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by

Hiromasa Haneda

ABSTRACT

This technical memorandum uses the measure of a matrix to unify and
generalize the analysis of some numerical techniques useful in circuit
theory.

An existence and uniqueness theorem for D. C. operating point is given
given; a cbnvergence region for the Newton-Raphson method is determined
and its quadratic convergence is established. The effect of local round-
off efror is also discussed.

An estimate for the upper and lower bounds on the solutions of an
important class of ordinary differential equations is given. This esti-
mate is sharper than that obtained by using norms.

An estimate is given for the bounds on computed solutioﬁs of ordi-
nary differential equations obtained by the backward Euler method and its
modifications. A bound on the accumulated truncation error incurred by
the backward Euler method is also given.

The effect of the step size in the implicit equation obtained by the
backward Euler method on the existence and uniqueness of the solution as
well as on the convergence of the Newton-Raphson method is discussed.

The research was sponsored by The National Science Foundation, Grant
GK~10656X1 and The Joint Services Electronics Program, Contract F44620-

71-C-0087. The results will be presented at the ISCT'72 in April, 1972.
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CHAPTER O,

INTRODUCTION

In this introductory chapter, we give an overall view
of this thesis, Second, we give a few motivating examples from
several different engineering fields, Third, we describe the
contributions of this thesis as they are related to previous
work, Finally we list notational conventions used in later

chapters,

1, Introduction

This thesis 1s concerned with the analysis of some
numerical techniques useful in circuit theory, The principal
motivation of this thesis is to illuminate and give insight into
a number of problems that are encountered in the implementation
of computer aided design methods for electrical circuits in par-
ticular, The main thread throughout this thesis is the use of

the measure of a matrix, Thanks to this approach a number of

previous results are generalized and clarified (see Sec, 3 below),
The organization of the thesis is as follows:

In Chapter I we define the measure of a matrix which
was discussed by Dahlquist {1 and was used to investigate the
stability of ordinary differential equations by Dahlquist ' 1 °and
Coppel [ 2 i, We prove its properties in detall, some of which

are new, We give interpretations of the mcasure of a matrix in
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terms of well-known classes of matrices, For the record we
state a first-order implicit integration formula and the Newton-
Raphson method to make our discussion precise in later chapters.
In Chapter II, we develop properties of D, C, e~
quations which are encountered in analyzing electric circults
for their D, C, operating points and also in the use of implicit
integration methods for computing their transient response, Ve
mrove an existence and uniqueness theorem; determine a guaranteed
convergence region and the rate of convergence of the Newton-
Raphson method for both the infinite and finite precision arithme-
tic computations,
In Chapter III, we estimate the upper and lower bounds

on the solution of ordinary differential equations (0.D.E.'s):

(%= f(x,fc) + u(t)
i x(0) = X,

where x(t) and u(t) are d dimensional vector for each time t * 0

(0.1)

and f(e,+) is a function from ﬂ?dxﬂP+ into ng. These estimates
are essentially due to Dahlquist [ 1] and Coppel (2], but theo-
rems are stated in a more convenient and slightly extended
manner, In view of our purposes we give these estimates for
stable cases only, In electrical networks as well as chemical
kinetics, the derivative(Jacobian) le(x,t) of £(+,t) in (0,1)
often has very widely spread eigenvalues for each x(t)é:ZQ’d,

for each t¢ R +» Sandberg & Shichman [17], Sandberg[15],

Desoer & Shensa (21 ], Chua & Alexander [22] , Gear (20] .
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Such 0, D, E.'s are called stiff differential equations,
Roughly speaking, the upper bound that we obtain is determined
by the slowest time constant and the lower bound, by the fastest
time constant.

In Chapter IV, we estimate bounds on computed so-
lutions of O, D, E,'s when infinite precision arithmetic is used,
We also estimate bounds on errors between the computed sequence
by the backward Euler method and those obtained by its modifi-
cations, and a bound on the accumulated truncation error in-
curred by the backward Euler method, For the computation of
the solution of stiff differential equations by standard explicit
methods we are forced to choose very small step sizes to avoid
numerical instability; the accumulation of local round-off
errors and the computation time will become intolerable, ;17 .,

(153, [20] . A class of methods to allow dramatic step-size
increases is that of implicit methods and its modifications,
(177,015, {20],(29} . 1In Chapter IV, we consider the
backward(implicit) Buler method and its modifications, We
estimate for any given step size bounds on computed solutions
and errors incurred; show desirable properties of the effect of
the initial error, the input error, the local truncation error
and the step sizes, Finally, we extend and relate the results
of Ch,II to the implicit equation obtained by the backward kuler
method, The effect of the step size on the existence and u-
niqueness of the D, C, solution as well as on the convergence
region of the Newton~Raphson method is evident from our formulas,

Some of the results in this thesis are being presented
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at 1972 IEEE International Symposium on Circuit Theory, [29] .

2, Motivating Examples

The O. D, E.'s of the form (0,1) are encountered in
many engineering problems, Motivating examples are given in

important classes of O, D, E,'s of the form (0,1).

Class ND First, we show examples in a class of O, D, E,'s of
the form (0,1) satisfying the following condition: there exists
a dxd constant nonsingular matrix P such that -Ple(x,t)P-l is
uniformly positive definite, more precisely there exists a non-
singular matrix Pé% dxd and a positive constant m > 0 such

that
- d
(y,-Ple(x,t)P ly) 2 mlylz for all x€ @ , for all

d
tcRys forall ye R . (0.2)

Example 0-1, RLC network (Fig.l).

Consider an RLC network consisting of independent sources, m
linear time-invariant capacitors and n linear time-invariant
inductors, (m+n) nonlinear resistors, and a linear time-invari-
ant resistive (m+n)-port, We assume:

(1) m nonlinear voltage~-controlled resistors are connected
parallel to the m capacitors, and the n nonlinear current-con-
trolled resistors are connected in series to the n inductors,

(i1) The m independent current sources are connected parallel
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to the m capacitors, and the n independent voltage sources are
connected in series to the n inductors,

(111) The (m+n)-port has a hybrid matrix H such that

[y v |
21 é =.H | C | (0.3)
L &3
T T
where 1 = (11,-°°,im) s 4= (1m+1’.°.’im+n) ’
T
R AR N AR

From Fig,l, we obtaln:

Cv. =1 - 1(v,t) +1
Lip = v - v(iL,t) + vy

ey

where C = diag(Cl,-o-,Cm) with C, > 0, the capacitance of the

i-th capacitor; L = diag(Ll,°'°,Ln) with L, > 0, the inductance

1
of the i-th inductor; Vol - f(vc,t) represents the character-
istics at time t of the m voltage-controlled resistorss
iL}~m>-C(iL,t) represents the characteristics at time t of the
n current-controlled resistors; is represents the m independent

current sources; and v represents the n independent voltage

sources, From (0,3) and (0,4), we obtains

i—o :' “ -_/\_ _’ ; .!
v v D i(v,t) P (v)!
E c. RER. R (0.5)

Q
+

Note that eq,(0.5) 1s not restricted to have its sources located

as in Fig,l; indeed if there were sources inside the (m+n)-port
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we could extract the Norton equivalent current sources and the
Thevenin equivalent voltage sources. Equation (0,5) is of the
form (0,1) and

0] Dli(vb,t)l 0

D £(x,t) = |——| JH+

. (0.6)
Lo L 0 ‘ D1V(1L,t)

Furthermore we assume (iv) le(vc,t) and Dl?r(iL,t) are both
n

positive semidefinite for all v € Y3 M for all i€ R ", for

all te /&R ;3 and (v) H is positive definite (not necessarily

symmetric),

r, -1
L C o]
Observe that ?——t—~i 1s diagonal and positive, and that
0

é is uniformly positive definite

M
o of
+
T
H ]
=
P >
e
‘Q
-
‘-’-
N
o
| IS |

in (vc,iL) and in t, By Lemma A-l- (Appendix), the condition of
class ND is satisfied,

Example 0-2, Three-phase synchronous machine model, {247,
The next 0, D, E, (0,7):

:T [L(t)-i(t)] = -Re1(t) + v(t) (0.7)

represents a model of a three-phase synchronous machine, where
o &
i(t)eF  and represents the currents through the three arma-
4
ture windings and through the field winding; v(t)e/K ~ and

represents the four terminal voltages to the ground; R is a 4xi



Ch.0 Sec.2

positive diagonal constant matrix which represents the resistance
of the windings; and L(t) is a 4x4 inductance matrix which is
time-varying, We assume that L(t) is symmetric for each time
t; uniformly positive definite, i.e,, there exists a positive

constant £ > O such that

<y,L(t)y/} a £ {y{z , for all t ¢ 7'/./+, for all ye & “'; (0.8)

and L(t) is bounded on # (It is usually assumed periodic),

Choose @(t) = L(t)+1(t) and v(t) as a state variable and input,

respectively, Then, from (0,7) we obtain:

H(t) = L (1) + vit). (0.9)

Observe that eq,(0,9) is of the form (0.,1) and that the condition

i
(0.2) is satisfied by choosing P = R?,

Class NCSD Second, we show examples in a class of O, D, E.'s
of the form (0,1) satisfying the following condition: there
exists a dxd real constant nonsingular matrix P such that
-Ple(x,t)P-l is uniformly column-sum dominant, i.e., there
exists a nonsingular matrix P¢ - dxd and a positive constant

m > 0 such that

d . \
a. (x,t) - ) Eaij(x,t){ 2 p, for all x¢/F 4 for a1l
JJ =] '
(3%3)
te 7, for all j= 1,°°,d, (0.10)

+,

Example 0-3. Nonllinear networks contalning transistors and
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diodes, Sandberg [15], [3] (Fig. 2).

The next O, D, E,s
iu(t) + TF [c'l(u)] + Gc'l(u) = B(t), t 20 (0.11)
dat

(where u(t)e K 2p+q) represents a network containing linear
passive time~invariant resistors, p nonlinear transistors, q
nonlinear diodes, and independent sources, The Gummel &
Koehler type model is used for semiconductor elements, We as-
sume thati

(1) G 18 the short-circuit conductance matrix of the (2p+g)-port

and its Norton equivalent circuit characterization is
1 = -Gv + B(t) (0.12)

2 .
where v(t), 1(t)e R i are the port-voltage and port-current

at time t, respectively,

A
(1) T & TOT Do ‘I‘PEBIq- (0.13)
(k)
T = tk) "% with 0 < o) < 4 and
k - 1 r
£
0< dﬁk) <1 forallk =1,¢*s,p, (0.14)

Iq is the qxq identity matrix,
2phq 2p+q
(111) F(+ 1R~ P .

F(v) = (£(v)), £5(v,), 000, fzm(vm))T, for all ve7/\>2p+q;
(0.15)
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and fj(-):%? P, fj(O) = 0 and fs(o!) =0 for all
AcTE, for all j = 1,°*+,2p+, (0.16)

-1 2 2
(iv) ¢ (*) 1is the inverse of the mapping C(*)17F ST ,

defined by:
s 2
c(v) & ev + 2F(v) for all ve P p+q’ (0,17)

where ¢ and 2 are both (2p+q)x(2ptq) constant positive diagonal
matrices (v denotes the (2p+q)-dimensional port voltage).

(v) There exists a positive diagonal matrix P > 0 such that both
PT and PG are strongly column-sum dominant, We can interpret
eq.(0.11) as representing a nonlinear time-invariant RC network
(see Fig, 3) containing dependent sources and driven by inde-
pendent current sources, Equation (0,11) is of the form (0.1).
Now, we want to show that the condition (0.10) is satisfied,

Let v(t) g'C-l(u(t)) for all t< /' ., Observe that from as-
sumption (iv): (a) v always exists (because ¢} 1s well-defined
on W,‘zlﬁq); (b) the derivative Dv(u(t)) is a (2p+q)x(2p+q) di-

agonal and uniformly positive matrix; and (c) DF(v(u(t)))

2 x(2
& Z? (20+q)x(20%) is diagonal and nonnegative for all u(t)
o R
€ K p+q’ Then, eq,(0,11) is rewritten as:
d
- ut) + Tev(u) + Gv(u) = B(t), t 2 0, (0.18)
dt

Then, using the chain rule and commutativity of diagonal

matrices we obtain:
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-Ple(x,t)P“1 = P-{T-DF(V(-))-DV(-) + G-Dv(-)} P'l
= PTP"l-DF(v(-))-Dv(-) + PGP“lonv(-) (0.19)

where v(+) is everywhere evaluated at u(t),

First, observe that -Ple(x,t)P-l is column-sum dominant for all
ug;ﬁ? 2P+q, since both PT and PG are column-sum dominant; the
right multiplication by any positive diagonal matrix preserves
the column-sum dominance property; and the sum of two column-sum
dominant matrices is again column-sum dominant, To show that
-Ple(x,t)P-l is uniformly column-sum dominant, observe that if
DF(v(+)) is bounded for all u(t)&F 2P+q, Dv(+) is positive for
all u(t) £ F <P and that if DF(v(+)) is not bounded for some
u*(t)<EZ;'2P+q, Dv(u¥(t)) is no longer positive, but DlF(v(u*(t)
)~D1v(u*(t)) is strictly positive, For more detailed calcu-

lation, see the literature [ 3] (pp. 1766-1767).

Example 0-4, The Xenon poisoning equation of a nuclear reactor

is written as, [27], [14]
(}.C(t)
i I(t)

1
where X(t) and I(t) are the concentration of Xenon X 3 and

i

- MOX(E) + ULI(E) + af(t) - DX(t)E(t)
i/zzl(t) + cf(t)

(0,20)

I

135
Iodine I at time t, respectively; /al and‘/ﬂz are positive

1 i
3 and I 35, respectively;

constants called decay constants of X
f(t) is the neutron flux at time t; a, b, and c are positive

constants, The first equation shows that the net accumulation

10
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rate of X(t) is the algebraic sum of formation term‘/lzl(t) +
af(t) and removal term -/ﬁix(t) - bX(t)f(t). The term /A%I(t)
is due to the decay of 3 and the term af(t) is due to the
fission, The term -/Qix(t) is due to the decay of K30 54
self and the term -bX(t)f(t) is due to the capture reaction,

The second equation shows that the net accumulation rate of I135
is the sum of the formation term cf(t) due to the fission and

35 itself,

the removal term ~/0%I(t) due to the decay of Il
We assume:

(1) There exists a constant Of > 0 such that 0 < & 4///1 +
bf(t), for all t & ﬁ?+ and

(i1) f is continuous on ZD+.

Equation (0,20) is of the form (0,1), By choosing P = diag(l,
2), we obtaini

AR IONE A a

2 |
-Ple(x,t)P = P [ P

0 A

(0.21)

~1
Hence, -Ple(x,t)P with P = diag(1l,2) is uniformly column-

sum dominant from the assumption,

Example 0-5, Plate-type distillation column model having only
a reboiler, vapor space and condenser, Rosenbrock [ 26 ], Gould
28] (1g. 4).

Referring to f'ig,4, the equation of the mass balancc at cach

11
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plate follows as:

r a(Hyx,) . .

