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ABSTRACT

Three algorithms for computing optimal matroid intersections are

presented: an algorithm for computing an intersection of maximum

cardinality, a primal-dual algorithm, and a primal algorithm for

computing an intersection of maximum total weight, given a weighting

of the elements of the matroids. Each of the algorithms is shown to

be computationally efficient, in the sense that the number of computa

tional steps is bounded by a polynomial function of the number of

elements, provided there exists a subroutine for testing independence

of a given subset of elements which is efficient in the same sense.
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I. INTRODUCTION

1. Matroid Intersection Algorithms

Matroids are combinatorial structures which abstract the notion

of linear independence. A set that is "independent" in each of two

matroids we call an "intersection" of the two matroids.

The purpose of this paper is to present algorithms for computing

optimal matroid intersections. Part I contains definitions and back

ground material. Part II presents an algorithm for computing an inter

section that is of maximum (finite) cardinality. Part III presents an

algorithm for computing an intersection that is of maximum total weight,

given a weighting of the elements of the matroids. This algorithm is

of the "primal-dual" variety, employing both primal and dual linear

programming variables. In Part IV a simpler "primal" algorithm is

presented, in which the dual variables are dispensed with.

Each of the algorithms is computationally efficient, in that the

number of computational steps required is bounded by a polynomial

function of the number of elements of the matroids, provided there

exists a subroutine for testing independence of a given subset of

elements which is efficient in the same sense.

2. Definitions

A matroid M = (E,,Q) is a structure in which E is a finite set of

elements and y is a nonempty family of subsets of E (called independent

sets) satisfying the axioms:

(2.1) If IG ,Q and I' C I, then I1 € ,().



(2.2) If I and I _ are sets in ,Q containing respectively p and

p+1 elements, then there exists an element e *= I .-I such
F p+1 p

that I +e G ,Q.

(We use I + e and I - e to denote I U {e} and I - {e} respectively.

We also denote the symmetric difference of two sets by "@", and the

number of elements in I by |I|.)

A set which is not independent (i.e. not in the family I) is said

to be dependent. A minimal dependent set is called a circuit. It is

a basic theorem of matroid theory that if I is independent and I + e is

dependent, then I + e contains precisely one circuit. If a subroutine

exists for testing for independence, then the unique circuit in I + e

can be discovered by removing one element at a time from I + e and

testing for independence. If the removal of an element produces inde

pendence, the element is returned to the set. The subset remaining at

the end is the unique circuit.

Let A be an arbitrary subset of E. The rank of A, denoted r(A), is

the number of elements in a maximal independent subset I C A. (It is a

basic theorem of matroid theory that all such maximal subsets have the

same cardinality.) The span of A, denoted sp(A), is the (unique) maximal

superset of A having the same rank as A. Intuitively, the span of A

is the set composed of A joined with all elements e which form circuits

with subsets of A. Clearly, if A is independent and a subroutine exists

for testing for independence, it is possible to compute the span of A

by testing A + e, for all e £ A. It is assumed in the statement of the

algorithms that subroutines are available to test a given set for

independence.

-2-



3. Examples of Matroids

Let E be the columns of an m * n matrix C, and let ,y be the family

of linearly independent subsets of columns. The matroid M = (E, -y) is

said to be the matroid of the matrix C; such a matroid is said to be

matric.

Let E be the set of arcs of a linear graph G, and let ,y be the

family of subsets of arcs which contain no cycles, i.e., subsets which

comprise trees or "forests." The matroid M = (E,,()) is said to be the

matroid of the graph G; such a matroid is said to be graphic. Every

graphic matroid is matric, as can be seen by considering the node-arc

incidence matrix with arithemetic in the field of two elements.

Let Q = {q.;i = 1, ..., m} be a family of (not necessarily distinct)

subsets of a set E = {e.;j = 1, ..., n}. The set T={e..v, ..., e.. .},

0 £ t <_ n is called a partial transversal of Q if T consists of distinct

elements in E and if there are distinct integers i(l), ..., i(t) such

that e. >, x e q./ix for k = 1, ..., t. The set is called a transversal
j(k) ni(k)

or a system of distinct representatives (SDR) of Q if t = m.

Now if ,y is the family of partial transversals of Q, then M =

(E,,()) is a matroid. Alternatively, if ,y is the collection of subfamilies

of Q that have transversals, then M = (Q,,()) is a matroid. As Edmonds

and Fulkerson [5] have commented, M and M, both belong to the same

abstract class of matroids, because the roles of Q and E are symmetric.

Either type of matroid is called a transversal matroid.

Let P = {p.;i = 1, ..., m} be a partition of the set E into m blocks

or equivalence classes. Let d,,d_, ..., d be given nonnegative integers.
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Let ,() be the family of all subsets I of E such that

|l H p. | <_ d., (i = 1, 2, ..., m).

Then M = (E, y) is a partition matroid. Ordinarily, we assume that

d, = d« = ... = d =1. Every partition matroid is a transversal
12 m

matroid.

4. Examples of Matroid Intersections

Let M, = (E,,(L) and M = (E, ,^2) be two given matroids. A subset

1^1 n i is said to be an intersection of M and M_. Below we give

some examples of matroid intersections.

Let C be an m x n matrix. Suppose we draw a horizontal line

through C so that there are m- rows above the line and m„ below. We

can speak of a subset of the columns as being linearly independent both

"above the line" and "below the line." In other words, the appropriate

projections of those columns as vectors are independent in an "upper"

m1-dimensional space, and also in a "lower" m.-dimensional space. Any

such subset of columns is a matroid intersection.

