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Abstract

In this thesis three problems are considered — the first two

in Part I and the third one in Part II. The first problem we con

sider is the characterization of partial squares of trees. A

uniqueness theorem of square roots is also proved with application

to total graphs. Secondly, those line graphs which are clique

graphs or partial tree squares are characterized. These special

clique graphs are shown to have other interesting properties.

Finally we have proved a generalized form of the following con

jecture on factors: If <d > and <d -k>, 1 £ i £ n, are

graphical sequences then there exists a graph with degree sequence

<d^ and containing a factor F which has k edges at each

vertex. A similar conjecture for digraphs is also generalized

and proved.
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INTRODUCTION

It is well known that an even (binary) matroid is graphic if

and only if it has a 2-complete family of cocircuits. A natural

question would be, "What graphs have a 2-complete family of fun

damental cocircuits?" A family of fundamental cocircuits (cutsets)

is defined as follows. Consider a basis B of the graphic matroid

M(G). Each edge e of G belonging to B defines a unique

cutset c(e) which intersects B at the element e alone. The

cutsets {c(e): e €= B} define what is known as a family of funda

mental cutsets (with respect to B). It is observed that a graph

G has a 2-complete family of fundamental cutsets if and only if

G is a partial square of a forest.

In Chapter 1 we shall obtain a characterization of partial

squares of trees. We also show that if a partial tree square is

'large' (in a suitable sense) with respect to the tree then the

tree is determined uniquely from the partial square. In particular,

the square of a tree T determines T uniquely. Harary [5 ] has

obtained a characterization of graphs that are tree squares.

(There is a mistake in his proof; although the theorem is possibly

true. A counterexample seems almost impossible.) Our characteri

zation of a tree square has a form similar to the one given (?) by

Harary. Mukhopadhyay [8] has characterized squares of arbitrary

graphs. His characterization requires existence of a family of

complete subgraphs which satisfy certain intersection properties.

It is not easy to use Mukhopadhaya's theorem for an efficient

method to find if a given graph is a square graph because one



has to examine all possible choices of complete subgraphs which

are just too many in number.

Our characterization of partial squares of trees, and its

generalizations to squares of graphs with girth > 6, do not suffer

from such shortcomings. The characterizations involve only the

3-components and cliques of the graph.

As a special case we have shown that the total graph T(G)

of a graph G determines the graph G uniquely. This is simi

lar to a well known result on line graphs which says that G is

determined uniquely (with one exception) from its line graph.

We note in passing that a planar partial tree square is 4-colorable.

In Chapter 2 explicit characterizations are obtained for

those line graphs which are clique graphs, partial tree squares

or both. Such a characterization was felt necessary because

every partial tree square was observed to be a clique graph on

the one hand and on the other hand the characterizations of line

graphs, clique graphs and partial squares of trees all happen to

have a very similar form — the existence of a family of maximal

subsets of vertices (3-components, cliques, etc.) with certain

intersection properties.

In Part II we consider the problem of existence of graphs G

with given degrees of the vertices and G containing a factor

which is also specified by a degree sequence. Following gener

alized form of the k-factor conjecture (by A.R. Rao, S.B. Rao

and B. Grunbaum) is proved.

If the sequences (d.), (d -k.), i = l,2,...,n of



non-negative integers d and d -k are graphical and <k. > is

almost regular (i.e., for some k, k£k £ k+1, for all i)

then there exists a graph G with degree sequence (d > whose

i vertex has degree k in a factor F C G.

A corresponding theorem for directed graphs is also proved

generalizing a conjecture by A.R. Rao and S.B. Rao. Examples

show that our theorems are best possible in general. Several

other variations are also considered.

Part I and Part II of the thesis can be read independently.

The numbering of figures and theorems are independent in the two

parts. The references for Part I appear at the end of Chapter 2.

The references include only those works which are of primary

importance.

Note to the reader. It is strongly urged that the reader make

constant use of figures whenever possible. There are several little

facts which become clear once a figure is drawn and are used in the

proofs. We believe that giving formal explanations of all of them

would make the reading of the thesis unpleasant.



PART I

Chapter 1

PARTIAL SQUARES OF TREES

1. Definitions and Introduction

A graph G » (V(G),E(G)) consists of a finite set of ver

tices V(G) and a set E(G) of unordered pairs (v.,v ),
i J

2
v. f v., called edges of G. The square of G, denoted by G ,

2
has the vertex set V(G) and (x,y) belongs to E(G ) if

(x,y) is in E(G) or there is a vertex z such that (x,z),(z,y)

2
are in E(G). G is called a square root of G . The distance

d_(x,y) between two vertices x,y is the length of a shortest
G

2
path in G from x to y. Thus we can write E(G ) = {(x,y):

1 < d_(x,y) < 2}. The square of a disconnected graph is clearly
—* G —

the disjoint union of the squares of the components. We shall

assume that all graphs are connected in the following and further,

to avoid trivialities, |V(G)| >. 3, unless otherwise mentioned.

By HCG we mean V(H) C V(G) and E(H) C E(G) and say that

H is a partial subgraph of G. If every edge of G having both

end points in V(H) is an edge of H then H is called an

(induced) subgraph. We shall write in that case H = G|V(H).

Also G-S, S CV(G) will denote the induced subgraph G|V(G)-S.

2
A partial square H of G is defined by GCHCG . Note that

the graphs G and H have same vertices. The complete graph K

has n vertices and —^-=—- edges so that any two vertices are

adjacent. A graph G is called n-connected if it has at least

n vertices and for any set of n-1 or less vertices S, G-S is

connected. This definition is slightly different from the one



usually given. However, they coincide if G has more than n

vertices. The only n connected graph on n vertices is the

complete graph K . We say that a subset of vertices S is

complete, n-connected (in general, P) if the graph G|s is

respectively complete, n-connected (has property P). A maximal

complete set S is called a clique and a maximal n-connected set

an n-component. We shall often identify the set S with the

graph G|S in case no confusion is likely. For general concepts

in graph theory we refer the reader to Harary [5 ]. Few other

definitions not included in the text are collected at the end of Part

I. A cutset in a graph is a minimal set of edges removal of

which from the graph increases the number of components.

The concept of a complete family of cutsets of a graph

corresponds to that of a basis in a vector space. More precisely,

a family C of cutsets is called complete if any cutset is a

mod 2 sum of cutsets in C and C is minimal with respect to

this property. C is called 2-complete if no edge belongs to more

than two of the cutsets C. These definitions can be made

actually for an arbitrary matroid [10]. A family of fundamental

cutsets (cocircuits) of an even matroid is complete.

THEOREM 1.1. A connected graph G has a 2-complete family of

fundamental cutsets if and only if there is a tree T such that

T C G C T2,

Proof. Suppose G is a partial square of the tree T. The edges

E(T) form a basis of the graphic matroid on E(G). An edge

e = (x,y) of T defines the cutset c(e) as follows. T-e has



two components and the edges of G whose end points belong to

different components constitutes the cutset c(e). Clearly, the

family {c(e): e£ E(T)} is 2-complete. Conversely, suppose

the family of fundamental cutsets with respect to the basis

B ° E(T) is 2-complete. It is easy to see that for an edge

(x,y) of G which is not in T, d (x,y) = 2. Thus G is a

partial square of T.

A disconnected graph has a 2-complete family of fundamental

cutsets if every component of the graphic matroid M(G) does.

A component of M(G) is nothing but a 2-component subgraph of G.

Thus one can further assume that the graph G is 2-connected.

2
To obtain a spanning tree T of G such that T C G C T we

shall first find corresponding trees for the 2-components of G

and then 'attach' them in the same way as the 2-components them

selves are attached. We state that as

THEOREM 1.2. A graph G is a partial tree square if and only

if every 2-component of G is a partial tree square.

It is interesting to note the following equivalent conditions

for a partial tree square to be 2-connected.

2
PROPOSITION 1.3. Let T £ G C T . The following are equivalent.

i) G is 2-connected.

ii) G|r~(x) is connected for each vertex x.

ili) G - T has two components.

iv) G|Nr(x) is 2-connected.

Connected component;— i.e., an irreducible part of tlu» graphic
—troid in the sense of Whitney [12],

*

ma



Proof. i) ° ii). x is an articulation vertex of G if and

only if G|r (x) is not connected.

ii) =* iii). G - T has two components on the two color

classes of the graph T. The components are obtained by 'attach

ing' the connected graphs (G-T) |l~ (x) as x varies in each of

the two parts.

iii) =* iv). If G-T has two components then it is not

hard to see that l~_(x) is connected in G for all x. In

other words g|n (x) is 2-connected. If y is a vertex in

N_(x)-N_(x) then there is a vertex z in T (x) such that
l» l T

(z,y) G E(T) C E(G). It follows that NQ(x) is 2-connected in G,

iv) =* ii). This is easily shown by contradiction.

Condition iv) gives a simple method for obtaining the

2-components of G. The 2-components of g|n_(x) are contained
G

in different 2-components of G. However such a property of a

graph G does not imply that G is a partial tree square; for

example, let G be the 'big' triangle (fig.11).

2. Characterization of Partial Squares of Trees

We proceed to obtain a n.s.c. for a graph to be a partial

tree square. We shall assume that G is 2-connected.

2
LEMMA 2.1. The 3-components of T are of the form N (x ),

d (x ) >_ 2. In particular, 3-components of a partial square of

T are subsets of N (x ) containing x .

Proof. Easy.



It is important to remember that two 3-components in a graph

can intersect at most at two vertices. A vertex x is called

a multiple point if it belongs to 2 or more 3-components. Let G

be a partial square of T and let the 3-components contained in

N_(x ) be labeled by C .. Then the following properties i), ii),

iii) are easily verified where V is the set of nonterminal

vertices of T.

i) u C - G, i.e., U V(C ) « V(G) and U E(C ) = E(G).

ii) If C.., C ,., intersect at one point, then there

exists a sequence s = ^C ,C.„. ,...,C.„. ,C , ,) such that

two consecutive C's in s meet at two vertices. Moreover,

i = i" if i » i\

iii) There exists a subset V » {x : 1 <_ i £ n} of multiple

points such that a) x G c C N (x ) and xi G C-jm* **"

x±t € C for some j, b) if |C n C±f. 11 =2 and i^ i'

then the common points are in V .

Next we show that these three conditions are also sufficient.

THEOREM 2.2. If there exists a labeling {C .} of the 3-compo

nents of G and a labeling {x.} for a subset V of multiple
i o

points such that the properties i), ii), iii) above hold, then

G is a partial square of a tree.

Proof. Define the graph T by V(T) = V(G), E(T) » {(y^):
2

y e £..«> y 9s x4^« Certainly, TCgCt , We have to show thai

T is a tree, i.e., T has no cycle and T is connected. The

We say that the sequence s = (s ,s-,...,s,-) joins the terms

s a C^, s, ,, = C..., at the two ends.
o ij k+1 ifj'



,0v „0N
proof is broken into three parts 1 ) - 3 ).

1°) First we show that if i^ i' and |C H C ,. ,| = 2 then

the points in the intersection are x , x ,.

Proof. There are two cases to consider: x E C , ( and

x. £ C4^f Suppose x E C , ,. By iii), there exists a j"

such that x , €= C..„. Without loss of generality let j" 4 j.

Let s be a sequence joining C , Cj^im

S M *^#_i?^.f_t 9#**9^j* J^*j •II * *
ij' ij ij,/ ij

(s is possibly of length 2). See fig. 1. Also let y be the

other vertex in C O C±f.,. Since (xif,y) G E(G), x±f E C ,,,

yGC,, we have Us (= union of the sets in s) is 3-connected.
ij

This is a contradiction. Thus we consider the other case

x^C^, and x±lec . Let C nC±t ,=C^.x,}.

Fig. 1. The sequence of 3-components in

s=<8o"cij'8rcij1"--,VioCij">'
Each egg shaped region is 2-connected and x
is adjacent to all the vertices in that region,



We shall then have (x ,x. ), (x ,x ), (x! ,x, ), (x*,x ) edges in
l k I m Ik. 1m

T which form a cycle. As we show in 2 this is impossible.

Thus C fici»4» " {*£»*.£?}•

2 ) We show that there does not exist a cycle in t|v .

Proof (by contradiction). Let £ » (x ,x2>...,x, ,x^ be a

smallest cycle in t|v . (x±»xi+1) G E<T) implies, say,

x,., € CJJt . There is C.,- ., containing x. and then
i+1 ±$± i+ljjj. i

{Vxi+l} " Cij, n Ci+l,j!' Let ji' jI be cho8en f°r a11
i i i

1 £ i < k (where k+1 is identified with 1 mod k). Let s

be a sequence joining C..t and C. for 2 £ i £ k and
1Ji-l 13i ±

s joining C '.,, C-. . Also assume that the sequences s ,
ljk ljl ±

1 £ i £ k are so chosen that the total length of all s is

minimum. Thus x.,- belongs only to the last term in s . We

show that S « U (U s ), union over 1 £ i £ k, is 3-connected,

a contradiction. Clearly, x £ U s unless x±, x are conse

cutive vertices in ?.

Choose two vertices x, y in S. If at most one of them

is in cycle £, we leave it to the reader to verify that

j5 = S-{x,y} is connected; let us assume x = x^, y = xfc. First

let t = 2. U s is connected containing x, and U s is

connected containing x . Thus j[ is connected. Next, if

2 < t< k then U s1 (resp. U s*1) is connected containing

x,, x2 (resp. xt-1, xfc+1) and S contains the paths

(x2,x3,...,xt-1) and (xt+1.xtf2»""»xk)* HenCe - ±S connected
once again. This completes the proof.

10



It follows from 2 that, in fact, T has no cycle. If x

is a multiple point and x ^ V then necessarily d (x) = 1.

Otherwise there are C , C.,.t (i ^ i') containing x and

they must intersect at x only. Let i" be as in condition (ii).

