

In actuality step (2) and (3) are intermixed. As soon as a T. is

found it is multiplied by appropriate row and column vector and stored.

Thus no more than one T. has to be held in memory at one time.

Numerical Properties

While computing examples using the algorithm we come across several

numerical problems or numerical troubles. These problems and ways

to overcome them are described below.

(1) Consider the last stage of the algorithm. H(s,Z) is available, and

we have to evaluate H(jto,z) for Z = z1 and to~ < to < to-. Once the value

of Z is substituted H can be viewed as a ratio of two polynomials, say

H = P, { . If p and q have common roots which are on or near to the
q(s)

jto axis and the domain to- < to < to- (network has unobservable modes)

we experienced difficulties in evaluating the value of H.

This phenomenon can be best illustrated with a simple example.

t. ut \ - (s+D (s+5) = s2 +6s +5Let HCs) = (s+1)(s+7) " 2+8s+ 7
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Evaluate at -1 + e where e is very small.

«/ -,_^n _ 1 ~ 2e + i1 -6+ 6e + 5 4e 4
Hv.-1-re; - « - — - -7-

1 - 2e + i - 8 + 8e + 7 6e

Note that the e cancelled out and in this example the correct result

was obtained. In actuality as a result of round off errors the "up

stairs" e and the "downstairs" e are not equal. If e is small then

round off errors are responsible for a good part of its value and the

ratio of the upstairs errors to downstairs errors is meaningless.

This problem has been overcome by expanding H(s) to a continued

fraction expansion.

H(s) = a.s- + b. +
111 . u . 1a«s + b„ +

< Ht (HIAll
— n-1

2 2 a„s + b„ +

This expansion is done symbolically after the value of Z is

substituted. Common roots conceal each other and do not appear in the

result.

(2) In the Soriau-Framme part of the algorithm we often observed

the appearance of very small and very large numbers which often got

out of the dynamic range of the computer. Some insight to this pheno

mena can be gained from the following calculation.

Consider the Soriau Framme formulas: Using the mean-square

vector norm we get:

|gK| =I- \ tracc(TK-1A)| - |- \ (T- \)\ <naxllj =Bt^aI
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where X. are the eigen values of T„ -A.
1 e K-l

ItvI < 1tv INIaII + |g I < 2!It IIIIaII
K. K—J. n — K—1

T il < 2KllA»K

Since we know that T is zero this bound has meaning for K < n only.

There are several ways for estimation of IIAH [6] one way is the

following: for real A, W = Ix I, X the largest (in absolute
1 max' max &

value) eigen value of A

Thus, large numbers appear because essentially A is multiplied

several times by itself. (If IIAll is smaller than 1 the same phenomena

will cause small numbers, but this is rare as the time constants of

circuits we are using are usually much smaller than one second).

Exceeding the dynamic range can be avoided by scaling, i.e. multiply A

by a constant C such that 2 C II All will be inside the dynamic range.

Physically this can be interpreted as measuring time not by seconds but

by msecs, for example;

Very small numbers are automatically rounded off to zero and do

not stop the program from running. However, obtaining small numbers

as differences of large numbers is a serious cause of numerical errors.

Accuracy can be improved by using a number representation which uses

more bits to represent the number's mantisa. We run examples on both
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the Elliot (39 bits word) and the CDC (64 bits word, double precision).

For a band pass Butterworth filter with 8 reactive elements we got 3%

change difference in the value of the transfer function.

It is hard to estimate the effect of round off when the network

becomes larger and larger. It seems, however, that these errors can

be reduced drastically by calculating the Soriau-Framme formulas using

a number representation which occupies several machine words. Although

not elegant this is a simple technical solution. Since we don't know

a priori the accuracy required, one solution is to write arithmetic

subroutines for n-precision and rerun the problem with a n+1-precision

if the sum with n-precision fails.

(3) Numerical inaccuracies were reported [2] also in the process

of getting the state equations. The critical step should be the

reduction of the equations from the form Sq = A'q + B'u to q = Aq + Bu,

which is done by diagonalizing S.

In our examples we did not experience problems in this step. It

is our opinion that accuracy can be easily increased by using multi-

precision representation.

Summary

The partial fraction expansion, scaling and the crude but techni

cally sound device of multipresicion makes the method presented into

an engineering tool.

An interesting question is to compare this method with other
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methods as far as the amount of computer time is concerned. Unfortu

nately we don't have enough data to comment on this point.
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Fig. 1. An example of an absolute value of a transfer function as

function w with R a parameter.



Fig. 2. The extraction of Z from the network.
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Fig. 3. The transformation of a current controlled voltage source to a

configuration suitable for extracting r as a parameter.
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