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ANALYSIS OF COMPUTATIONAL TECHNIQUES FOR CIRCUIT THEORY

by

Hiromasa Haneda

ABSTRACT

This technical memorandum uses the measure of a matrix to unify and

generalize the analysis of some numerical techniques useful in circuit

theory.

An existence and uniqueness theorem for D. C. operating point is given

given; a convergence region for the Newton-Raphson method is determined

and its quadratic convergence is established. The effect of local round

off error is also discussed.

An estimate for the upper and lower bounds on the solutions of an

important class of ordinary differential equations is given. This esti

mate is sharper than that obtained by using norms.

An estimate is given for the bounds on computed solutions of ordi

nary differential equations obtained by the backward Euler method and its

modifications. A bound on the accumulated truncation error incurred by

the backward Euler method is also given.

The effect of the step size in the implicit equation obtained by the

backward Euler method on the existence and uniqueness of the solution as

well as on the convergence of the Newton-Raphson method is discussed.

The research was sponsored by The National Science Foundation, Grant

GK-10656X1 and The Joint Services Electronics Program, Contract F44620-

71-C-0087. The results will be presented at the ISCT'72 in April, 1972.
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CHAPTER 0,

INTRODUCTION

In this introductory chapter, we give an overall view

of this thesis. Second, we give a few motivating examples from

several different engineering fields. Third, we describe the

contributions of this thesis as they are related to previous

work. Finally we list notational conventions used in later

chapters,

1. Introduction

This thesis is concerned with the analysis of some

numerical techniques useful in circuit theory. The principal

motivation of this thesis is to illuminate and give insight into

a numher of problems that are encountered in the implementation

of computer aided design methods for electrical circuits in par

ticular. The main thread throughout this thesis is the use of

the measure of a matrix. Thanks to this approach a number of

previous results are generalized and clarified (see Sec, 3 below).

The organization of the thesis is as follows*

In Chapter I we define the measure of a matrix which

was discussed by Dahlquist [1 ]and was used to investigate the

stability of ordinary differential equations by Dahlquist 1 ;and

Coppel f2 i, We prove its properties in detail, some of which

are new. We give interprotatIons of tho measure of a matrix in



Ch.O Sec.l

terms of well-known classes of matrices. For the record we

state a first-order implicit integration formula and the Newton-

Raphson method to make our discussion precise in later chapters.

In Chapter II, we develop properties of D, C. e-

quations which are encountered in analyzing electric circuits

for their D. C, operating points and also in the use of implicit

integration methods for computing their transient response. We

prove an existence and uniqueness theorem; determine a guaranteed

convergence region and the rate of convergence of the Newton-

Raphson method for both the infinite and finite precision arithme

tic computations.

In Chapter III, we estimate the upper and lower bounds

on the solution of ordinary differential equations (O.D.E.'s)!

| x » f(x,t) + u(t)

i <x (0-1}( *(0) «xQ

where x(t) and u(t) are d dimensional vector for each time t ^» 0

and f(.f •) is a function from ^ x^+ into 1R . These estimates

are essentially due to Dahlquist [1] and Coppel [2], but theo

rems are stated in a more convenient and slightly extended

manner. In view of our purposes we give these estimates for

stable cases only. In electrical networks as well as chemical

kinetics, the derivative(Jacobian) D f(x,t) of f(»,t) in (0.1)

often has very widely spread eigenvalues for each x(t)£ JR ,

for each t£ TR +, Sandberg & Shichman [17] ,Sandberg [15 ],

Desoer & Shensa [21 ], Chua & Alexander [22] , Gear [20] .
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Such 0, D, E.'s are called stiff differential equations.

Roughly speaking, the upper bound that we obtain is determined

by the slowest time constant and the lower bound, by the fastest

time constant.

In Chapter IV, we estimate bounds on computed so

lutions of 0, D, E.'s when infinite precision arithmetic is used.

We also estimate bounds on errors between the computed sequence

by the backward Euler method and those obtained by its modifi

cations, and a bound on the accumulated truncation error in

curred by the backward Euler method. For the computation of

the solution of stiff differential equations by standard explicit

methods we are forced to choose very small step sizes to avoid

numerical instability; the accumulation of local round-off

errors and the computation time will become intolerable, L17 .; »

[15 ], [20J , A class of methods to allow dramatic step-size

increases is that of implicit methods and its modifications,

[17] , [15] ,[20], [19] . In Chapter IV, we consider the

backward(implicit) Euler method and its modifications. We

estimate for any given step size bounds on computed solutions

and errors incurred; show desirable properties of the effect of

the initial error, the input error, the local truncation error

and the step sizes. Finally, we extend and relate the results

of Ch.II to the implicit equation obtained by the backward Euler

method. The effect of the step size on the existence and u-

niqueness of the D, C. solution as well as on the convergence

region of the Newton-Raphson method is evident from our formulas.

Some of the results in this thesis are being presented
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at 1972 IEEE International Symposium on Circuit Theory, [29].

2. Motivating Examples

The 0. D. E.'s of the form (0.1) are encountered in

many engineering problems. Motivating examples are given in

important classes of 0. D. E.'s of the form (O.l).

Class ND First, we show examples in a class of 0. D, E.'s of

the form (0,1) satisfying the following condition1 there exists

a dxd constant nonsingular matrix P such that -PD,f(x,t)P is

uniformly positive definite, more precisely there exists a non-

-77-> dxd
singular matrix P£ IK and a positive constant m > 0 such

that

(y,-PD1f(x,t)P*1y) -m|y|2 for all x£̂ ,for all

t<E^+» for all y£y^d. (0.2)

Example 0-1. RLC network (Fig.l),

Consider an RLC network consisting of independent sources, m

linear time-invariant capacitors and n linear time-invariant

inductors, (m+n) nonlinear resistors, and a linear time-invari

ant resistive (m+n)-port. We assumes

(i) m nonlinear voltage-controlled resistors are connected

parallel to the m capacitors, and the n nonlinear current-con

trolled resistors are connected in series to the n inductors,

(ii) The m independent current sources are connected parallel
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to the m capacitors, and the n independent voltage sources are

connected in series to the n inductors,

(iii) The (nH-n)-port has a hybrid matrix H such that

fi!
-H

i V i

L J LLJ
T T

Hhere i- i^. —.i-J . iL - (1B+1. -.1^) .

T T

vc= (t....,vb) ,•- (v,+1,-.v,J .