Then it follows x „ € c n C , , which means x = x" € V , a

contradiction. A nonmultiple point of G has degree one in T.

Thus any cycle of T is in fact a cycle of t|v and there is

none in the latter.

3 ) Finally, it remains to show that T is connected.

Proof. It is enough to show that t|v is connected. Let

T| {x1,...,x,}, k < n be a component. Define the partial graph

H by E(H) - U E(C,,), V(H)= U V(C ). x £ V(H) for i > k.
i£k 13 i£k 1J

In particular, V(H) $ V(G). Choose an edge (x,y) of G such

that only x belongs to V(H). There exists i £ k, i' > k

such that xG C , (x,y) G E^, ,). Since C , C±f f meet

at one point, namely x, we can show as before that x = x.„ and

in fact (xi,xi„), (x^,^,) are in E(T) contradicting that

T| {x ,x9,...,x,} is a component. Thus k = n and T is a tree.

The proof of the theorem is complete.

A particularly interesting special case of (2.2) is when there

is just one 3-component C. corresponding to each vertex xi £ V .

If G is a partial square of T and G has sufficiently many

edges in the sense that g| I~t(x.) is 2-connected for all nonter

minal vertices x. of the tree T then we observe that

C. D N_(x ) is a 3-component of G and V is precisely the set

11



of multiple points of G. Conditions i), ii), iii) can now be

rewritten as

i) U C » G, 1 £ i £ n.

ii) If C., C intersect at one point then there exists C,

sharing two points with each of them.

iii) There is a 1-1 correspondence between the 3-components

and the multiple points V , x. «• C. such that x. £ C. C N„(x.)
oil ii v»i

and x e C o x € c±.

These conditions are also sufficient for a graph G to be a

partial square of a tree T such that G|l"~ (x) is 2-connected.

This is our next theorem.

THEOREM 2.3. For G to be a partial square of a tree T such

that G|H_(x) is 2-connected for all vertices x, d_(x) > 1 it

is both necessary and sufficient that 1), ii), iii) above hold.

Proof. We need to prove sufficiency. Let T be the tree as

constructed in (2.2). The edges of T are E(T) « {(y,x ):

y ^ C., y j> x.}. V is the set of nonterminal vertices of T.

Since C. is 3-connected, r_(x.) = C. - x, is 2-connected in G.
i T i i i

Yet another special case of (2.2) gives us a characterization

2
of tree squares. If G = T then each of the 3-components C.

is a clique of G. Thus the necessary part of the following

corollary is easy.

COROLLARY 2.4. A graph G is a tree square if and only if there

exists a 1-1 correspondence, x. "**" C , between the cliques {C.}

12



and vertices V « {x } belonging to two or more cliques, such

that a), b) and c) or c') are true.

a) |c±nc |£2 and |C±nc|«1 implies there is a Cfc

sharing two points with each of them.

b) x. e C. and x. GC, <*r GCJt
i i i j j i

c) C 's are the 3-components of G, or

c') There are |v |-1 pairs of C. which meet at two

vertices.

Proof. In proving the sufficiency we need to consider only the

combination a), b) and c'). We prove that |c He | «= 2 implies

x. G C., i.e., C. He. = {x.,xj. If not, then C. H c = {x. ,x }
ij ijij ijkm

and C. H C = {x. ,x.} for some distinct i, j, k, m. Let C
k m i j J

be a clique containing x , x , x, , x . Then |C. H C| >. 3, a

contradiction. Thus C Hr = {x ,x.}. As one would expect we

shall define a graph T by E(T) = {(y,x ): y G Q., y ^ x }. It

is not hard to prove that T|v is connected. Condition c') then

implies that t|v has no cycle. It follows that T is a tree.

G is clearly the square of T.

3. Uniqueness Theorems

Define the core of a tree T, c(T), as the induced subgraph

of T on the nonterminal vertices {x: d (x) >^ 2}. Since T is

assumed to have at least three vertices the core is a tree (i.e.,

has at least one vertex). We prove that if a partial square of T

satisfies the three conditions in (2.3) then tree T is determined

uniquely except when c(T) has at most two vertices. We shall

13



let t(x) denote the terminal vertices of T that are in T (x).

THEOREM 3.1. Let G be a partial square of a tree. Suppose

there do not exist two vertices in G which are adjacent to every

other vertex. Then there is a unique tree T such that G is a

partial square of T and G|r~_(x) is 2-connected for vertices

in c(T).

Proof. The number of nonterminal vertices of T is the same as

that of the 3-components of G. If Iv I > 2, then (x.,x.) is
• o' — i j

an edge of c(T) if and only if x. £ C or equivalently, there

exists two 3-components (C. ,C ) which meet at x , x . Suppose

c(T) - {x-jX^}. If each of x-, x« is adjacent to all other

vertices of G then interchanging the labels of C , C« we shall

obtain a different correspondence x *** C. and thus a different

2
tree T by the construction in (2.3). I CgC t. T and T-

are isomorphic (obtained by interchanging t(x_), t(x«)). If G

is 3-connected then T is a star. In these two cases we can

determine tree T only up to isomorphism. (There is an isomor

phism of order two between two such trees.) Now suppose that

|c(T)| >^ 3. We show that the correspondence in 2.3(iii) is unique.

For example let x «• C be another such correspondence obtained

from a tree T- (of which G is a partial square as in (3.1))

where a is a permutation of {l,2,...,n}. Let (x-,x«) be an

edge in c(T). Then |C1H C2| = 2 implies that the intersection

is equal to each of {x ,x } and {x .,x «}. If (x2,x«») is

another edge in c(T) then {x_,x_} = {x _,x .,}. It follows that

14



02 = 2 and thus 0*1=1, 03 = 3. One can repeat the argument

and conclude that a is identity. Hence x. "*** C. is unique.

This means that c(T) is identical with c(T_). The terminal

vertices t(x.) are precisely the nonmultiple points in C..

Thus T = T-.

If a partial square of a tree does not satisfy the hypothesis

of Theorem 3.1, then the tree T constructed in (2.2) is far from

unique because there will be, in general, several many to one corre

spondence c •*• x. • See Example 1.

COROLLARY 3.2. If G is a tree square and G has three or more

2
cliques then there is a unique tree T such that G = T .

Before we close this section we would like to present some

examples.

Example 1. Consider the tree T which is a path of length five,

2
(x ,x ,x^,x,,x ,x6). The edges in E(T )-E(T) are shown by

broken lines (Fig. 2).

6 & ^ >^1 :*>_ ^

6Xl X2 x3 x4 x5

Fig. 2. A tree T and its square.

A correspondence C «• x. satisfying Harary's theorem* can be

{x1,x2,x3> = C2, {x2,x3,x4} - C4, {x3,x4,x5> = C3, {x4,x5,x6>

= C,.. The tree, as constructed by Harary, is the path

- —— .

See Appendix.

15



2
(x-,x2,x,,x3,x5,x6) which gives a different square than T . The

tree square in Fig. 2 can be regarded also as a partial square of

the following tree T'. However, G|r f(x3) is not biconnected.

Thus it does not contradict our Theorem 3.1.

Fig. 3. Tree T' consisting of solid lines.

Example 2. Consider the graph G shown in solid lines (Fig. 4).

2
The cliques of G can be labeled as C. « {x lAi*".,.},

1 £ i £ 7 where zero and 8, respectively, mean 7 and 1 (taken

mod 7). Then the correspondence C. "**" x. satisfies conditions

* 2
in Theorem II in [8]. But G is not a tree square to be sure,

X,

2
Fig. 4. Graph G (a 7-cycle) and G .

We shall see in section 4 that much of the theory developed in

section 2 and section 3 will generalize for squares of graphs whose

girth is at least 7.

See Appendix.
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4. Generalizations to Graphs of Girth > 6

We shall now generalize theorems in sections 2, 3 to squares

of graphs which have finite girth > 6. (A tree can be regarded

as a graph of infinite girth.) The reason that we can do so is

that the cliques of the square of such a graph H are once again

of the form N (x). One of our theorems in this section will be
n

the determination of H from its square uniquely which is a

generalization of Corollary 3.2.

Throughout this section H will denote a graph of finite

girth > 6 and we shall make repeated implicit use of that in the

following.

LEMMA 4.1. For each nonterminal vertex x, N (x) is a clique
———————— H

2
of H and they are the only cliques.

Proof. That N (x) is a clique is easy to verify. Now suppose
"""""""""" H

S is a clique and x, y, z are three vertices in S. One can

show easily that exactly two of the edges (x,y), (y,z), (z,x)

are in H. Let (x,y), (x,z) £ E(H) and u be another vertex

in S. We show that (x,u) £ E(H). If not, then considering the

triples x, u, y and x, u, z we get y, z £ !~~ (u), which is

impossible since girth of H > 6 and (x,z,u,y,x) is a 4-cycle

of H. Thus S =- NR(x).

COROLLARY 4.2. If S is a clique in a partial square of H then

S C N„(x) for some x and x belongs to S. x is unique if
—" n

|S| >3.

17
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2
Proof, x is the vertex such that N (x) is a clique of H con-
—~——~ n

taining S. If |s| >^ 3 then girth H > 6 implies x is unique.

If we call the clique N (x ) by C , then |c He |£ 2

with equality if and only if (x. ,x ) is an edge of H. {C.}

satisfy the three conditions in the following theorem.

THEOREM 4.3. A graph G is the square of a graph of finite girth

> 6 if and only if there is an 1-1 correspondence between the

cliques {C.} and vertices V = {x.: 1 £ i £ n} belonging to

two or more cliques, x. «• C., such that the following are true.

i) |c±nc |£2 and |c±r»C.|=1 implies there is C,

sharing two points with each of them.

ii) x. G C. and x. e C. <> x, G c. .
1 i i j j i

iii) There exists at least one sequence (C.,C,,...,C ,C.)
X j 1-1

of which consecutive cliques meet at two points, and any such cyclic

sequence has seven or more cliques in it.

Proof. Consider the graph H on V(G) defined by the edges E(H)

= {(x ,y): yG^, y $ x^. We prove that H is a connected

graph. It suffices to show that h|v is connected. If not,
1 o

let H| {x-,x2,...,x, }, k < n be a component. Define

H' = U c . x , j > k is not a vertex of H\ Thus V(H')
i£k 1 J

^ V(G), and G being connected there exists an edge (x,y) € E(G)

such that only x e V(H'). As in the proof of (2.2) a contradiction

is reached from there. Suppose x € c., i £ k and (x,y) £ C.,

j >k. Let C±l be such that |c±nc±11 - 2 » |c±,nc |. Then

(x^x^), (x±f,x ) are in E(H), a contradiction. Thus H is



2
connected. That H = G follows directly from the definition of

H. The vertices V(G) -V are terminal vertices in H. Condition
o

iii) implies that any cycle contained in V(G) - V is necessarily
o

of length 7 or more and there is at least one of them.

We do not know at this moment how to characterize the partial

squares of H. The set of 3-components of a partial square has

no such property as those given in Theorem 2.2. Some basically

different technique has to be developed to deal with partial squares

of graphs having finite girth > 6. We prefer to have a characteri

zation which uses families of maximal subsets of vertices with

respect to some property P suitably defined (i.e., we want to

avoid a theorem like the one given by Mukhopadhyay, see Appendix).

We state this as an open problem.

Problem 1. Obtain characterization of partial squares of a graph

of finite girth > 6.

On the other hand, the squares of graphs which have girth

4, 5, 6 seem to be difficult to characterize. However, if G

is a subdivision graph, and hence has a girth > 5, then we can

2
show that G determines graph G uniquely, except in one case

when there is an isomorphism of order two between two square roots

2
of G . This will be the topic of Section 5. Our next open

problem:

Problem 2. Characterize squares of graphs which have girth either

t
4 or 5 in terms of some maximal subsets.

The following example may illustrate the peculiarities of
a.

See footnote on page 20.
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cliques in G when G has girth 5.

Example 3. Consider the graph G which consists of a 5-cycle

(x-,x ,x3,x,,x5,x ) and three other edges (x^Xg), (x3,xfi),

(x.,x?) (and, of course, the vertices x,, x_, xg). The graph

G has four cliques each of which is a Kfi. They are V(G) -S

where S is {x^x^}, {x^Xg}, {x^x^}, {x7,xg}. Vertices k^9
2

x0, x_, x^ belong to every clique of G .
3 j o

It is worth noting that

PROPOSITION 4.4. Every graph is a partial square of a graph of

girth >_ 4.

Proof. It is clearly true for graphs having 3 or less vertices.

The general case is proved by induction on the number of vertices.

Suppose G has n >^ 4 vertices and the proposition is true for

all graphs with n-1 vertices. Choose a vertex x of degree ^> 2.

Consider the graph G = (G-x) - {(x. ,x.) € E(G) : x., x. el"~ (x)}.
— i J i 3 b

G_ has n-1 vertices and is possibly disconnected. Obtain a graph

2
F such that F £ £ C F and girth F>_4. Define F by

V(F) = V(G) and E(F) = E(F) U {(x,x.): x. GT_(x)}. F has
— x i (a

girth > 4 and F C G. Further T_(x) = T_(x) implies that

G C F2.

The proof of Theorem 4.5 is almost the same as that of (3.1).

2
THEOREM 4.5 (Uniqueness). The graph H determines the graph H

uniquely.

Write yourself a characterization of H2^ girth H = 6, as in
(4.3), using N (x) is a clique of H (see proof of Remark 4.5).

rl
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Proof. If possible let H, H be two graphs each of girth > 6

2 2
such that H « H . As in (3.1), it suffices to show that H, H

have identical core subgraphs.* Vertices in c(H), c(H) are
2

the same; they are the vertices in H belonging to two or more

cliques. Suppose ^(x^ ° C± = NH(xai) where x *** C satis

fies i), ii), iii) in (4.3). Then one can show that for every

edge (x ,x ) in c(H), {x. ,x.} = {x„. ,x J. Thus a is either
i j i j ai aj

the identity permutation, when H = H, or c(H) has two vertices.