Suppose two graphs G. and G„ are assembled from the same set of

arcs E. A subset I C E is a matroid intersection if it is cycle-free

in both G- and G„,

Let G be a bipartite graph in which each arc extends between a

node in a set S and a node in a set T. A matching in G is a subset

of the edges, no two of which meet at the same vertex. Let M be a

partition matroid which has as its independent sets all subsets of
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arcs, no two of which meet at the same node of S. Let M- be a parti

tion matroid which has as its independent sets all subsets of arcs, no

two of which meet at the same node of T. Every matching is an inter

section of matroids M and M„, and vice versa.

Of course, the two matroids of an intersection problem do not have

to be the same type. For example, let G be a directed graph. Let M.

be the graphic matroid of G (for which the orientations of the arcs are

irrelevant). Let M„ be a partition matroid which has as its independent

sets all subsets of arcs, no two of which are directed into the same

node. An intersection of these two matroids is a union of directed trees

rooted from a point. Edmonds [2] has presented a particularly simple and

elegant algorithm for finding a maximum-weight rooted tree in a given

weighted directed graph.

In addition to the matroids M and M. above, we can define a matroid

M~ which has as its independent sets all subsets of arcs, no two of which

are directed out of the same node. One can then contemplate the problem

of finding a maximum weight set of arcs, subject to the restriction

that the arcs are independent in all three matroids. Unfortunately,

the methods described in this paper are incapable of coping with the

problem of finding optimal intersections of three or more matroids; if

they were, one could solve the traveling salesman problem, which can be

shown to be equivalent to finding a maximum weight intersection of M.,

M_ and M~.
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II. CARDINALITY INTERSECTION ALGORITHM

5. Augmenting Sequences

The proposed algorithm starts with any intersection (e.g. the null

set) and proceeds to augment it through the mechanism of "augmenting

sequences" until an intersection of maximum cardinality is attained.

This procedure is exactly analogous to that used for solving maximal

network flow problems, assignment problems, etc. The concept of an

augmenting sequence corresponds exactly to that of a flow augmenting

path.

Let M = (E,,(/.), M« = (E,.(L) be two matroids, and let sp , sp

denote spans in M , M_. Let I be an intersection of M , M . Let S =

(e-jje.,..., e ), where m is odd, be a sequence of distinct elements in

which e. £ E - I f°r i odd and e. £ I for i even. Let S. = {e, , e„,
i i l 1* 2*

..., e.}. S is said to be an augmenting sequence with respect to I if

(i) i © s1 e .gl

(2) sp1(I © Si) =sp1(I © Sx), for all odd i.

(3) sp2(I © S.) = sp2(I), for all i<m.

(4)1 © sme ,92.

It follows that I © Si € ,Q for all i, I © S. e ,Q2 for all

even i, and I © S. contains a unique M -circuit for all odd i < m.

Most importantly, I © S is an intersection with one more element than I
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Theorem 5.1

Let I, , I, . be intersections with k, k+1 elements respectively.

Then there exists an augmenting sequences S C I, © I, . with respect
k+1

to I, .
k

Proof:

Proof is by induction on the number of elements in I © I.

Clearly S = I. © I, . is an augmenting sequence if |l © I | = 1.

Now suppose |I, © I, | = p > 1. By matroid axiom (2.2), there

must exist some element e. € I... - I, such that I, © e. *= <y. . If
1 k+1 k k w 1 1

I, + e. is not independent in M^, there exists a unique M_-circuit

C C I + e. . Let e„ be any element belonging to C - e., I' = I. + e;.-e2

is an intersection, and |I' © I | = p-2. By inductive hypothesis,

there exists an augmenting sequence S' Ci' © I C i © i with

respect to I.1. Let S1 = (e', e' ..., e'). There are two possible
k. 1 z m

cases (the proof of which we leave to the reader):

Case 1. There is some element e1 £ I. , such that I. + e1 €= .Q,.
p k k p -^1

Let e' be the element of S' with largest index for which this is the
P

case. Then S = (e', e', ..., e') can be shown to be an augmenting
p p+1 m

sequence with respect to I, .

Case 2. There is no such element e'. Then S = (e., e„, eT, e'

..., e1) is an augmenting sequence with respect to I,.
m k

The following corollary follows immediately from Theorem 5.1.

Corollary 5.2

An intersection I contains a maximum number of elements if and

only if there exists no augmenting sequence with respect to I.
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6. Labelling Procedure

Augmenting sequences are constructed by a labelling procedure not

unlike that used for constructing flow augmenting paths in network flow

problems, etc. What makes the procedure efficient is that the successor

of a given element e. in an augmenting sequence does not in any way

depend upon its predecessors, but only of e. itself.

At the start, no elements of E are labelled. Then each element

1 +
in E - sp (I) is given the label <\> . (If there are no such elements,

the existing intersection I is clearly of maximum cardinality.) The

symbol "<j>" indicates that the element in question is the first element

of whatever augmenting sequence it may be found to be a member of. The

"+" indicates that the element in question is to be added to I; a "-"

sign indicates that the element is to be removed.

Additional elements are labelled by "scanning" existing labels.

A "+" label on e. is scanned by first determining if I + e. is indepen

dent in M_. In this case an augmenting sequence has been discovered,

with e. as the final element. If I + e. is dependent, the unique circuit

C C I + e. is found, and the label i is given to each unlabelled element

in C.

A "-" label on e. is scanned by giving each unlabelled element e

in sp (I) - ap (I - e.) the label i .