FVom Flg.l, we obtaini

jcvc -i-£(vc.t) +is
1 LiT »v-v(iT,t) +v

(0.3)

(o.*0

where C » diag(C-f•••,G_) with C > 0, the capacitance of the

i-th capacitor; L - diag(L.., •",L ) with L > 0, the inductance

of the i-th inductor; v, i(v ,t) represents the character-

istics at time t of the m voltage-controlled resistors;

i j—> v(iT,t) represents the characteristics at time t of the

n current-controlled resistors; i_ represents the m independent
s

current sources; and v represents the n independent voltage

sources. From (0,3) and (O.k), we obtain;

~ i 1 r
C 0 I v

C

0 jLIIL

;vr

-H

1 Kvc.t).|
v(iL,t) I

!

iv (t)I
(0.5)

Note that eq,(0,5) Is not restricted to have its sources located

as in Fig.l; indeed if there were sources inside the (m+n)-port
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we could extract the Norton equivalent current sources and the

Thevenin equivalent voltage sources. Equation (0,5) is of the

form (0.1) and

1-1

-D^x.t) H + n^V*) 0

0 V^.t)
(0.6)

Furthermore we assume (iv) ^(v^t) and D^i ,t) are both
positive semidefinite for all vQe]R ra, for all i^ 7R nf for
all teJfi +f and (v) H is positive definite (not necessarily
symmetric),

-1

Observe that is diagonal and positive, and that

H+r^(vc.t)j o y
H + !- _. \ is

0 D,v^L.t) I^.t)
! J

uniformly positive definite

in (vG,iL) and in t. By Lemma A-l (Appendix), the condition of
class ND is satisfied.

Example 0-2. Three-phase synchronous machine model, [24] .
The next 0. D. E. (0.7)i

dt
L(t)-i(t) -R'i(t) + v(t) (0.7)

represents a model of a three-phase synchronous machine, where

i(t)£^ and represents the currents through the three arma
ture windings and through the field winding; v(t)^^Zf and
represents the four terminal voltages to the ground|R is a 4x4
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positive diagonal constant matrix which represents the resistance

of the windings; and L(t) is a 4x4 inductance matrix which is

time-varying. We assume that L(t) is symmetric for each time

t; uniformly positive definite, i.e., there exists a positive

constant 6 > 0 such that

(y.L(t)y) * t lyj 2,for all t^?+, for all yc-1R\ (0.8)

and L(t) is bounded on Jp (it is usually assumed periodic).

Choose <^(t) « L(t)»i(t) and v(t) as a state variable and input,

respectively. Then, from (0,7) we obtain:

• -i

^(t) = -R»l" (t)(j> +v(t). (0.9)

Observe that eq,(0,9) is of the form (O.l) and that the condition
i.

(0.2) is satisfied by choosing P » R2,

Class NCSD Second, we show examples in a class of 0, D, E.'s

of the form (O.l) satisfying the following conditioni there

exists a dxd real constant nonsingular matrix P such that

/ n -1
-PD f(x,t)P is uniformly column-sum dominant, i.e., there

exists a nonsingular matrix P£ ]L and a positive constant

m > 0 such that

d ,

a (x,t) - }j fa, .(x,t)| ^ m, for all x£^ , for all
33 i=l ' ^

(i*j)

tc:fcv for all j« l,-",d. (0.10)

Example 0-3. Nonlinear networks containing tranoiotorn and



diodes, Sandberg [15] ,[3] (Fig. 2),

The next 0, D, E.i

—u(t) +TF fcf^u)]* GC'^u) -B(t), t^0
dt

Ch,0 Sec,2

(0.11)

2p+q,
(where u(t)£^ )represents a network containing linear

passive time-invariant resistors, p nonlinear transistors, q

nonlinear diodes, and independent sources. The Gumrael &

Koehler type model is used for semiconductor elements. We as

sume that i

(i) G is the short-circuit conductance matrix of the (2p+q)-port

and its Norton equivalent circuit characterization is

i - -Gv + B(t)

2p+q

(0.12)

where v(t), i(t)£^ are the port-voltage and port-current

at time t, respectively.

(ii) T» T.J0T ©... T©l .
2 p- q

(k)^
1 -o<

w :
-OC

(k)with 0 < 0<v ' < l and
r

M0< C^ < i for all k - !,•••,p.

I is the qxq identity matrix,

(iii) F(.).R**Uff**.

(0.13)

(0.14)

F(v) -(f^), f2(v2),..s f2p^(v2p4q))T, fGr all ******
(0.15)

8
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and f (*)iM -^7P ,f.(0) « 0 and f'.(d )=0 for all
3 ' 3 3

C{C1R , for all 3 = l,*",2p+q. (0.16)

-1 -2p+q 7 2p+q
(iv) C (•) is the Inverse of the mapping C(*)t7R >-V ,

defined by:

C(v) =cv +rF(v) for all ve J? P+q, (0.17)

where c and 7: are both (2p+q)x(2p+q) constant positive diagonal

matrices (v denotes the (2p+q)-dimensional port voltage),

(v) There exists a positive diagonal matrix P > 0 such that both

PT and PG are strongly column-sum dominant. We can interpret

eq.(O.ll) as representing a nonlinear time-invariant RC network

(see Fig, 3) containing dependent sources and driven by inde

pendent current sources. Equation (0.11) is of the form (0.1).

Now, we want to show that the condition (0,10) is satisfied.

Let v(t) = C (u(t)) for all t <: p +, Observe that from as

sumption (iv): (a) v always exists (because C is well-defined

on ^?2P+<1)? 0>) the derivative Dv(u(t)) is a (2p+q)x(2p+q) di

agonal and uniformly positive matrix; and (c) DF(v(u(t)))
_ (2p+q)x(2p4xi)

(; ff< is diagonal and nonnegative for all u(t)

tr- 2P"hl t n- ff<. , Then, eq.(O.ll) is rewritten as:

-••• u(t) + TFov(u) + Gv(u) = B(t), t * 0. (0.18)
dt

Then, using the chain rule and commutativity of diagonal

matrices we obtain:
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-HXjffotJP"1 =PjT.DF(v(.))-Dv(0 +G.Dv(-)jP"

= PTP" •DF(v(-))'Dv(«) + PGP" «Dv(») (0.19)

where v(») is everywhere evaluated at u(t).

First, observe that -PD-,f(x,t)P" is column-sum dominant for all

uep P+q-, since both PT and PG are column-sum dominant; the

right multiplication by any positive diagonal matrix preserves

the column-sum dominance property; and the sum of two column-sum

dominant matrices is again column-sum dominant. To show that

-PD.f(x,t)P " is uniformly column-sum dominant, observe that if

DF(v(«)) is bounded for all u(t)£^ ,Dv(») is positive for
2p+q

all u(t)£JK a-nd that if DF(v(«)) is n°t bounded for some

u*(t)<£/^ P ,Dv(u*(t)) is no longer positive, but D1F(v(u*(t)
JUL

)'D v(u (t)) is strictly positive. For more detailed calcu

lation, see the literature [3] (pp. I766-I767).

Example 0-4. The Xenon poisoning equation of a nuclear reactor

is written as, [27] # [14] :

X(t) = -/^Xft) + jUg.(t) +af(t) -bX(t)f(t)

l(t) = -A2i(t) + cf(t)
(0.20)

135
where X(t) and l(t) are the concentration of Xenon X and

135
Iodine I at time t, respectively; M. and U~ are positive

constants called decay constants of X and I , respectively;

f(t) is the neutron flux at time t; a, b, and c are positive

constants. The first equation shows that the net accumulation



Ch.O Sec.2

rate of X(t) is the algebraic sum of formation term M£-(t) +

af(t) and removal terra -/^X(t) -bX(t)f(t). The term /^(t)
135

is due to the decay of I and the term af(t) is due to the

135
fission. The term - Ax(t) is due to the decay of X it

self and the term -bX(t)f(t) is due to the capture reaction,

x. 135
The second equation shows that the net accumulation rate of I

is the sum of the formation term cf(t) due to the fission and

the removal term -//0l(t) due to the decay of I ' itself.