The latter is impossible as c(H) has finite girth. Thus H = H.

2 2
REMARK 4.6. Suppose G = H = H where H has girth > 6 (possi

bly infinite) and girth of H is at least 6. Then girth of H

is also > 6. If H is a tree.then so is H.

Proof. If possible, suppose £ = (x ,x2>x ,...,x,,x ) is a

6-cycle in H. First we show that N (x-) is a clique in G.
n x

If not, let C be a clique containing it porperly and let y be

a vertex in C which is not in N„(x-). There is a vertex z
fcr 1

+

adjacent to x , y in H. Also, either (x2,y) G E(H) , or for

some vertex u, (x2,u), (u,y) G E(H). Each of them contradicts

girth H >^ 6. Thus N (x ) is a clique.

The cliques NH(x±), 1£ i£ 6 violate the condition iii)

in Theorem 4.3 if H has a finite girth. Thus G cannot be H2.

If H is a tree we know that there cannot be a family of cliques

as {NH(x±)}. This proves the first part. Also, if H is a

tree then H has no cycle, or H is a tree.

* "" '
The core c(H) of H is the subgraph induced by the nonterminal
vertices of H.

f
Assume x2 ^ z. Otherwise, consider x, instead of x«.
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Theorem 4.5 and Corollary 3.2 imply that H = H except when

c(H) as two vertices.

5. Application to Total Graphs

In his classical paper Whitney [11] proved that the line

graph of a connected graph G determines the graph G uniquely

up to an isomorphism except in one case when the line graph is a

triangle. We shall show that a similar property holds true for

total graphs, namely.

The total graph of a connected graph G determines the

graph G uniquely up to an isomorphism.

The total graph T(G) of a graph G • (V,E) has vertex set

V U E and two vertices of T(G) are adjacent if the correspond

ing elements of G are adjacent or incident (according to the

nature of the elements) in G. From now onwards we shall say

x, a are adjacent no matter whether one, both or none of them

is a vertex. This will simplify the language considerably. A

total graph is a special kind of square graph, namely, square of

the subdivision graph. We define the subdivision graph S(G) as

follows. Graph S(G) has vertices V U E and the edges (x,e)

where x in V, e is in E and e is incident with the vertex

x in G. Behzad [1] has noted the following:

THEOREM 5.1 (Behzad). T(G) = S(G)2.

Since the girth of S(G) is at least 6 we have, in particular,

a total graph is the square of a graph of girth 6 or more. The

proof of (5.1) is easy. We leave it to the reader.



A triangle is a set of three mutually adjacent vertices. A

triangle of T(G) is even if every vertex of T(G) is adjacent

to an even number of vertices of the triangle. It is clear that

the total graph of a disconnected graph is the disjoint union of

the total graphs of the components. Thus we shall consider con

nected graphs only. To avoid trivialities we shall assume that

the graph G has at least four vertices.

Let G_ be a graph whose vertices and edges are labeled.

Let G~ be another graph whose vertices and edges are also labeled

by the same set of labels in such a way that two labeled elements

are adjacent in G„ if and only if they are adjacent in G-.

This is the same as saying, T(G.) = T(G2) (as labeled graphs).

Observe that both G- and G« are connected.

THEOREM 5.2. G.. is isomorphic to G~.

We begin with three lemmas.

LEMMA 5.3. Let a, b, c be the vertices of an even triangle of

T(G). Then a, b, c consist of either the edges of a triangle

of G or two vertices and the edge joining them in G.

Proof. Let a, b, c form an even triangle of T(G). There are

four typical arrangements of the elements a, b, c in G as shown

below.

Fig. 5. The elements a,b,c in G such that they form a
triangle of T(G).
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Since G has four or more vertices the 2nd and 4th possi

bilities are excluded. Hence the lemma is proved.

LEMMA 5.4. Let 1 and 2 (resp. a) be vertices of G± (resp.

G ) and a (resp. 2) the edge joining them as in Fig. 6. Then

G and G9 are complete graphs of the same order,
x ~

Proof. Let k # 1 be avertex of G]L adjacent to 2 and let

c « (2,k). Since c is adjacent to 2 and a in G^ c must

be an edge at a in G^ But k being not adjacent to a in

G-, the other end vertex of c in G2 is different from k;

let it be b. Also In 6^ k is adjacent to 2 and c but

not to a. It follows that k « (l,b) in G^ Hence k is

Graph G2

Fig. 6.

adjacent to 1 in G.; b being adjacent to 1, k, c in G2

we have b« (l,k) in G^ Thus, in G^ every vertex adjacent

to 2 is also adjacent to 1.

On the other hand, let t + 2 be a vertex of G1 joined to

1 by an edge d - (l,t). Since d is adjacent to 1 and a

but not to 2 in G., d is a vertex of G2» It is not hard to
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see that the edge (l,d) in G_ has label t. Also let e « (a,d)

in G2. It follows that e = (2,t) in G-.

In each of G_, G_ one of the elements 2, a is an edge

and the other is a vertex. Thus any deduction from G- to G_

holds true as well from G2 to G-. Also observe the "inter

changes" of the pairs {2,a}, {k,b}, {t,d} in G and G^ The

edges e, c of G. are also edges of G„ between corresponding

vertices. To complete the proof of the lemma it remains to apply

the same argument back and forth repeatedly between G- and G«

and use connectivity of the two graphs.

LEMMA 5.5. In G-, G2 let 1 and 2 be vertices and a * (1,2).

Then G-, G« are isomorphic graphs.

Proof. Let k ^ 1 be a vertex of G- joined to 2 by an edge

b (Fig. 7). Since b is adjacent to a and 2 in G., b is

an edge at 2 in G„. Moreover k being adjacent to b and 2

but not to a in G-, it follows that in G2, k is the other

end vertex of b. Repeat the argument and use the connectivity of

G-. It follows that G-, G2 are isomorphic.

1 1

ok 2

Graph G Graph G,

Fig. 7.
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Proof of Theorem 5.2. Suppose first that one of the two graphs,

say G-, has a triangle {1,2,3} and a, b, c are its edges:

a = (1,2), b « (1,3), c = (2,3). The vertices a, b, c form

an even triangle of T(G-). .In view of Lemma 5.3 there are two

cases.

Case 1. a, b, c are edges of a triangle in G«.

Now the element 1 can be a vertex or an edge of G«. Let

1 be a vertex. Since 1 is adjacent to a, b in G., 1 has

to be the vertex adjacent to a, b in G«. The adjacencies from

G-, imply that in G«, 2 is the common vertex of a, c. By

Lemma 5.5, G- and G~ are isomorphic. On the other hand, if

1 is an edge of G« let d be the vertex of G. common to 1,

a and b. Evidently, d is different from 2,3. Now one can

easily see that in G , d is an edge at 1. Further, if

d = (1,4) in G then 1 = (d,4) in G2 since in G , 4 is

adjacent to 1, d and not to a. Applying Lemma 5.4 to 4, 1, d

we get the two graphs are isomorphic.

Case 2. In G« one of a, b, c is an edge and the other two

are its end vertices.

Without loss of generality, let b be the edge b = (a,c).

Since 2 is adjacent to a and c but not to b in G_, it

follows that 2 is a vertex of G« adjacent to a and c.

Also, 1 being adjacent to a, b and 2 in G., 1 = (a,2) in

G«. Lemma 5.4 applies to the triplet 2, a, 1. We conclude that

G- is isomorphic to G«. This completes the proof when G. has

a triangle.
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Suppose now that G., G„ have no triangle. We have

S(G1)2 -T(GX) =T(G2) =S(G2)2

where S(G) denotes the subdivision graph of G. The graphs

S(G-), S(G«) have girth at least 8, and thus they are equal

by (4.5). However, it is easy to see that G , G« are deter

mined uniquely up to isomorphism from their subdivision graphs.

(The isomorphism is nontrivial only when G-, G« are cycles.)

Thus they are isomorphic.

The theorem is proved.

Behzad has noted that the total graph of K is the line
n

graph of K -. It is not hard to see that T(K ), n :> 1 are

the only total graphs that are also line graphs. Thus if a total

graph G is a line graph then cliques of G are of two sizes,

n+1

3 and n >^ 3. There are ( 3 ) cliques of the first kind and

(n+1) of the second kind. A graph G which fails to be a

line graph is a total graph if G is the total graph of the

graph H constructed from the cliques of G as in Theorem 4.3.

Note that we do not need to know the correspondence x ***• C.

before hand. An edge (x ,x.) is being taken in H provided

two cliques intersect at these two points. A vertex y other

than x 's is joined by an edge (y,x ) if and only if there is

a clique containing both y and x .
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6. A 4-color Theorem

In this section we shall obtain a four-color theorem for a

class of planar graphs. Let r..,r2>... denote the colors. A

(vertex) coloring of a graph G is an assignment of colors

x *** r(x) to the vertices of G such that r(x) is different

from r(y) whenever x, y are adjacent in G. The chromatic

number X(G) 1S tne minimum number of colors needed to color G.

An elementary contraction of a graph is defined as follows. In

G identify two adjacent vertices x, y to a single vertex (xy).

A vertex z is adjacent to (xy) if z is adjacent to at least

one of x, y. Other edges (z,z') remain as they are. This is

illustrated in Fig. 8 below.

Graph G x, y are identified to
a single vertex (xy)

Fig. 8. An example of contraction.

A graph obtained by successive elementary contractions of G is

called a contraction of G. A famous problem in the theory of

graph colorings is the following:

HADWIGER'S CONJECTURE. If the chromatic number of a graph G is
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n, then G can be contracted to a complete graph on n vertices.

The conjecture is known to be true for n £ 4. The cases

n • 2, 3 are trivial and the case n = 4 has been proved by

Dirac [3 ]. It is also known that if the conjecture is true for

n •» 5, then every planar graph is colorable with four colors.

Let us assume that G is a partial square of a tree T.

It is easy to see that x(G) "max X(G|NT(x)) =1+max x(G|r"T(x))

where the maxima is taken over all vertices x.

LEMMA 6.1. If x(G) ° n £ 5» tnen the 8raPn G can be contracted

to K.
n

Proof. First observe that if there is a contraction of G|r~T(x)

to K then G can be contracted to K.n. The elementary
p P+l

contractions which take G\F_(x) to K will take g|nt(x) to

K .. The lemma follows easily from the theorem of Dirac.
p+l

THEOREM 6.2. A planar graph is 4-colorable (i.e., x £ 4) if it:

has a 2-complete family of fundamental cocircuits.

Proof. Apply Theorem 1.1 and Lemma 6.1.

The following is a n.s.c. for a partial tree square to be

planar. A graph G is called outer planar if there exists a

planar embedding of G such that all vertices are on the exterior

face.

2
THEOREM 6.3. A partial tree square, T C G £ T , is planar if

and only if G|HT(x) is outer planar for every vertex x.
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Proof* The necessity is clear since G|N (x) is planar. To

prove the sufficiency we note that G|H_(x) outer planar implies

g|n_(x) is planar. A planar representation of G is obtained

as follows. Take a planar representation of g|n_(x). For

y€T (x), choose a face of G|n (x) with (x,y) on its boundary.

Then 'insert' in that face a planar representation of G|N_(y)

in which (x,y) is on the boundary of the exterior face (see Fig. 9)

Continue in this way until all of G have been drawn.

Example 4.

Fig. 9. A planar partial tree square
and its planar embedding.

In particular, T is planar if and only if the degree of

each vertex is at most 3.

Appendix.

Some of the previous works on squares of trees and graphs

in general are collected here.

Harary [5 ] states the following theorem characterizing tree

squares. We state it in our terminology.
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THEOREM (Harary). A connected graph G is a tree square if and

only if there exists a 1-1 correspondence x. **»• C. between the

cliques of G and vertices {x :1 £ i£ n} belonging to two or

more cliques such that the following are true,

i) |C±|>3

ii) |C,^C. I < 2; if the intersection has one point then
1 i j

for some C, , C.H C , C.H C has two points each.

iii) There are as many C 's containing xi as there are

x.?s in C±.

iv) There are (n-1) pairs of cliques which meet at two

points.

On page 646, line 7, [5] Harary says "It is clear that the

tree T constructed from the algorithm is a tree square root."

We feel that this is not at all clear. His algorithm is given

below.

(x ,x ) is an edge of T if |C±nc |- 2. Other than those,
x J J

T has the edges (y,x.) where y is in C± and y ^ x±.

The condition iii) in Harary's theorem seems to be very

strong. It is precisely this requirement that makes the con

struction of a counter example to the theorem very unlikely.

The following theorems were obtained by A. Mukhopadhyay [8 ].

Theorem I characterizes the square of an arbitrary graph. There

are practical difficulties in applying ^he theorem since one has

to consider all complete subgraphs.

THEOREM I (Mukhopadhyay). A connected graph G with n vertices

v,,v«,...,v is a square graph if and only if some set of n
12 n



complete subgraphs of G whose union is G can be labeled

C1,C2,...,Cn so that, for all i, j = l,2,...,n the following

conditions hold:

i) v.ec,

ii) v. e C if and only if v. € c..

For tree squares, he states

THEOREM II (Mukhopadhyay). A graph G with n vertices is a

tree square if and only if G has p cliques and q vertices

belonging to only one clique of G such that

i) n « p + q

ii) There exists a labeling C. of cliques such that the

vertices x belonging to two or more cliques has the properties

a) x± G C±

b) xiGCj-xjeci .