- V0% - FoXo t Iyx *t F%

d(h y,)

00 = "yt o ° (TX}

< T VYo (VO*QO) Yo ¥ FOZO (0.22)
a(H.x_ )
1l 1 o - . +
e Vo¥o (L1+Pl) x, +F2)

where VO(V6) is the vapor flow from vapor space above zeroth

plate (from liquid on zeroth plate to vapor space above zeroth

plate) of composition yo(yé); gr(hr), r=0,1 is the 1iquid (vapor)

holdup on (above) r-th plates po is the pressure above the zeroth

plate; Rr’ r=0,1 is the liquid withdrawal of composition x.; L1
is the liquid flow from the first plate of composition X, 3 Fr
(E;), r=0,1 is the liquid (vapor) feed of composition zr(z;);

Qy 1s the vapor withdrawal of composition y,; yé @ f(xo,po) is
the vapor-liquid equilibrium characteristic of the zeroth plate,
The first and the second equations of (0,22) represent the dy-
namics of the reboiler, and the third represents that of the
condenser, Let §o(t) 8 Hoxo(t), El(t) 4 hoyo(t) and §2(t) 2
Hlxl(t). Then, eq,(0,22) becomes:

-1 -1 -1
&0 = -V("f( t-OHO , po) - PH, Eo+ L H ;2 + Fo2,

- N -1 -1 Sep t
gl = Vof( Eolly 2 po) - (V0+Qo)ho £+ Fizh (0.23)

oAl 41
Fo 7 Vg &y - LR )H T E, 4 Fpzy

12

-
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where ( Eo(t), 51(t), Eé(t) )T is the state variable and

( Zgr B 2y )T is the constant input, We assume that

£ 4 O f(x.,p.) = 0, for all x, 2 0 and that (0,24)
X X 0°%0 0

Vr, V;, Hr, hr’ ?r, pr, Qr, Qr' Fr, F;, r=0,1 are all positive

constants, Then, eq,(0,23) is of the form (0.1l) and observe

that
=1 <1
(Vv'f + P )H 0 L.H 1
-le(x,t) = 0 xo 0’0 11 '
|
. “'1 -1 '
'VéfxOHo (V0+Qo)h0 - (0,25)
2
3 2
0 -Vohg (L1+P1)H1 ;

is uniformly column-sum dominant,

Example 0-6, Co-current heat exchanger model, Rosenbrock [ 26 ] .
Consider a co-current heat exchanger which is described as (n+l)
consective elements labelled by r (r=0,1,°***,n), Temperature is
assumed constant for each liquid in each element, The mass flow
rates L and L' are constant, Then, from the heat balance, we

obtain:

13
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-1 -1 -1.-1 ,=1,.,-1
‘E?_r WD) Sppp - U &y - CTH] L LY

- -1 -1 -1.-1
= SHe - *He -+
‘< eEzr-l-:l. b ar-l Eér-l L Er E;2r+-1 wf(c HE Eér’

c"lgé-l E%r+l)’ r=0,1,¢¢°,n, (0,26)

where £, (t) & Hoo (t) and §, . (t) = Hie'er(t)s H_ and H!
are positive constant masses of the liquid in the r-th element;
c and c¢' are the specific heats of the two liquids (positive
constant); 6,(t) and 8!(t) are the temperatures of the r-th
element at time t; L and L' are the positive constant mass flow
rates; and wr(Qr(t),eé(t)) is the exchange heat rate in the r-th

element, We assume that there exists a positive constant £> 0

such that
dw (e ,0° du (0 ,0'
r'r’ r) A E>0and r( r r) 4_E<0
d6, , 20
r
for all @_(t), 0.(t)eR, for all r = 0,1,++,n, (0,27)

Observe that (0,26) is of the form (0,1), Let P = diag(l,1,

- -n -
2-1,2 1,"',2 ,2 ™),  Then, typical columns of -Ple(x,t) are

easily written with only the following non-zero elements:
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L 9% 2 A
(2r+1)th row —}—-[—4-5"‘ H} T Fer e
L ér Hr Qr c . ér L oc H.r
-1 gwr 1 1 Lt 9"1. 1 ~|
(2r+2)th row — — ——{——- —
] 9 ] ‘HY
s ér'aer cH FLH Gr c'H J
(0.28)
-1 L
(2r+3)th row iy 0
—> 2 T
_1 L'
(2r++)th row 0 —
L ér+l H;
(2r+1)th column (2r+2)th column

From (0,28) and (0,27), we observe that -Ple(x,t) is uniformly

1 is positive diagonal and

column-sum dominant, Since P~
-PDif(x,t) is uniformly column-sum dominant, the condition (0,10)
is satisfied,

A class of 0, D, E,'s we discuss in this thesis is of
the form (0,1) and contains the class ND and the class NCSD as

special cases,

3, Contributions of This Thesls

Lemma, 1-2 gives properties of the measure//((-).
Properties (j), (k) and (,Z) are new, and these properties play
a cruclal role in this thesis,

Lemma, 1-4 gives equivalent statements to the defi-

nitions of row-sum dominant, column-sum dominant and passive

15
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matrices in terms of the measure/ﬁé(-).

Theorem 2-2, Corollary 2-3, Corollary 2-4 and Co-
rollary 2-5 unify and generalize mrevious work on the existence
and uniqueness of D, C, solution by Stern (8], Willson Jr,[9],
Ohtsuki & Vatanabe [10] and Kuh & Hajj[11] ., The generali-
zation and unification are two fold: first, the choice of a
vector norm is arbitrary and second, the uniformity condition is
relaxed,

Theorem 2-6 and Corollary 2-7 determine a guaranteed
region of convergence and establish the quadratic convergence
for the Newton-Raphson method for infinite precision arithmetic
computation,

Lemma 2-8 is a slightly modified version of Hurt's
corollaries, [ 13] , which is a kind of Lyapunov stability theo-
rem for difference equations, where the continuity of the
Lyapunov function is not required and the Lyapunov function can
possibly increase along some solution sequence,

Theorem 2-9 and Corollary 2-10 show the effect of the
local round-off error on the radius of the convergence region
and on the convergence for the computation,

Lemma 3-1 1s a slightly generalized version of Coppel's
inequality where it is extended to the plecewise continuous case,

Theorem 3-2 and Corollary 3-3 give an estimate of the
upper bound on the exact solution of O, D, E, The estimate is

essentially due to Dahlquist (1], but it is extended to the

plecewise continuous case, Corollary 3-3 includes previous
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71

work under 122 nornms, x?l norms and weighted ). norms,
Rosenbrock [14] , Sandberg (157, Mitra & So (16] ,

Theorem 3-4 gives an estimate of the upper bound on
the difference of two solutions of O, U, £, starting from
different initial states and different inputs, Corollary 3-5
gives an estimate of the upper bound on the difference between
the exact solution and the equilibrium point of O, D. E, Both
Theorem 3-4+ and Corollary 3-5 include as special cases previous
work under weighted A norms, Sandberg [15], Mitra & So [16] .

Theorem 3-6, Corollary 3-7, Theorem 3-8, and Corollary

3-9 give estimates for lower bounds corresponding to Theorem

3-2, Corollary 3-3, Theorem 3-4 and Corollary 3-5, including
special cases under weightedAAgl'norﬁs by Sandberg [ 15 .

Theorem 4-1 and Corollary 4-2 give estimates for the
bound on the computed sequence by the backward Euler method,
which generalize speclal cases under é{z norms and weighted //1
norms, Sandberg & Shichman {17), Sandberg [ 3].

Theorem 4-3 gives an estimate for the bound on the
error between the computed sequence by the backward Euler method
and the computed sequence by a modified implementable method,
Theorem 4-3 is a generalization of earlier results under ,ﬂl
norms and /2 norms, Sandberg [ 3], Sandberg & Shichman [17_ .

Theorem 4-L gives an explicit estimate for the bound
on the computed sequence where we use only one step of the
Newton-Raphson method at each time step of the backward Buler

method, Similar results under 122 norms were proved by

17
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Sandberg & Shichman [17 ], but the estimate in Theorem 4-4 is
more explicit and general.

Theorem 4-5 gives an estimate for the bound on the
error sequence between the computed sequence by the backward
Euler method and the one by the method stated in Theorem 44,

Theorem 4-6 gives an estimate for the bound on the so-
called accumulated truncation error incurred by the backward
Euler method, This is a generalization of a previous work
under weighted A 1 norms by Sandberg (3],

In Section 3 of Chapter IV, we make following comments
on the implicit equation obtained by the backward Euler method
under reasonable assumptions:

(i) The existence and uniqueness of the solution is guaranteed
for any (large) step size; (ii) The guaranteed convergence
region of the Newton-Raphson method applied to the implicit e-
quation is monotonically enlarged as the step size becomes
smaller; (iii) The error estimate between the exact solution
and any computed solution is given by (4,65) using a priori

known quantities,

L, Notation

Rr(C) field of real (complex) numbers

%? set of nonnegative real numbers
+

22+ set of nonnegative integers

d d
R(C) direct product of R's (C's), d times

18
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Z@dx‘i( J_:dXd) | set of dxd real (complex) matrices
o} vector norm on B¢ or O_r,d
et induced. matrix norm on 7DdXd or ﬁ:dXd
/L{(,) measure of a matrix (definition: Ch.I,
Sec,l)
I | identity matrix
7~i(A) i-th eigenvalue of a matrix A
Re z réal part of a complex number z
2 is equal to by definition
o(s) quantity, say x, such that (x/h)-=>0 as
h-=0
A cojugate transpose of A
AT transpose of A
(-, -> scalar produc‘f. on Pd
U union
u(-) input
x(e) exact solution of 0, D, E.
o0 {/" o0 g_ ?00 ’ ‘
{yn} o’ byn} o’ ~ymo computed solution
h | step size
t time
Df(x) derivative of f at x (Jacobian when
.l?:ﬂ"d-—su/fl.'\d)
le(x,t) derivative of x| -Ff(x,t) at x

Dz'f(x,t) derivative of t| >1{(x,t) at x
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(:]' class of continuously differentiable
functions
det(A) determinant of A
x* exact D, C, solution
%
{xn }0 computed sequence for D, C, solution
£ computed D, C, solution
P(t,t,) state transition matrix
64 zero vector on Z?dor dCd
< Q.E,D.

Equations are sometimes assigned a number which is
located in the right margins (2,3) means eq,(3) of Chapter II,
Theorems, Lemmas and Corollaries are numbered consecutively
within each chapter: Theorem 2-4 follows Corollary 2-3 which
itself follows Lemma 2-2,
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CHAPTER I,
PRELIMINARIES
In this chapter we define the measure of a matrix and
prove in detail its properties, some of which are new, Also,
we explain a class of implicit integration formulae and the

Newton-Raphson method,

1, Measure of A Matrix

The measure /(é (») of a matrix was discussed by
Dahlquist [1], and was used to investigate the stability of

ordinary differential equations(0. D. E.'s), [1], [2].

Definition, Let Q',d be CxLx *+* x¢, & times, Let I+| de~
note a vector norm on djd. Let A be a dxd complex matrix, and
[|*|]l be an induced matrix norm corresponding to |s|. The

dxd
measure /N (+)s 7 P of a matrix is defined by

I +06All -1
A4(a) & 1im _*_-',
/ 0} 0+ 0

where I is the dxd identity matrix,

Remark, By the definition of /1(-),/‘( (A) is seen to be a one-

dxd

sided directional derivative of a mapping !l« ||t 7~ —> /73+ at

-dxd
the point I £ (] in the direction of A £ rded.
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The following lemma shows that /{(-) is well-defined,

Lemms, 1-1, Dahlquist [1], Coppel [2], For any dxd complex
matrix A, the measure /4 (A) exists,
Proof, Let ke (0,1),

lT+k6A|l -1 |lk(I+0a)+ (k)Ifl -2
k0 ko

k||T+6Al + (Q-k) -1

] o s by triangle inequality,
IHI+06A]|] -1
e [ ]
I+6 -
Hence, 6 }—> I A9|| 1 is non-decreasing,
I+6A] -1 1-o0}lall -1
L 9” L 5 = ~||A||, by triangle

inequality and homogeneity,

T +0All -1
)

Since is bounded from below and decreases as

8 ¢ 0+, the limit /«(A) exists, <

Remark, The measure /({(o) depends on the choice of the origi-

nal vector norm |e¢|,

Lemma 1-2, Properties of/J(-). Let A'and B be in dei.



(a)
(b)
(c)
(d)
(e)
()

(e)

(h)

(1)

(3)
(x)

(£)

SU1) =1, A1) = -1,

If A = edxd( dxd zero matrix), then//((A) = 0,

AT % - p(-A) & M(A) £ LAl

Mca) = Q}%(A) for all ¢ ® 0, ( positive homogeneity )
j{( A+cI)=_AA)+c for all ceR.

nax { A((A) - M(B), ~M(-A) +M(®) ]« M(A+3B)

& /‘(-(A) + M(B), ( sub-additivity )

MIra+ (1 -2 )B) sapa)+(1-A )/U.(B) for all
xel0,1]. ( convexity )

| M(a) - 4(B)| & max{| M(a = B)I, | A(B - &)}

< |la-3I, “

-AM(-A) <Re ) (a) € M(a) foralli=1, 2, =+, d,
where Re,Ki(A) denotes the real part of the eigenvalue
)Li(A) of the matrix A,

|Ax | > max{-/u(-A), T/“(A)}'|xl for all xe;dfd.

Let || (1:-d—-> /R, be a vector norm in @d. Define
|x|P = |Px|, where P is a nonsingular dxd complex matrix
and call/A{P the measure defined in terms of the corre-
sponding induced norm, Then, /‘{P(A) =/KI( PAP-l).

Let A be a nonsingular dxd complex matrix, Then,

L  maxfpen), )]
(el

Proof, (a) The results are immediate from the definition of

the measure A{(-).

(b)
()

The result is trivially true by the definitlon of A («).
Observe that



Ch,I Sec,l 24

1T - 6Al] -1 HI+eall =1 211l - 2
) + ) )

t-.o’

by triangle inequality, or

_ T -eajl-r . JIT+eAll -1
e | 0

So, H(-A) + M(a) >0,

Observe that

1-0]all =1, llT-6a)] -1 IIT + 6A|l-1

1+0(All -1
)

= ||]A||, since 6 > 0 and by triangle ine-

quality,
(d) If ¢ = 0, the result is true by the property (b).
Assume that ¢ > 0, Observe that

-J{I~T'CQ2JL—:EL = NI+ cO:AI -1 » and that c6|0+ as

6|0+ since the constant ¢ is > 0,

(e) Observe that

.8
I T+6(A+ecI)] -1 (1+ec)||1+-l+—eo.4||-1
® 0
NI
= ||I 1l + 6¢c +o
e [ ]
1l + 6c
Si ® O+ 0|0+, the 1t foll
nce 1+ 60 1 as l s the resu ollows,

(f) Observe that
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NI+6(Aa+3B)f -1 H(1+208)+(I+2B)lI -2

e 20 ’

IT+2eall -1 |IT+20BI| -1

20 20 ’

i

Hence,/{,(( A+B) é/‘((A) "‘/'{(B).

The other inequalities follow from A = (-B) + (A + B ) and

B=(-A) + (A+B).

(g) The convexity property follows from the positive homoge-

neity (d) and the sub-additivity (f).

(h) The property (c) implies that

max{| 4( & - B)|, | (B - a)I} < 1A - Bl
The other inquality is obtained by observing

~M( B -A) < M) -/(B) €H(A-B) and
-H(A-B )< H(B) - (a) % (B -A). |

(1) Let ee;djd be a normalized eigenvector of A associated

with the eigenvalue 2\1. Observe that

NI+eall -1  le+6ael -1 _ le+0Ael-1
6 0 5
L +onlelel-1 11+eA,] -1
= 5 = 5 , and that

|l+e.11|=1+eReKi

The other inequality follows [(rom

+ 0(6) for sufficiently small 6 > O,

25
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1 - ox,l -1
_llz-eall -1 le - GAe| -1

0 - ) =< e .

(3) Let 6 be >0,

- - -e -
x| = JLX eAgé:) x|, 1(1-0h)x-xl

o Ixl= 11T - 0all- x| |

[|I -6all -1
8 x| )

Hence, |Ax| 2 -/u(-A)- Ix| by letting 6|0+, Also,
x| = |(-a)x| > - M[=(-A)] * x| = ~H(A)|x].
(k) Observe that

A Ix + eAle IP( x + 0Ax )|
I+ onlly © o R A—
4 |x|P x’eed
IPx + o( PAP™)Px| -1
= su = ||1+emAP ||.
X 4 |Px|
1
(£) Claims inf |AX| = ———
x|=1 -
ha
1
| inf il ! 1
inf |Ax| = = = -
|x|=1I x%, |x| x| la ~(ax) |
sup sup —M8M88
x¥0, |Ax| Axko,  |Ax]

1

H———————.—-——.