The labelling procedure terminates when no further elements can

be labelled or when an augmenting sequence is discovered, as described

above. The complete augmenting sequence is obtained by "backtracking."

I.e., if the label of the last element e. is "j " the second-to-last
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element in the sequence is e.. If the label of e. is "k ", the third-

to-last element is e, , etc. The initial element of the sequence, of

course, has the label <J> .

The reader can verify that the rules of labelling construct

augmenting sequences in accordance with the definitions in the previous

section.

7. Algorithm for Cardinality Intersection Problem

Step 0 (Start)

Let I be any intersection of M , M (possibly the null set). No

elements are labelled.

Step 1 (Labelling)

1.0 Give each element in E - sp (I) the label <f> .

1.1 If there are no unscanned labels, go to Step 3. Otherwise, find

an element e. with an unscanned label. If the label is a "+" label (i.e
l

e. f I) go to Step 1.2; if it is a "-" label go to Step 1.3.

1.2 Scan the "+" label as follows. If I + e. is independent in M , go

to Step 2. Otherwise, identify the unique M_-circuit C in I + e. and

give each unlabelled element in C the label "i ". Return to Step 1.1.

1.3 Scan the "-" label as follows. Give each unlabelled element in

11 +
sp (I) - sp (I-e.) the label i . Return to Step 1.1

Step 2 (Augmentation)

2.1 An augmenting sequence S has been discovered, of which e.(found in
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Step 1.2) is in the last element. The elements in S are identified by

"backtracking". I.e. if the label of e. is £ , the second-to-last

element is e«. If the label of e is k , the third-to-last element is

+
e, , etc. The initial element in the sequence has the label <j> .

2.2 Augment I by adding to I all elements in the sequence with "+"

labels and removing from I all elements with "-" labels. Remove all

labels from elements. Return to Step 1.0.

Step 3 (Hungarian Labelling)

No augmenting sequence exists and I is of maximum cardinality.

The labelling is "Hungarian", and can be used to construct a minimum-

rank covering dual to I. Halt.

8. Intersection Duality Theorem

The cardinality intersection computation provides a constructive

proof of a duality theorem for matroid intersections. This theorem is

of the min-max variety, similar to the max flow-min cut theorem of net

work flows and the Konig-Egervary theorem, of which it represents a

proper generalization.

We say that a pair of subsets E_, E_ of E is a covering of E if

L U E = E. With respect to a given pair of matroids M , M2» we say

that the rank of a covering Q= (E ,E2) is r(£)= r (E^ +r (E2).

Lemma 8.1

For any covering p. and any intersection I, r(£:•)> |l|.
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Proof:

Let Ix =IHex, and I2 =IH(E^E^. Clearly \\\ ±r1^)
and |l |<r2(E2) which implies |l| <llj +|l2| <r(£).

Matroid Intersection Duality Theorem [3]

For any two matroids M , M?, the maximum cardinality of an inter

section is equal to the minimum rank of a covering.

Proof:

By the lemma, the rank of a covering cannot be less than the

cardinality of an intersection. The algorithm enables us to construct

a covering whose rank is equal to the cardinality of an intersection,

as follows.

At the conclusion of the algorithm (when the labelling has become

"Hungarian"), let the set I contain the elements of I that are labelled
Li

1 2and I.T contain those which are not. Then E_ = sp (I..), E_ = sp (I )

are the sets of the desired covering.

To see that E., E. is a covering, suppose that there existed an

1 2
element e that was not a member of either sp (I ) or sp (I ). If

U Li

2
e ^ sp (I ), it cannot be labelled, because all such elements are in

2
sp (I ), by the construction in Step 1.2. But if e is not labelled,

e £ sp (I-e1), for all e1 £ I_, also by the construction in Step 1.2.

But this implies that e € sp (I ), contrary to assumption.
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9. Computational Complexity

We wish to establish an upper bound on the length of the computation,

as a function of n, the number of elements in E. We assume that a sub

routine for independence testing requires c(n) steps.

Clearly there can be at most n augmentations. Let us establish a

bound on the length of the computation for each augmentation.

Each element is scanned at most once. Hence there can be at most

n such scanning operations. There are two types of scans. The "+" scan

of Step 1.2 requires the testing of I + e. for independence, which is

c(n) in length, and, usually, the identification of a circuit in I + e..

This requires no more than 0(nc(n)) steps. The "-" scan of Step 1.3

requires the computation of sp (I-e ), which requires no more than

0(nc(n)) steps.

The "backtracking" required to construct an augmenting sequence

is 0(n) in length, and all other operations required by each augmenta

tion are of this order. Hence, the total number of computational steps

2
per augmentation is 0(n c(n)), resulting from n scanning operations

with 0(nc(n)) steps per scan.

We conclude that the overall complexity of the computation is

0(n c(n)). Thus, if c(n) is a polynomial function of n, the overall

computation is polynomial bounded.

III. PRIMAL - DUAL ALGORITHM FOR WEIGHTED INTERSECTIONS

10. Linear Programming Formulation

With respect to a given matroid M = (E,.y), we say that a set
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E' C E is self-spanning if sp(E') = Ef.

Let A be an incidence matrix of self-spanning sets and elements

of E. In other words, each row i of A corresponds to a self-spanning

set of the matroid (the indexing of these sets being arbitrary) and

each column j corresponds to an element e.. We set
J

ai. = 1, if e. belongs to self-spanning set i,

= 0, otherwise.