Theorem II has been shown to be wrong in Example 2.
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Chapter 2

CLIQUE GRAPHS, LINE GRAPHS AND SQUARE GRAPHS

In this chapter we shall consider three classes of graphs:

clique graphs, line graphs and graphs that are partial squares

of a tree. In Chapter 1, we have obtained a characterization of

graphs which are partial squares of trees. Clique graphs have

been characterized by Roberts and Spencer [ 9]. A common fea

ture of these characterizations is the existence of a family of

subsets of vertices of the graph with certain intersection

properties. For partial tree squares the subsets are 3-compo

nents of the graph and for clique graphs each subset is a com

plete set of vertices. We show that every partial tree square

is a clique graph. The line graphs become important in our

discussion because many line graphs happen to be clique graphs as

well. We have obtained a n.s.c. for a line graph to be a clique

graph. We show that the line graph of H is a clique graph if

and only if H does not contain a triangle all of whose vertices

have degree 3 or more. An explicit characterization is obtained

for the graphs H whose line graph is a partial tree square.

Such graphs H are quite easily described and are closely related

to trees. In the last section we note that some products of

clique graphs are also clique graphs.

1. Definitions

Let G be any graph. The line graph L(G) of G is

defined as follows. Corresponding to each edge a = (x ,x ) of
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G there is a vertex of L(G) (which is written as a = vfr^x )),

and two of the vertices are adjacent if the corresponding edges

of G are incident with a common vertex. The line graph L(G)

gives us the incidence relation among the lines of G. Similarly,

in order to study the intersection pattern of the cliques of G

one defines the clique graph of G. The vertices of the clique

graph K(G)* represent cliques of G and two vertices K, K2

in K(G) are adjacent if the corresponding cliques of G inter

sect. If G has girth >_ 4, then the cliques of G are nothing

but the lines of G and the clique graph K(G) coincides with

the line graph L(G). We shall obtain characterizations of those

line graphs which are clique graphs and those which are partial

squares of a tree.

The fundamental problem of characterizing clique graphs

themselves is solved by Fred Roberts and Joel Spencer [9 ]. Our

results are obtained as applications of their theorem.

Let F be a family of nonempty subsets. We say F has

property P (or F is a P family) if each pair of sets in F

has a nonempty intersection. F is said to have property I if

for every P subfamily F' £ft O F' # 0. In particular,

O F ^ 0 implies F is an I-family. In the following F will

consist of complete sets of vertices. A triangle will be often

denoted by A« (x.,x ,xk>.

THEOREM 1.1 (Roberts and Spencer). A graph H is a clique graph

if and only if there is a collection K of complete subgraphs of

We regard L and K as operators on the class G of 'finite'
connected graphs into themselves. L(G) is the set of line graphs
and K(G) the set of clique graphs.
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H which satisfies the following two properties:

i) K covers all the edges, i.e., if (x,y) G E(H) then

some element of K contains vertices x, y.

ii) K satisfies property I.

Using Theorem 1.1 one can easily see that all the nine for- •

bidden subgraphs in a line graph (see page 75, Harary [6]) are

clique graphs. For example, the graph G., is union of two copies

of K, having the three points on the horizontal line in common.

This simply means that a graph G whose clique graph is one of

these nine forbidden subgraphs has girth 3. The reason that led

us to a joint study of the line graphs, the tree-square graphs,

and the clique graphs is that they are all characterized by the

existence of a family of complete subgraphs (which are often cliques)

with some sort of intersection properties.

In Section 2 we shall determine the intersection L(G)Hk(G)

of the family of line graphs with the family of clique graphs.

Section 3 will be devoted to the consideration of the squares of

trees and other graphs. Finally in the last section we discuss

some products of clique graphs. Clearly, a graph is a clique

graph if and only if each of its (connected) components is a clique

graph. As before, all graphs will be assumed connected unless

otherwise mentioned. To avoid trivialities we shall often assume,

without explicit mention, that graphs have four or more vertices.

2. Characterization of Clique Graphs of the Form L(H)

We have noted earlier thjit many line graphs are also clique



graphs. A complete characterization of such line graphs is given

by

THEOREM 2.1. L(H) is a clique graph if and only if H does not

contain a triangle whose vertices are of degree >^ 3.

In particular, if L(H) is a clique graph then H JL.

We prove the following lemma as a preparation to Theorem 2.1.

LEMMA 2.2. Let there be a triangle in H whose vertices have

degrees j> 3. Then L(H) is not a clique graph.

Proof. We shall let a, b, c denote the edges of such a triangle

and a1, b1, c* denote three other edges, one at each vertex of,

the triangle, as in Fig. 10.

Fig. 10. A triangle in H whose vertices have degree > 3.

Let F = {L.} be a family of complete subgraphs of L(H) such

that UF= L(H) and, if possible, let F have property I.

If {a,b,c/} £ L± for all i then let {a,b} £ l^

{b,c'} C L2, (cf ,a} CL3; {L^L^} is a P subfamily of F

which has empty intersection. Thus F is not I. Thus there

exists an L. in F containing {a,b,c!}. Similarly let

L.^fb.c.a'}, Lk3{c,a,b1} (i,j,k distinct). But then
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{L ,L ,L. } is a P subfamily having an empty intersection. The
i j k

contradiction shows that F is not I and hence L(H) is not a

clique graph.

Proof of Theorem 2.1. The lemma proves the 'only if1 part. We

prove now sufficiency. Let H be a graph satisfying the hypo

thesis of the theorem. If H has no triangle, we have seen that

L(H) « K(H) is trivially a clique graph. Next, let H have a

triangle. For each triangle A in H, let fj(A) be a vertex in

A which is of degree two. j{ is an 1-1 map from triangles of H

into the vertices of H. Define the following cliques in L(H).

For x = j{(A), L » {the edges of the triangle A}, otherwise

L. = {set of edges incident with vertex x.} if d (x.) > 3 or
j J b 3 ~

d_(x ) - 2 and x does not belong to any triangle. L is a
G J j i

complete set in L(H). Clearly, U L. = L(H). Let P be a sub

family of {L.} with the intersection property P. If L €• P

where x = fS(A) and A = {x.,x ,x,} then PC {l ,L.,L,} and

vertex v(x.,x,) of L(H) is in H P. On the other hand if P

does not contain any ^//a\ then it is not hard to see that P

contains only two L's and H P ^ 0. By Theorem 1.1 L(H) is a

clique graph.

COROLLARY 2.3. L(H) is a clique graph if and only if the family

of cliques of L(H) has property I.

Compare Corollary 2.3 with the following theorem of Roberts

and Spencer [ 9]. The clique number of a graph is the maximum

number of vertices in a clique. The clique number of L(H) can
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be, certainly, arbitrarily large.

THEOREM 2.4 (Roberts and Spencer). If the clique number of a graph

G is < 4, then G is a clique graph if and only if the cliques

of G have property I.

The following is a simple corollary to Theorem 2.1.

COROLLARY 2.5. If L(H) is a clique graph, then all induced

subgraphs of L(H) are also clique graphs.

It is not true in general that the induced subgraphs of a

clique graph are also clique graphs. See Example 5. The converse

of Corollary 2.5 is also false, i.e., a graph and all its induced

subgraphs may be clique graphs and still the graph itself may not

be a line graph. For example, consider the wheel graph on 6 ver

tices shown in Fig. 12.

Example 5. Consider the graph G shown in Fig. 11. G is a

clique graph since all cliques of G contain the vertex x. G-x

is not a clique graph by (2.1). However, all proper induced sub

graphs of G-x are clique graphs since they are line graphs

satisfying Theorem 2.1.

Fig. 11. The graph G. The graph G-x is called the big triangle.
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Fig. 12. The wheel graph on 6 vertices.

3. Partial Square Graphs and Clique Graphs

Another large class of clique graphs are partial squares of

graphs G where girth of G is at least 7. The partial square

graphs in this class share some of the important properties of the

clique graphs of the form L(H) . For example, it is true that

the cliques of a partial square of G have property I. Also

2
induced subgraphs of G are clique graphs. One is thereby

naturally inclined to ask "Which of these partial square graphs

are line graphs?" The answer is given in Theorems 3.5, 3.8.

We recall that a graph H is called a partial square (of G)

if for some graph G with the same vertices as those of H, one

2
has G C H C G . The definition is not very useful unless one

restricts the graph G in some way since every graph is a partial

square of itself. (In fact, every graph is a partial square of

a graph of girth >^ 4. See (4.4), Chapter 1.) In the study of

clique graphs, the natural restriction seems to require that G

be of girth 7 or more. A tree has girth » by definition.
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THEOREM 3.1. If G is a connected graph and G has girth >_ 7

2
then every graph H, G C H C G , is a clique graph and the

cliques of H have property I.

Proof. The theorem is trivial for |v(G)| <_ 3. To prove the

general case we recall Lemma 4.1 in Chapter 1. The cliques of

2
G were shown to be of the form N (x) where degree of x is

2 or more. Thus cliques of H are subsets of the form L C N_(x)
— \j

*

and x €E-L. The cliques contained in N_(x) are written as

L ,Lf,L",... . We show that the set of cliques of H, K, has

property I. Let P be a P-subfamily of K, If for some x,

all cliques in P are of the form L^ ' then xG H P. So
n x

let there be cliques L , L in P such that they are not con-

tained in the same neighborhood. To simplify the argument let

each of them have three or more vertices. We have 1 < d (x,y) £ 2

since L O L 4 0.
x y

Case 1. For any L , L in P, d (t,z) <_ 1.

Then d„(x,y) =1 and L Hl = {x,y}. If L* is any
G x y z

clique in P then z = x or y; otherwise {x,y,z} is a tri

angle in G. If y G Lf for all Lf G P then y G O P. On the

other hand if there exists an Lf not containing y then x

belongs to every clique in P.

Case 2. dG(x,y) = 2.

Then L H L • z where z = N_(x) H N (y). Let L. be a
x y t» b t

third clique in P. We show that z G L proving O P ^ 0. If

There is a slight ambiguity as far as x is concerned when L
is a K„ graph. But this should not create any serious diffi
culty in following the proof.
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L C n,(x), then z G L because L H L 4 0. Similarly,
t — G t u y

z G L for L C N„(y). Now suppose that L £ N (x), N (y)
£ t — G U It Vj

and u G L H L . Then L Hl ^0 implies that G contains
t x t y

a cycle containing u and the length of the cycle is no more

than 6 (Fig. 13) which is impossible. Thus the theorem is proved

Fig. 13. Mutually intersecting cliques L , L , L in H.
x y u

The edges shown are in G.

Theorem 3.1 is not true if girth of G _< 6. The big triangle

is a partial square of a 6-cycle and it is not a clique graph.

Also see Theorem 4.1. Compare Corollary 3.2 with Corollaries 2.3

and 2.5.

COROLLARY 3.2. Let G be a graph of girth > 7 and S C V(G).

2
Then G - S is a clique graph.

Proof. Consider the family K of nonempty members of {N*(x) =

N_(x) - S: x G V(G)}. It is clear that K consists of cliques of
G

2 2
G -S. Because, a clique K of G -S is contained in a clique
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2
NG(x) of G and therefore K = N (x) -S. Let P be a P-sub-

family of K and |P| >_ 2. We can assume without loss of genera

lity that |NG(x)| >2 for cliques in P. Let P' • {N'(x) G P:

x £ S}. Also consider the following partial square of G,

H = G -{edges in E(G^ -E(G) which are incident with a vertex in S}

and let P" be the family {NG(x)UX: NQ(x) ^P-P1}. Note that

for NG(x) G P-P\ the vertex x is determined unambiguously;

this is not necessarily so for N'(x) G p» unless In'(x)| > 3.

Since cliques of H are subsets of neighborhoods N_(x),
G

it follows that P'UP" is a family of cliques in H and it

satisfies the intersection property P. We have O p = (fip1) fl

(H P") since the right hand side is a subset of V(G) - S whether

or not Pf • 0. Therefore O P ^ 0 by Theorem 3.1 applied to the

graph H.

REMARK. Corollary 3.2 cannot be generalized to partial squares

of G, i.e., an induced subgraph of a partial square of G may

not be a clique graph. Nevertheless, if G C H C G and h|n_(x)
—" G

is complete then H-x is a clique graph. If N_(x) is not
G

complete in H, then the conclusion is again false. For example,

consider the graph G in Fig. 11. It can be regarded as a partial

square of a star 'rooted* at the vertex x. G-x is not a clique

graph.

We proceed to the characterization of line graphs such that

2
G C L(H) Cg , We shall study the problem in two steps — G is a

tree (girth « «>) and graph G has a finite girth >^ 7. The cases

girth 5, 6 are undecided and remain open. Throughout the rest of
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Section 3, L(H) is assumed to be a clique graph. For our purpose

2
a graph G which is a partial square of a tree T, T C G C T ,

is best described as edge disjoint union of two subgraphs: T and

G-T. The graph G-T is a disjoint union of two induced subgraphs,

one on each of the color classes of T. Each of the induced sub

graphs in turn consists of a bunch of smaller subgraphs G\F_(x)

(possibly disconnected) "hinged" at single vertices. See Fig. 14

below.

Fig. 14. Schematic view of G|{a color class of T}. Each of
the circled regions is of the form G|H_(x) which is
a complete graph in case G = T2.

It is interesting to note the structure of an arbitrary cycle

of a partial square of T or, for that matter, a tree square.

2
PROPOSITION 3.3. A cycle of T , C = (x-,x„,...,x ,x_) which

± Z n 1

is not contained in any l~_(x) has exactly two edges of T and

consists of consecutive sets of vertices from H_(.)'s as indicated

in Fig. 15.
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x,- x. = X. v x.
*2 A3 '1
CT O—• -rO-"* ?—* p T^^^ft

I ' / » ' . I \ ' /''''/'
/ ' i ' . < ' s ' ' ' .