We assume:

(i) There exists a constant & > 0 such that 0 < CA £ // +

bf(t), for all t £ Ik^ and

(ii) f is continuous on 7P,.

Equation (0.20) is of the form (0,1). By choosing P « diag(l,

2), we obtain:

-1-PD1f(x,t)P =* P A+bf(t) "^Ip-1

'//± +bf(t) -!/<,
0 yU2

-1

(0.21)

Hence, -PD,f(x,t)P with P = diag(l,2) is uniformly column-

sum dominant from the assumption.

Example 0-5. Plate-type distillation column model having only

a reboiler, vapor space and condenser, rtosenbrock [.26] , Gould

1.28] (Fig. 4).

Referring to Fig.4, the equation of the mass balance at each

11
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plate follows as:

f d(Hoxo)v « -V'v' -Px +Lx_+Fzdt oyo Vo Vl 0 0

•<
dt

d(Vl)
dt

-V'y' -(V0^0).y0 +F'z.

BVo-(Vpi),xi+,Fizi

(0.22)

where V (V') is the vapor flow from vapor space above zeroth

plate (from liquid on zeroth plate to vapor space above zeroth

plate) of composition y0(y^)j H (h ), r»0,l is the liquid (vapor)

holdup on (above) r-th plate; p is the pressure above the zeroth

plate; P , r«0,l is the liquid withdrawal of composition x^j L

is the liquid flow from the first plate of composition x,; F

(F')» r»0,l is the liquid (vapor) feed of composition z (z»);

Q0 is the vapor withdrawal of composition yQi y* «• f(x ,p ) is

the vapor-liquid equilibrium characteristic of the zeroth plate.

The first and the second equations of (0,22) represent the dy

namics of the reboiler, and the third represents that of the

condenser. Let £Q(t) - HQx0(t), ^(t) -hQy0(t) and £ (t) -

H x (t). Then, eq,(0,22) becomes:

r .

h""V( Vo"1' V "Vo'^o +hh'1 h +Fozo

. \' Vo"1 fcx - WV1 ^2 +Vl

(0.23)

12
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where (f (t), fn(t), ?2^ ) is ^e s"tate variable and

( z , z*, z ) is the constant input. We assume that

f »-§- f(x0,P0) *0, for all xQ *0and that (0.24)

V , V», H , h , P , p , Q , L . F , F», r=0,l are all positive
rrrrrrrrrr

constants. Then, eq,(0,23) is of the form (0.1) and observe

that

L1H1
-1

-D^ffot)

(0.25)

-1

-W* (Wh

is uniformly column-sum dominant.

Example 0-6. Co-current heat exchanger model, Rosenbrock f26 ].

Consider a co-current heat exchanger which is described as (n+l)

consective elements labelled by r (r=»0,l, •• *,n). Temperature is

assumed constant for each liquid in each element. The mass flow

rates L and L» are constant. Then, from the heat balance, we

obtain:

13
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k -Llf! £ -LH"1 £ -hr(o-1H-1 f^.o'-1^-1 £ )
2r r-1 2r-2 r 2r r r 2r r 2r+l

< £ -L«H«-?- £^ n-L'H'"1 5 +w(c-V1 ? .
• 2r+l r"1 2r"1 r 2r+1 r r 2r

C,-1H.-1 ? ), r-0,l,...,n, (0.26)
r 2r+l

v.

where £_(t) « H c6 (t) and f (t) « H'c»0»(t)j H and H»
^2r r r ' 2r+l r r r r

are positive constant masses of the liquid in the r-th element;

c and cf are the specific heats of the two liquids (positive

constant); 0„(t) and 0'(t) are the temperatures of the r-th

element at time t; L and L1 are the positive constant mass flow

rates; and w (0 (t),0'(t)) is the exchange heat rate in the r-th

element. We assume that there exists a positive constant &> 0

such that

9w (0 ,0») 9w (0 ,0')
r r r A£>0and -2^JL-- ^-£<0
9 0^ 9of

r r

for all 0(t), 0'(t)^, for all r - 0,1,...,n. (0,27)
r

Observe that (0,26) is of the form (0,1), Let P « diag(l,l,

2"1,2" ,•••,2~ ,2~n). Then, typical columns of -PD-f(x,t) are

easily written with only the following non-zero elements:



9w ,
1 TL r -1 "1

(2r+l)th row — +- H;l_^ rU 9er chJ

(2r+2)th row

(2r+3)th row

(2r+4)th row

-1
9W:r 1

r Ite cH
2 r r

-1

> or+1 H^ 2 r

(2r+l)th column

Ch.O Sec. 3

1 ° r l

r^G* c'H'
2 r r

1 L« 9Wr 1

_rLlF•""^0, cT.
2 r r

(0.28)

-1

+1 H'
f

t
(2r+2)th column

From (0.28) and (0,27), we observe that -PD1f(x,t) is uniformly

column-sum dominant. Since P" is positive diagonal and

-PD-Jf(x,t) is uniformly column-sura dominant, the condition (0,10)

is satisfied,

A class of 0. D. E,'s we discuss in this thesis is of

the form (0,1) and contains the class ND and the class NCSD as

special cases.

3. Contributions of This Thesis

Lemma 1-2 gives properties of the measure U (•),

Properties (j), (k) and (/) are new, and these properties play

a crucial role in this thesis.

Lemma 1-4 gives equivalent statements to the defi

nitions of row-sum dominant, column-sum dominant and passive

15
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matrices in terms of the measure M-(•),

Theorem 2-2, Corollary 2-3, Corollary 2-4 and Co

rollary 2-5 unify and generalize previous work on the existence

and uniqueness of D. C, solution by Stern [8] , Willson Jr. [9] »

Ohtsuki & Watanabe [10] and Kuh &Hajj [ll] . The generali

zation and unification are two fold: first, the choice of a

vector norm is arbitrary and second, the uniformity condition is

relaxed.

Theorem 2-6 and Corollary 2-7 determine a guaranteed

region of convergence and establish the quadratic convergence

for the Newton-Raphson method for infinite precision arithmetic

computation,

Lemma 2-8 is a slightly modified version of Hurt's

corollaries, [13], which is a kind of Lyapunov stability theo

rem for difference equations, where the continuity of the

Lyapunov function is not required and the Lyapunov function can

possibly increase along some solution sequence.

Theorem 2-9 and Corollary 2-10 show the effect of the

local round-off error on the radius of the convergence region

and on the convergence for the computation.

Lemma 3-1 Is a slightly generalized version of Coppel's

inequality where it is extended to the piecewise continuous case.

Theorem 3-2 and Corollary 3-3 give an estimate of the

upper bound on the exact solution of 0. D. E. The estimate is

essentially due to Dahlquist [1], but it is extended to the

piecewise continuous case. Corollary 3-3 includes previous
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work under Jc norms, / norms and weighted ji norms,

Rosenbrock [14] , Sandberg [15 ], Mitra & So [l6] .