Let r = (r.,r0, ..., r ) be a vector, where r. is the rank of
1 2 m i

self-spanning set i. It has been shown by Edmonds [3,4] that the

extreme points of the convex polyhedron defined by the inequalities

Ax < r

x > 0

are in one-one correspondence with the independent sets of M. That is

to say, if x is an extreme point, then each component x. is either 0

or 1, where x. = 1 if element e. is a member of the independent set

identified with the extreme point, and x. = 0, if it is not.

Let A, B be incidence matrices and let r, s be vectors of ranks of

self-spanning sets of two given matroids M , M over the same set of

elements. A surprising result of Edmonds [3] is that the extreme points

of the convex polyhedron defined by the inequalities

Ax _< r

Bx <_ 3

x > 0
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are in one-one correspondence with the intersections of M and M .

The primal-dual algorithm described below provides a constructive

proof of this theorem of Edmonds. That is, it is shown that, regardless

of what element weights w = (w ,w„, ..., w ) may be chosen, the linear

programming problem

maximize wx

subject to

Ax £ r (10.1)

Bx < s

x > 0

has an optimal solution in zeros and ones.

11. Duality and Orthogonality Relations

The primal problem is an indicated in (10.1). The dual problem is

minimize ru + sv

subject to

ATu + BTv >_ w (11.2)

u,v _> 0,

where each dual variable u. is identified with a self-spanning set of

M1 and v, with a self-spanning set of M_.

Orthogonality conditions necessary and sufficient for optimality

of a pair of feasible primal and dual solutions are

x. > 0 =» (ATu + BTv). = w. (11.3)
j j j
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u. > 0 => (Ax.) = r (11.4)

vk > 0 => (Bx)k = sk, (11.5)

The algorithm begins with the feasible primal solution x. = 0, for

j = 1, 2, ..., n (i.e. I = <j>), and with the feasible dual solution in

which each dual variable u. or v, is zero, except u_., the dual variable
IK. E*

identified with the self-spanning set E. We set u_ = max {w.}. Thus,
E 1

at the beginning of the computation the only orthogonality condition

which is violated is

u£ >0=* |l| =r^E). (11.6)

The algorithm proceeds in stages. At each stage either the primal

solution is revised by augmenting the existing intersection, or the

values of the dual variables are revised. At all times, both primal

and dual feasibility are maintained. Moreover, at each stage the only

orthogonality condition which is not satisfied is (11.6). After a

finite number of stages (in fact, a number bounded by a polynomial

function in n, the number of elements in E), the condition (11.6) is

also satisfied, and the primal and dual solutions existing at that point

are optimal.

For a given pair of primal and dual solutions, the labelling routine

of the cardinality intersection algorithm is applied, in an attempt to

augment the primal solution. Clearly, the use of any augmenting sequence

will result in a new feasible primal solution. However, the labelling
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routine must be modified in such a way that the only augmenting sequences

which can be discovered are those for which all the orthogonality condi

tions except (11.6) continue to be satisfied.

If the application of the labelling routine, as restricted, does

not result in the discovery of an augmenting sequence, then the dual

solution is modified. The change in the dual solution must be such as

to maintain dual feasibility, maintain satisfaction of all orthogonality

conditions except (11.6), and also provide some progress toward the

termination of the algorithm with optimal primal and dual solutions.

As a consequence of the fact that (11.6) is the only unsatisfied

orthogonality condition, the intersection existing at any intermediate

stage of the computation is of maximum weight, relative to all inter

sections containing |l[ or fewer elements. For suppose there were an

additional constraint of the form

£ "j i k>

and we were to incorporate this constraint with the objective function

via a Lagrange multiplier X. Then an intermediate solution is easily

shown to be optimal for X = uE and therefore for a value of k equal to

Ul.

12. Form of Dual Solution

At each stage of the computation, no more than 2n dual variables

are permitted to be nonzero. These nonzero variables except u£ are

identical with spans of subsets of I in two different families-(Xand^V
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Specifically, let

qi- {u0, ur .... y

and

C\). {v0, v , .... v } ,

where

uo =♦• ui c ui+r UP " l>

and

vo =*- \c\+i> V1"

Associated with subsets U. and V, are dual variables u. and v, , where
1 k 1 k

1 2u is identified with the self-spanning set sp (U ) and v with sp (V ).
1 1C K

Suppose the primal solution is augmented by the application of the

augmenting sequence S = (e ,e , ..., e ). Then the families ^\{ and -\)

are revised as follows: For j = 3, 5, ..., m, e. replaces e. . in each

of the subsets U. in which e. . is contained. For i = 1, 3i j-1 j > , ..., m-2,

e. replaces e... in each of the subsets V, in which e.,- is contained.
J J+l k j+1

If u > 0, then p is incremented by one. If v > 0, then q is incre-
P q

mented by one. Then U and V are each set equal to I and u and v
P q P q

are set to zero.

In no case does this revision of the families -\\ and ~\j affect

the dual solution. (No dual variables are changed in value.) However,

unless the augmenting sequence is of a special type, a proper relation

will not be maintained between the sets U., V. and the dual variables
l k
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1 2
u., v, . Specifically, it is necessary that sp (U.) and sp (V ) are

unaffected by change in membership of U. and V, . This is achieved by

a modification of the labelling procedure.

13. Modification of Labelling Procedure

The labelling procedure is modified in two ways. First, no

element is given a label, unless it belongs to the set

E = {e.|(Au + B v). = w.}.
J 3 3

This insures that any augmenting sequence discovered by the labelling

procedure will maintain satisfaction of the orthogonality conditions

(11.3).