I / I l ' / I » ' ' ' -* ^ ' / '

/ • / \ // / *' <S/V ^ / /
£ rf tf h-i^1—^ rf—*
xl xn xi5 XrX0 =Xi4 V1

2
Fig. 15. A cycle C of T . Edges a, b belong to

tree T. Chords of C are shown as broken

lines and they are edges of T. r (x.) 3

{xt: 2 <t <ij}, rT(Xi ) 3 {xt: ±± < t < i^,

TT(x )D{xt: i2<t<i3}. rT(x )={xt:
4 3

U3+l <t<i4), rT(x1 )= {xt: i4 <t<i5> etc.

Proof. We prove it by induction on the number of vertices n

in the cycle. The proposition is trivial for n = 3. Suppose

it is true for all cycles of length < n and C is a cycle of

length n > 4. If C contains no edge of T then C^^(x)

for some x, contrary to the assumption\ So let (x-jX-) G T.

2Case 1. (x ,x )G T. Then (x^Xg) G T . Consider the cycle

C' = (x ,x-,x,,...,x ). C is easily seen to be contained in

ft
r (x9), and the proposition is proved.

Case 2. No two consecutive edges of C are in T. For every

edge (x^x.,.) (i+1 = 1 for i = n) of C which is not in T
i l+l

there exists% avertex x such that x ,x ^^^T^i^" We claim

that x = x for some i, j; otherwise T should contain a

1 (x.) is a 2-component of T - x« containing X-, x .
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cycle contained in the set {x } U {x }. Now one of the following

two arcs of C:(a) x to x not containing x . (b) x . to x

not containing x , is of length >^ 2. Use the induction hypo

thesis for each of the cycles (if it is one): arc(a) U (x ,x ),

arc(b) U (x ,x ). The result follows immediately.

COROLLARY 3.4. A cycle C of a partial square of T which has

no chord is of length 3 or is contained in r~(x) so that it

is the rim of a wheel with center at x.

Now we are in a position to prove one of our important theo

rems on line graphs. We make the following

DEFINITION. A thick tree is either a tree or it is a graph in

which 1) the only cycles without a chord are triangles, 2) two

triangles have two or no vertices in common and 3) each triangle

has a vertex of degree 2.

A typical method for constructing a thick tree can be described

as follows. Take a tree T and select a set of nonadjacent edges

E - {e = (x,y)}. Corresponding to each e G E , add a finite
o o

number of vertices {e }, all distinct, and put the edges

{(e^x) ,(e. ,y)} to make (x,y) "thick". The result is a thick
i i

tree. The tree T itself is called a skeleton of the thick tree

so constructed. An edge e ^ E is called a thick edge of thick

ness |{e }| + 1. It is easy to see that the skeleton of a thick

tree is determined uniquely up to isomorphism.

THEOREM 3.5. A line graph L(H) is a partial square of a tree



if and only if H is a thick tree.

Proof. "only if" part. Assume L(H) is a partial square of tree

T. Let C be a cycle in H having k >^ 4 edges. The induced

graph L(C) £ L(H) is a cycle which has no chord. By (3.4),

L(C) is the rim of a k-wheel. For k = 5, and k ^ 6 this

implies respectively Gq and G- (page 75, [6]) are induced

subgraphs of L(H) which is impossible. If k = 4, then the

center of the 4-wheel corresponds in H to a chord of cycle C.

Also by (2.1) every triangle of H has a vertex of degree 2.

It remains to show that two triangles in H do not intersect at

a single vertex. Let A-f A« be two triangles and A H A2 = x.

Then L(A_), L(A.) and the induced subgraph L = set of edges
1 £. X

incident with x are cliques of L(H) and L^) n L(A2) = 0,

|L(A,) Hl I = |L(AJ H l I = 2. However this is impossible in
1 1 x' ' 2 x'

a partial tree square (since each clique is a subset of NT(x )).

"If" part. This is a special case of Theorem 3.8. We

observe that the thick edges each taken with two opposite orien

tations constitute a d-matching of H that satisfies condi

tions i), ii) of Theorem 3.8 with 7 (see Remark 3.9) replaced by

|E(H)| + 1. Therefore L(H) is a partial tree square.

Each of the graphs H in Fig. 16 has the line graph L(H)

which is equal to a tree square. Corollary 3.6 shows that they

are the only graphs with this property.

COROLLARY 3.6. L(H) is a tree square if and only if H is one

of the graphs in Fig. 16.
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Fig. 16. Two graphs of diameter one, two classes of
graphs of diameter 2 — star and thick star
with one edge of thickness 2, and one graph
of diameter 3.
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Proof. L(H) = T implies that H does not contain a four cycle

2
since the only chordless cycle of T is a 3-cycle. We first

show that a tree skeleton T of H has diameter £ 3. Suppose not

and (x ,x„,x3,x, ,x_) is a path in T_. We recall that L de

notes the induced subgraph of L(H) on the edges of H at vertex

x. Since (x.,x^), (x„,x,) are not in H, L , L are cliques
1 J z * x2 x2

of L(H) and |l H L | = 1. But L(H) being a tree square
x2 x3

there is a clique of L(H) that meets each of L , L at two
x2 x3

vertices. Such a clique must be the edges of a triangle of H

containing x«, x~. Therefore (x ,x.) is a thick edge. Simi

larly, (x~,x,) is a thick edge which is impossible. Thus dia

meter of T. £ 3. In case of equality we have noted that the

"middle" edge of a path of length 3 is a thick edge. It is easy

to veriffy that degrees of x«, x. are necessarily 3 in that case.

For the rest of the section 3, G will denote a graph of

finite girth > 7. Unlike the tree case a line graph is never

2
equal to G . L(H) is equal to G if H is a cycle of length

> 7, and only then.

PROPOSITION 3.7. G is not a line graph.

Proof. Let P = (x_,x«,...,x,) be an arc of a cycle in G of
1 Z o

smallest length. The possible induced graphs G |{x.,x2,...,x,}

are shown below.

X

*3

(i)

L5 H

Fig. 17

*3

(ii)
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The graph in Fig. 17(i) arises if there does not exist a vertex

f
x_ adjacent to x. and x,; this graph is Gg. The graph in

t 2Fig. 17(ii) contains G2 (remove x ). Thus G GL(G).

The following concepts are essential for our next theorem.

An edge of H with a specified direction (orientation) is called

an arc of H. (x,y) stands for the arc: from x to y.

DEFINITION. A subset M of the arcs of a graph H is called a

d-matching if the common terminal vertex of two arcs in M has

degree 2 in H.

A d-matching may contain two arcs obtained by opposite

orientations of the same edge. If a d-matching is symmetric

(i.e., (x,y) GM implies (y,x) G M) then the edges {(x,y):

(x,y) G M} constitute a matching except that for a vertex of

degree 2 both the edges adjacent to it may occur in the matching.

We say arc (x,y) covers y and y is an unexposed vertex.

A vertex that is not unexposed is called exposed. An arc (x,y)"

is called an escape-arc for a cycle C of H if y is a vertex

of C and x is not.

The basic theorem can now be stated in terms of d-matching.

In the sufficiency part of the theorem we do not actually assume

that L(H) is a clique graph. It follows from Theorem 3.1.

THEOREM 3.8. A line graph L(H) is a partial square of a graph G

of finite girth >_1 if and only if the graph H has a d-matching

See page 75, [6].

d for directed.

49



M such that the following are true.

i) At most two arcs of M belong to each triangle of H

and they cover the vertices of the triangle that have degree >^ 3.

ii) A chordless n-cycle of H, 4 £ n < 7, has at least

7-n escape-arcs in M.

Proof. "Sufficiency". Suppose that graph H has a d-matching

satisfying 3.8(i), (ii) and |v(H)| > 4.

It is rather immediate from 3.8(i) that not all vertices of

a triangle of H have degree >^ 3 and two triangles do not meet

at exactly one vertex. Also note that if there are two triangles

A = {x,y,z}, A' = {x',y,z}, then necessarily (y,z) , (z,y) G M.

Enlarge the d-matching M to M = M U M' where M' consists of

a set of arcs {(.,x) } chosen arbitrarily, one at each exposed

vertex x, d(x) >^ 2 where either x is a vertex not belonging

to a triangle or d(x) = 2 and M has only one arc in the triangle

*containing x (if any ). We construct a graph G on the ver

tices of L(H) as follows. Take an unexposed vertex x and let

(a,x)~ be the arc in M . Join the vertex v(a,x) (in G) to
o

all the vertices of the form v(.,x). We show first that

o

G C l(H) £ G . That G C L(H) is trivial from construction. Let

(y,x), (x,z) be two edges of H. If d(x) >^3 and (y,x) ,

(z,x)~ G M , there is an arc (a,x)~ G M and hence v(y,x),
2

v(z,x) are adjacent in G . The other nontrivial case is when

d(x) = 2 and (y,x)~, (z,x)~ G M ; but then A - {x,y,z} must

be a triangle. Two cases arise.
__ _ ' ~~~~
(.,x) means some arc into x.

Such a triangle A has exactly one vertex of degree ^3. Do not
choose an arc (.,x) for each of the two vertices of degree 2 in
A, just for one of them.
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Case 1. d(y) and d(z) >_ 3. One of the following pairs of arcs

is in MQ: (x,y) , (x,z) ; (x,y) , (y,z) ; (x,z) , (z,y) ;
- - 2

(y,z) , (z,y) . Therefore (v(y,x),v(x,z)) G E(G ).

Case 2. Say, d(y) = 2, d(z) _> 3. We leave the verification

to the reader.

We show that girth of G :> 7. Let £ = (e_ ,e«,... ,e, ,e.)

be a smallest cycle of G. (k is necessarily >_ 4). Consider

the partial subgraph H of H induced by the edges {e_,e«,...,e, }

of H. Let M={(x,y)~GM : (x,y)GE(H)} and V be M-unexposed

vertices. For (x,y) € M it is easily seen that 2 < d (y) < 3.
H

If d (y) = 3 then the three edges of H at y are consecutive:
n —

e -, e = (x,y), e. .; furthermore vertex x is M-exposed

and the other end vertices of the edges e _, e - are in V.

For d„(y) = 2 we leave it to the reader to verify that the two
rl

vertices that y is adjacent to in H are in V and the two

edges of H at y are e , e. . (or e , e .). Thus H|v

has all vertices of degree 2 and it should not be difficult to

see that H_|v is a cycle, say, C= (x ,x ,...,x ,x0). Also

note that x. G c and d..(x.) = 2 are covered by arcs of M
l Hi J —

belonging to C. It is not hard to see that C has four or more

edges (use 3.8(i)). We claim that C has no chord in H. If

possible, let e = (x ,x ) be a chord and s is minimum. Sup

pose s = 2. Since eG E(H), considering A = {xfi,x ,x?} we

have (x ,xQ) , (x-,x2) G M and d (x.) = 2. But this being

impossible, because x is unexposed, s >^ 3. Suppose <L^(x_) = 3,

(y,xQ) G M; then £ is not a smallest cycle since the arc
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v(y,x()),v(x(),x1),...,v(xs,xs+;L) in £ can be replaced by one

of the following,

v(y,x0),e,v(xs-1,xs),v(xs,xs+1) if (^.x/GM

v(y,x0),e,v(xs,xs+1) if (x^.x/q

v(y,x0),e,v(z,xs),v(xs,xs+1) if dR(xg) =3 and (z,xs)" GM

Thus d„(x_) = 2 and similarly d (x ) = 2. Further reasoning
HO n s

in a similar spirit (if dH(xQ) = 2 etc.) shows that s£ 3

(hence s«3) and (x ,x0)~, (x2,x3)~ GM and ^(x^ =2=

du(x0). But this contradicts 3.8(ii) for the 4-cycle of H
H 2

(xn,x.,x«,x_,x ). Thus C has no chord. Now the vertices

x G V(C), d„(x.) = 2 are covered by arcs of M belonging to
i * H l o

C. Therefore C has at most k-t escape-arcs in M . By 3.8(ii),

7-t < (k-t), or 7 < k.

"Necessity". Let the line graph L(H) be a partial square

of a graph G of finite girth > 7. We construct a d-matching M

going from vertices to vertices of H as follows. Notice that

L(H) being a clique graph, by (2.1), every triangle of H has

a vertex of degree 2. Also two triangles do not meet at exactly

one point. If d„(x) > 3, or =2 and x does not belong to

a triangle of H, then L = {set of edges at x} is a clique

in L(H). There exists an edge e G L such that N (e ) 2 Lv
% ' XX I* X X

by (4.2), Chapter 1; e is unique if degree of x >_ 3. Orient

the edge e into the vertex x. Let d„(x) = 2 and x belong
° x n

to the triangle A = {x,y,z} in H and let dR(z) > 3. Since the

+As in proof of (3.5), the intersection pattern of the cliques
L(A-), L(A9), L is an impossibility in a partial square of a
graph of finite girth > 7 as it is for infinite girth (i.e., a tree).



vertices LA = {v(x,y),v(y,z),v(z,x)} form a clique of L(H) and

girth G > 7 we have that e = (y,z) or (x,z) and e^

covers z (prove it by contradiction). If d^y) ^ 3 we do

nothing for x. Observe that in case there is another triangle

A' » {x',y,z} then e is also one of (x',z) , (y,z) ; hence

e = (y,z)~ and similarly e = (z,y)"~. Finally, if we had
z y

d„(y) = 2 choose only one of the arcs (x,y) , (y,x) in M for
H

the pair of vertices x, y. An M-exposed vertex is either of

degree 1 or of degree 2 belonging to a triangle.

We show that M satisfies properties 3.8(i), (ii). That M

is a d-matching is clear from construction as also the property

3.8(i). Property 3.8(ii) follows because girth G is, by hypo

thesis, at least 7.

REMARK 3.9. In the proof of sufficiency in (3.8) we can replace

7 by an arbitrary number g >. 5 and get a very general theorem.

However, number 7 plays an important role throughout the necessary

part, so much so that it cannot be replaced by 5 or 6.