[l

Hence,Ti_—I-lT— = max{;\, | |Ax| *A and |x| = l}.

26
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Since |Ax| 2 max{;/l(AA); 5/4(A)}elxrfby (3)»

L > max{- (), pA)f >
Ha™" |l |

Remark, Since the measure,/((-)‘is a convex function, it is
continuous, As we have shown, the measure/ﬁ((o) is in some
ways similar to the norm of a matrlx, however/ﬁl(-) is only
positively homogeneous and can take on negative values, We can

(I +0All -1
easily verify that a mapping o> — 3

and monotone increasing except at € = 0, and that

is continuous

I+6All -1 .

-l1all £ L ; s ||All © for all 8P except O,
NI +eall -1
—— = - - £ I
Also note that %%8— 5 /u( A) // (a)
A (1T +0All -1 ‘
= lim . We shall obtain tighter bounds for
6|0+ 0

the stability analysis of O, D. E,'s and its numerical inte-
gration formulas by the use of the measure//l(-) rather than by
the use of norms., A key tool is the following inequality due

to Coppel, f2]s

1

exp(-I[Allt) < exp( - M(-A)t ) = -1
ll( exp(at) ) Il

£ |lexp(at)!l # exp( /%(A)t ) = exp( ll1Allt) for all t = O,

Another case is the following: if h > 0, then( by Lemma 1-2,

")
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1
¢z +m)™

> 1-wq/%(-A) =1 -hjlall.

2
The values of /4( (A) are easy to compute for ,Kl, ,(ﬁ

and l norns,

Lemma 1-3, The values of ||All and /(l(A).
Let A be a dxd complex matrix,

(a) If |x| = |x|mé 4| » then

max X
1-1’2’ooo’d|

HA || I and

i 1, 2,0oo,d j-l | 1j

M) = max o, ,a( Reayy * ’j 24| )e (row sum)

(d*i)
() If |x| = Ix|, & 4%'4 the
1 3= 'xi ' n

Al =mag, .45 |a13| and

d
/J(A)amix . ( Rea,, + _ ‘ai.‘ ). (column
1A 7B et s (ii%) 3

sum)

4
(¢) If |x| = x|, a( 1:-:1|X1|2 )1/2, then

“Allz" [%’2’”.’(1{7\1(4&*”}]1/2 and
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*
A+ A *
A A where A 1is a conjugate trans-
VARSI EN
pose of A,
Proof,
(@) N1+ eAIIfn max !( eaij!

izl’ Y d le

Y
= ?3{,...,d{i1 *Oayyl ¥ gj |9ai !?

J

d,
= S 1+ 0ORea, +o0(0) +0.. la |
?gf,oot,dz‘ ii ( ) =1 H iJ
(3=1)

for sufficiently small © > O,

T +eall, - d,
i = max Re + 1, |la
(2] 1mi,coc,d1 a J=1 i ij!’
(1)

Hence,

+ o(6)

e y—

for sufficiently small 6 > O,

(b) The proof is analogous to that of (a).

(e) HI+%H (?f"udb((ym)UWM)$h

* 2% /2
= I + o(A+ + ¢
[?5{,..,’d§}li ( (ara") + 0% a ]

* 2% 1/z
- 1 i§)1(1+0(A+A)+GAA)‘_‘/

PR Y

29
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{;‘1( I+ 0(ata) +0AA )1/2}

= max
ial’o.c,d

*

{ 1+ 97\1 (A:A ) + o(e)} for suf-

i=1, eee,d

ficiently small 6 > 0, <
There are classes of matrices which are called row=-sum

dominant, column-sum dominant and passive,

Definition, A dxd complex matrix A is said to be strongly

(weakly) row-sum dominant iff

d
Rea,, > (2) X la. for all & = 1, 2, e+ , d,

j=1 1jl
(Jwi)

Definition, A dxd complex matrix A is said to be strongly

(weakly) column-sum dominant iff

for all j=1, 2, ***, d,

Definition, A dxd real matrix A is said to be sitrongly

(weakly) passive iff

d
(x,Ax) > (2) 0 for all non-zero vector xeR .

Sometimes, the strongly (or weakly) passive matrix is called
positive definite (or positive semidefinite), Note that we do

not require that the matrix A is symmetriec,

30
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The next lemma shows how those classes of matrices are

related to /{(+) under specific nornms,

Lemma l-4, Let A be a dxd real matrix,
(a) The matrix A is strongly (weakly) row-sum dominant iff

- M =8) > (=) 0.

(b) The matrix A is strongly (weakly) column-sum dominant iff
- (A > (2) 0.

(¢) The matrix A is strongly (weakly) passive iff
- M (-A) > (=) 0,
AR > (2)

Proof, (a) Observe that

d
S 7 X = XX} d.
a, > () 3:i[aij; for all i =1, 2, .
(5%1)

d
b ( -a,, + ]-aij| )>(R) 0 foralli=1, 2, *+=, 4,

(v) The proof is analogous to that of (a).

(¢) Observe that
\ ‘ T,
(x,Ax; = <x, ------ x), where A is a transpose of A, <

Remark, If a dxd real matrix A is strongly column-sum domi-

nant, i.e,, there exists a positive constant & > O such that

31
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Ile

a -

i3 laij]ég>o for all j =1, 2, **+ , d,

el ned
[N

(1%))

then by Lemma 1-4, (b) and Lemma 1-2, (j), Sandberg's result,

(3] followss

d
|Ax|1 * x|, for all xeR .

Similar results are immediately obtained for strongly row-sum and

strongly passive matrices,

o
The inequality in Lemma 1-2, (1) under /Z norms can

also be proved by the Gerschgorin circle theorem,

Gerschgorin circle theorenm, (4],

Let A be a dxd complex matrix, Then every eigenvalue of A lies
/

in the set

o

i=1 C

j=]
(3#1)

E:Ia. l} <>

For each eigenvalue 7\1 of A, there exists 10 e{l, 2, *°° , d}

such that a -; l o : |a.
1010 "1 =1
(j#1)
Noting that
- < -
Re )\ Rea I la 11, Ail o



Ch,I Sec.2
Wwe obtain
d
0 =, o~ Sl
(5%=1)
d
£ R - ET’ & R
eaioio =_1\ ‘ } e
(J*eio)
d
£ Rea ’ |
o g 1T o)
070 (J#i )
( y
< nilgit,ooo’d f Rea Z laijl’)} —/Jm(A): for all

(J*i)

=1’ 2’ e0e ) d.

2, Implicit Integration Formulae

One of the main concerns in lumped circuit analysis is

the computation of the transient response of a circuit, l.,e,, to

solve the appropriate O, D. E, in an efficient and accurate way,

A class of numerical integration formulae is stated in this

section,

Consider an O, D, E,

Y

x = £(x,t) + u(t)

j
? x(0) = X,

where x(t), u(t)éhﬂfd

for all t < /Z’+

(1.1)

d d
and £1 2%, ~1,

It is assumed that the existence and uniqueness of the solution

33
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x(*) of the 0, D, E, (1.1) is guaranteed and that it is con-
tinuous for all té% 4+ A sufficlent condition 1s, for ex-
ample, given in the reference [5],

Let h > 0 be a step size, A special class of al-
gorithms for obtaining the numerical solution of O, D, E, (1,1)

iss
;_jp P b, y hb 0 (1.2)
y = y + y wit ¥ 0 .
wn " ik T B e L

where y . & £( yn-k’ (n-k)h ) + u( (n-k)h ),

For notational convenience, x(nh), u(nh) and f£( x(nh),nh ) will
be denoted by x , u_ and f(xn,n) respectively for all neZ
from now on, The above algorithm (1.2) is called the multi-

point formula of closed type or an implicit integration formula,

n-p’ Yn-pa’
see ynj ’ {ao, 8'1’ oo ap} R {b-l, bo’ cee bp} and

Yy »¥.5 *** ¥ L. In icular, when p=0, a =1, b =h
{yo.yl. ,yp} part ’ P » BT L D

The determination of You1 is implicit for given {y

and bo = 0, the formula (1,2) is called the backward Euler formu-

las

= + hy =y + +) + . .
Vo = Vn TV, =Y, TREQy oenHl) +hm (.3)

The corresponding explicit integration formula is the Euler-

Cauchy methods
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= + h' = + hf n + hu . lou’
Yo " Vp v, =, (yn, ) . (1.4)

The following example shows that the Euler-Cauchy
method is not as good as the backward-Euler method even for a

scalar linear O, D, B,

Example 1-1, Consider a scalar O, D, E,1

(¢ -

J (1.5)
le(o) = 5

where £(t)</R for all té7p and A< 0,

The exact solution £ (t) = exp(At)e £ %o of 0. D. E. (1.5) con-

n
verges to 0 as t—>00, The computed solution Y, = (1+h7 ) y 0

by the Euler-Cauchy method (1,4%) converges to 0 as n-soc if
0<h< -Z/A , otherwise it does not converge to 0 as n—= =,
So, when | Al is large, the step size h > 0 has to be chosen
sufficiently small to get over the numerical instability, which

requires more computational time, But the computed solution

-0 ’
y = (1-h7) Yo by the backward Euler method (1,3) converges to
n

0 as n—> oc for any h > 0, Moreover, the accumulated truncation

error i'én - yng of the backward Euler method has an upper bound:

.En - ynl 4 (1-hn) {50 ) yo! + 4 («lh.l\fci for all n = 1,

The error estimate consists of two terms: the first term shows
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that the effect of the initial error decays exponentially as
n->00 and the second shows that it is proportional to the step
size h for any h > 0, In Chapter IV, the backward Euler method
is more fully investigated, Using the measure /l (¢), we show
that simllar desirable properties still hold for an important

class of nonlinear O, D, E,'s,

3, Newton-Raphson Method for Solving D. C, Equations

D, C, equations(algebraic equations) are encountered
in computing the transient response of a circuit by implicit in-
tegration formulae and also in computing the D, C, operating
point, The Newton-Raphson method is one of the widely used al-
gorithms for solving D, C, equations, The scheme is stated in
this section,

Consider a D, C, equation:
f(X) =Y (106)

d d
where x, yeé/R and f is a mapping from R into itself,

d d
Given yeZQd and f1 © —>/R , we want to find the D, C, so-
d *
lution x € JR such that f(x ) = y if it exists, The Newton-

Raphson method of solving the D, C, equation (1.6) is given bys
-1
X = % - ( PE(x) ) (£(x) -3 )y k=1, 2 eeo  (1.7)

with X, given; here Df(;k) denotes the derivative of £ (i.e.,
the Jacobian of f) evaluated at X, Note that the Newton-

Raphson method is applicable only when ( Df (J&{) ) is nonsingular

36
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for all xk, kiéj?;, The Newton-Raphson method is essentially a

1inearization process, At k-th step, thé D, G, equation (1.6)

is linearized at x = xks

() =y ¥ £+ DG (e - %) | (1.8)

Solving the linearized equation (1,8) for x and letting Xl =

X, We obtain the formula (1.7).
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CHAPTER II,
D, C. EQUATIONS

In this chapter, using the measure /«( (+) we develop
properties of D, C, equations, First, we prove an exlstence
and uniqueness theorem, Second, we determine the guaranteed
convergence region and the rate of convergence of the Newton-
Raphson method, The effect of the local round-off error is

also investigated,

1, Existence and Uniqueness of D, C, Solution

Consider the D, C, equation (1.6), i.e.,
f(x) =y (1.6)

where x,ye/R2 and £ is a mapping from Rd into itself, In this
section, existence and uniqueness of D, C, solution of eq. (1.6)
and continuous dependence of the D, C, solution on a given vector
yéZQ d are discussed, The above requirements of the D, C, so-
lution are met for all yekd if the mapping f: Rd—aﬁ 4 s con-
tinuous & bijective and if the inverse mapping f'laﬁ(—iéW d is
continuous, (The latter statement follows from the former by The

Invariance of Domain Theorem, (4] .)

Definition., Let f:ﬂ?c—l—:»k d be continuously differentiable ( f<

1 d _d 1
C”). The mapping f1 R—>/R is sald to be a C -diffeomorphism

1

d : -
from 2 onto itself iff f is bljective and f = is in Cl.
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Palais, [6] gave the necessary and sufficient condition for the

a nd 1
mapping £1 R —=/& to be a C -diffeomorphism,

Lemma 2-1, (Global Inverse Function Theorem, Palais i6:,
Holzman & Liu [ 7], Stern [8)], Qrtega & Rheinboldt &4},

Wu & Desoer (18] .)

d d 1 1
Let £3 JF —> %be in C°, Then, f is a (. ~diffeomorphism

4 .
iff (1) det( Df(x) ) * 0 for all xc/F (2.1)

and (ii) Ilfm I£(x)| = +00, < (2.2)
X{—> o

The condition (ii) of the Global Inverse Function
Theorem is often not easy to check in specific cases, Suf-
ficient conditions which are weaker but easier to check are

given below,

Definition, A function m(+): 2 +—> 4 is said to be in class

0

/77]0 iff m(ct) > 0 for all X< Z@+ and 5 m(of ) dKk = +x,
— 0

1l
~d -~
Theorem 2-2, Let f: ??gLa—?' be in {_ . If there exists an

m(-)é/22b such that either -/(( Df(x) ) 2 m(|x|) > 0 or

d 1
-M( -Df(x) ) > m(|x|) >0 for all x=/2 ", then f is a . -

d
diffeomorphism from TE” onto itself,

Proof, Use the Global Inverse function Theorem,
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: d
Claims det( DE(x) ) # 0 for all xe/R .

Let 2z be a non-zero vector in Pd. then for all xéZQd,
IDf (x)+2| 2 max { - U( -DE(x) ), -M( DE(x) )} + Iz, by Lemna
1-2, (J),

an(x|)elz] >0 for all z * 04, (2.3)

Claim: 1lim |£(x)] = +oo,
|X|-> 00

By Taylor's formula,

1
2) = 26 + ( { pe(tx) a7 )m, (2.4)

- Jrg)|

1
£G1 > |< Sonf(fzx) a7 )ex
2 max{-/d -gznf('tx) 47 )y -/u( ﬁm‘('zx) a7 )} . x|

-If(ed)l, by Lemma 1-2, (). (2.5)

pC-(Corem ar ) > - (o)
0 0
l
= go-/-(( ~Df(Tx) ) dT by Lemma 1-2,

(@) & (£). (2.6)

Similarly,
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1 | 1 |
A pern) ar) 2= [ pCoe(ra) ) ar
| 1
- [ -pCoe(Ta) ar, (2.7)
By assumption, we obtain
1 1
maxf (- [ De(rx) at )y puC ( 2e(T) a7 )
1 | a
S ,KOM( lrx|) aT for all xcR (2.8)
Hence, the inequality (2,5) becomess:
1 ,
HOTE ,( n([Tx]) at+ix| - |£(8,)]
0 .
[xI
= g n{cd ) Ak - lf(ed)l by letting A =|Tx| -
0

=?:Ix10 (209)
So, If(x)|>00 a8 X|>00. <

1
Remark, Since f is in C and /41(-) is continuous, the con-

ditions of Theorem 2-2 on Df(x) are mutually exclusive because
d
either -/(( Df(x) ) 2 m(|x|) > 0 for all x¢/R holds, or

-H( -Df(x) ) = m(jx|) > 0 for all xeRd holds,

Definition, A function m(+): W? %4. is said to be in class
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JN(E) iff m(c) > 0 for all e W.*:a.nd there exists a posi-
A

tive constant £ > 0 such that g n(E) d& > X for all
0

S e /?+. (2,10)
Since the class //n( €) is a subset of the class v/,

the next corollary follows,

oy | .
Corollary 2-3, Let f1 R d—> %d be in C . If there exists an

n(+) € JN( £ ) such that either -/41( Df(x) ) 2m(|x|) > 0 or
-/({( -Df(x) ) = m(|x]) > 0 for all xekd, then f is a Cl-

diffeomorphism from 7Rd onto itself, <

1l
Corollary 2-4, Let f1 7Pd—> Pd be in C If there exists a

positive constant m > O such that either -/4(( Df(x) ) 2m >0 or
d 1
./u( -Df(x) ) 2 m > 0 for all x¢/R , then f is a C -diffeo-
s _ ,
morphism from /@ onto itself,

Proof, The constant function m¢ /R (€)C (”/20. <

Examples of m(+) are given below,

Example 2-1, Copsider a funcf;ion m(e)s B> /R, defined by
A . -p - . o
m(o) & € (o + ) (2.11)

where Eo>0, 0(0>landp=’=l.
First observe that m(+) defined above is in class ”720'

(a) If p % -1, then m(s+)e J(€),
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(b) If -1 < p <1, then n(+) § /H(£), tut n(*) < /p,.