Second, we modify the rules for scanning as follows. Suppose e.

is a labelled element of I. When e. is scanned, we find the smallest

*

set U. of which e. is a member, and label only elements of E which
i 3
11 1 1

are in sp (U.) - sp (U.-e.) C sp (I) - sp (I-e.). This insures that

any augmenting sequence discovered will maintain satisfaction of the

orthogonality conditions (11.4) except, of course (11.6). Moreover,

when the subsets in Ma. are revised, they have the same spans as before.

Similarly, suppose e. is a labelled element not in I. We determine

if I + e. contains a circuit in M„. Of course, if it does not, an
3 2

augmenting sequence has been discovered. If I + e does contain an

M9-circuit C, we find the smallest set V of which e. is a member, and
z k j

label only the elements in C - V, ,. This insures that any augmenting

sequence discovered will maintain satisfaction of the orthogonality
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conditions (11.5). Moreover, when the subsets inQj^are revised, they

will have the same spans as before.

14. Revision of Dual Solution

If the labelling procedure, as modified above, terminates without

the discovery of an augmenting sequence, then the dual solution is

revised. This is done as follows.

First we create additional sets in the familiesQtand^-V. Let I
Li

and I denote the subsets of labelled and unlabelled elements of I.

If, for i = 1, 2, ...,p, some, but not all, of the elements in U. -

U. 1 are labelled, add one to the index of each of the sets U., U. ,,
1_J- l l+l

..., U , and then set U. = U. n U (u. H i) and u =0. I.e. "inter-
p 1 1-1 i u i

polate" a new set between U. .. and (the old) U.. Similarly, if for

k=l, 2, —, q, some, but not all, of the elements in V, - V, , are
k k-1

labelled, add one to the index of each of the sets V, , V, .,, .... V ,
k' k+1 ' q

and then set VR = V U (v fl i ) and v, = 0.

Let 6 be a positive number yet to be determined. The dual variables

are changed as follows. U_, is decreased by 6. If the elements of U -
E p

U , are unlabelled, u is increased by 6. If, for i = 1, 2, ..., p-1,

the elements of U. - U. . are labelled (unlabelled) and those of U , -
i l-l i+l

U are unlabelled (labelled), then U. is decreased (increased) by 6. If

the elements of V - V . are labelled, v is increased by 6. If for
q q-1 q J

k = 1, 2, ..., t-1, the elements of Vk - Vk-1 are labelled (unlabelled)

and those of Vk+1 - Vk are unlabelled (labelled), then V is increased

(decreased) by 6. Otherwise, no dual variable is changed in value.
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Now consider, for each element e., the effect of these changes in

T T
the dual variables on (A u + B v).. If there is a subset U. such that

J i

e. £ sp (U.), let U.,.v be the smallest such subset. Exactly one of

the following cases must hold:

Case E : e. £ E - sp (I), or else e. £ E - sp (I) and the elements

in U, ... -U#/.N - are labelled.
i(j) i(j)-l

Case E : e. ^ E - sp (I) and the elements in U./lX - U.,.. , are
u j r i(j) i(j)-l

unlabelled.

2
If there is a subset V, such that e. *= sp (V, ), let vv/.\ be the smallest

such set. Exactly one of the following cases must hold:

0 2 2
Case E : e. *= E - sp (I), or else e. ^ E - sp (I) and the elements

v j r j

in V, ... - V. /#v . are unlabelled.
k(j) k(j)-l

+ 2
Case E : e. £ E - sp (I) and the elements in V, ,.. - V. ,.x . are

v j r k(j) k(j)-l

labelled.

If e. *= I then either the pair of cases (K , E ) or (E , E ) hold,
j u v u v

T T
Either way, the net change in (A u + B v). is zero, and the orthogonal

ity conditions (11.3) continue to be satisfied.

If e, ^ I, one can examine each of the situations (E , E ), (E ,

+ 0 +
E ), ..., (E , E ) to see when each applies. For example, suppose

the pair (E , E ) applies. Then e. cannot be labelled, because if it
r u v 3

were, e. would be a single-element augmenting sequence (and if there

were an augmenting sequence discovered by the labelling procedure, no

change in the dual variables would be called for). The fact that e. is

T T
unlabelled implies that (A u + B v) . > w#. Tf <S is chosen to be no
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T T T Tgreater than (A u + B v) - w , then the net decrease in (A u + B v)

will be such that dual feasibility condition (11.3) will continue to

be satisfied.

T T
One can verify that if e. is labelled (and therefore (A u + B v).

J j

= w.), it follows that one of the pairs of cases (E , E ), (E , E )
2 uvuv

T T
applies. If e. is unlabelled and (A u + B v). = w. then either one

3 3 3
0 +

of the preceding pairs of cases or (E , E ) applies. Thus, in all

cases, (11,3) continues to be satisfied.

Suppose e. is unlabelled, but would be labelled except for the

fact that (A u + B v). > w. (i.e. e. ? E ). Then there is some labelled

element e.. £ I such that e. ^ sp (U./J|N) - sp (U./..V - e.), where
3 3 i(j ) i(j ) 3

U...f. denotes the smallest set U. containing e.,. It follows that

case E applies, and (A_u + B_v). is either decreased or remains the
u T T j

same. (Actually, if (A_u + BTv). is unchanged, it is because E applies.

in which case there is nothing to be gained by decreasing (A_u + B_v).,
.3

because all the elements of I which could be labelled as a result of

labelling e. are already labelled.)