Theorem 3-4 gives an estimate of the upper bound on

the difference of two solutions of 0. D, E. starting from

different initial states and different inputs. Corollary 3-5

gives an estimate of the upper bound on the difference between

the exact solution and the equilibrium point of 0. D. E. Both

Theorem 3-4 and Corollary 3-5 include as special cases previous

work under weighted / norms, Sandberg [15] » Mitra & So [l6] .

Theorem 3-6, Corollary 3-7, Theorem 3-8, and Corollary

3-9 give estimates for lower bounds corresponding to Theorem

3-2, Corollary 3-3, Theorem 3-4 and Corollary 3-5, including

special cases under weighted IL norms by Sandberg [15 j.

Theorem 4-1 and Corollary 4-2 give estimates for the

bound on the computed sequence by the backward Euler method,

/> 2 //1
which generalize special cases under V.. norms and weighted i'

norms, Sandberg k Shichman [17] » Sandberg [3],

Theorem 4-3 gives an estimate for the bound on the

error between the computed sequence by the backward Euler method

and the computed sequence by a modified implementable method.

Theorem 4-3 is a generalization of earlier results under i*

norms and / norms, Sandberg [3 ], Sandberg & Shichman [17J .

Theorem 4-4 gives an explicit estimate for the bound

on the computed sequence where we use only one step of the

Newton-Raphson method at each time step of the backward Euler

method. Similar results under si norms were proved by
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Sandberg & Shichman [17 ], but the estimate in Theorem 4-4 is

more explicit and general.

Theorem 4-5 gives an estimate for the bound on the

error sequence between the computed sequence by the backward

Euler method and the one by the method stated in Theorem 4-4,

Theorem 4-6 gives an estimate for the bound on the so-

called accumulated truncation error incurred by the backward

Euler method. This is a generalization of a previous work

under weighted / norms by Sandberg [3],

In Section 3 of Chapter IV, we make following comments

on the implicit equation obtained by the backward Euler method

under reasonable assumptions:

(i) The existence and uniqueness of the solution is guaranteed

for any (large) step size; (ii) The guaranteed convergence

region of the Newton-Raphson method applied to the implicit e-

quation is monotonically enlarged as the step size becomes

smaller; (iii) The error estimate between the exact solution

and any computed solution is given by (4,65) using a priori

known quantities.

4. Notation

7R ((£>) field of real (complex) numbers

K
set of nonnegative real numbers

2? set of nonnegative integers

d d

1R \(L ) direct product of J^»s (<Z>s), d times
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dxd dxd
f> (<£ ) set of dxd real (complex) matrices

-Tnd srd
|•| vector norm on IK or (/.

i. .• . -7r-,dxd -dxd
l!"!! induced matrix norm on 'y or '!.

M{») measure of a matrix (definition: Ch.I,

Sec.l)

I identity matrix

% (a) i-th eigenvalue of a matrix A
i

Re z real part of a complex number z

= is equal to by definition

o(.) quantity, say x, such that (x/h)—>0 as

h~>0

A* cojugate transpose of A

A"** transpose of A

d(•,•/ scalar product on p

u union

u(») input

x(«) exact solution of 0. D. E.

fy f t ? L» U L computed solution
c n ' 0 i- n) 0 c njO

h step size

t time

Df(x) derivative of f at x (Jacobian when

D f(x,t) derivative of x| »f(x,t) at x

D f(x,t) derivative of t| >f(x,t) at x



Ch.O Sec.4 20

Q1 class of continuously differentiable

functions

det(A) determinant of A

x* exact D. C, solution

r i00Jx Vn computed sequence for D. C, solution

# computed D, C. solution

^(t,tn) state transition matrix

9, zero vector on J or £
a

O Q.E.D.

Equations are sometimes assigned a number which is

located in the right margin: (2.3) means eq,(3) of Chapter II,

Theorems, Lemmas and Corollaries are numbered consecutively

within each chapter: Theorem 2-4 follows Corollary 2-3 which

itself follows Lemma 2-2,
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CHAPTER I.

PRELIMINARIES

In this chapter we define the measure of a matrix and

prove in detail its properties, some of which are new. Also,

we explain a class of implicit integration formulae and the

Newton-Raphson method,

1. Measure of A Matrix

The measure U (•) of a matrix was discussed by

Dahlquist [1], and was used to investigate the stability of

ordinary differential equations(0. D, E.'s), [l] , [2 J.

Definition, Let <C. be (fx<£x ••• x<£, d times. Let M de

note a vector norm on (£, , Let A be a dxd complex matrix, and

||*|| be an induced matrix norm corresponding to |» I, The

measure /-/(•)*'£ ~>P of a matrix is defined by

i/g . A III + QA II - 1
J 0|,O+ 9

where I is the dxd identity matrix.

Remark. By the definition of M(.)9 U (k) is seen to be a one-

.dxd 77-
sided directional derivative of a mapping !!• \\\(F, —>1^ at

+

. , _ - ^r dxd . ^dxd
the point I € (L in the direction of A £ <l
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The following lemma shows that ^1(0 is well-defined,

Lemma 1-1. Dahlquist [l]» Coppel [2], For any dxd complex

matrix A, the measure M(k) exists.

Proof. Let k6(0,l),

||I + k9A || -1 _ ||k( I+8A )+ (l-k)'lll -1
k9 " kG

^ k || I + OA || + (l-k) - 1
kG

I + 0A II - 1

, by triangle inequality.

|| I + 8A || - 1 t
Hence, 9|—> — ~ is non-decreasing.

||I + 9A || - 1 1 - ©IIaII - 1 ... ,, v x 4 i" " * - -11A11, by triangle
9 ©

inequality and homogeneity.

Since -^ g—"— is bounded from below and decreases as

9|0+, the limit/<(a) exists. O

Remark. The measureM(•) depends on the choice of the origi

nal vector norm |•|,

Lemma 1-2. Properties of /<(•), Let A and B be in <£
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(a) /C(l) -l,/«-l) - -1.
(b) If A = 0 ( dxd zero matrix), then M{k) = 0.

(c) -llAll * -/€(-A) ^yV(A) * || AII.

(d) yM(ck) =cw(A) for all c* 0. ( positive homogeneity )

(e) /<( A+cl )-ykU) +c for all oe^.

(f) naxl/rfA) -y^(-B), -//(-A) +yV(B)| *ytf( A+B)
^//(A) +/^(B). ( sub-additivity )

(g) fi [X A+ ( 1 - A )B] *A/* (A) + ( 1 - A )//(B) for all
X€[o,l], ( convexity )

(h) |ytf(A) -/<(B) I* max(|//(A - B)| , |//(B - A) \}
* It A - Bll ,

(i) -//(-A) *-Re\ (A) *//(a) for all i = 1, 2, ••• , d,

where Re A .(a) denotes the real part of the eigenvalue

\ (A) of the matrix A.

(j) |Ax| *max[-y^(-A), -ytf(A)}«|xl for all xe £ .
(k) Let |*|: <£—5* ^ be a vector norm in (£ . Define

|x|p « |Px|, where P is a nonsingular dxd complex matrix

and call M- the measure defined in terms of the corre-

sponding induced norm. Then, /^(a) * M{ PAP ).