In particular, if p = 0, then m() = go = constant,

By choosing specific norms, /,l, / 2 and / M,‘ for Co-
rollary 2-4, we can derive more special cases, Before giving
the next corollary, uniformly rew-sum, uniformly column-sum and
uniformly positive definite (or negative definite) matrices are

defined, Let A(x) denote a dxd real matrix with é. j;ara.meter

x e d

Definition. The matrix A(x) is said to be uniformly row-sum

dominant iff there exists a positive constant m > O such that

<,
'LE\L !aij(x)’ 2m> 0 foralli=1, 2, ¢« , d,
JeL
(3=1)

2;,(®) -

for all x = /f?d.

Definition, The matrix A(x) is said to be uniformly column-

sum dominant iff there exists a positive constant m > 0 such that

| 4,
a; (x) - iy fa, (0] dn>0 forall j=1,2 e, 4
JJd i=1 i J '
(ixj)

.~ d
fora.llxg/p .

Definition., The matrix A(x) is said to be uniformly positive

definite (or uniformly passive) iff there exists a positive
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constant m > O such that
2 a .a
<y,A(x)y> Snmly| forally ¢ R » forall x ¢ F .
: 2

The matrix A(x) is said to be uniformly negative definite iff

~-A(x) is uniformly positive definite,

d d 1
Carollary 2-5. Let f1/R—=/F bein C .

(a) If either Df(x) or -Df(x) is uniformly column-sum domi-
nant, then f is a Cl-diffeomorphism from Rd onto itself,

(b) If either Df(x) is either uniformly positive definite or
uniformly negative definite, then f is a Cl-diffeomorphism from
ﬁd onto itself,

(¢) If either Df(x) or ~Df(x) is uniformly row-sum dominant,
then f is a Cl-diffeomorphism from 7,Pd onto itself,

Proof, Use Lemma 1l-4 and Corollary 2-4, <

Remark, Stern, (8] and A, N, Wilson Jr., (9] showed es-
sentially that a continuously differentiable function fi ﬂ?q-a]ﬁ’d
is a Cl-diffeomorphism if Df(x) is uniformly row-sum dominant,
Corollary 2-5 (b) was proved by Stern, [81, Ohtsuki & Watanabe,

-

(107 and Kuh & Hajj, (117,

2. Newton-Raphson Method

The Newton-Raphson method is an attractive method of
computing D, C, solutions because of lts quadratic convergence

under certain reasonable conditions, That is, if the initial
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point is sufficiently close to the exact D. C. solution, the
(k+1)-th error is at least proportional to the square of the
k-th error, L4, (127 . 1In this section, the guaranteed con-
vergence region of the Newton-Raphson method is determined and
the quadratic convergence is established again using the measure
/( (*). The effect of the local round-off error on the region of
convergence and on the convergence is also investigated, For

this problem we use a key result due to Hurt, {13,

Consider the D, C, equation (1.6):
£(x) =y (1.6)

) d d
where x,y é,@d and 17—/,
Throughout this section, we assume that
- d d 1l
(A1) £f3 /P - is in C ,

(Ai1i) there exists a positive constant m > O such that either

-H(DE(x) ) 2m>0ar -///( -Df(x) ) 2 m > 0 for all xCZl)d.

We note that the existence and uniqueness of the D, C. solution

xe ,Pd of eq, (1.6) is guaranteed and that Df(x) is nonsingular
for all xc-]/é_d by Corollary 2-4,

The V‘Newton-Ra,phson method of solving the D, C, e-
quation (1,6) with an infinite-precision machine is defined by

the iteration rule

Xear = % - (DE(x) )¢ £ ) -y ) k=1, 2 eon
| (1.7)

with xo given,
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00
Definition, Let %xk§ 0 be a sequence in ﬂ{d which converges to

* o0
x « The sequence {xk% 0 is said to converge to x* at least

quadratically iff there exist an integer k_ = 0, and a constant

0

* * 2
- & - =
¢ such that ]xk+1 x l clxk x | for all k 2k . (2.12)

Theorem 2-6, Consider the D, C, equation (1.6) with as-
sumptions (Ai) and (Aii), Assume that there exists a continu-

ous monotone increasing function k*(-): ﬂ§;74>xﬁl such that

for all r >0

[IDf(u) - DE(v) || £ k*(r)lu -v|l, for all u,v¢< B(x*,r).
(2.13)

' * *
Define r to be the unique solution of r = 2n/k (xr), r > O,

*
Under these conditions, if x, é;B(x*;r ) then the corresponding
(o, ® * *
sequence ;X ;.. defined by eq, (1.7) remains in B(x s;r ) and

*
converges to the unique solution x at least quadratically.,

Proof, Let an error vector ey be defined by

A _* '
e =x -x forallké< 7/’+. (2.14)
Then, from eq, (1.7) and the definition of e, » We obtain:

ALK
Ck+1 = *kn
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* { -1 3
= x ..?xk-(Df(xk)) (f(xk)—y)

= (ve(x) )’1{ Df(xk)-(x% - x) +E(x) - £(x ) ,

..1(( ¥ rl. * *
= ( Df(xk) ) 1 Df(xk)-(x - xk) + SODf(. x + ?_’(xk- X ) )e

(x - x|
d7(x - x o
k- )
Thus,

, * - -1{ 1 * *
&n = ( pf(x - ek) ) ? )O( DE(x -~ ek) - Df(x - 'zek) )e

aT -ek} . | | | (2.15)

A 2 - <
Let V(e) < lel, and AV(e.k) v(ek+l) V(e,) for all k € Z,7+.

From eq, (2,15), we obtain

*

. * - 1 ¥*
Av(e) = !( Df(x -e) ) 1{ (0( Df(x =-e) - DE(x--7"e) )

d??vezi - |e]
2

£

- 1 * *
(Df(x*-e))1“°‘§(Df(x -e)-Df(x -Te) )
0 . :

a7 «e| - lel (2,16)

The assumption (Aii) and Lemma 1-2, (/) imply that
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H( Df(x*-e) )"l” 4 1/m for all e e’.zl\«'d. (2.17)

Furthermore, if for any given r > 0 x* and x"-e are in

B(x*; r), we obtain

1
lg ( Df(x*- e) - Df(x-Te) ) daTre
0

1y
y ( 'in(x*- e) - pE(x*- Te)||a T+ lel
Jo
1 *
< K@) |(7 - 1ef a7 -tel
0
*
k (r)
-~ le 1, (2.18)
2
1 k*(@)
Hence, for all r > 0 AV(e) é;- 2 lel - le| for all
e € B(645 ), ' (2,19)
1 *(r*) 2
In particular, AvV(e) & —- le] - lel
: m
* *
k (x )1e|2 - lel

< le]( lel/x¥-1)<0 far all

0% lel <r¥, (2.20)
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00

o defined by eq. (2.15) with some in-

Consider any sequence {ek}

*
itial condition ey < Rd subject to Ieol 4 J <r for some

J >0, From eq., (2,20), we obtain
|2

lek+i| & — forall0é ’ek l e V<x. (2.21)

By induction, 0 £ lek' & 3,< r* for all k éZ+.

From eq., (2.21), we get

*
r

'ekl < [ 7 ]Zkr* for all k € 7. (2.22)

00
So, the sequence { ek} 0 converges to © 4 as k—= 0, since

T < r*. In terms of the iterates, eq. (2.21) is rewritten as

2

I S "*l “ (l/r*)'l"k - x for all k € Z7,. < (2.23)

Remark., Since r= = max ’minlfr,Zm/k*(r)z ,» the open (2.24)

ball B(x*;r*) is the best possible convergence region obtainable
from eq, (2,13)., If either m becomes large or if f(.) becomes
smoother, i.e,, k*(r) is decreased for each fixed r > 0, r" be-
comes large by eq, (2.24); the region of convergence is en-

larged, If k*(+) is a constant function, r* becomes 2m/k*, and

the effect of m and k* on the convergence reglon is obvious,
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Since the D, C, solution x < ﬂﬁ)d is unknown a mriori,
conditions of Theorem 2-6, i.e., eq. (2.13) and xy < B(x*;r*), |
are impossible to check, Those conditions can be replaced by
other stronger conditions which do not include the unknown x*.
The next corollary is stated in terms of a priori known quanti-
ties,

s’

Corollary 2-7, Consider the D, C, equation (1.6) with as-

sumptions (A1) and (Aii), Assume that given erEZ?Dd, there

exists a continuous monotone increasing function ko(-):39+~e>77+

such that for all r > 0

IDE(u) - Df(v) || & ko(r)!u -v| for all u,v € B(x.ir).

(2.25)
Define r* to be the unique solution of
2m
r = !f(x )_‘;I“‘ » T >0, (2.26)
0 ;

b= 0
ko( r -

Under these conditions, if If(xo) -y| € mr*, then the corre-

oc
sponding sequence {xk; o defined by eq, (1,7) remains in

* *
B(x*sr”) and converges to the unique solution x at least quad-
ratically,

4, d
Proof, Claim: I£(x) - y] > nlx = x'|  for all x < [

(2.27)

[£(x) -~ y|= I£(x) - £(x*)!
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ol ; ; -
= g\onf( X+ P (x - x7) ) a7 (x-x*)] by Taylor's

formula,

= n|x - x*} by (2.6), (2.7) and Lemma 1-2, (j).

Claim: the condition (2.25) implies the condition (2.13).
Let T, éiﬁg be such that r_ > ix* - X i, and define
+ 0 0i
r=r_ - Ix - X i >0, (2.28)
Since ]x - x*-{< r implies that
* | * * i
gx - xoi & 'x - X ] + !x - xoj <r+ !x -X

|
o! o’

we obtain the relation: B(x'; r) « B(xyi ry). (2.29)
From the condition (2.25), for all r, > ix*- xoi,

HIDf(u) - DE(v) || = ko(ro)lu-vl for all u,v‘ < B(XO: ro) (2.30)
Hence, for all r > O,

Ii pf(u) - DE(v) !l £ ko(ro)‘u-vl for all u,v < B(x*; r)

r B(xO; ro). (2.31)
Since ko(-) is monotone increasing, we obtain for all r > O,

| DE(u) - Df(v)|| = ko( r + [x*- xoi Y u-v |
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< ko( r + If(xo) - y|/m )ju-v| for all u,v < B(x*; r)

by (2.28) and (2,27). (2.32)

Let k*(r) & ko( r + lf(xo) - yl/m ), Then, eq., (2.32) becomes

the condition (2,13), since k*(+) is continuous and monotone

increasing, Also, note that by eq, (2.27),
[xeP?[ir0) - y1 < m*] ¢ Gt 2, (2.33)

Then, Theorem 2-6 is applied to complete the proof, <
The Newton-Raphson method of solving the D, C, equation

(1.6) with finite-precision machine gives:

-1
¥ = % - (DE0q) ) (£(q) -y )+ E(x )y k=1, 2, o
(2.34)
with xo given, where g(xk) denotes the local round-off error
incurred at (k+1)-th step., We assume that there exists an

£x> 0 such that

Ié(xk)l < & forall X generated by eq. (2.34). (2.35)

In order to discuss the effect of the local round-off error, we
use a modified version of Hurt's corollaries, [13] .

Consider a difference equations

J>Xk+1 = £(x)

} Xyt &iven,

(2.36)

. d .d
where xstZQ d for all k 4,/7;, and f1//-— 7  1is continuous,
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Consequently, for all x0¢Z?j , the solution . x(k;x0)§ 0 of

(2.36) is uniquely defined and for each fixed k < 2;?+, the

mapping x 0 [T x(k;xo) is continuous,

Lemma 2-8, (Modified version of Hurt's corollaries, :13),)

7,

d -
Let Vand W map 7" into ¥, and let W be continuous, For some

, B
T>0,%tcd {xepdivx) <7},

!

Assume further that
(1) v(x) = 0 for all x G
(ii) G is compact;

(11i) there exists a constant w 2 0 such that

AV (x) & V( £(x) ) - v(x) = -W(x) ¢ w for all x < G;
(2.36) |
(2.37)
(iv) Let N s {x € GI“(X) & 0} and b 4 sup V(x) <~

xeN

(VLet A2 {xeRv(x) b +w} s b+w<?,

Let o = inf  W(x).
xeG

Under these conditions,
(a) NcA <G, N is closed and 5 2 0,

(b) For all X € Gy x(k;xO)CG for all k < Z’;, i.e., G is an

invariant set of eq, (2.36).

(e¢) For all x_ G, x(k;xo) ~~A as k-=>~ and A is an invariant

0
set of eq. (2.36). If, in addition O > 0, then there is a

k'(xo) such that x(k:xo)f« A for all k > k'(x,).
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() For all x Oec, the positive limit set (set of all the limit
. NS

points) M(xo) of the sequence 7x(kgxo) I"O is a subset of A and

M(xo) is an invariant set of eq, (2.36).

Proof, (a) If x<N, then V(x) € b € b +w< y, by assumptions

(iv), (i1i) and (v). Hence NCAcCG,

Since N = W'l( (-20,0 })NG and W is continuous, N is closed as
the intersection of two closed sets,

Since W(x) > 0 for all x €G-N and G-A CG-N,

6 2 inf W(x) =0,
x e G-A

(b) Since X, €G, it is enough to show that for all i< .7,
x(i;xo)ec implies x(i+1;xo)éG.
Case 1) x(i;xo)é.G-N.

By assumptions (iii) and (iv),

V( x(1+15x ) ) = V( x(13xg) ) - W( x(i5%) )
< v( x(15x,) ) ¢ 7,
So, x(i+l;x0)éG.

Case ii) x(i;xo)éN.

By assumptions (iii), (iv) and (v),

v( x(i+1;xo) ) & v( x(i;xo) ) - w( x(i:xo) )
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eb-w(ﬂn%))eb+w<?.
So, x(i+1;x0) 2 ACG,

Hence, G is an invariant set of eq, (2.36).

(c) Claim: A is an invariant set of eq. (2.36).