Finally, we note that the only variables which are decreased in

value are those which are identified with sets U. and V, existing before

the "interpolation" of new sets, as described above. Thus, if all of

the dual variables (except possibly u and v ) identified with sets in

-(( and in ~\J are nonzero at the time the labelling computation is

carried out, then there is a strictly positive value which can be

assigned to 6. Let A denote the set of dual variables, other than
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Up, which are to be decreased in value by the rules described above.

T T
The set of elements for which (A u + B v). will be decreased is

— + - 0
precisely the set E - E = E He. The largest value of 6 we are
r J u v u V

free to choose is

6 = min{u_, 6 , 6 },
E u,v e

where

and

6 = min A
u,v

6 = min{(ATu + BTv). -w.|e. G E -E }
e J 3 J u v

Any sets U., V, whose dual variables u., v, are reduced to zero

are removed from the familiesQj,Ai before the labelling procedure is

applied again at the next stage. (This does not apply to U and V

for which u and v may remain at zero.) The elimination of these
p q

sets may enable additional elements to be labelled, according to the

modified rules of the labelling procedure.

15. Primal-Dual Algorithm for Weighted Intersection Problem

Let w, = (ATu + B v). - w.
• j 3 3

Step 0 (Start)

Set I = 0,

u„ = max{w.},

E 5 J

U = {U.} = {0},
o
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V = {V } = {0},
o

w. = u„ - w.» j = 1» 2, ..., n,
J E J

* —
E = {e. w. = 0}

3 3

Step 1 (Labelling)

*

1.0 Give each element in E - S (I) the label <J> .

1.1 If there are no unscanned labels, go to Step 3. Otherwise, find

an element e. with an unscanned label. If the label is a "+" label
l

go to Step 1.2; if it is a "-" label go to Step 1.3.

1.2 Scan the "+" label as follows. If I + e is independent in M_,

2
go to Step 2. Otherwise, find the smallest set V, such that e. e sp (V ),

«C IK

identify the unique M -circuit C in I + e. and give each unlabelled

element in C - V. _ the label i . Return to Step 1.1.

1.3 Scan the "-" label as follows. Find the smallest set V.f of which
l1

* 1 1
e. is a member, and give each element of E in sp (V.,) - sp (V., - e.)

+
the label j . Return to Step 1.1.

Step 2 (Augmentation Revision of Primal Solution)

2.1 An augmenting sequence S has been described, of which e. (found

in Step 1.2) is the last element. The elements in S are identified by

"backtracking." Augment I by adding to I all elements in the sequence

with "+" labels and removing from I all elements with "-" labels.
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2.2 Suppose, without lose of generality, the augmenting sequence S =

(e.,e«,...,e ). Revise the familiesQJ and ^V as follows: For j = 3,

5, .... m, replace e. , by e. in each of the subsets U. in which e. ,
J-1 3 1 J-l

is contained. For j = 1, 3, ..., m-2, U. replaces e by e in each

of the subsets V, in which e#11 is contained. If u > 0, increment p
k j+1 p

by one. If v > 0, increment q by one. Set U = V =1, and u = v
J q qq qq

= 0. Remove all labels from elements. Return to Step 1.0.

Step 3 (Hungarian Labelling/Revision of Dual Solution)

3.1 Let I and I|T denote the subsets of labelled and unlabelled elements

of I. If for i = 1, 2, ..., p, some, but not all, of the elements in

U - U. are labelled, add one to the index of each of the sets U.,

U ,,..., U and then set U. = U. . U (U. H i ) and u. = 0. If for
i+l p l l-l 1 u 1

k= 1, 2, ..., q, some but not all, of the elements in Vk - V are

labelled, add one to the index of each of the sets Vk, vk+1» •••» V ,

and then set VR = Vk_1 U (vfe H i^) and vk = 0.

3.2 Form the sets A , A~" as follows. If the elements in U - U are

unlabelled, u G A+. If for i=1, 2, ..., q-1, the elements of U± -

U. are labelled (unlabelled) and those of Ui+1 - \J± are unlabelled

(labelled) then u. G A~ (u± £ A ). If the elements of v -v ± are

labelled, v e A+. If for k = 1, 2, ..., t-1, the elements of V -
q k

V are labelled (unlabelled) and those of Vk+1 - VR are unlabelled

(labelled),v G A+ (vk ^ a"). Otherwise no dual variable u^, or vk
+

belongs to either A or A .
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3.3 Form the set E~ as follows. For j = 1, 2, ..., n: If e. 6 E -
u J 3

sp (I), then e. *= E . Otherwise, find the smallest subset U.,.N in -\J
^ 3 u 1(3)

such that e. G sp (U.,.J. If the elements in U.,.. - U./.x n are
3 i(j) i(j) 1(3)-!

labelled, then e. ^ E . Form the set E as follows. For j = 1, 2,
' 3 u v

..., n: If e, G sp (I), then find the smallest subset V, ,.x in ^V such
j ^(3)

2
that e. G sp (V, /.x). If the elements in V, ... - V, /#N . are labelled,

3 k(3> k(j) k(3)-l

then e. £ E .
3 v

3.4 Set 6 = min{u_, <5 , 6 }, where
E u,v e

6 = min A ,
u,v

— 1 — +
<S = min{w. e. € E - E } .
e 2 3 u v

Set u. = u. - 6, v. = v. - 6, for all u., v. £ A , and u. = u. + 6,
iikk ik 11

v. = v, +6, for all u., v, £ A . Set w. = w. - 6, for all e. £ E -
k k ' 1 k j J J"
+ - - _ + -
E and w. = w. + 6 for all e. £ E - E . Set u_ = u„ - 6. If u„ = 0,

v 2 3 3VU EE E

halt (the primal and dual solutions are optimal). Otherwise, remove

from Qj. andQjany sets U. and V , except U and V , for which u or v,

is zero and renumber the sets in -[( and -\) accordingly. Set E =

{e.lw. = 0}. Return to Step 1.0.
3 3

16. Computational Complexity

There can be at most n augmentations. Between each augmentation,

there may be many revisions of the dual variables, and we must estimate

the number of such revisions.