(j£) Let A be a nonsingular dxd complex matrix. Then,

*max<-//(-A), -//(A) I.
II a*1!! L j

Proof. (a) The results are immediate from the definition of

the measure//^(«).

(b) The result is trivially true by the definition of /*{•).

(c) Observe that
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I-9AII-1 ||I + GAll_-l_. II21 II - 2 _ A
+ ~— a « u,

e e e

by triangle inequality, or

III - 9AH-1 , ||I + 9A|| - 1

9 9

So, //(-A) +/^(A) * 0.

Observe that

_ 1 - 9IIAII -1 , IH -9A|| -1 g IIH-OAH- 1
" HA|| Q - Q Q

& 1' „ II A|U since 9 >0 and by triangle ine-
9

quality.

(d) If c « 0, the result is true by the property (b).

Assume that c > 0, Observe that

III + cOAH-l ||I + c9All-l . .. . ftlnj.
- — • c» — , and that c910+ as

9 cO

9J0+ since the constant c is > 0.

(e) Observe that

II i +e( a+ci )j|__-i_ m (l+Oc)||I + 1+Q<> A11 - 1
9

I+ i+ecA - 1

+ C

9
" T w.

1 + 9c

0 i
klAo. +!->« -ma

(f) Observe that

9
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I +9( A +B ) || - 1 li ( I + 20A ) + ( I + 29B ) II - 2
0 29

III + 29A|! - 1 A IH + 20B|| - 1
20" + ~~ "~20 •

Hence,//( A+B ) *y/(A) +/*&).
The other inequalities follow from A = (-B) + (A+B ) and

B - (-A) + ( A + B ).

(g) The convexity property follows from the positive homoge-

neity (d) and the sub-additivity (f),

(h) The property (c) implies that

max{|//( A- B)|, |//( B- A)|} * ||A - fill .
The other inquality is obtained by observing

-/<( B - A ) */*(A) - //(B) ^( A - B ) and

y/( A- B ) */<(B) - /'(A) ^/<( B- A ).

(i) Let e<£</; be a normalized eigenvector of A associated

with the eigenvalue A,. Observe that

|| I+ 9A|| -1 ^ Ie+ OAe I-1 a |e + 0/^1 -1

1 + GAJ-lel - 1 II + 0Ail - 1
± =, , and that

I1 + ©Ai I= 1 + ©ReA.. + o(0) for sufficiently small 0> 0.

The other inequality follows from
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1 - 9X.I - 1
||I - 9A|| - 1 ^ le - 9Ae| - 1 *

e 0 " e

(j) Let 9 be > 0.

,Ax, „ l( x- GAx ) . x| . |( I-9A^)x-x|

jx|- ||I - 9All»|xl _ ||I -9A|| - 1
g — |X| q

Hence, |Ax| ^ -yU(-A)' |x| by letting 9^0+. Also,

|Ax| = |(-A)x| * -//[-(-A)] *|x| - -//(A)-|x|.
(k) Observe that

|x + 9Ax|p |P(X +9AX)|
I|1 +""P-J»d ,x|p "5»d iM

mmjt J^llLBE^^iii^PAP"1!!.x*§d |Px|

(I) Claim: inf |Ax| = = .
|x|sl II a"1 II

IAx
inf Ax » inf ——— • - , -1. N
|x|-l x*9^ |x| |X| IA (Ax)

A sup — sup

II a"1 II

x¥9. IAx | Ax^ IAx
a d

Hence,——j = max|;i IIAx | ^Aand |x| »l).



Since lAxI * max(-yU(-A), -^.(A) U|x| by (j),

-1 ^ maxf-yU(-A), -M{k)
Ik"1!! j' f '
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Remark. Since the measure //(•) is a convex function, it is

continuous. As we have shown, the measure// (•) is in some

ways similar to the norm of a matrix, howevery^ (•) is only

positively homogeneous and can take on negative values. We can

||I + GAll - 1
easily verify that a mapping 9^ -— is continuous

and monotone increasing except at 0 = 0, and that

lull * li__L_-'' ' X * MaII " for all 0^7P except 0.
1111 0

||I + 0A || - 1 ,„ v - /y,.v
Also note that lim . » -A(-A) * A (A)

0|O- © 1 '

111 +0A 11 1
A iim .__ . We shall obtain tighter bounds for

0|O+ 0

the stability analysis of 0. D. E.'s and its numerical inte

gration formulas by the use of the measure fA (•) rather than by

the use of norms. A key tool is the following inequality due

to Coppel,|2]t

exp(-||A||t) *exp( -//(-A)t )* —
11( exp(At) )"

- ||exp(At)|| - exp( jU(k)t ) * exp( ||A||t) for all t * 0,

Another case is the following* if h > 0, then( by Lemma 1-2,

(?) )
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_ *l-y^(-A) *1-h||A ||.
( I + hA )

1 j2

and X
oo

The values ofy^(A) are easy to compute for / ,/
norms.

Lemma 1-3. The values of ||A|| and //(a).

Let A be a dxd complex matrix,

(a) If l«l-l*lc045f.2.....dlXll't™

IIA |l - ?a* A 23
03 1-1,2,•••,d j»l aij I —l

A»(A)°!2{.2,....d(Beaii +>i

(b) If |x| - |x|, - Jd |x I, then

IIAH lb la1 ™M,2, •••,d iai I ij and

lij
). (row sum)

M(A) - max ( Rea + & jaj ). (column
'1 j»l>2,«",d JO ^-L J

(i*j)

sum)

(c) If |x| |x
a A i 12 ,1/2- ( X_ x I ) , then

i-11 Xl

* /)"]l/2
1,Al|2"[^.2....,d{VA#A)}] ^

28



Ch.I Sec.l

M(A) «max |X^ -* )[, where A is aconjugate trans-rA + A 0

pose of A.

Proof.

(a) III + 0AII - max r{ IS +9a |
7 a? i«l, •••fd •?=,! ' ij ij •

max J11 + 0a,, I+ Su IOa .Ui=l,...,d; ii j=i I ij«;
(3*i)

J1 + 0Rea_ + o(0) + GTl ja
,...,d) ii j=i i ij

U*i)

for sufficiently small 0 > 0.

Hence,
IH + ©A IU_-_1

"~~'e- 'i^..„diReaii +̂ !aio!j+o(e)

for sufficiently small 0 > 0.

(b) The proof is analogous to that of (a).

(c)
.lH/2I+ 8AII = [max U,((I+GA) (I+6A) )}f

2 Li=l,...,d •- i JJ

* 2 * >
max </L ( I + 0(A+A ) + 0 A A )•;
i=l,«»*,d( i

* 2 * 1/2
WF J /*.( 1 + °(A+A ) + 0 A A )•
i«l, •••,<} .'. i

29

1/2
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2 * xl/2*> 2 * >l/2)
max

i "

-max I 1+0X, ( )+o(0) f for suf-
i-1, •••fdl i 2 J

ficiently small 6 > 0, O

There are classes of matrices which are called row-sum

dominant, column-sum dominant and passive.