It is enough to show that x <A implies f(x)< A, Similar to the
roof of the invariance of G, if x<A-N, then f(x)€ A and if

x N, then f{x)eA,

Claim: for all Xo € G, x(k;xo)—éA as k—> 0,

Let d(s,+) be a distant function defined by

a(x,A) & ianlx-al. (2.38)
a~ ;

Proof is done by contradiction, Suppose not, i.,e,,

~ [v x, €6 ¥E£>0 AN ¥k 3N d( x(kx),A ) < ¢ ] (2.39)

That is,

IxjeG JE£' >0 ¥N Jk 2 N 4 x(k;x(‘)),A ) > £, (2.80)

Let J be the infinite set of integers defined as

( Y ! ' = u-\
+k~ /+}d( x(k§x0)’A ) > - ){ o

; e

Note that ‘fx(k;x('))f is a subsequence of x(-;x(')) and that

ked
the sequence x(c;x(')) stays outside the set A, because A is in-

variant, Thus ¥ k J, x(k;xé)éG-B(A; £') ~G-A~G-N,
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Hence by assumptions (iii) and (iv), the subsequence

k> v( x(k;x(')) ) is strictly monotone decreasing., Since V =2 0
on G, this subsequence converges, Hence, AV( x(k;x(')) ) >0
as k—>oc, k<J, and so, W( x(k;x(')) ) tends to 0 as k—=~, k =J,

since W( x(k;x(')) ) >0 for all kedJ,

Now,
inf W(z) = min W(z), since G-B(A; ) is
z¢ G-B(A; £ ) 2<G-B(As £) & E
compact,
A
= 6w >0, since W(z) >0 for all
z<G-B(A; £ ) C G-N, (2.41)

So, W( x(k:x(')) ) = 6w >0 for all k&€J, This is a contra-

diction,
Claim: if 5 > 0, then ¥ x,€G Tk (x ) such that x(ksx,) e A
¥k>k'(x),

0
Since A is an invariant set, it is enough to show that ¥ X, G
Elk'(xo) such that x( k'(xo);xo JeA,

Use contradiction, Suppose not, i,e,,

- '~ -~ [ - ‘ 9 1L
v]xO(G Vk e //"+ x(k;xo) G-A, (2.42)

Then,

v( x(k;x(')) ) = V( x(k-l;x(')) ) - wW( x(k-l;x(')) )
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4 v( x(k-15x7) ) -5, by (11ii) and (v).

Thus,

v( x(k;xc')) ) £ V(x}) x5, (2.43)

So, V( ,x(k;x(')) )—> -0 as k>, But, ¥k £ Z+ v( x(k;x(')) )
>b+ w=0 since x(k;x!)£G-A, ¥k = # ., This is a contra-
0 7y

diction,

(d) Claims M(xo) is an invariant set of eq. (2.36).
M(xo) is compact, since M(xo)(.a = G and M(xo) is closed, Let

p-ﬁM(xo), Then, there exists a convergent subsequence

, 0

{ ) N e
| :"',x(l.(n’ xO)( o such that x(kn. xo)——,op as n— 0o,
Define:
A A - s
y () = xleties xg) = x(ktk ) Vo7, Vo<, (2.44)

Then, yn( ) is the solution of eq, (2,36) with the initial con-
dition yn(O) = x(kn; xo). Also, yn(O)---->p as n-—»",
Since the solution of eq, (2.36) is continuous with respect to
Xq yn(-)—~> x(+3p) in the sense of pointwise convergence of
sequences: ¥ k < Z+ yn(k)—:» x(k3p) as n >,
Since V"n < /+ Vke + yn(k) I ,7f7)d is on the sequence

o

x(-;xo), for fixed k ¢- '+, fy (k) is a subsequence of’
Con =)
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x(-;xo), such that yn(k) ->x(k;p) as n->0c, So, x(k;p)= M(XO)
¥keZ ., i M(xo) is invariant under eq., (2.36).

Claims M(XO)CA-

By the definition of M(xo) , ¥ peM(xO) Ja subsequence S(p) of
x(-:xo) which tends to p, We have shown that the sequence
x(-;xo) tends to A, Since S(p) is a subsequence of x(o;xo),

S(p) also tends to A, Hence pea, <

Remark 1, V is said to be a Lyapunov function, In the above
Lemma, V takes on nonnegative values on G and is bounded from be-=
low on G, The continuity of V is not required, and V can

possibly increase on N along the solution sequence,

Remark 2, We note that Lemma 2-8 can be used to prove Theorem
A .
2-6, By letting V(e) & jel, W(e) = -(lel/c* - 1) lei, and

0<% <r*, we obtain A = N = {ed} and G = B(03r"), using eq.

(2015)0
Now, we state the theorem concerning the effect of the

local round-off error,

Theorem 2-9., Consider the D, C, equation (1,6) with as-
sumptions (Ai) and (Aii), Assume that f satisfies the con-
dition (2,13) of Theorem 2-6, Assume further that the local

round-off error 8(xk) 1s bounded as in (2,35) and that

En<T*/5, (2.45)
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Under these conditions, if xoéﬁ(x*: r*- 2£m), then the cor-
5 00
responding sequence { X ¢ =0 defined by eq., (2,34) remains in

B(x*; ©*- 2€_) and enters the region B(x*; 3800) after a finite
number of steps and remains in it forever after,
Proof, From eq, (2.34), we can derive a difference equation a-

nalogous to (2,15):
-1r 1 .
g = (P26 ) )T L[ (006 o) - pe(- 20 ) aTeey |

+ E(x*- ek), k=1, 2, oo (2.,46)

Let V(e) = |e], As we obtained eq. (2.19), we gets for all

r>0
‘AV(e) £ le]( k¥(x)/2mlel -1 ) + IF(X*- ek)‘
£ le|( X*(x)/2mle] -1 ) + €, for all eeB(ed; r),
(2.47)
Corresponding to eq., (2,20), we obtains
Av(e) ¢ lej(lej/x* 1) + £, forall 0% je| < r* (2.48)

In order to apply Lemma 2-8, let -W(e) be the right-hand side of

eq. (2.48):

We) & -lel(lel/r*1) - £ . (2.49)
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Observe that W is continuous and w = £ Choose /| =

'x\‘.

r*- 2 € o < r¥, Hence we obtain
d ~ g
G =z(eé:fp\ | le| & r¥*- 2 Coo} = B(ed; r*- 2500). (2.50)

Check all the conditions of Lemma 2-8,
(1) V(e) = |e] * 0 for all ecCc/RY,

(11) G = B(04; r*- ZEM) is compact,

(111) Let w = € Then,

Axéezé) £ -i(e) € € for all e€B(8;; '~ 2¢ ). (2.51)

(iv) N é«{eeGI W(e) = 0,7 ={eeﬂ\9d’ le| £ b} = §(ed; b)

(2.52)
where b is the smallest zero of
2, % -
W(e) = ~lel/r" + Je} = 7 =0 (2.53)
Therefore,
-1 +\/1 - bEy o 1- /1 - br fe*
D = — % = A [P —
-2/r 2/c*
= £, + Emz/r* + e0e, since 4 € /fr* <1, (2.5%)
s < 2 *
Since W(e) = -/t <0 and W(e)l =
Ie|=’goo ! Iel=2 ?‘.r,\‘
E(Mnfc® +1) >0, F<b<2F <00, (2.55)

(v) A Q{ee%’ Yv(e) = b + £ = Blogs b r ). (2.56)
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b+ £ <3 F <xr*-2f by (2.55) and (2.45), (2.57)

From eq., (2,57), we obtain

A<B(8: 3£,)CC, (2,58)
Note that
§ 2 inf W(e) = inf . W(e)
e €G=-A b+E <lel<r ~2&
[~ 00
='m1n.{W(e)i' y W(eﬂ 1> 0, (2.59)
{ | le]=b+¢ | le|=r¥-2¢)

Hence, all the conditions of Lemma 2-8 are satisfied and, conse-

quently, the conclusion of the theorem follows, <>

Remark, Theorem 2-9 shows that if the local round-off error

&
‘g

region is 2£  smaller than that of the infinite precision a=-

is sufficiently small, then the radius of the convergence

rithmetic case, and instead of quadratic convergence to the u-
nique solution X*, we obtain the convergence to a ball centered
on x* with a radius 35, in a finite number of steps,
Corresponding to Corollary 2-7, the following co-
rollary which is stated using only a priori known quantities is

obtained from Theorem 2-9 in a similar manner,

Corollary 2-10, Assume that f satisfies all the conditions of

Corollary 2-7., Assume that the local round-off error E(xk) is

bounded as in (2.35) and that £,<x*/5,
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Under these conditions, if |If (xo) - y| ¢ n(x*- 2{%,‘7) , then the
corresponding sequence ; x.k}: defined by eq, (2,3%) remains in
B(x*; r*- 2 F.m) and enters the region B(x*; 3 Eoo) after a finite
number of steps and remains in it forever after,
Proof, Using the same techniques for proving Corollary 2-7, we
can show that Corollary 2-10 is the special case of Theorem
2-9, <>

It is worthwile to note that error estimate is ob-
tained by eq, (2,27). Let %P ve a computed point, Then,

the estimate of the error x*- X is given by

|x*- x| 41£(x) - y|/m, (2.60)

"
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CHAPTER III.,
ORDINARY DIFFERENTIAL EQUATIONS

In this chapter, the upper and lower bounds of the so-

lution of O, D. E,'s are estimated using the mea.sure/((-).

1, Estimates for Upper Bounds on Solutions

We consider nonlinear time-varying O. D, E,'s of the
form:
x = £(x,t) + u(t)

(1‘1)
x(0) = X

where x(t), u(t) e}?d, for all t é‘%?_’., and f:pdxﬂ?"—)%\)d.
We assume Al: f(ed,t) = 8y for all t€& %4-’ A21 x|} >f(x,t) is
in Cl for all t e 7,{>+; and A3t the input u(+) and for each
fixed x éRd t>f(x,t) are plecewise continuous on /P,. We
say that a function from /R ; into ZQd is piecewise continuous
iff on every compact interval J = [to, tl] & @-._ (1) the
function 1is continuous on J except for at most a finite number
of points; (ii) if t' < (to, tl) is a point of discontinuity,
then the right- and left-hand limits of the function exist and
are finite; and (iii) at t = ty the right-hand limit exists and
at t = tl the left-hand limit exists, [5], [23] .

We utilize Coppel's theorem for estimating those

bounds, Coppel's theorem gives the upper and lower bounds
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for linear time-varying O, D, E,'s, where the meaSurel/K(.) was
originally used for the stability analysis of 0, D, E.'s,

-

Dahlquist {1, Coppel [2 ],

Lemma 3-1, Slightly generalized version of Coppel's inequality
(2],

Let A(-)xﬂ2;€>ﬂ?dXd be piecewise continuous, Let di(t,to) be

the state transition matrix associated with A(.), i.,e., by defi-

nition:

,
j %é(t'to) = A(t) Ei?(t,to)

. o1
[ Bty =1 o

for all t = to 20,

Then,

exp [_ J(:({u( -A(7) ) d’:_”,] <1/ “ [éﬁ(t,to)J ~1“

< || B(tsty) || ¢ exp H: /-/(‘A(z") ) d?’] (3.2)
0

for all t = to 2 0,

Proof, Consider a linear time-varying O, D, E,:

(3.3)

oéi :’@

Since A(+) is piecewise continuous, letting D be an atmost

where t kto and t

64
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denumerable subset of ﬂ?+ where for all t' <D there exists some

pair (i,3), i,j~ §1,2, see ,d} such that aij(-) is discontinu-
ous at t', The solution x(.) of (3,3) is by definition a con-

tinuous functionz]?;~>]?d such that (3,3) holds in'ﬂ?+-n. .
The inequalities (3.2) will follow if we show that for t = t
and for all X ¥ 0

-
-

- t ;
exp - M -a(7)) a7 x| ¢ [x(2)! 4
1 \'to A )

t
exp

T

tol (A(?)) d?"j ‘XO

. | (3.4)

[ematama |

This is easily seen by taking the infimum and supremum over

X, * 0, We first observe that/ﬁf( A(+) ) is piecewise con-
tinuous, since/!((-) is continuous and A(.) is piecewise con-
tinuous,

Claim: thc right-hand derivative 'x(t)‘; of the norm [x(.)| of

any solution of (3,3) exists for all t éé}?+, and

, . Ix(t) + hx(t+0) | - [x(t) |

| x(6)], = Mn, - (3.5)

Observe that from (3,3) the right-hand derivative x(t+0) of x(*)
at t exists for all t r‘ﬂ”+.

Let 0< 0 <1, Then we have
Ix(t) + 6hx(t+0) | = |0+( x(1) + hx(t+0) ) + (1-0)x(t)

€ 0lx(t) + hx(t+0) | + (1-0)|x(t) | (3.0)
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or
I x(t) + ohx(t+0) | -Ix(t)! |x(2) + hx(t+0) | - |x(t) |
i ST (32)
6h h
Since hl——>[¥(t) +hx(t+0)l - =)l is nondecreasing and it is

h
bounded from below by -|x{t+0)|, the limit in (3,5) is finite,

We now establish equality (3.5), For sufficiently small h > 0,

Ix(t) + hx(t+0)l - Ix(t)l

| . '

ol - KL
_ | Ix(t+n)| - Ix(t)l o(t)/h - ﬂ?thx(tw)l - lx(f)l_ :

h h i

. Ix(t+h) | - ix(t) + hx(t+0)| + °Q§)_

- h
e% Mﬁw-x&)-&&w)+dml

1 [‘b+
= Bt A(t') x(¢') at' - hx(t+0) + o(h) (3.8)

Since for sufﬁiciently small h > 0 A(+) is continmuous in
(t,t+h] , the integral is A(t+0)x(t)h + o(h)., Therefore, the
left-hand side of (3,8) is equal to o(h)/h, Hence, (3.5)

follows,
Since, |x(t) + hx(++0); -|x(t) |

£ ||I + bA(t40) || o [x ()] - Ix(t)], (3.9)
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NI+ ha(z+0) 1l -1

I
§X(t);+ < ﬁ& ; |x(t)!
= 1 ( A(++0) )ix(t)! for all t € ZP+. (3.10)

Let Mﬂge@fﬂwﬂ(MT)hmjﬂdwlfwan
. i .bo .

te K, | (3.12)

Since/#/( A(+) ) is piece-wise continuous, the set D is a set of

measure zero and

t : . .
w(t) = exp [- rt. /U.( A(T+0) d’Z':! oix(t)! for all

0

te k.,  (3.12)
+
By eq.(3.10) and eq,(3.12),

s

v}'+(t) = exp [- kft ML A(T+0) ) d’(ﬁ’J . {-/.l(( A(t+0) ) ix(t)!
. 0 ,
+ lx(e) { £0 forall tal/k, (3.13)
: ‘+) : +

Hence w(t) is monotone decreasing, 2] and then

-

t
exp[-

——

. 0/4( AT) ) a | ix(e)l = w(e) £ w(t)

(3.14)
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or

]

, t
Ix(t)| 4 exp! [ HCAT) ) aT [[x,]  forant t 2t . (3.15)
’ 70
The proof of the other part of the inequality (3.4) is analogous
to the previous one and uses left-hand derivatives, We also ob-
tain that the left-hand derivative !x(t)l. of |x(t)lexists for
all t < ﬂ:+, and
Ix(t)] - [x(t) - hx(t-0)]

| | e
'x(t = 1im — s e e g 16
)] h{0+ h (5:16)

Ve also obtain:

x(®)] ® - HOA-0) )ix(t)]  for all t € F,, (3.17)

Let w(t) & expl..gt/ﬂl( -A(7) ) aT ]-{x(t)i for all
[ -t -
0

t€/K,. Then, it is easily verified that w_(t) ® 0 for all
t < Z?_+. Hence, we obtain:

t T
x(t)| > exp| - | MC-a(7) ) aT Joix, for anl

Jto

t 2t <> (3.18)

Comment, The following calculation gives insight to the
meaning of///(-) and its relation to the solution of 0. D, E,'s.
This was suggested by Prof., W. Kahan, For simplicity, let A(.)

be continuous,

f
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Define y(t) £ exp(ot)x(t) for all t > ¢ (3.19)

where ¢ > 0,

Then, y = ( ¢'I +A(t) )y with y(to) =% (3.20)

y

Claim: Ey(t)i; £ |y(t)i for all te;ZZ>+, (3.21)

where Ey(t)!; is the right-hand derivative of ly(.)l.
Observe that for all dt > O,

ly(e+dt)l -1y ()] |y(t) + y(t)dt + o(dt)i - iy()
o - R e

< |y(t)i+ o(dat)/at. (3.22)"

From (3,20) and (3,21), we obtains

)] 4 HeT+al)lliy(e)l  with ly(t )l = (3.23)

e
f 11 t=21¢,
|x01 or all t to
In terms of |x(t)|, eq.(3.23) becomes:
hun;éinc1+uwu-aﬂ-uun. with (3.24)
i = ! ! >
{x(to)l %51 for all t > t .