Example 6. In the graph H (Fig. 18) there is no symmetric

d-matching M with properties 3.8(i), (ii). Consider the cycle

(x ,x ,x3,x,,x5,x ). Edges 6, 7must be in M if M is symmetric.

But then there is no way to help the cycle (x.,x_,x^,xg,x6,x1).

A d-matching M is indicated by arrows on the arcs of M.
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graphs L(H) and G

Fig. 18. L(H) is a clique graph. Corresponding to the
d-matching M, the edges of G are shown in
bold lines.

54

4. Miscellaneous Theorems on Clique Graphs

An example of a non-clique graph:

THEOREM 4.1. If G is a graph of girth 3 then the total graph T(G)

is not a clique graph.

Proof. Let A= {x-,x2,x3} be a triangle of G and a= (x^x^,

b= (x2,x3), c= (x3,x1). The triangles ^ ={a.x^x^,

A2 ={b^xJ, A =fc^x^ are cliques of T(G). If possible

let {L.} be a cover by complete subgraphs of T(G) and {L^

be I. Then the edges (x^x^, (x ,a), (x2,a) of T(G) must

be in the same L. for some i and thus L.53 {x-,x2,a}. Let

A - L , i= 1,2,3. But then {L±}, 1< i< 3 is P-family

but not I, a contradiction. Thus T(G) is not a clique graph.

2
However, there are square graphs G , girth G • 6, which

are clique graphs.

Example 7. Let G be the graph induced by the solid edges in
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Fig. 19. The graph G is the union of 6 cliques N^x^,
2

1 < i£ 6 each of which is K,. The cliques of G have property I.

Fig. 19. A clique graph

Theorem 4.2 characterizes a graph G whose clique graph is

bipartite. Since a graph of girth > 4 is always a clique graph,

all bipartite graphs are in K(G).

THEOREM 4.2. The clique graph K(G) is bipartite if and only if

G satisfies the conditions:

i) A vertex is in at most two cliques of G.

ii) Every odd cycle of length >^ 5 has a chord.

Proof. Necessity. Suppose C = (x-,x2,...,xfc,x.), k> 5 is an

odd cycle and has no chord. Let K . -, 1 <_ i <_ k (k+1 s 1

mod k) be cliques of G containing {x ,x.+1>. They are all

distinct. The vertices K -, i <_ k of K(G) form an odd

cycle (taken in that order). Trivially, a vertex should not belong



to three cliques of G.

Sufficiency. Let C = (K,»K2 ^Sc'^i^ ^e a smaHest odd

cycle in K(G). C has no chord. If possible, let k ^ 5.

Choose a vertex of G, xJ G K. H K.,_ for each 1 < i < k. Then
i i i+1 — —

C' = (x-,x„,... ,x, ,x ) is a cycle in G and fortunately has no

chord either. This is easy to see. Thus we contradict (ii) and

hence k = 3. We shall now prove that K H L H K3 is non

empty which is impossible and the theorem will be proved. If not,

x., x„, x~ (as above) are distinct and form a triangle. Let K

be any clique containing the triangle. If K = KL then

X2 G Kl ° K2 n K3; otherwise x2 G KH K2 H K3.

We close this chapter with two theorems on product graphs.

The product graphs G 0 H, G © H are defined as follows. They

have vertices V(G)x v(H) while the edges are respectively

E(GOH) = {((x,y),(x',y'): (x,x')GE(G), (y,y') G E(H)}

E(6 ©H) = {((x,y),(x,y')): (y,y') G E(H), xG V(G)}

U {(x,y),(x',y): (x,x') G E(G), y G v(H)} U E(G 0 H)

THEOREM 4.3. If G, H are clique graphs then the Kronecker

product G Q H is a clique graph.

Proof. Let {GJ: 1 < i < m}, {H.: 1 < j < n} be two families
i — — j — —

of complete subgraphs of G and H respectively which satisfy I

and U G = G, Uh = H as in (1.1). Define (x ,H ) =
i j ^ J

{(xt,yk): yk eHj} and (G^y^ -Uxk,Ys):xk GG±} for all
x G V(G), y G V(H); tliey are complete subgraphs of G 0H

t s
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and their union is all of G 0 H. Let PC{(X ,H ),(G ,y )} be
c j is

a P-family. (x ,H ), (x.,H.,)GP implies xfc = x. and
c j t j t t

H. H H,, ^ 0. Thus P can be written as
J j

P - {(x^H ),(x ,H ),...,(x .H, )}
C Jl C J2 C Jk

U{(G ys),(G .ys)...,i(G1 .ya)} .
12 p

But (x ,H ) O (G ,y ) t 0 implies x G G. , y G H . We
z -*! 1 1 S -*1

conclude (xt,yg) ^nP. Thus G0 H is a clique graph.

THEOREM 4.4. K(G © H) = K(G) ® K(H).

In particular, ©-product of clique graphs is a clique graph,

Proof. The cliques of G © H are of the form CxD where C, D

are cliques of G and H respectively. If C, D are cliques,

clearly CxD is a complete subgraph. On the other hand, if

SC v(G)x V(H) a clique then S^ S2 are complete where S (S )

is projection of S on V(G) (resp. V(H)). Since S C s x s

we have S = S xS^ It follows that Cxd is a clique.

Finally CxD O C'x D' t 0 if and only if C O C' t 0,

D n D' #0. This is the same as saying (C,C) G E(K(G)) and

D = D', or (D,D') G (K(H)) and C = C, or (C,C), (D,D')

are edges of K(G), K(H). This proves the theorem.
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Notations.

Arc: If £ = (xQ>x-,... »x,_- ,x-) is a cycle then the path

(x0,x-,...,x.), i£ k-1 is called an arc of £.

Articulation vertex: It is a vertex x such that G-x has more

components than G.

Big triangle: See Fig. 11, page 38.

Core: The point induced subgraph by the nonterminal points.

c(G): Core of G.

Component: 1-component

Connected: If G is 1-connected then we simply say that it is

connected.

Cutset: A minimal set of edges whose removal from the graph

increases the number of components. This is the same as a

cocircuit of the graphic matroid.

Chord: An edge (x ,x ), |i-j| ^ 1 (mod k), is called a chord

of cycle (xQ,x1,...,xk_1,x0).

Cycle (xn,...,x-_-,xQ): It is a path whose first and last vertices

are the same. A cycle of length n is called an n-cycle.

d-matching: See page 49.

dG(x): Degree of vertex x in G, d (x) = |l"~ (x) |.

dn(x,y): Distance of vertices x and y in graph G.

G: G « (V(G),E(G)) is a finite graph without multiple edges and

loops.

G C H: G is a partial subgraph of H, i.e., V(G) C v(H) and

E(G) C E(H).

G|S: For a subset of vertices S, it denotes the point induced

subgraph of G on S.
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r (x): Set of vertices adjacent to x in G.
G

G2: Square of G. V(G2) =V(G), E(G2) «{(x,y): dn(x,y) < 2}.
v» —

G 0 H: See page 56.

G © H: See page 56.

Girth: Length of the shortest cycle. Girth of a tree is by

definition °°.

HUG: It is the graph whose vertices are V(H) U v(G) and

edges E(H) U E(G).

H-G: It is defined for H^G and H-G has vertices V(H)

and edges E(H)-E(G).

K : The complete graph on n vertices,
n

M(G): The graphic matroid on E(G). Circuits of M(G) are the

cycles of G.

Multiple point: A vertex belonging to two or more 3-components.

N (x) : x U r (x), called neighborhood of x.

P: See page 34.

2
Partial square: G is partial square of H if hCgCh ,

Path(xQ,x.,...,x.): Except in Part II, we always take the vertices

xQ,...,xk distinct unless x-. = x, when the path becomes

a cycle. The length of the path is the number of edges in

it, k (namely, (x^x^), 0 < i <_ k-1). In Part II, a

path is indicated by the sequence of edges (x ,x. .).

Property I: See page 34.

T: A tree T is a connected graph having no cycle.

Terminal point: A vertex x of degree one.

t(x): Terminal vertices adjacent to x.

Thick tree: See page 45.
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PART II: Factorization of Graphs

THE k-FACTOR CONJECTURE IS TRUE

We shall show that if sequences (d ), (d -k) are

graphical then there exists a graph G with degrees d which

has a factor with k lines at each vertex. Similar results have

been obtained for digraphs. Also some other related problems

are discussed.

To every graph G whose vertices are labelled v ,

1 _< i <_ n, one can associate the degree sequence (d.) where

d. = degree of the vertex v.. G is called a representing graph

for (d.) and the sequence itself is called graphical. The

degree sequence is an 'invariant' of a graph. It is a rather 'weak'

invariant and there is almost always more than one graph with the

same degree sequence [2], This 'incompleteness' of degree sequences

allows one to raise many existence problems about representing

graphs. In that regard, the following conjecture was made by

A.R. Rao and S.B. Rao [8] and also by B. Grunbaum.

If (d ), (d.-k) are graphical sequences then there exists

a graph G with degrees (d ) which has a factor with k lines

at each vertex.

Also a similar conjecture for digraphs was made by A.R. Rao

and S.B. Rao [8]. We shall prove a generalized version for each

of them, first for graphs and then for digraphs. The ideas

involved in the two cases are very similar. The concept of an

alternating path will be important throughout.
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1. UNDIRECTED GRAPHS

We shall assume that graphs have no multiple lines and loops.

All graphs are drawn on a fixed set of vertices V= {v^v,,,... f^K

Therefore it is convenient to identify a graph G with the subset

of unordered pairs {(v^v )}, where (v±,v.) are lines of G.

A sequence (of n nonnegative integers) (d : 1£ i£ n> is

called graphical if there exists a graph G with degree of v±

being equal to d. for all i. We say that G is a represent

ing graph of <d.>. For a given sequence <k.: 0£ k^ £ d^) a

subgraph F C G is called a subfactor if F has at most ^

lines at v.. Call v a saturated vertex (with respect to F)

if F has exactly k lines at v.. We shall denote by S = S(F)

the set of saturated vertices. F is called a factor if S = V.

If k. = k, 1 £ i £ n, F is called a k-factor. We often

consider two graphs G, H simultaneously. To distinguish their

lines we shall put colors on the lines (v.i»v.«) as follows:

lines of G (resp. H) not in H (resp. G) are colored red

(resp. blue), the lines common to G and H are colored green

and all other lines are colored white. We shall write r = red,

b = blue, g = green, w » white and c(v ,v.) for the color of

line (v ,v.). A few other notations like g = r+b, r = g-b,

w = b-b, etc. will be useful. We shall let E (v±) denote the

set of lines at vertex v. with color c, c = r,b,g, and

E = UE (v.), union over all v.. Clearly |E (v.)| + |E (v )|,
c c i i r x R x

We shall use the word line for edge. A loop is an edge whose
endpoints are equal.
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|e. (v,)| + |e (v.)I are respectively the degrees of v. in G

and H. Finally, an alternating path P = (xQ,x-),(x.,x2),(x2,x.J ,..

is a path whose lines are distinct and c(x.,x -) = r or b

according as i even or odd.

THEOREM 1.1. Let (d.), (d -k ) be two graphical sequences

such that for some k >_ 0, k £ k £ k+1 for 1 £ i £ n. Then

there is a graph G with degree sequence (d.) and having a

<k.)-factor.

Proof.

Consider two graphs G', H' with degree sequences (d ),

(d -In.) respectively and the associated coloring of the lines

(v.,v ) in white, red, blue and green. Clearly, |e (v.)| =

|E, CO I+ k,, for all vertex v.. Let F' C e * be a <k.)-
'bi'i i — r i

subfactor; F' is possibly empty. Suppose that the graphs G, H

and a subfactor F are so chosen that |f| + |E | has maximum

value among all possible choices of G', H', F'. If all vertices

v. are saturated in F we are done. We shall show that it is

indeed so. This is accomplished in several steps. Let S = S(F)

and assume that S $ V.

1 ) If xn, x., x_, x- are four distinct vertices such that

c(xQ,x1) = b = c(x2,x3), c(x1,x2) = r and (x^x^ G F then

c(xQ,x3) = b.

Proof. If c(x0,x3) = r or g then changing the colors c(xQ,x1),

c(x2,x3) from b to g = b+r, c(x ,x2) to w and c(xQ,x3)
_

All subfactors will be a subset of red lines.
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to c(xn,x.>) -r we increase |e | by two or one according as

c(x.,x,) * r or g. In the worst case, when (xQ,x3) G F we

form the new subfactor F- (xQ,x3). In any case, |f| + |e | has

been increased, a contradiction.

If c(xQ,x3) «w then change each of (x ,x^, (x2»x3) to

a white line while adding blue to c(x-,x2) and c(xQ,x3). The

result is an increase in |e I without changing F. Thus
8

c(xn,x~) = b. Note that the changes in colors did not disturb

the equations ^(v^l + lEgCv±)|-d±, IVV' +'V^'
aH-k., 1 < i < n. This will always be the case in all

i i — —

recolorings.

2) Let (x0,x1),(x1,x2),...,(x2t,x2t+1), t> 1, xQ ^ x2t+1

be an alternating path P which is line disjoint with F and

(x0>X2t+l) * P* Then c(VX2t+l} " r*

Proof. Suppose c(xQ,x2 1) i r. We show as in 1 thatby suita

ble recoloring of the lines of P and the line (xQ,x2t+1) we

can increase |e I, F remaining unchanged. For example, if
8

c(xn,x9 _) = b or g then change the color of all red lines

of P to green by adding blue to them, change the color of all

blue lines of P to white and c(x0,x2t+1) to c(xQ,x2t+1) -b.

If c(x0,x2t+1) =w then change it to red, c(x2i,x2i+1) to

white for 0£ i£ t and c(x2i+1»x2i+2) to 8*een for

0 £ i £ t- 1.