Definition. A dxd complex matrix A is said to be strongly

(weakly) row-sum dominant iff

Rea.. > (*) Ha for all i - 1, 2, ••• , d.
11 j-1 ij1

(j*i)

Definition. A dxd complex matrix A is said to be strongly

(weakly) column-sum dominant iff

A 1
Rea.. > (*) H aJ . for all j - 1, 2, ••• , d.

33 ,1=1. ij'
(i*j)

Definition. A dxd real matrix A is said to be strongly

(weakly) passive iff

(x,AxN > (^) 0 for all non-zero vector xeR .

Sometimes, the strongly (or weakly) passive matrix is called

positive definite (or positive semidefinite). Note that we do

not require that the matrix A is symmetric.
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The next lemma shows how those classes of matrices are

related to//(») under specific norms.

Lemma 1-^. Let A be a dxd real matrix.

(a) The matrix A is strongly (weakly) row-sum dominant iff

-/<„<-*) > w 0.

(b) The matrix A is strongly (weakly) column-sum dominant iff

-/< (-A) > (*) 0.

(c) The matrix A is strongly (weakly) passive iff

-// (-A) > (*) 0.

Proof, (a) Observe that

d ,
a > W _? a. J for all i = 1, 2, ••• , d.
ii j=i ijl

(jM)

<m> -( -a.. + £ I-a, . )> (^) 0 for all i =» 1, 2, ••• , d.
11 i=i I ij

(b) The proof is analogous to that of (a).

(c) Observe that

T
/ \ / A+A v T
(x,Ax > - \x, x) , where A is a transpose of A. o

Remark. If a dxd real matrix A is strongly column-sum domi

nant, i.e., there exists a positive constant f- > 0 such that
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a.. - 2—k
33 i-i

(i*j)
ij

^ £ > 0 for all j « 1, 2, ••• , d,

then by Lemma 1-4, (b) and Lemma 1-2, (j), Sandberg1s result,

[3] followsi

|Ax| -£|x|x for all xe^ .

Similar results are Immediately obtained for strongly row-sum and

strongly passive matrices.

The inequality in Lemma 1-2, (i) under I norms can

also be proved by the Gerschgorin circle theorem.

Gerschgorin circle theorem, [4] .

Let A be a dxd complex matrix. Then every eigenvalue of A lies
>

in the set

We€ ii
z| - *—\ a

(jW)

For each eigenvalue ^ of A, there exists iQ £J1, 2, ••• ,dj

such that

Noting that

i.i
/.

0 0

4 C a .
1-1 ' 1/nJ

(3*> °

Re A - Rea , *
i i iJ1 0 0

ai i " *i
Vo

32



we obtain

-A(-A)s?i2,...,d{Reaii-^
(j*i)

^ Rea. . - 2.-4 a. .

^ Rea + C

°*° (j20) v

d

ij

^ Re A

^ max •) Rea.. + L^ a
i=l,...,d '• ii j=i Iij

(j*i)

Ch.I Sec.2

/VA> , for all

1=1, 2, ••• , d.

2. Implicit Integration Formulae

One of the main concerns in lumped circuit analysis is

the computation of the transient response of a circuit, i.e., to

solve the appropriate 0. D. E. in an efficient and accurate way.

A class of numerical integration formulae is stated in this

section.

Consider an 0. D. E.:

r
x « f(x,t) + u(t)

I x(0) - xQ

where x(t), \i(t)t:P for all t ' fp and f» p x //? »^'

(1.1)

It is assumed that the existence and uniqueness of the solution

33
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x(») of the 0. D, E. (l.l) is guaranteed and that it is con

tinuous for all t£^ . A sufficient condition is, for ex

ample, given in the reference [5 ] •

Let h > 0 be a step size. A special class of al

gorithms for obtaining the numerical solution of 0, D. E, (l.l)

1st

P P .

y ,- njVn-k + ^ Vn k' with b1*°' (1-2)n+l ^=0 K n K fc^-1 * n"k *"1

where y « f( y ,(n-k)h ) + u( (n-k)h ).
n-k n-k

For notational convenience, x(nh), u(nh) and f( x(nh),nh ) will

be denoted by x , u and f(x ,n) respectively for all n el?
nn n —^ +

from now on. The above algorithm (1,2) is called the multi

point formula of closed type or an implicit integration formula.

The determination of y jn is implicit for given fy , y ,
n+l j n-p n-p+1

••* 'ynj '(V V •"' 'ap}'(V V ••' 'bp} and
\ y > y » ••• t y \ • In particular, when p«0, a»l, b«h

and b « 0, the formula (1.2) is called the backward Euler formu-

lai

yn+l " yn +hVl "Yn +*(yn+l'n+1) +hVl' (l^

The corresponding explicit integration formula is the Euler-

Cauchy method1
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y » y + hy = y + hf(y ,n) + hu . (l.*0
n+l n n n n n

The following example shows that the Euler-Cauchy

method is not as good as the backward-Euler method even for a

scalar linear 0. D, E.

Example 1-1. Consider a scalar 0. D. E.i

l?(o) =?0

where £(t) £^ for all t 6P and A. < 0.

The exact solution £ (t) = exp(At)- £ of 0. D, E. (1.5) con-
n

verges to 0 as t->oo, The computed solution y =» (l+h/i ) y

by the Euler-Cauchy method (l.*0 converges to 0 as n-*-<->-) if

0 < h < -2/a. p otherwise it does not converge to 0 as n-^» oo.

So, when |Aj is large, the step size h > 0 has to be chosen

sufficiently small to get over the numerical instability, which

requires more computational time. But the computed solution

y » (l-h/t) y by the backward Euler method (1.3) converges to
n 0

0 as n—> oq for any h > 0. Moreover, Ihe accumulated truncation

error £ - v I of the backward Euler method has an upper bound:
rn "nI *y

-n , ,
£ - y * (1-hA) f - y + i hlh
i•n n» ' 0 0

The error estimate consists of two terms i the first term shows

< i for all n «* 1.
'01
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that the effect of the initial error decays exponentially as

n->oo and the second shows that it is proportional to the step

size h for any h > 0. In Chapter IV, the backward Euler method

is more fully investigated. Using the measure M(•)» we show

that similar desirable properties still hold for an important

class of nonlinear 0. D. E.'s,

3. Newton-Raphson Method for Solving D. C. Equations

D. C, equations(algebraic equations) are encountered

in computing the transient response of a circuit by implicit in

tegration formulae and also in computing the D. C. operating

point. The Newton-Raphson method is one of the widely used al

gorithms for solving D. C. equations. The scheme is stated in

this section.

Consider a D. C. equations

f(x) - y (1.6)

where x, yg^ and f is a mapping from Ik into itself.

Given y<c^ and ft 1R—>^ , we want to find the D. C. so-
* d *

lution x _ JR such that f(x ) - y if it exists. The Newton-

Raphson method of solving the D. C. equation (1.6) is given byi

-1

Vl " *k "(^kfc) > (*(**) "y >» k- 1» 2, ••• (1.7)

with xQ giveni here Df(x^ denotes the derivative of f (i.e.,

the Jacobian of f) evaluated at xfe. Note that the Newton-

Raphson method is applicable only when ( Df(x ) ) is nonsingular
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for all x^, k<£j~ , The Newton-Raphson method is essentially a

linearization process. At k-th step, the D, C. equation (1.6)

is linearized at x « x^j

f(x) -y _ f(x )+ Df(x>(x - x ). (1.8)
K K K .