Let 6 = 1/ and let ¢—> +x, and then

, . Il -
§x(t)]+ 4 JTF ea(e)ll -1

0y 0r ) (e) = alt) )eix(e)!,

Hence, Ix(t)|< exp [ K:'/’( A(TT) ) av }-lx

"o

ol * (3.25)
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o . | ts !
Thus, H_{ﬁ:’(t,to),!é = sup EX(X,O)'__
xo#é) !xol
sexpf | M(A(T))a¥ |, (3.26)
L. Jto - .

Similarly, by using the left-hand derivative ly(t)} , We obtain:

ot ; ix(tix,) |
expl| - M(-A(T))d¥ | #inf ——-—r—om
! Kt()/ J deFed X0
r: 1 =Ly
- Bl T e

Recall that we defined the class /(= ) of functions by
(2.,10), That is, a function m(-):[.;—«->7jl{"+ is said to be in
Jm(E) iff m(c¢f) > 0 for all & ¢ ZP+ and there exists a posi-
tive constant £ > 0 such that

,(/

i
'

'Xom(g) a4 = g for all o &/= . (2.,10)

Theorem 3-2, Dahlquist, (1],
Consider the 0. D. E. (1.1) with assumptions Al, A2 and A3.

Assume that there exists an m(-)éqﬂﬁ( £ ) such that

d
- /! [Dyf(x,t)] 2 m(jx]) >0 for all x <P, (3.28)
for all t = .

Under these conditions, Lhe solutlon x(-;xo) of eq.(l.l) with an

initial condition x, < /e 4 satistiess
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't - 1
+ | exp -E(=7) Ju(7)a” (3.29)

[x(t)] = exp(-¢t)e x
H "O

0!

for all t </F .

Proof, Since the solution x(n;xo) of eq.(1,1) exists and is
unique, x(-;xo) is equal to the solution of the following line-

ar time varying differential equation:

f x = A(t)x +u(t)

4 (3.30)
i x(0) = Xo
(1 . - 7
where A(t) = \ le('(, x,t) 47 for all t = [, (3.31)
1o
Here, we used the Taylor formula:
(1
f(x,t) = £(6,t) + le(’f X,t) d7 *x
Jo
1 .
= ( le(ft x,t) 47 ex for all t € 7P+. (3.32)

~ 0

We note that A(+) is piecewise continuous,

Claim: M( A(t) ) - £ forall t€ K,

1
MCA) )= M uonlf(’;r Xt) d?:]

&

‘1
£ . 1 e
fo/l[le(z x,t)] 4, by Lemma 1-2, (d) & (f)

2
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l.l
£ | -n(i2x]) a%
Y
rxl m(t)
= | -- d¢ by letting Of = |Tx| = 7 ixi
Jo x| :
£.£<0, since n(+)e/M(E). (3.33)

By Lemma 3-1, we obtain:

f;f—g(t.to) || £ exp ’;- E(t-to)} , forall t= to, (3.34)

y

=
t’to : £ _+.

.

Thus the inequality (3,29) follows, <

Remark, The inequality (3.29) shows that if the input u(-) is

bounded on [0,°C) and if u(t)—> Gd as t—>nC, then starting

from any initial condition x, {—_ZE\'d, x(t;xo)—> Od as t-=2>",
Since a constant function m is in /77 (m), the follow-

ing corollary follows immediately,

Corollary 3-3, Consider the 0, D, E, (1,1) satisfying Al, A2

and A3, Assume that there exists a positive constant m > 0

such that
-/u Lle(x,t)] >pn>0 forall x& 7}2‘1, for all (3.35)
te P,

%4-

Then, the solution x(-;x() of eq.(1l.1) satisfiest
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t
i r g - 7, )
Ix(t)! £ exp(-mt)-jxoz + i exp [-m(t-7)" (7 )a”,
.0

for all t .4,7P+. <> (3.36)

2
Relation to previous work, The special case under }{ norm for

1
Corollary 3-3 is classical, The ‘K norm case was studied by
Rosenbrock | 14 ], and the modification was done by Sandberg .15 !
and Mitra & So [16" , where ;x| = IDx|,, with positive diagonal

dxd matrix D > O,

Theorem 3-4, Consider the O, D. E, (1,1). Assume all the
condiiions of Corollary 3-3 are satisfied. Let xa(-) & xb(-)
be solutions of eq.(1.1) with initial conditions xa(O) & xb(G),
due to inputs ua(-) and ub(o), respectively,

Under these conditions, the difference xa(-) - xb(-) of the two

solutions satisfies:

1% (t) - x (£)] < exp(-mt)-Ix_(0) - x, (0)!

t
/
+\ exp [-m(t=7")7 oJu_ (%) ~u (= )ld7
I p (-n(t-7)] eu () - u (<))

for all t £ Zﬁ’+. (3.37)

Proof, Note thats

o = Llx,t) +u (1) foratn v A7, (3.48)

73



Ch,IIT 3ec,l 70

and that
x = f(xb,t) + ub(t) for all t622;:+. ' (3.39)

By subtracting eq,(3,39) from eq.(3.38), we obtain

. ] )
& [(%® -1 ®)] = 10,0 - £(rt) + [ (6) - u (),

1 -
= ' - 14T (x - f - Y
~J0D1f ibe + /Z“(xa xb), tJX ac (xa xb) + Lua‘(t) ub(t)_i
for all t & ﬂ?ﬁ, (3.40)

Observe that:

1 -
r . ]

iV DfFTx +7C(x ~-x t]d7”
/lf [x, (a b). Jar]

1 _
/ .
£ | f 7 (x - > -
\o //Lle be + 7 (xa xb), t ] ] a7 by Lemma 1-2, (d) &
(£)
« .n <0 forall t& ZZ:;'+. _ (3.41)

Similarly to the proof of Theorem 3-2, we obtain the inequality

(3.37). <

Remark, As before, the inequality (3.37) shows that if the
difference ua(°)~ub(-) of the two inputs }s bounded on |0,¥')

and converges to Od as t - v, then starting from any Lwo initial
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conditions xa(O) & xb(O), the difference xa(-) - xb(-) of the
two solutions converges to ed as t »=/x,, This guarantees a
unique steady state solution for broad classes of electric

circuits,

Corollary 3-5, Consider the O, D. E. (1.1). Assume all the

conditions of Theorem 3-4 are satisfied, Let x(o;xo) be the so-
lution of eq.(l.l) with the initial condition x, <7 % due to a

constant input ujf-i:d. Let xx‘<frfd be the D, C, solution of
0q = £(x) +u, (3.42)

Under these conditions, the difference x(t) - X, satisfies:
Ex(t) - xmj < exp(-mt)-,x0 - xﬁ_i for all t ~ ?3+. (3.43)

Proof . In view of Corollary 2-4, the D, C, solution of eq,
(3.42) exists and is unique, Then, the inequality (3.43) is

the immediate consequence of Theorem 3-4, <

Relation to mrevious work, The special cases under the weighted
1

)

/? norm, i.e.,, Ix! & li(l & D > 0 is diagonal, for Theorem 3-4

and Corollary 3-5 were proved by Sandberg 157 and Mitra & So
16

(W]

2. Estimates for Lower Bounds on Solutions

Using the other halt of Coppel's inequality (3.:), we
can state theorems corresponding to those of Section |, giving

estimates for lower bounés on solutions,
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Theorem 3-6, Consider the 0, D, B, (1,1) with assumptions Al,

A2 and A3, Assume that there exists an m(:)< AF (%) such that
e b 4"‘.d
- //, 'L-le(x,t)) > .m( x) for all x< /}# , for all

7
ts /o, (3.44)

and that u(t) = @ for all t < Z‘?+.
Under these conditions, the solution x(-;xo) of eq,(1.1) with an

initial condition x < 7 4 satisfies:
Ix(t)! 2 exp(-£t) ;xog for all t & %+. : (3.45)

Proof, The proof is analogous to that of Theorem 3-2, Let
A(+) be defined as in (3,16),

Observe that:

rl
- U= = -yl >
L)) yal ‘}ole(c X,t) dT}
:'-1 r 2
S /4 zL-le("’x,t) a’ by Lemma 1-2, (d) &
Jo
(£)
f’ijﬂ(C/) ‘ .
== d by letting <=7 x!
30 X
2 o (E. , (30“6)

Then, Lemma 3-1 is applied to obtain:
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{
]
i

1 - 1 -1} .
exp | - E(t=ty), 41/ R G (tatg) | T|i, forall t =t

Ol

R (3.47)

Hence, the inequality (3.45) follows, <

Corollary 3-7, Consider the O, D. E, (1,1) with assumptions Al,

A2 and A3, Assume that there exists a positive constant m > 0

such that:

) L~ ad T
-// f-le(x,t)j >.n forall x< /- , for all t <~ ﬁ\+,

and that u(t) = 0,

Under these conditions, the solution x(-;xo) of eq.(1.1) with an

for all tfiﬁ?+.

initial condition XOKEZK?d satisfiess

ix(t)l = exp(-mt);xoi. < (3.48)

Theorem 3-8, Consider the 0, D. E, (1.1) with assumptions Al,
A2 and A3, Assume that there exists a positive constant m > 0

such that

'd r
- /’f-le(x,t)] > .n  for all x =/ , for all te AL

Let xa(-) & xb(-) be solutions of eq,(1.,1) with initial con-
ditions xa(O) & xb(O), due to the same input u(e) = ua(-) = ub(-),
respectively.

Under these conditions, the difference xa(') - xb(-) of the two

solutions satisfies:s
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%xa(t) - xb(t)§ = exp(-mt). xa(O) - xb(O)i for all

t=F,. < (3.49)

Corollary 3-9, Consider eq,.(1,1), Assume that all the con-

ditions of Theorem 3-8 are satisfied, Let x(-;xo) be the so-
lution of eq,(1,1) with the initial condition Xq 7~ ‘/?'d due to a

™ d P
constant input umé_ff}- . Let x &7 4 be the D. C. solution of

eq.(3.42),

Under these conditions, the difference x(.) - x o satisfies:

Ix(t) - X, ; 2 exp(-mt){xo - xT;: for all t < /I o (3.50)

Relation to previous work, If we take /l norm, Theorem 3-8

and Corollary 3-9 are led to the results by Sandberg |15 | .

Remark, In this chapter, the estimate of lower and upper
bounds is stated only for exponentially stable case: there exist

siti stant d
positive constants moax 20 mmin such that

PNV | - I £ .
Max P _)lf(x,t)“ / A,le(x,t)_ L for all

. d )
x =T, for all t < P, (3.51)

Using the same technique, it is easy to show the similar esti-

mates for exponentially unstable cases: there exist positive

constants m and m such that
max min

n € - A T-b f(x,t)] £ Minf(x,t)] <nm for all
min 1 1 max

78
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(3.52)
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CHAPTER IV,
COMPUTATION OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

In this chapter, estimates for bounds on computed so-
lutions of 0. D. E, with infinite precision arithmetic and on
accumulated truncation errors are given using the measure//((-).
Also, we extend and relate the earlier results on D. C, equation
(ch, II) to the implicit equation required by the backward Euler
method,

Section 1 gives ¢ jtimates for bounds on computed so-
lutions and on errors, obtained from several computational
schemes, Theorem 4-1 and Corollary 4-2 give estimates for the
bound on the computed sequence by the backward Euler method,

The estimates consist of two terms: the first term shows that
the effect of the initial value decays exponentially and the
second is bounded if the input u(+) is bounded, Since the
backward Euler method is implicit, it requires in principle an
infinite number of arithmetical operations and function evalu-
ations at each time step, In implementing the backward Euler
method at each time step, we modify it by truncating the iter-
ation when the computed value is within some & of the exact
value, Theorem 4-3 gives an estimate for the bound on the
error between the computed sequence by the backward Euler method
and the computed sequence by the modifled implementablé method,
The estimate is the sum of two termss the first term shows that

the effect of the initial error decays exponentially, and the
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~

second is proportional to the chosen 5 incurred by truncating
the iterative method at each time step, We considér next the
algorithm where at each time step of the backward Kuler method
we use only one step of the Newton-Raphson method, Theorem 4-U
gives an estimate for the bound on the computed sequence thus
obtained, Theorem 4-5 gives an estimate for the bound on the
error sequence between the computed sequence by the backward
BEuler method and the one thus obtained, These estimates ob-
tained are similar to those obtained in the previous theorems of
this chapter,

In Section 2, the estimate for the bound on the so-
called accumulated truncation error incurred by the backward
Euler method is given by Theorem 4-6, Again the estimate is of
a simllar form, consisting of two termss the first term shows
that the effect of initial errors decays exponentially and the
second is proportional to the step size,

In Section 3, we extend and relate the results of
Chapter II to the implicit equation obtained by the backward
Euler method, The effect of the step size on the existence and
uniqueness of the D, C, solution as well as on the region of con-
vergence for Newton-Raphson methed with infinite and finite pre-

cision arithmetic is stressed,

1, Properties ot The Computed Solution of U, D, k. (l.{)_yhen Jt

Is Computed by The Backward Fuler Method (1.3) And Some of Its

Simplified Versions
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Throughout we assume an infinite precision arithmetic
for all computations, Consider the 0, L, E, (1.1):
D x = £(x,t) + u(t)
J (1.1)
- x(0) = X,

- d P rd i d
where x(t), u(t) </ ~, for all t « o, and f2 7 XELT .

We assume Al: f(Od,t) =04 forall t e ﬂ?+; A2t xj->f(x,t) is
'\1 )
in 7 for all t £ 44 and A3: the input u(+) and for each fixed
X & #?d, t| > f(x,t) are piecewise continuous on Z7+. Recall
-~ G

the backward Euler formula (1.3) and let ;yn%o denote the com-

puted solution of eq,(1,1) by the backward Euler formula (1.3).