Next, observe that for each vertex v± G v-S, there are at

least 1+ Ie.COI red lines not in F which are incident with
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v whereas for v G s, |e (v )-f| = |e.(v.)|. This is straight

forward from the definition of S. Also note that a red line with

both end points in V-S is necessarily in F. (Otherwise we can

add it to F!) Choose a vertex x_ in V-S and a red line

(x_,x ) G F; X. G s. There is a blue line, say (x ,x ) and

thus a red line (x_,x-) G F (x is possibly same as x ) and

a blue line (x.,xA) if x_ G v-S. One can proceed in this way

and get an alternating path (line) disjoint with F and terminating

at a vertex in V-S. Let P = (xQ,x1),(x ,x2),...,(x2t,x2t+1),

be an alternating path with smallest number of lines among all the

alternating paths from x_ terminating in V-S and being dis

joint with F. It is shown in part 6 that t = 1 or 2;

moreover, if t = 2 we have x = x, (see fig. 1). For t = 1,

there are two possibilities: xn ^ x_ (fig. 2) and xn = x«. The

case xn = x„ will be taken up in 4 and 5 while 3 deals with

the other cases.

X4 =X|

Fig. 1. t = 2. The broken line is in F.
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X| o—oXg

r r

X4 0— -"Xj

Fig. 2. t = 1 and xQ j x«.

3 ) Each of the following gives a contradiction. The alternating

path P has 1) 5 lines, 2) three lines and xQ j x...

Proof. Let us write y » x. or x« according as we are in 1)

or 2). By 2 , c(x ,y) • r and xQ> y being in V-S,

(x0,y) G F. Thus k(y) >_ 2 (where k(y) = k if y = v±) and

therefore by the hypothesis of the theorem k(x-) :> 1. Let

(x. ,u) G F. Note that in the case 2) we can assume that u ^ y

= xq because otherwise k(y) is in fact >_ 3 and thus k(x-)

being at least 2 we can find a vertex v ^ xg, such that

(v,x.) G F. In case 1) obviously u 4 y. Let us define

F' =F-(u,x )+(x-,x0); |F'| = |f|. Consider the path Q from

u to y obtained by replacing (x0,x-) in P with (u,x-).

Since u and y are unsaturated with respect to F' and Q is

disjoint from F', by 2 , (u,y) G F' and hence (u,y) G F. We

can now say that k(y) >_ 3 and obtain another vertex u' 4 u,

such that u' is not incident with any line of P and (u',x1) G F.

Repeating the same argument again and again we obtain k(y) is

arbitrarily large which is certainly impossible.



4 ) t = 1 and xQ = x,,. Then there is a blue line at xn.

Proof. Suppose not. Then k(x0) = |e (xfi) | >^ 2, and therefore

k(x-) _> 1. Obtain a vertex u such that (u,x.) G F. Define,

F' = F-(u,x-)+ (xQ,x-) as before and consider the path (u,x.),

(x ,x2), (x2,xQ). But then we are back in 3 which is just shown

not possible.

5 ) t » 1 and x. = x^. There cannot be a blue line at x_.

Proof. Suppose there is a blue line at x3 = xn, say (x~,x,).

Consider all possible alternating paths Q from xn to some

point of V-S which contains P properly as an initial part and

disjoint with F. Paths Q exist because for all points v. G S,

at v. there are as many red lines not belonging to F U p as

there are blue lines not in F U p. No such path Q 'returns'

to the vertex xQ 'after' x3. Let P' = P U p have smallest

number of lines among all Q. We show that P0 has two lines

only.

By 1 and proper choices of three lines one can show that

c(x1,xz,) = c(x2,x4) = b. If PQ has three or more lines let

(x3,x4), (x4,x5), (x5,x6) be the first three lines, x ,x ,...,x

are all distinct. c(x4,x5) = r implies, by 2 , c(x ,x ) = r,

1£ *£ 3* Thus x6 is different from x , 1£ i£ 5. But

c(x3,xg) =b (by 1)and hence (x3»x6) £ PUPQ implies we can

replace the subsequence (x3>x4), (x4>x5), (x5,x6) in PQ by

(x3,x6) and we get a shorter alternating path contradicting
* —" ~ — —

Because it will imply the existence of an even cycle C disjoint
with F and whose lines are alternately blue and red. But then
one can increase |e | (|f| remaining fixed) by making the red
lines of C white and blue lines of C green.
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minimality of PQ. Thus PQ = (x3,x4), (x4,x5). (see fig. 3.)

Now consider the path P" = (x^x^, (x^x^, (x4,x5). P" is

line disjoint with F. However, existence of such an alternating

path is shown to be impossible in 3 .

Fig. 3. xQ, x_ are in V-S.

6 ) The shortest alternating path P = (x ,x ),(x ,x2),...,

(x2t»x2t+1), starting at x and terminating at a vertex in V-S,

has at most 5 lines. P is line disjoint with F.

Proof. It is useful to regard (for the moment) the lines of P

being oriented in the direction from x, to x.... 0 < i < 2t;
i i+1 — — *

we write them as arc (x ,x -) . Then at a vertex v., there

is at most one line, of each color, directed from and one line

directed into v. that belong to P. For example, if there are

two blue lines directed from v one of them precedes the other

as one traverses P. But this implies that P 'enters' v.

with a red line after it had left v. by the first blue line.

In other words there is an even cycle whose lines are alternately

blue and red. As we have seen earlier this would imply that

|f| + |e j is not maximum, contrary to the assumption. Suppose
8

P has five or more lines.
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If possible, let there be three consecutive lines of P as

follows: c(xi,xi+1) = c(xi+2,xi+3) = b, c(xi+1,xi+2) = r and

x. ^ x. y By 1 , c(xi,xi+3) = b; (x^x^) must be a line

of P (otherwise we can replace the sequence (x ,x _),...,

(xi+2,x±+3) by (x±,xi+3)). Further, the line (xi+3,x±) is

oriented into x. (fig. 4)«

XM?

XiO

Fig. 4.

Let (x. -,,x.) , (x.jX.,., = x. l0) be the two lines of P imme-
j-1 3 3 3+1 i+3

diately preceding (x 3,x ) ; they are respectively blue and red

and the blue line exists if x. ^ x_. Observe that x. ^ x :
J 0 3 P

i < p < i+3, and x. , j* x.. By 1 , c(x. ,x. -) = b,. and it
— r — ' 3-I i J ij-1

cannot be in P. However, this contradicts the minimality of P

(as the sequence (x. -,x ) , (x ,x. J) , (x „,x.) can be

replaced by (x -,x.) ). Thus x. = xfl. Similarly, the red line

following (x. 3,x ) in P must be (x.,x21+1) • But then

(xQ,xi+3), (xi+3,x±), (xi»x2t+1) is an alternating path disjoint

with F, a contradiction. Thus x = x 3. Then the path P

can be written as

P — (x,. ,X-) ,vx_ »x2^ ,(x_ »x«^ ,Cx3,x_), ^x_ ,x_) ,...,(x_t»x«tii /

If t ^> 3, then the 6th line (x ,x ) is blue and we can replace

the first six arcs by (xn,x ) , (x ,x«) to obtain an alternating
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path with less lines than P. Thus t £ 2 and in case P has

five lines it conforms to the description that x„ «• x,.
1 4

The contradictions in 3 together with 4 , 5 show that

V-S t <j> is impossible. Therefore V = S and we have proved the

theorem.

Remark. If there exists a graph with degree sequence (d ) and

containing a ^k.)- factor then, trivially, <d -k > is graphical.

The following examples show that the theorem is not true if

two k.'s differ by two or more.

Example 1. Let <d±> = <5,5,4,3,3,2) and <k±> = <3,3,1,3,3,1>.

Each of <d >, <k >, ^-k >= <2,2,3,0,0,1) is a graphical

sequence. If Theorem 1.1 was true for these (d ), (k.) then

it would be possible to find a graph G with degree sequence (d.)

that contains the unique graph H (fig. 5) with degree sequence

<d.-k.). Unfortunately, there is no such G, as can be seen

easily.

Vco

V oV4

Fig. 5. The graph H with degree sequence <d -k )
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Example 2. The sequences <d > = <4,3,2,2,1>, <k > =<3,1,2,2,0> ,

<d -k.) = <1,2,0,0,l) are graphical. But there is no graph G

whose degree sequence is (d.) and which contains the graph F

with degrees (k.).

COROLLARY 1.2. If <d > is graphical then there is a graph G

with degree sequence <d.) and having a k-factor if and only if

<d -k> is graphical.

A result of A.R. Rao and S.B. Rao [7,8] on connected factors

implies rather immediately

COROLLARY 1.3. There exists a graph with degree sequence (d >

and containing a Hamiltonian cycle if and only if (d.), (d -2)
p n

are graphical and for all p < -r-, J d. < p(n-p-l) + J, d
* 2 i=l n-p+1 X

where (d.) is a rearrangement of <d.) into a non-increasing

sequence,

COROLLARY 1.4. If (d ), (k ) are arbitrary graphical sequences

such that k < d.- k. <k + l for some k then there exists a
— l i —

graph G with degree sequence <d > and containing a <k.>— factor

Proof. Interchange the role of <k > and <d.-k > in Theorem 1.1.

We have a graph G with degree sequence <d > which contains a

factor F having d^^ lines at vertex v . The lines G-F

form the required factor (see examples 1 and 2).

COROLLARY 1.5. If there exists a graph with degree sequence <d.>

and containing a k-factor, then for 0 < I < k, £=k (mod 2)

if n is odd, there is graph with degree sequence <d > and
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containing an A-factor.

Proof. One simply notes that under the hypothesis of the corollary

(d.-4) is graphical. This follows (after some symmetrizations

as shown by A.R. Rao) from a theorem of Fulkerson [1] on the

existence of (0,1) matrices with given row sums and column sums

and zero diagonal elements.

The case %= k (mod 2) for arbitrary n was obtained

earlier in [7,8].

The next theorem gives a n.s.c. for existence of graphs G

with given degree sequences and containing a given graph F. It

happens that we have to assume a lot more than before in order

that G ^ F. But at the same time such extra assumptions allow

more flexibility, though not as much as on3 would wish, on the

choice of F than those given by the degree sequences (k.),

k £ k. £ k+1. This time the proof is by induction.

THEOREM 1.6. Let F be a graph not containing ah induced sub

graph isomorphic to the graph in fig. 6. There exists a graph G

with degree sequence (d ) and G containing the graph F if

and only if for every graph F' C f we have <d -k > is graphical

where (k.) is the degree sequence of F'.

Proof. The necessity is trivial. We prove 'if* part by induction

on |f|. If |f| = 1 then (1.6) is same as (1.1). Let

|f| = m 2l 2 and let the theorem be true for all graphs F having

m-1 or less lines. Let (x,y) be a line in F and

FQ = F-(x,y). FQ does not contain a copy of the subgraph in
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fig. 6. Thus there exists a graph G 2 fq with de8ree

sequence <d >, and let (x,y) not be in any such G. Also

there exists a graph H2 F0 which has d± lines at all vertices

v t x, y where it has only d -1 lines. Consider the pair of

graphs G, H-Fn and associated coloring of the lines (vi»V4^

in r,b,g,w. Suppose that G, H are so chosen that |E | is

maximum (E H F_ = (f>) . It is easy to see that there is an alter-
8 °

nating path from x to y which is line disjoint with FQ and

has one more red lines than blue lines; let P be one such path

with minimum number of lines. If (x,y) G p then as in 2 of

(1.1) one can perform recoloring on PU(x,y) so that (x,y)

becomes green or red and we have proved the theorem. Let us

therefore assume that (x,y) = (x,,xi+^) and P = (x = Xq^),

(x1,x2),...,(xi «x,xi+1 = y)»(xi+1,xi+2),...,(x2t,x2t+1 = y);

c(x ,x. ,) = b. Observe that P 'arrives' at y only at x.,n
v i' i+1 i+1

and x„ ,,. Consider the subpath P' of P: from (xn,x_) to
2t+l J- £

(x,,x. „). If c(x, ,xJt-) is blue then we can form alternating
i l+l 1 i+1

path P" = (x0,x1),(x1,xi+1),(xi+1,xi+2),...,(x2t,x2t+1) not

containing (x,y). If c(x1,xi+1) = w,g, or c(x1,xi+1) = r

and (x-,x. -) G FQ then one can increase |e | by a recoloring

of P' u(x1,xi+1). Thus (XT»xi+i) G Fn* Considering the path

i,Xi-l ' i-l,Xi-2 '* *'' 1,X0 ' 0,Xi+l ' i+l,Xi+2 '* **'

(x2t,x2t+1) one can show that (x._-,,x. -) ^ F . Similarly

(xi,xi+2), (x±,x2t) e FQ. But x1 f xjL_1, xi+2 ? x2t implies

we have F contains the subgraph shown in fig. 5, a contradiction.

(x,y) cannot be (x ,x ). Also note that (x-,x. -) ^ P.
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Xl Xi-1 Xi+1

=Xi+1 =X2t+1

Fig. 6. The excluded subgraph in F.

This proves the theorem.

Following example shows that Theorem 1.6 may not be true if

F does contain the graph in fig. 6.

Example 3. Let <d±> « <4,4,4,4,4,4) and F be K3 3« F has
9

9 edges and thus 2 subgraphs. Since d.'s are same it is

enough to check that (d -k > is graphical for different isomor

phic subgraphs F' C F. For |F' |£ 5 they are shown in table 1,

There is no graph G3F with degree sequence <d >. You may

note, however, that there is a graph G which contains all but

one edge of K3 3 (fig. 7).

Fig. 7. Graph G containing all but one edge of F.
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Table 1.

F'l isomorphic type* <d -k >
of F' C F 1 1

0 0 0 0 0 0

0—0 0 0 0 0

0—0 0—0 0 0

•0000

°N

representing graph

G in fig. 6.