Each time the values of the dual variables are revised, either an
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unlabelled element goes into the set E and becomes labelled or at least

one dual variable is decreased to zero. The former can occur at most

n times before either augmentation or termination must occur. The

latter can occur at most n times in succession, by the following

reasoning. There are at most 2n nonzero dual variables, at most n of

which are decreased in value with each revision of the dual variables.

If no new elements are labelled, the same dual variables are decreased

in value the next time a revision is made. This can be repeated at

most n times in succession before u goes to zero and termination occurs.

2
The conclusion is that at most n revisions of the dual variables

can occur between augmentations. Each such revision occasions a relabel-

2
ling and rescanning of all the elements, which requires 0(n c(n)) steps.

(Perhaps the algorithm could be modified to avoid some duplicated effort.)

The arithmetic and bookkeeping operations are dominated by the labelling

and scanning operations. Accordingly, each augmentation may require as

4
many as 0(n c(n)) steps.

4
Since there are at most n augmentations and 0(n c(n)) steps per

augmentation, we conclude that the overall complexity is 0(n c(n)).

IV. PRIMAL ALGORITHM FOR WEIGHTED INTERSECTIONS

17. Weighted Augmenting Sequences

The "primal" algorithm is analogous to an algorithm of Busacker and

Gowan [1] and of Jewell [6] for computing minimum-cost network flows.

Their procedure is based on the following theorem (which we state without

repeating definitions).
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Theorem 17.1

Let X be a minimum-cost flow of value v. Then the augmentation of

X by value e along a minimum cost augmenting path yields a minimum-cost

flow of value v + e.

The matroid algorithm proceeds by computing maximum-weight inter

sections containing successively larger numbers of elements. Having

obtained I, , a maximum-weight intersection with k elements, I. is
k k+1

obtained from I, by constructing a "maximum-weight augmenting sequence".

This represents a generalization of the network flow algorithm in

exactly the same sense that the matroid intersection problem is itself

a generalization of the minimum-cost network flow problem (or, more

precisely, the maximum-weight bipartite matching problem).

It is believed that this algorithm is conceptually simpler, and

possibly more efficient, than the primal-dual algorithm presented above.

For any subset E! C E we let w(E') denote the sum of the weights

of the elements in E. I.e.

„(£•)= £ V
e. e E»

3

Given an augmenting sequence S with respect to an intersection I, we

define the weight of S to be

A(S) = w(S-I) - w(S H I).

Clearly,

w(T ® S) = w(T) + A(S).
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The matroid generalization of Theorem 17.1 is as follows:

Theorem 17.2

Let I, be a maximum-weight intersection with k elements and let S

be a maximum-weight augmenting sequence with respect to I, . Then

L © S is a maximum-weight intersection with k+1 elements.

Proof:

At any given point in the primal-dual computation, the intersection

I, existing at that point is of maximum weight with respect all inter-

sections containing |l, | = k elements. I, is augmented by means of an

augmenting sequence S to obtain a maximum-weight intersection with k+1

elements. Such a sequence S must be a maximum weight augmenting sequence,

or else I. © S would not be optimal. It follows that any maximum-

weight sequence yields an optimal intersection with k+1 elements.

18. Concavity Property

Clearly, it is possible to start with the empty set and apply the

augmenting sequence algorithm to obtain I., I2, I.,, ..., maximum-weight

intersections with 1, 2, 3, ... elements respectively, stopping when no

further augmentation is possible. One can then compare the weights of

these various intersections so as to determine an intersection which has

maximum weight without restriction on the number of elements.

However, "the maximum weight of intersections is concave in k",

just as "the minimum cost of flows is convex in the value of the flow."

This means that if one seeks to compute a maximum-weight intersection

without restriction on the number of elements, such a set is given by
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I, , where k is the smallest number of elements such that w(I,) ^. w(It+1) •

Theorem 18.1

Let I , I , I~, ... be maximum-weight intersections with 1, 2, 3,

... elements respectively. Then

for k = 1, 2, 3,.

Proof:

Maximal-weight intersections for I, - and I, _ are feasible solu

tions of the linear programming problem formulated in Section 10. Any

convex combination of these two solutions is also a feasible solution,

and is dominated by an optimal solution at an extreme point of the

polyhedron corresponding to an intersection with k elements.

19. Primal Algorithm

Let A(S) denote the weight of the weightiest augmenting sequence

S discovered at any given point in the procedure, and let m be the

index of its last element. Let A(e.) denote the weight of the weightiest

"partial" sequence terminating in the element e.. Labels are removed

and new labels are applied to any given element e. whenever the value of

A(e.) can be increased.

Algorithm for Constructing Maximum-Weight Augmenting Sequence

Step 0 (Start)

Let I be the null set. No elements are labelled. Set A(S) = - «>,
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m = 0, and A(e.) = - «>, for all e..