Theorem 4-1, If there exists an m(-)-’vyﬁ( ) such that

- d
-//([le(x,tﬂ 2m(ixl) >0 for all x~ ' , for all

00
i

jo of eq,(1,1) by the

t € ﬁ?4, then the computed solution ;yn

formula (1,3) satisfies:

(k+1

Iy | -n -l - ) i
Yo = (1+¢£h) }yO‘ + ) ,(1+%h) -h°lu | forall
i i ! k=0 ! NeX )

Proof, From (1,3), we obtain:

- hf ntl) = + hu R 4,2
Yo (yn a’ ) Y - (&.2)

By Taylor's formula, we have:
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LHS of (4.2)

1

l -
N Y +1) a7 .
Yo i (Ty_,,o0%1) Yo

1

= ( 7 ,7’_! 4
As in (3,33), observe that from the assumption, we obtaint
r/‘l ’ I
i ’ & .

e i Ole(’Z_ yn+l,n+l) a7 l £ <0, (4.4)

/ - fl o~ "l (- |— '1
- U= + 7 b= -l “4ih

/,1 L Tig ¥ B! OD (7 v, 1,n+l) a7 | : 1+ lhjo
le(’?,'yn_'-l,nﬂ) d?} J'( » by Lemma 1-2, (e)

& ‘
=1 - h/u'i‘\.ole( Y, ],n+1) az ! , by Lemma 1-2, (d)
21+hf >1, (%.5)
Using Lemma 1-2, (j), (4.2), (4.3) and (4.5), we obtain:
! NS !
fyng + h!un+1; Iyn + hun+l|
= H—I - hgoﬂlf(‘zy 1,n+l) d’/’_l °y +1£
> i "
Q+he )ty - A (4.6)

'y £ (1+£h) L + (]+fh)-l.h-'u I 0%
1 n+1l iyni e ’ n+li * . "o/)

Hence, we oblain:
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- ‘n-l -(k+1) 1 )
e @ren) Ty 4o larEn) T by L. S (B)

I

n

Remark, From Theorem 3-2, under the assumptions of the above
theorem, the exact solution x(-;xo) of (1.1) is also bounded-

input bounded-output(B, I, B. O0,) stable,

Corollary 4-2, Suppose f(+,+) satisfies conditions Al, A2 and

A3, If there exists a positive constant m > O such that

.d .
-/M[_le(x,t)] 2m>0 forall xef , forall t« fF,

. [et]
then the computed solution {yn} of eq,(1.1) by eq.(1,3) satis-

0
fies:
' -n n-1 -(k#1)
ly | ¢ (4mh) |y | +) | (1+mh) shelu | for all
i n‘ : O! k=o [ n—kl
n¥1, < (4,9)

Relation to previous work, Special cases of Corollary 4-2 wure

proved by Sandberg & Shichman under 1?2 norms, [ 17! ; and by
Sandberg under weighted le norms, [3 7.

In order to solve the implicit equation (4.2) we use
an iterative method, say the Newton-Raphson method, In practice
we have to truncate the jterative method at esach step of the
backward Kuler method, t'or example, at each step of the

backward BEuler method, instead of solving eq.(#.2) cxactly for

3l
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A0

y and thus obtaining the sequence {y ? » we truncate the pro-

n+l . nlg

cedure; this will give us a sequence ;&;gm. More precisely, at
0

the (n+l1)-th step we should solve (see eq.(4.2) ) the equation:

* * ~J
- + = + > L,
Yo hf(yn+1, n+l) Y, hun+1, for all n >0 (4,10)
* * . \
for y .+ Note that y ., is the (exact) solution of (4.10),

We solve (4,10) by iteration and we stop the iteration when we

obtain an iterate, say §;+1’ such that for some £ > 0

;3; -y 142, foralln=0 (4.11)
“n+l n+l - ' '
N/ ~) - 47»'
Note that we have three sequences in mind: ;ynf ’ fy;; » and
o Mo

- #* 40 * A aY%s ~2
{y } » where y =y; and ¥, is the initial condition for our
n 0 0

simplified calculation, ‘The next theorem gives an estimate for

nvs
a bound on Y~ Yy

Theorem 4-3, Assume that all the conditions of Corollary 4-2
0 cru OO
are satisfied, Let {yn; and !yn} be defined by eq,(4.2) and
. _!0 “ ;0
eq.(4.10) & (4,11), Then the difference between'§; and y_

satisfies:

, , -n n-1 -k

Vg = ¥yl € (Umh) 1Y) - i+ £ 1@14mh) T, for all

: ‘ | k=0

n=1, (4.12)

Proof, From eq.(4.2) and (4,10), we obtaini

* I * R
- -h!'f +1) - - -
nt1 ~ Vel ‘ (yn+l, n+l) f(yn+1. n+l) Yo=Y - (4.23)
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. * ' .
By Taylor's formula applied to f(yn+l, n+l) - f(yn+1; n+l),
eq.(4,13) becomes:

r 1l p
1 f * ; *
I -hy bDf [(-7 + 7 +1] a7+ . -
;I-nh i FLQ )ym1 SR 1] 3 (yn+l Yoe1)
raYs
. - . M L’*
RS | (4.14)
Similar to the proof of Theorem 4-1, we have, as in (4.5),
/’-l+h{rlDf[(1 Ty 17 4% |
- - - + +1i ;
// L Jo * WV T T J
21 +hm>1, (#.15)

.

Then, by using Lemma 1-2, (j), eq.(4.,14) and eq,(%4.15) we get:

1 * : Y
(+m)ly -y 14y -F . (1,16)
' n +] : .

+1 n ‘'n n

From eq,(4,11) and eq,(4,16), we conclude that:

EAREE AN AN I A
P T Vpa!l et T Vpn o Pl T VAL
"ln,\_, ]
£ £+ (1+mh) gyn - ynE . (4.17)

Hence, we obtains

H -ni ! .1:1-..-.1 "k
Y -y | %4 (mn) Y -y | +¢:!(4mh) , for all n =1,
I R
<>

Relation to previous work, ‘“Theorem 4-3 15 a generallization of

earlier results: Sandberg in | 3 T proved. the same result under

"
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weighted Z 1 norms and Sandberg & Shichman in{ 17] proved the
similar result under / 2 norms, In the literature [ 17 1, the
estimate of bounds includes a Lipschitz constant, but in Theorem
4.3 this constant is eliminqted. In fact, it can be verified
that Theorem 4-3 gives a tighter estimate in view of the fact
-fi(-h) € M(a) & LAl

Next, we consider a simplified computational algorithm
where, at each step of the backward Euler method, we use only
one step of the Newton-Raphson method., The iteration is then

given by:

-1
§§n+l = yn - [I - thf(ynt n+l) ] [."hf(inv n"'l) - hun.,.]',k}

[ §b: given,

for all n = 0, (4.18)

The next theorem shows that under natural assumptions the
sequence {in%a?computed by the formula (4,18) has an estimate
consisting ofotwo terms as in (4.20) below: the first term shows
that the effect of the initial condition is constant or decays
exponentially as n-~« and the second shows that it is bounded

o2
if the series }“7!uk§yis convergent,

i

Theorem 4-4, Assume that all conditions of Corollary 4-2 are
satisfied, Assume further that there exists a constant

&« {0,m] such that

}ile(x,t) - 1)11“(0( x,t)!l = ¢ =m, for all x«ZZ—’d,
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for all t € /?+, for all ¢l € [0,1] . (4.19)

Under these conditions, the computed solution éin‘ by formula
‘. - 0

(4.18) satisfies:

k
Fn-k?

n . -

. r ~ . . n“l( }: :

71 £ :}j_’fh_s iy o+ h BT 3}4‘ Eh |
i

iy i e N =1, (4.,20)
n 1#mh 1 - 0¢  14mh k=0; 1+mh |

Proof, By applying Taylor's formula to f(yn, n+l), from eq,

(4.18) we get:

- -1 1 :
- o= . s ( = S
Vo1 = ¥y - [I - thf(yn, n+1)} i.-h 'Ole(:«yn, n+l) d~ ¥,

-hun+ﬂ, or (4.21)

j’ r - -1 (1 b
' =JI+hiI-hDf(¥y, n¥l)! ! Ty
yn+1 i 3 lf(yn’ n 1)'5 ) Ole( { ynn n+l) a : yn

- -1
+.[; - hDif(yn’ n+1)1 ohu (4,22)

n+l°

Thus,

il _— 1 ;
; y < i + ’- - y ! ° >y ~ '!o
yn+l! g:I h L.I thf(yn, n+1) i Ole( C\yn, n+l) d’ :

Hr 7 =10

iy L+ T - f(y ,n+l lta l \
v HERE (v »n )I I hh .l (4.23)
We have:

H . -1 .
pg[l - thf(yn, n+1)} ;I 4 1/(1+mh), for all ynf"f‘d, for

i

all n = 0, because . | (e 2u)
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# 1 + mh > 1, by the assumption

and Lemma 1-2, (JZ), (e) & (d),

We now claim thatv

5 +rI- y +'-J'
;:I hLA thf(yn, n l)‘

H%tji§~é 1,
1+mh ,

r -
j I+ h.LI - thf(yn, n+l)

;![I - WD £(7 , 1) |

H
i

i S
'l 1 - hD, £(5 , n+1)J'

- le(j;n, n+l)!§ d’Z'Z‘

i

0

l/(l-l-mh)'{ 1+h {16 az

1
d

ir

1

-

1

-1 (1 I
o ¥ 7|

.(4.25)_

-1 1 _ l
. g'Ole(?yn, ntl) 47 :

1
|
i

- y +1) + h !
I thf(yn,nl) h:o

¥
~

le( (,'ynt

1

o~

' {
e 1 +h \
/

|, 2y 7, )

—

(1+¢ h)/(lmh), by (4.24) and the assumption (4,19),

Thus, from (4.23), (4,24) and (4,25), we have:

I f 1+ £h h

1+mh ! ni

yn+lf

1 |.
l+mh =~ D+l

(h.20)
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Hence, the result (4,20) follows, <>

Remark, Roughly speaking, the assumption (4,19) requires that
for each fixed t the function f(+,t) is not too nonlinear, The
above theorem shows that if the function f(.,t) is not too non-

linear and if there exists a constant m > 0 such that

. ~d -
-/qgnlf(x,t)] *m>0 forallxek , forallt =7,

then the above seemingly crude algorithm still gives a computed

sequence which is bounded by two terms as in (4,20).

Relation to previous work, Sandberg & Shichman in {17} pro-

posed the above algorithm and proved the similar results under
172 norms, In the above theorem the flexibility of the measure
/{(+) led us to more general and explicit estimate on bounds,

Using the same technique we are going to obtain an
estimate on the bound of Y- y, where Eyn%":) and 'yn( T),are
computed sequences by the above algorithm and the exact backward
Euler method, respectively,

NE PN

Theorem 4-5, Let !inf 0 and .iyng 0 satisfy respectively the
simplified algorithm (4,18) and the backward Euler method (4.2).

Assume that all the conditions of Corollary 4-~2 are satisfied,

Assume further that there exists a constant < < [0,m) such that

EEle(x,t) - le(o(x.t)!é £ Y <nm  for all x -~ ﬂ‘d.

for all tr /', for all ¥« [0,1] 4 (hoor)

1]
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that there exists a constant [ > 0 such that

d
”le(x,t) ” & [, for all xe K , for all t € P_,_ (4,28)
and that u(+) is bounded on [0, ),
Under these conditions, the difference between J—rn and Yn satis-

fies:

i = enl - 2£+5(1-l-mh) (1+£h)n- 1
5| [ J50 -l * b,

y "
1+mh
& (l-hnh)n+l
«29
m(m £)
A
0" zug [o,oo)lu(t)l .

Proof, From (4.2) and (4,3), we have:

1l
I-h{ Df ¥ ] 'y =y +

[ fo 1£(Ty g0 n¥1) a1 Yo =¥ . (4.30)
Equation (4,21) is rewritten as:
[1-m0yeG, ) |5 = [1- 002G, )]

: T
+h!| Df(Ty +1) AT sy + .

gro 1 ( yn’ n+l) 47 yn hun+l (4-31)

Subtracting (4,30) from (4.31), we obtain:

1

r 1
- v Y | +1) d/7 | *
LI thf(yn' n+l) !yn+l (I h(onlf(’z You' n+l) dv Yol

91



Ch,IV  Sec.l 92

e

(‘1 -~
= 71 - v . ¥ +1) d7 , 'y -y . (4,32
|I- hDf(7 , n+l) +h | Oblf(”(yn. n¥l) a7 ¥y -y, (4.32)

r N
Note that |I - hD, £(¥ , n+l)| is nonsingular, since
1 J
i _ .
(1 - 0 £(F , n#1)] 2| 3 (l4mh)|z| >0, for all z = 6.
Equation (4,32) becomess

1

J

y

T - hD, £(5 +1)1 ) fI h (ln (7 n+l) 47
B Rl Gl AUt N K Jo b a1’ "

n+l

L

yn+1

1- _ (l
i - . ,;, -
I - thf(yn, n¥l) + h le(, Y

== i— - v o4 -
I - B £, n 1)] |

“

- -1 \
1) a7 |5 - [1-meG, m)| ey (#.33)

-1

LHS of (4.33) = (¥,y -

)+ !.I - i“I-hD £y , n+1)~E
n+l l L 1 n 4

D, £( 'y,

. 1 .
+l’ n+l) dz’! -g Yn+l- ‘ (’4'03[4')

r . -1 -
RES of (4.33) = |1 -G, n+l)] . {1 - B £(F , n¥1)
n

1 R
4+ h !( D, f£(7 ?n. n+l) d7 | '(:»'n -y)

+ [1-m f(y n+1)'i L '1-nD £f(§ , n¥1) + h ffl
5 1°¥n? i s A A !

] R ALY

d
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d’_(‘:] v, - [1 - b £(y , n+l):’ "l-yn. (%.35)
Using (4,34) and (4.35), eq.(4.33) becomes:

—~

, -1 1
Yntr = Ynn '{I - [I - WD £(¥, nﬂ)] [I-nB gonlf(“ Y1’
-1 '
n+l) d?]}'ynﬂ + [I - hD,£(¥ , nﬂ)] f I - hD (¥ , nl) +
1 _ _ _ -l -l
h gole(”Cyn, n+l) d'E’] ‘(yn - yn) + [I - thf(yn, n+1)J .

1
[-thf(yn, n+l) + h (ole(Tyn, n+l) d?;:l Y. (4.,36)

Hence we have:

1

- 4
! yn+:l. yn-}-l !

I- [ I - W £(F , n+1)]'l [1 -h j D £(

0

-1
1) 4 . +,I+[I-th n+l h
e ™) AT || * | 170 ™) |
rl ! o (v 1) -1 'I’
- + o |% - i I - hD.f + 1 .
jole(Zyn, n+l) 47 L Yn[ % L 1t Wpr B H

iy | (4.37)

i n!

i 1 |
H-thf(in, n+l) + h gonlf((in, nfl) ay

In the proof of Theorem 4-4, we proved that
| . -1 o
!‘\ [1- ey, m)] ™ 4 1/ (umn), (e 28)

[

93
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and that

I+ [I - D, £(F , n+l)] h gOle(’Zyno nl) a7 i<

(Q+£h)/(4mh) < 1, (4.25)
Claim ¥ 1 [I - hD. £ (§ mt-1)1i '1F1 - h 1D f("(y n+l)
aims H - 1Yy J L Jo 1 n+l’
I L
d?,’] Il £ 24n/(mh), (4.38)
il
H i P -1 1 e 7«..-| ”
} T - LI - thf(yn, n+l)J l: I-h lole(Lyn_’_l, n+l) d"—H,E
= ii (1 -nD £G , o) | -1 [.I hD.f(¥ , n¥l) - I + h *
= LT - M Ty, i) | ST Ry T o
a1
e
le('Z'ym_l, n+l) 47 ] I'

H
i
1}
'

l:'-

— <1i | . { Z:.
£ - | ! P
[.I thf(y ’ n+l)} ,}h { !!le(y ’ n+1) H + “ ?gnlf(

7y X n+1)§§ d"(} £ he2/ /(1+mh), by (4.24) and the assumption,
n+. ’

¥

l ’
[ ( :
: - — . />, i
,-thf(y 9 n+l) + h') }Jlf(’(y s n+l) d’{ :

!

Claim:

‘ £ Zh, (4,39)

' (1 ¥
i . oy §
l! b, £y , ntl) + b { D £(7F,, n1) 4T ||

'

Jo

(1l |
= h lio H-le(jr‘n, n+l) + '1.)1f(f[‘5r'n, n+1)!g d7
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4 h€, by the assumption (4.19),

From the part of the proof of Corollary 4-2, we can obtain:

: 1l
!yn+1| “ _1+mh | Yol * L+mh n+1| (4.50)
and, as a result, we get:
-(k+1)
|| 4 (1+mh)~ |y0| + }A(l-l-mh) h fu (4.81)

k=0

Thus, using (4.24), (4.25), (4.38), (4.39) and (4.40), eq,(%.37)

becomess

iynﬂ il 24n/(14mh)e [(1/1mh) v | + (b/1+mh) u, +1.]