G1 = G-Cvl'v2>
G2 = G-((V2),(v3,v4)}

G3 = G-{(v1,v2),(v1,v3)}
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0—0 0—0 0—0

<4,4,4,4,4,4)

(3,3,4,4,4,4)

(3,3,3,3,4,4)

(2,3,3,4,4,4)

<3,3,3,3,3,3)

<2,3,3,3,3,4)

(2,3,2,3,4,4)

(1,3,3,4,3,4)

(2,3,3,2,3,3)

(2,3,2,3,3,3)

(3,2,2,2,3,4)

G- {(Vj^ ,v3) , (v^ ,v6), (v2 ,v5) }

< 0—0 0 G5 = G3-(v4,v5)

0^--—0—0 0 0 G6°G3-(v3'V

0 0 VVVj'

&——O^t) 0

G8 = G5-(V4'V

G9 = G8

°^
-0—0—0 0 G10 = G6-(V4'V

erThe vertices can be thought of as v.,v_,...,v. in that ord
4- JL 2. o

~ stands for isomorphism.



Table 1 (continued)

|F'| isomorphic type (d -k )
of F' C F ± X

representing graph

0 0 (2,2,2,2,4,4) G11 = G6-(V2'V4}

0—0 0 0 (1,3,2,3,3,4) G12-G7-(VV

"ST^U (2,3,2,2,2,3) G13 = G9-(VV5>

(1,3,1,3,3,3) G14 = G12-(V3'V6}

-0—0 (1,2,2,3,3,3) G15"G12-(V2*V

(2,2,2,1,3,4) ^^ll^VV

o^50 0—0 (2,2,2,3,2,3) G17 * G13

For |F'| >_ 6 the subgraphs are obtained by removing a sub

graph of 9-|F'| lines from F. There are 8 of them. The

sequences (d -k.) are listed below.' They are all graphical as

can be checked easily.

|F'| <d -k.)
i l

9 (1,1,1,1,1,1)

8 (2,2,1,1,1,1)

7 (2,2,2,2,1,1)

(3,2,2,1,1,1)

6 (2,2,2,2,2,2)

(2,3,2,2,2,1)

(2,3,3,2,1,1)

(2,4,2,2,1,1)
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COROLLARY 1.7. There exists a graph G with degree sequence (d )

and disjoint from F if and only if (d +k.) are graphical where

(k.) is degree sequence of an arbitrary graph F' C f.

Proof. Note that (d +k ) is graphical if and only if ((n-l-d )-k.)

is graphical. Rest is easy.

If F= {(vlfv2),(v3,v4)f(v5,v6)} and (d±> - (2,2,1,1,3,3)

then the sequence (d -k.) is graphical for all F' C f except

when F' = {(v.. ,v«), (v_,v,)}. And there is no graph G contain

ing F with degree sequence (d.).

COROLLARY 1.8. Let (d.), (k.-d.) be two graphical sequences

where k £ k £ k+1, 1 £ i £ n and d £ k £ n-1. Then there

are disjoint graphs with degree sequences (d ), (k -d ).

Proof. There exists a graph G with degree sequences ((n-l)-d.)

and G containing a ((n-1)-k.)-factor F. The graphs K -G and
l n

G-F satisfy the corollary (K is the complete graph).

The proof of Theorem 1.1 (and also 1.6, 2.1, 2.3) in fact

yields an algorithm to obtain a graph G with degree sequence (d.)

containing a (k.)-factor (resp. required graphs and digraphs).

To start with choose arbitrary graphs G, H with degree sequences

(d.), (d.-k.) respectively and a subfactor F. One constructs an

alternating path P » (x_,x-),(x.,x_),... from a vertex x €= V-S,

and then increases |f| + |e | by recoloring some of the lines

(v. ,v ) as indicated in 1°) -6°) until |F|+|E|=yZd.



2. DIRECTED GRAPHS

We shall assume that digraphs have no multiple arcs and loops

and all digraphs are drawn on vertices v.,...,v . A pair of arcs

(v.r>v.t)> (V4»VP is nowever possible. Note that an arc from

v. to v is written as (v. ,v ). Given a sequence of ordered

pairs of non negative integers, ((d.,d.)), we say it is graphical

if there exists a digraph G with outdegree and indegree of

vertex v. being equal to respectively d and d.. We say G

/ + — \ "*"
has degree sequence \(d.,d.)/. We shall identify G with the

set of arcs in G. A n.s.c. for a sequence ((d.,d.)) to be

graphical is obtained by Fulkerson [1]. Most of the terminology

introduced for graphs in §1 has a natural extension to digraphs.

A subdigraph Kg is called a subfactor with respect to

+ — •*• + —
((k. ,k. )) if F has at most k arcs from v and k arcs

into v.. We shall let S = S+(F) (s" = S~*(F)) denote the ver

tices v having k. (respectively k ) arcs from (into) v.

-*- + -
in F. A vertex in S (S ) is called outer (inner) saturated.

A vertex that is both outer and inner saturated is simply called

saturated and S = S H s is the set of saturated vertices. F

+ -
is called a factor if S =» V. Notations E (v.), E (v.) will be

c l c i

used with their obvious meanings. For example, E (v.) is the

set of red arcs from vertex v.. E = U E (v.) = U E (v ).
i c c i c i

We shall prove the following Theorem.

THEOREM 2.1. Let the sequence d = ((d ,d )) be graphical and let

((k.,k~)) be a sequence such that for some k >^ 0, k = k (or

for that matter k = k), l£i£n. Then there exists a digraph
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->• + — + —
G with degree sequence ((d ,d )) containing a ((k ,k ))-factor

+ + - —if and only if the sequence <(d.-k ,d -k )) = d' is graphical.

+ + — —
That the sequence ((d.-k ,d.-k.)) be graphical is clearly

necessary. The theorem says that it is also sufficient. The

special case k=k = k, 1 £ i £ n was conjectured by

A.R. Rao and S.B. Rao along with their conjecture on undirected

graphs (see §1). The proof of (2.1) is a modification of that of

(1.1) to accomodate arcs instead of lines.

"*•"**
Proof of Theorem 2.1. Let G and H be representing digraphs

for the sequences d and d1 respectively. Consider the color

ing of arcs (v.,v ) in r, b, g and w as before, namely,

->•%->•c(v±,v )=r if (v±,v )e g\h, b if (v±,v )G r\g , etc.

One has |e^(v±)| +|e+(v.)| =d+, |e£(v.)| +Ie^v^I =d^-k
and similar equations for indegrees. We choose a subfactor F C e

-*•-*--*• ii i-»-i
Let us assume that G, H, F have been so chosen that |E |+|F|

S

has maximum value. We show that F is a factor. For brevity

let k = kT, 1 £ i £ n and let S ^ V. We observe that

i) S+ ^V^S"; ii) |E^(v±) -F| >|e£(Vi) I, |E^(v±)- f| >
|eT(v )| for all v and the equality holds precisely for

v £ s and v G S respectively; iii) There do not exist

distinct arcs (y^),(y^),(y2»y3) »• ••» (v2t,y2t+l) »(y0,y2t+l)

whose colors are red and blue alternately in that order such that

-fr

ail the red arcs are in E - F. Property iii) is almost trivial.

One can change c(y2m>y2m+1) to white and c(y2m+2,y2ra+1) to

green for 0£ m <_ t (y2t+2 - y ) and increase |e |, keeping

|f| unchanged, contradicting that |e |+|f| was maximum. The
O
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sequence (Vq^),(y^y-^ ,(y2,y3),...,(y2t,y2t+1) is said to

constitute an alternating chain. Note that the vertices

yQ,y ,...,y2 +1 need not be distinct.
4.

Take a vertex xfl £ V-S and let (xn,x-) be a red arc not

in F. x. is necessarily in S and let (x„,x.) be a blue arc;

there exists a red arc (x_,x,.) not in F. We can continue in

this way to build an alternating chain P until it 'terminates'

at a vertex in V-S . Let P = (xQ,x_),(x2,x-),(x2,x3),...,

^t'^t+l*' X2t+ieV_S"-
We show that c(xn»x2t+l^ ° r if X0 ^ X2t+1 and thuS

(x0,x. -)€ F. This is easy once we show that (xn>x2t+l^ ^ P*

The proof is similar to the one in 2 , Theorem 1.1. Suppose

(xQ,x2 -) is in P. If c(x0»x2t+l^ ° b then P would con"

tain a closed alternating chain as in iii) because in P blue

arcs are traversed in opposite direction. If c(xo,x2t+l^ = r

and (x0>x2t+i) = ^xi»xi+l^» then (x0»x1)»«"»(x:L»xi_1) is a
closed alternating chain of even length. Thus we conclude that

(V^t+l* ^ p*

Now we prove by contradiction that an alternating chain P

does not exsit.

Case I. |p| = 3, xQ =x3« Since k (x^ •k (xQ) >1

there exists x, ^ xQ, x ,x2 such that (x, ,x1) € F. Consider

F' =F-(x4,X]L)+(x0,X]L); |l'| = |F|. The chain

Compare the corresponding situation in Theorem 1.1.
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PT - (x4,x1),(x2,x1),(x2,x3) implies (x4,x3) € F' because

x eV-S+(F'), x3 eV-S"(F'). Hence (x4,x3) GF and
k~"(x ) ^_ 2 which implies there exists x_^x., 0£i£4,

such that (x5»xi) E F* We can P^ove, as before, that

(xe,x0) GF and so on, finally obtaining k~*(xn) is arbitrarily
5 3 u

large. This is impossible.

Case II. |p| = 3, xn ^ x_. Same as above as long as

x,,x,.,... remain different from x~. If x. = x3, for some

i >. 4, then with respect to F' = F - (x±,x1) + (Xq.x^ and

p' = (xi,x1),(x2,x1),(x2,x3) we are in Case I.

Case III. |p| = 2t+l, t> 2, xQ = x2t+1. As in Case I

there exists (x2t+2,xl^ G F and let F'» p' be <tefined as

F' =F- (x2t+2»xl^ + ^xo»xl^» F' =P+ ^X2t+2,X1) ~ (xQ,x;L).

P' is an alternating chain and (x2t+2,X2t+l^ ^ P'# Tt follows

that (x2t+2,X2t+l^ G F' and thUS ±Z belongs to F and
k~(x„ ,) > 2. A contradiction is ahead as in Case I.

v 2t+l —

Case IV. |p| = 2t+l, t >^ 2, x $ x2t+l* It: can be reduced

to Case III or a contradiction otherwise (as in Case II).

COROLLARY 2.2. Let <(d ,d~)) be graphical. Suppose ((k±,k~))
+ + - -

is graphical and d. >_ k , d >^ k , 1 £ i £ n and either

(d.-k.) or (d.-k.) is a sequence of constant terms. Then a di

graph G with degree sequence ((d.,d.)) and a ((k ,k))-factor

exists.
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Example 4. In the following we have the sequences d, k, d-k all

graphical and yet there is no graph with degree sequence d and

having (k.,k~)-factor. The sequence (k.) vary only by 1.

d = ((4,4),(3,3),(2,2),(2,2),(1,1))

k = ((1,1),(1,2),(1,0),(0,0),(1,1))

d-k- ((3,3),(2,1),(1,2),(2,2),(0,0))

Fig. 8. Digraphs with degree sequences d, k, d-k respectively
There is a unique digraph with degree sequence d-k.

Note. In contrast with the undirected case the shortest alter

nating path in directed case can be of arbitrary length and thus

we don't use them in the proof.

Corresponding to Theorem 1.6, we have

THEOREM 2.3. Let F be a given digraph. There exists a digraph

.+ .-G with degree sequence <(d.,d")) and G containing F, if

and only if for every subdigraph F' C F the sequence

(@*-k*d~-k~)) is graphical where <(k±,k~)) is degree sequence

of F'.

Proof. The necessity is trivial. We shall prove sufficiency by
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induction on the number of arcs in F.

1 ) Let F = (x,y) and ((k ,k~)) be the degree sequence of ?.

Suppose there is no digraph G 3 F. We shall obtain a contradiction.

5~** + —
w . , H with degree sequences ((d.,d )),

+ + — —((d -k ,d -k )), respectively, such that |E | is maximum in

the corresponding coloring; c(x,y) = b or w. It is easy to

see that there is an alternating chain P from x to y such

that PCE U E , (x,y) £ P (because that would imply P tra

verses back to x by an even cycle whose arcs are alternately

red and blue and this in turn implies that |E | is not maximum).
8

But then C = P U (x,y) is an even cycle. Perform a suitable

recoloring of C such that c(x,y) = g or r. We obtain a

digraph G D F.

2 ) Suppose the theorem is true for all digraphs with m-1 or

less arcs and F has m arcs. Let (x,y) be an arc of F;

write Fn = F-(x,y). Thus there are digraphs G, H containing

Fn with degree sequence ((d.,d )) for G and for H, x (y)

has outdegree (indegree) one less than that in G. Consider a

pair of G, H such that in the associated coloring of G, H-F ,

|E | is maximum. Without loss of generality we can assume that

c(x,y) ^ r, g. There exists an alternating chain P C (E -Frt) U E,
— r U b

from x to y since for every vertex v., |E (v )-F | >^

|E,(v )|, |E~(v )-F | >_ |E~(v )| with strict inequality respec

tively for x and y. As before (x,y) (£ P. There exists a

recoloring of the even cycle C = P U (x,y) such that c(x,y) = r



or g. Then we have a digraph G 3 F.

For digraphs one can state and prove theorems as in (1.7),

(1.8). For example the following is true.

+ — + + — —
COROLLARY 2.4. Suppose ((d ,d )>, ((k -d ,k -d )) are graphical

sequences where k (or k ) are same for all i and k., k £

n-1. Then there are disjoint representing digraphs for them.
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