Step 1 (Labelling)

1.0 Give each element e. in E - sp (I) the label d> and set A(e.) = w,.
i i i

1.1 If there are no unscanned labels, go to Step 3. Otherwise, from

among the elements whose labels are unscanned, select that element e.

whose label was the first to be applied. If the label is a "+" label

(i.e. e. £ I) go to Step 1.2; if it is a "-" label go to Step 1.3.

1.2 Scan the "+" label as follows. If I + e. is independent in M~ go

to Step 2. Otherwise, identify the unique M_-circuit C in I + e.. Give

each unlabelled element e. in C the label i and set A(e.) = A(e.) - w..
J 3 i J

For each labelled element e. in C, compare A(e.) with A(e.) - w.. If

A(e.) < A(e.) - w., set A(e.) = A(e.) - w., remove the existing label
3 i 3 3 i 3

and apply the new (unscanned) label i to e.. Retuen to Step 1.1.

1.3 Scan the "-" label as follows. Give each unlabelled element e. in
3

sp (I) - sp (I-e ) the label i . For each labelled element e. in sp (I)

- sp (I-e.), compare A(e.) with A(e.) + w.. If A(e.) < A(e.) + w., set

A(e.) = A(e.) + w., remove the existing label and apply the new (unscanned)

+
label i to e.. Return to Step 1.1.

3

Step 2 (Construction of Maximum-weight Augmenting Sequence)

2.0 If A(S) < A(e.), set A(S) = A(e.) and set m = i. Return to Step 1.1.
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2.1 A maximum-weight augmenting sequence S can be constructed, of which

e is the last element. The elements in S are identified by "back-
in

+
tracking". I.e. if the label of e is I , the second-to-last element

m

is e . If the label of e0 is k"", the third-to-last element is e, , etc.

The first element in the sequence has the label <j> .

2.2 Augment I by adding to I all elements in the sequence with "+"

labels and removing from I all elements with "-" labels. Remove all

labels from elements. Return to Step 1.0.

Step 3 (Hungarian Labelling)

If A(S) >_ 0, go to Step 2.1. If - » < A(S) < 0, then I is of

maximum weight, but not maximum cardinality. If A(S) = - °°, no augmenting

sequence exists, the labelling is "Hungarian", and I is of both maximum

weight and maximum cardinality. Halt.

20. Convergence

It is essential that the labelling procedure applies labels in

such a way that no element e. can be reached by backtracking from its

own label. Suppose this were to occur, and let A be the set of elements

so reached by backtracking from e. to e.. Then it can be shown that I© A
3 3

would be an intersection and |l © a| = |l|, w(I©A) > w(I), contrary

to the assumption that I is of maximum weight, relative to all inter

sections with |l| elements. (This assertion is exactly analogous to

the proposition that a network flow is of minimum cost if and only if

there exists no circulation with respect to that flow which has negative

cost.)
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The above observation suggests that there are only a finite number

of sequences of elements which can be reached by backtracking from any

given element e.. And since each such sequence uniquely determines

a value of A(e.), there are only a finite number of such values and a

finite number of labels that can be applied to e.. This is the essential

aspect of the argument for the finiteness of the labelling procedure and

of the overall algorithm.

The augmenting sequences found by the algorithm are, in fact,

maximum-weight augmenting sequences. For suppose S is a sequence found

by the algorithm, and there exists some sequence Sf = (e.,e0,..., e )
12 m

such that A(S') > A(S). Let A(e.) be as computed by the algorithm, and

let

A'(e.) = w - w2 + ... + w.,

where the last sign is "+" or "-" depending upon whether i is odd or

even. It is not possible for A'(eJ > A(e,), so there must be some

element e. such that A'(e.) = A(e.) and A'(e ) > Me.+-). But this

implies that the last time a label of e. was scanned by the algorithm,

A(e.) was strictly less than its final value; otherwise A(e. ) would

have been at least as great at A'(e.+1) at the end of the computation.

But if A(e.) was increased in value after the last time its label was
1

scanned, e. would have been given a new label, and this label would

have been scanned before the end of the computation. This is a

contradiction. Hence S must be a maximum-weight sequence.
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21. Computational Complexity

We have observed that the primal algorithm terminates in a finite

number of steps. In order to establish an upper bound on the length

of the computation, we must first bound the number of scanning opera

tions .

Suppose, for a given label at any given point in the computation,

we backtrack from that label until an element with the label <p is

reached. Let the depth of the label be taken to be equal to the number

of elements so reached. (The depth of the label <J> is unity.)

Step 1.1 requires that labels be scanned in the order in which

they are applied. Thus all labels with depth two are scanned first.

The scanning of these labels causes labels with depth two to be applied

and these are scanned next. Thus labels with depth 1, 2, 3, 4, ... are

successively scanned. This means that each time the label of any given

element is scanned, its depth is at least two greater than the time

before. But the depth of a label cannot exceed n. It follows that the

label of any given element cannot be scanned more than "j times, and

that there are at most •« scanning operations per augmentation.

An estimate of the complexity of the algorithm is obtained by

reasoning similar to that used in Section 9 for the cardinality inter

section algorithm. The principal difference is that in the primal

algorithm each element may be scanned as many as — times, rather than

at most once. The arithmetic operations of the algorithm are dominated

by the scanning operations. Accordingly, the overall complexity is

0(n4 c(n)).

-33-



This estimate of complexity is lower by a factor of n than the

estimate for the primal-dual method, but it is not clear whether the

primal method will actually be more efficient in practice, since both

estimates are only upper bounds.
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