+ [(1+5 h)/(l-th)] |yn - yn[+ £ h/1+mh. lyn!

o!y

{
!
n:

= {(1+Eh)/(l+mh):”5r‘n -y |+ [2 In/@+an)? + gh/(l-hnh)j

+2 In2/(14m0)% |u (4.42)

! n+1| *

Let @, & (1+€ h)(14mh) ™" < 1 and g, 8 2 Jn(umh) 2 + £ n(1tmn)

- Then, from (4,42), we obtain:

A

_ n-1 g -2
%y -y l & § ’y + fzkgoylfyn_k_ll + 2 Ln@Q4mh) -

n-l k

19 s (.43)

95
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n-i ok r n ] n-1 -1
Claims ), Y £ 1Q+Ffn) -1y, (l+mh) Zhe ’YO!
2o S1 Vel T oL |
""l " .
+(wmh) [m(ne £ )n] 7 [l (bl
- ’ ”K, '
Using {(4.41), we have:
-(n-k-1) n-k-2 -(311)
£ (1+mh) iyi + 21 (l4mh h ju
i n-k-l| 0 3= i n-kel-j
) oo Roks2 -(5%1)
4 (14mh) y i +h|uC)l I Q
0 ' 0 j=0
~n+k+l 5 -(j+1)
< (1+mh) ¥l + b ll()]] Li(1mn)
: 003=0
-ntk+1 ; ~
= (mh) | #nffa()]] /b, (.45)
i ]
Thus,
n-1
- k -1 I
N 4 £ + ITOHEE
£t gliyn-k-ll 5;;(1* h) (1+mh) !yol m i )‘&}
n-1 -1 k
Y1 | (1+E h)(14mh) J
k=o . ' .
led) -k
+1 ; ,n"l -1 -1
¢ (ran) ™y ST @ren) # a7 [ju()ll T3 [ En) (emn)
! e = o
k=0 0 k 0

n

(l+mh) [yol [(1+ €h) -

ht, (14,16

Note that Ei:) l,un k[ (1+1h) (m- £, )"1h"l U“(')”q, . (Ba7)

. E 3
§ {Ch] "1,+ n 1 g_iu(')!‘({;(lmh)(m“‘? )«
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Using (4.44) and (4.47), we obtain from (4,43):

-n+¥l -1 -1

- < Pl + 5, { [arena] @™

vy + (mb)n " (ae €)1 (1], 2 n o)™
(o) - £) 70 G

= {(1+8h)(l-i-mh)_l}n|§o - ¥,| * {th-#(lﬂnh)& h] (1+mh)"2.
[Q+en)a) (rran) e Ty |+ { (2 {n+(uomh)e hj(mn)”zo
(mh)n (- €)Y+ 202 (emh) 2« (L4mh) (n- £ )'1h'1}(|u(-)i!m

-

- [areny@mn)™] 7 N

0~ Yo ' + [(l+€h)n-l] (1+mh)'n .
{2£ * E(lmh)} E.1|yo| * [22 + (L4mh)E + 2£hm] Qmn) "
-1 -1 .

wHaee)™ )l

- fowenm™ Ty - + 2+ comn]

{(14-5};)“-1} (1-'-mh)-n-l§yoi + (2[+6)m'l(m-e)°1ﬂu(‘)Hw. >

2, Comparison of The Exact Solution of 0, D, E. (1,1) with The

Computed Solution of The Backward Euler Method (1,3)

Throughout this section we assume infinite precision
arithmetic for all computaions,

Consider the solution x(°:xo) of 0, D, E, (1.1),
Let {ynztz be the computed solution of (1,1) by the backward
Buler formula (1,3), The orror vector X, - ¥, 1s sald to be the

accumulated truncation error, In this section, under reasonable
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assumptions, we give an estimate of the accumulated truncation
error, We show that the error does not bulld up indefinitely,

and that the effect of an initial error decays exponentiaily.

Theorem 4-6, Assume that all the conditions of Corollary 4-2
are satisfied, If, in addition, for any fixed xfg?ﬂfd, sz(x,°)
is piecewise contlnuous and ﬁ(-) is piecewise continuous, if both
u(.) and u(:) are bounded on E_, and if there exist positive

constant ¢ and (3 such that

( - d

D, £(x,t) || € ana D f(x,8)! 4f , for all x~ % °, for all
t e JF 4» then there exists a © > 0 independent of h such that

iXx_ -y { % (1+mh) Xy =¥

*n T Y, | + {h, for all n = 0, (4.48)

0

Proof, From Corollary 3-3, the solution x(o;xo) of (1.1) satis-

fies the inequality (3.36):

t '
Cexp [n(e-7)7 +m(7)iav,  (3.36)

x(t); 4 exp(-mt)ix P+
| o o

Since u(*) is bounded on }Z"_*_, x(+) is also bounded on f‘_,_, i.2.,
1 ; A
hx(e)!l = su x(t): < ~0,
Hx( o tpr x(t)
4
Claim: x(+) is bounded on '/72_'_,‘ i.e., Hx(-)” <,
x(t) = £(x,t) + u(t). (1.1)

Differentiate both sides of (1,1) with respect to t:
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x(t) = le(x,t) x(t) + sz(x,t) +u(t)
+ Dif(x ) [£08) +ult) | +Df(xt) +a(t), (4.,49)
So,

1
|%(¢)| « |[p£(x,)]| - { go |0 £(Tx,8) [T «|x(2)] + iu(t)l}

+ |D2f(x,t)l + |u(t)|

| <o

“ etflx] o+ ]} o+ B+ i) :
for all t€ R _, (4.50)

Thus, .5:'(') is bounded on 7R . Define the local truncation

exrror {gn}og bys

A .
g=xn+l-xn-hx+,néo. (4.51)

n n+l
Claim the local truncation error én has an upper bound, more
rreclisely, there exists a positive constant independent of h
such that

| E
I?‘

2
4 & Y
n] th . for all n 0, (4.52)

By applying Taylor's formula to each component of xn, we obtain:

. 2
= - py
*n T %1 hxn«i-l *zh U (4.53)

where j-th component [Unj 3 of Un is equal to the j-th component
'ij of X evaluated at some point of [nh,(n+l)h]. By the defi-

nition of En' (4,52) and (4,53), we have:
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z - -0 , for all n * 0, (t.54)

Since by (3.36) X is bounded on ﬂ)+, U, is also bounded. Thus,

iU |

1Yn! & © 4, for some j31 > 0, for all n = 0,

1

Hence, by (4,54),

IEZ
!L
i

2 .
nl £ %h Sy for all n = 0, _ (%.52)

1

Next, we derive a difference inequality with respect to iyn-xni.

Yps1 - hf(yn+1, n+l) = Y, + hun+1. (4.2)
From (4,51),

X

n+l - hf(xn+l, n+1) = xn + hun £ . (’4'-55)

+
+1 “n

Subtracting (4.55) from (4,2), we get:

L
- - r@1-7 + +1 1 d e -
yn+ﬂ. xn+-1 h gOle L(l )xn+1 ?7yn+l’ n+l ) d* (yn+l xn+1)
= -X = £ L, 56
Yn n “n® (4.56)

or

. 1 ‘ -

i T -h\ | T (1-7 . o> T a7 e -

= (v, -x)- €. | (%.57)

Analogous to the part of the proof in Theorem 4-1, as in (4.6),

we get:

4]
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v =X iz 2 -x ) - = . =2 (14mh): -x
:yn X7 ' ni '(yn xn) “n (1 )'yn+1 n+l
(4.58)
or
- (1n)
. - i & (14mh) |y -x + (l4mh £
'yn+1 xn+15 ( ) ‘yn n n
-1 , 2 -1 .
¢ (1+mh) "1y - x i +4h (Lmh) o, (4.59)
I“n ni X
Solving the recursive inequality (4.59),
-n. 2 a -k
'y - x: & (Wmh) |y, - %ol +3h 2 17 (1+mh)
'n n: : i ‘1 k=1
& (14mh) " | o ) (vomb)
- X n o7
yO 0! 2 41 kz:\l
™ 1n° (%.,60)
= - o+ 5 pJ . .
(1+mh) ¥g = %Xy + 30 Sl/mh

By letting ¢ = gl/an, we obtain the result, <

Remark, As in (4,48) the estimate of the accumulated truncation
error shows that the effect of the initial error decays expo-

-n
nentially as (1+mh) and that the effect of the local truncation

error does not build up indefinitely; in fact proportional to h,

Relation to previous work, The special case of Theorem 4-6

n
.

1 ) S
under weighted /.~ norms was proved by Sandberg |3 .

3. Extensions and Relation to Results from Earlier Chapters

In Chapter II, we discussed properties of L, C,

101
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equations, In this section we extend and relate those results

to the implicit equations obtained by the backward Euler methods

. (#.2)

- o+ = +h
hf(yn+1’ nl) Yn 7 ™Maa

yn+l

We assume that all conditions of Corollary 4-2 are satisfied,

ioeo!

1
f(Gd,t) =0, forall t =P 5 xi>£(x,t) is in (" for all
to + and there exists a positive constant m > O such that

- {IDE(x,t)] *m>0  forall xf 4 for all to 7,

Observe that Lemma 1-2, (e), (d) and the above assumption imply

- 4 {-(I-hD #))! *1 +m>

yal ( lf(yn+l, ntl) )| *1+mh>1 for all
n=20, (4.61)
3.1 Using Corollary 2-4, it follows that for each integer

n = 0, for any fixed h > 0 and for any u Y the solution

+1

*
A of (4,2) exists and is unique., Furthermore, Y41 is a

continuously differentiable function of the previous value Y

the step size h and the input value u

+1°
. DR ¢
3.2 Let -y~ _° be a computed sequence of (4,2) by the
.on¥ll) §=0
Newton-Raphson method with infinite-precision arithmetic, Irom

d d
Theorem 2-6, we conclude that if the mapping f(e,n+l)s% ... ¥

s ' *
satisfies the condition(2,13), then by defining r, to be the

unique solution of

)
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r = 2(4mh)/nk (), r > 0, (4.62)

00
" the computed solution %jyi+l} 1=0 starting from inside the ball
*

B
(yn+1

*
Jutio
n yn+l

*
H rh) remains in this ball and converges to the unique so-

at least quadratically, Since,
* *
r, = ggg min{’r, (2m + 2/h) /& (r)} ’

the convergence region is enlarged if either m becomes large, or
if h becomes small, or if f(-) becomes less nonlinear, i.e.,
k*(r) is decreased for each fixed r > 0, For any fixed m and
foi any fixed k*(¢), hkecr; is strictly decreasing; r;i,r* as

h— +00, where

* N

r 2 max min{r, 2m/k*(r)? as in (2,24),
r>0 L 2

Furthermore, r;~> o0 as h 0+, |
These conclusions can easily be made obvioug by con-

sidering the original implicit equation (4,2). If h is suf-

ficientiy small, then (4,2) is close to a linear equation, If

h is sufficiently large, then (4,2) is approximated by:

) - .6
f(yn+1, n+l) L (4,63)

Then, using Theorem 2-6 directly, the convergence region is
* *

B(y:+1;r ), where r 1is defined as in (2,24),

3.3 Using Corollary 2-7, it follows that if the mapping

d d
f(*, n¥l)sF —>7P satisfies the condition (2.25), then by

defining r; {0 be the unique solution of
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_2(14mh)

r e e e s e

0 0 T ] ’
- +1) - - h 1+mh
hko{:r + lyn+l he(y s n 1) -y - hu_|/(L+mb)

r > 0 (h.é’#)

Y _ 0 +1) - _ L4 (1 *
and assuming Yo hf(yn+1 , n¥l) Y, hun+1l ( +mh)rh,

00
then the corresponding Newton-Raphson sequence {jyi+l} 420 re-

mains in B(y:+l;r:) and converges to the unique solution y:+1 at
least quadratically,

3.4 If we take into account the local round-off error on
the Newton-Raphson method, then as in Theorem 2-9, for sufe
ficiently small local round-off error, the radius of the con-
vergence region is ZEm smaller than that of the infinite pre-
cision ariyhmetic case, and instead of quadratic convergence to
the unique solution y:+1, we obtain convergence to within a ball

centered on y¥,, with a radius 3¢, in a finite number of
n+l o0

steps,
3.5 Let'§;+1<;ZQ 4 pe an intermediate result in the course
of solving (4.2) by any iterative algorithm, Let y:+1 be the

exact solution, The error, namely Yot1 -'};+1, is bounded by

* -fV éf\l - Y v + - _
Yn+1 yn+1l lyn+1 hf(ynﬂ.’ n+l) Yn hun+1'/(l+mh) ’

for all n 2 0, ' (4.65)

3.6 In Section 1 and Section 2, we assumed that the infi-
nite precision arithmetic for integrating the O, D. E. (1.1).
Concerning local round-off errors note that the effect of local

round-off errors is equivalent to some additional input, So,

104
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if the local round-off errors are bounded on Z " then under
conditions of Theorem 4-1, Corollary 4-2, Theorem 4-3 or Theorem

4-6, the accumulated round-off error is bdunded on 7 40
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APPENDIX

Lemma A-1, Let Ac 7’ axd o rd B(x,t) ¢ J* axd for all x . #" d,
for all t < i 4+ If A is symmetric positive definite and
B(x,t) is uniformly positive definite in ﬂ’dx ?;(not necessari-
ly symmetric), more precisely there exists a positive constant

?’B > 0 such that

P R d .
ly!” for all x« # , for all t ~ % (A-1)

/ Noa &
,y,B(x,t)y/) = g +

o 4 -
for all y~ /# , then there exists a nonsingular constant matrix
-1
P such that PAB(x,t)P  is uniformly positive definite: there

exists a positive constant /C'AB > 0 such that

/y»PAB(x,t)P y/\ 2 -’“ABiy}z for all x < # d, for all t - ,//‘+,

for all y = # e, (A-2)

1

Proof, ©Since A is symmetric positive definite, A® is uniquely
defined, real, symmetric and positive definite, Furthermore

1
AT =1, So, we pick P = A . Then, we obtain:

/ =1 \ i = \ rE i ’
y,PAB(x, )Py = /y,A'B(x,t)A%y) = /a%y,B(x,t)A%y:

x £ 2 ! -1)
s ATy . (A-3)
| IRt 7 d
Note that A%y =2 'A% ! "+y', forally~fF °, (a-4)
N .,..Ja;;
and that A 2" >0, (a-5)
- A - N "% ——2' e
By letting -~ _ = “Z_ o A “: > 0, we obtain the (A-6)



Appendix

inequality (A-2), <

Corollary A-2, Assume that all the conditions of Lemma A-l are

satisfied, Then all the real parts of the eigenvalues of

L, d
AB(x,t) is greater than or equal to £&,. > 0 for all x </ ,

"AB
for all t < F .
Proof, Observe that the eigenvalues of any matrix are invari-

ant under similarity transformations, For any i = 1,2,°*°*,d,
g B -1
.“e.ﬂ-i(AB(x,t)) = kg).i(PAB(x,t)P )
, -1
= -//2(-PAB(x,t)P ) by Lemma 1-2, (i)

= m%n A (symmetric part of PAB(x,t)Pnl) by Lemma 1-3, (c)
J

-1
/ \
"y,PAB(x,t)P ¥

= inf (YPAB(x,U)P Y

S & >0 by Lemma A-l, < A-7
y*0 Iy|2 AB y ( )
I

Remark., All the conclusions in Lemma A-1 and Corollary A-2

hold true for B(x,t)A where the order of the product is reversed,

Relation to previous work., Similar results for the product of

two constant matrices are found in Oster & Desoer ;25 | and Chua

& Alexander | 22 ,
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