Solving the linearized equation (1.8) for x and letting x^

x, we obtain the formula (1.7).
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CHAPTER II.

D. C. EQUATIONS

In this chapter, using the measure A(-) we develop

properties of D, C, equations. First, we prove an existence

and uniqueness theorem. Second, we determine the guaranteed

convergence region and the rate of convergence of the Newton-

Raphson method. The effect of the local round-off error is

also investigated.

1. Existence and Uniqueness of D. C. Solution

Consider the D. C. equation (1.6), i.e.,

f(x) - y (1.6)

where x,ye^d and f is a mapping from ]R into itself. In this

section, existence and uniqueness of D. C. solution of eq. (1.6)

and continuous dependence of the D. C. solution on a given vector

y£/^?d are discussed. The above requirements of the D. C. so

lution are met for all ye^d if the mapping fi 1R-^>7R is con-
"\ A A

tinuous & bijective and if the inverse mapping f" xIR-^TR is

continuous. (The latter statement follows from the former by The

Invariance of Domain Theorem, [4] .)

A A

Definition. Let f.\1R->JR be continuously differentiate ( f €.
1 A A 1

C ). The mapping f«^-^^ is said to be a C -diffeomorphism

d -1 ^1
from fi? onto itself iff f.is bijective and f is in Q .
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Palais, [63 gave the necessary and sufficient condition for the
__ d -77-j d s-J-

mapping f: JjK —W/<- to be a O -diffeomorphism.

Lemma 2-1. (Global Inverse Function Theorem, Palais ».. 6 j ,

Holzman & Liu [7], Stern [8], Ortega & Rheinboldt !' k ],

Wu & Desoer [18 ] .)

A A ~\ T_

Let ft 1R —&-1R. be in C . Then, f is a C -diffeomorphism

,_d
iff (i) det( Df(x) ) % 0 for all xdR (2,1)

and (ii) lim |f(x)l « +00. o (2.2)
|x|->^v

The condition (ii) of the Global Inverse Function

Theorem is often not easy to check in specific cases. Suf

ficient conditions which are weaker but easier to check are

given below.

Definition. A function m(»)* p,-:>7P+ Is said to be in class

00

fty iff m(c* ) > 0 for all ex* (R and m(c/ ) dc< = +00.
0 + j0

A A 1

Theorem 2-2. Let f: p—=>P be in Q • If there exists an

m(.)£//fr such that either -//.( Df(x) ) ^ m( |x| )> 0 or

-//( -Df(x) )^ m( |x| )> 0 for all x*7R , then f is a C -

diffeomorphism from 1R onto itself.

Proof. Use the Global Inverse Function Theorem,
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Claimi det( Df(x) ) * 0 for all xoR .
A H '

Let z be a non-zero vector in IR , then for all xzP ,

|Df(x).z| ^ max[-,A( -Df(x) ), -yK( Df(x) )} «|z|, by Lemma

1-2, (j),

^ m(|x|). |z| > 0 for all z ^ 0d. (2.3)

Claimi lim |f(x)l - +oo,
|x|-->oo

By Taylor*s formula,

f(x) - f(9d) +( [ Df(Tx) dt).x. (2.4)

I r1if(x)i ^ ( \ Df(rx) dr )«
i Jo

*max|-yL<( -f Df(rx) dr ), -J*{ fDf(?x) dr )] .|x|

-|f(0d)|, by Lemma 1-2, (j). (2.5)

-yV( - f Df(Tx) dt )- -( /f( -Df(Tx) )-dt

- ( -y^( -Df(Tx) ) dt by Lemma 1-2,

(d) & (f). (2.6)

Similarly,

- W
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1 ,1-//( f Df(rx)dr)^-f R{ Df(rx) )'ar ••

- f -/<( Df(tx) )dr. (2.7)

By assumption, we obtain

max£-#( -j Df(tx) dt ), -^( j' Df(Tx) dt )]

r1 d
* m( |rx|) dt for all xgR (2.8)

J 0

Hence, the inequality (2.5) becomes*

r1 iIf to I' - ( m(|Txj) dt.|x| - f(0d)|

(W , ,
m(d ) dd - f(ej by letting ^-|fx|

JO ' d '

-T|x|. (2.9)

So, |f(x)|->oo as |x|->oo. O

Remark. Since f is in C and //(•) is continuous, the con

ditions of Theorem 2-2 on Df(x) are mutually exclusive because

d
either -//( Df(x) )* m( |x|) > 0 for all xefR holds, or

y/( -Df(x) )-m( |x|) >0for all x6^d holds.

Definition. A function m(-)« P~^ P is said to be in class
+ ,/N+ ———
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S/ft( 6) iff m(o<) >0 for all o^_^+ and there exists a posi-

tive constant £ > 0 such that ( m(f) d£ ^ £o( for all
30"

a_$> . (2.10)

Since the class ^(£) is a subset of the class Jfrl~t

the next corollary follows.

d d 1
Corollary 2-3. Let fx R —^P be in C . If there exists an

m (•) € iftll( £ ) such that either -yV( Df(x) ) ^ m( |x|) >0 or
d 1

-/^( -Df(x) )* m( |x|) >0 for all xep , then f is a C -
^d

diffeomorphism from#? onto itself, O

Corollary 2-4. Let fi 1k —* Jp be in Q . If there exists a

positive constant m > 0 such that either -m( Df(x) ) *» m > 0 or

-//( -Df(x) )& m > 0 for all x^JR , then f is a C -diffeo-

morphism from P onto itself.

Proof. The constant function mq t/fri(6 ) C J)7i , o

Examples of m(«) are given below.

Example 2-1, Consider a function m(»)» %—*. p+ defined by

m(oO &£Q(c*+ cX^ (2.11)

where £ > 0, <^0 > 1and p*l,

First observe that m(») defined above is in class c/fe.,

(a) If p «* -1, then m(.)e (//fo( £).
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(b) If -1 <p*1, then m(-) %«/%(£), but m(') 'c iy%^.

In particular, if p = 0, then m(o() « £ - constant,

1 2 /^By choosing specific norms, / , jl and / ,for Co

rollary 2-4, we can derive more special cases. Before giving

the next corollary, uniformly rew-sum, uniformly column-sum and

uniformly positive definite(or negative definite) matrices are

defined. Let A(x) denote a dxd real matrix with a parameter

Definition. The matrix A(x) is said to be uniformly row-sum

dominant iff there exists a positive constant m > 0 such that

d,
a (x) - ^ la, ,(x) * m > 0 for all i = 1, 2, •• • , d,
ii j«si ; ij '

(j*i)

for all x^ 7p .

Definition. The matrix A(x) is said to be uniformly column-

sum dominant iff there exists a positive constant m > 0 such that

A,
a..(x) - /L_< la .(x)| ^ m > 0 for all 3 = 1, 2, ••• , d,

33 i=,i ' ij !
(i*j)

for all x f Ifr? •

Definition. The matrix A(x) is said to be uniformly positive

definite(or uniformly passive) iff there exists a positive
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constant m > 0 such that

(y,A(x)y) m̂|y| for all ycp*, for all xeff .

The matrix A(x) is said to be uniformly negative definite iff

-Ato is uniformly positive definite.

A A 1

Corollary 2-5. Let f: TR—^TP be in C .

(a) If either Df(x) or -Df(x) is uniformly column-sum domi-
1 dnant, then f is a Q -diffeomorphism from P onto itself.

(b) If either Df(x) is either uniformly positive definite or
1

uniformly negative definite, then f is aC -diffeomorphism from
d

IR onto itself.

(c) If either Df(x) or -Df(x) is uniformly row-sum dominant,

1 -TT&
then f is a C -diffeomorphism from IR onto itself.

Proof. Use Lemma 1-4 and Corollary 2-4. o

Remark. Stern, [8] and A. N. Wilson Jr., [9] showed es-
A A

sentially that a continuously differentiable function filP-^P

is a C -diffeomorphism if Df(x) is uniformly row-sum dominant.

Corollary 2-5 (b) was proved by Stern, [8 J, Ohtsuki & Watanabe,

[10] and Kuh & Hajj, [ll] .

2. Newton-Raphson Method

The Newton-Raphson method is an attractive method of

computing D. C. solutions because of its quadratic convergence

under certain reasonable conditions. That is, if the initial
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point is sufficiently close to the exact D. C. solution, the

(k+l)-th error is at least proportional to the square of the

k-th error, [4] , [12] . In this section, the guaranteed con

vergence region of the Newton-Raphson method is determined and

the quadratic convergence is established again using the measure

//(•). The effect of the local round-off error on the region of

convergence and on the convergence is also investigated. For

this problem we use a key result due to Hurt, [13] •

Consider the D. C. equation (l.6)t

f(x) = y (1.6)

-77") d -frA ,~d
where x,y£//< and ft/??—»*'p .

Throughout this section, we assume that
d d 1

(Ai) ftP—^JR is in C ,

(Aii) there exists a positive constant ra > 0 such that either

d
-//( Df(x) )^ m > 0 or -//( -Df(x) )^ m > 0 for all x^JR ,

We note that the existence and uniqueness of the D. C. solution

* d
xgTR of eq. (1.6) is guaranteed and that Df(x) is nonsingular

for all xeJR by Corollary 2-4,

The Newton-Raphson method of solving the D. C, e-

quation (1.6) with an infinite-precision machine is defined by

the iteration rule

-1

Vl • \ ~(Df(V ) (f(V "y )f k" lf 2f "•
(1.7)

with x given.
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Definition. Let jx V be asequence in R which converges to

* r ^°° *x . The sequence jx (• is said to converge to x at least

quadratically iff there exist an integer k * 0, and a constant

* 2

c such that X - X

k+1
X - X

k
for all k * k , (2.12)

Theorem 2-6. Consider the D. C. equation (1.6) with as

sumptions (Ai) and (Aii). Assume that there exists a continu

ous monotone increasing function k (•)* 1^'~~^^ sucn tnat

for all r > 0

* *
|jDf(u) - Df(v)|| ^ k (r)|u - v|, for all u,v ^ B(x ,r).

(2.13)

* *
Define r to be the unique solution of r « 2m/k (r), r > 0,

Under these conditions, if xQ ^B(x jr )then the corresponding

sequence jx,j- Qdefined by eq. (1.7) remains in B(x ;r )and
*

converges to the unique solution x at least quadratically.

Proof. Let an error vector e. be defined by

ek kx -x^ for all k4^+. (2.14)

Then, from eq, (1,7) and the definition of e , we obtaint

A *

k+1e- - * x " *k+l
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x*- jx - (Df(x ) fX(f(x ) -y ))
7 k k k

-ir *. }

=* ( Df(x ) f -j Df(x ).(x - x ) +f(xfc) - f(x ) \
k / k k k j

( Df(x ) )"1/l)f(x ).(x* - x) + f Df( x* +r (x - x ) )•
k !. k K J o

d?'(x - x ) .
k J

Thus,

k+1

-1 /' rl=( Df(x* - e ) )" \ { ( Df(x* - e ) - Df(x* - Te ) )•
k ( J o K K

dt •eT f • (2.15)

Let V(e) = |e|, and AV(e. ) = V(e ) -
k+1'

V(e, ) for all k <? if .

From eq. (2,15), we obtain

Av(e) ^ ( Df(x* - e) )"*1 j f ( Df(x* - e) - Df(x -Te) )•
• »0

dt-e] j - |e|

* -1
( Df(x - e) )

dt-e - e

1 # *
( Df(x - e) - Df(x - re) )

0

(2.16)

The assumption (Aii) and Lemma 1-2, (9) imply that



Ch.II Sec.2

( Df(x*-e) )" j & l/m for all e-:/^,d. (2.17)

Furthermore, if for any given r > 0 x* and x -e are in

B(x j r), we obtain

( ( Df(x*- e) - Df(x*-T e) )dT-e
Jo

JO

Df(x*- e) - Df(x*- re)

*(V(p) (r - i)e
Jo

k*(r) .2
e .

dT-le

dt-

(2.18)

1 k*(r) 2
Hence, for all r > 0 AV(e) ^ — —— |e | - |e | for all

m £.

e £B(6d; r).

/ ^ 1 k (r ) 2
In particular, Av(e) --• |e| - |e

m 2

0 * |e| < r*.

k*(r*). ,2 ,
—i—l|e| - |e

2m

« |e|( |e|/r* - 1 ) < 0 for all

(2.19)

(2.20)

m
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Consider any sequence j e V defined by eq. (2.15) with some in

itial condition eQsJR subject to |e | ^ 5T <r for some

If > 0, From eq. (2.20), we obtain

'k+1
£

By induction, 0 6

for all 0 £ If* 0 < r ,

eT I* J < r for all k £ j7 ,
kl +

From eq. (2.21), we get

? 2k *
r for all k € /?

(2.21)

(2.22)

So, the sequence Je. J converges to 6 as k->oo, since

T < r*. In terms of the iterates, eq. (2.21) is rewritten as

Vl
- x * (l/r*) - X for all k <^+. o (2.23)

Remark. Since r* »max min(r,2m/k*(r)j ,the open (2.24)

ball B(x*jr*) is the best possible convergence region obtainable

from eq, (2.13). If either m becomes large or if f(-) becomes

smoother, i.e., k (r) is decreased for each fixed r > 0, r be

comes large by eq. (2.24); the region of convergence is en

larged. If k (•) is a constant function, r* becomes 2m/k , and

the effect of m and k on the convergence region is obvious.

49
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Since the D. C. solution x < If is unknown a priori,

conditions of Theorem 2-6, i.e., eq, (2.13) and x0 <• B(x*;r*),

are impossible to check. Those conditions can be replaced by

other stronger conditions which do not include the unknown x*.

The next corollary is stated in terms of a priori known quanti

ties.

Corollary 2-7. Consider the D. C, equation (1.6) with as

sumptions (Ai) and (Aii). Assume that given xQ^pd, there
exists a continuous monotone increasing function kA9)t7P+-**7P +

such that for all r > 0

IIDf(u) -Df(v) || ^kQ(r)|u ~v| for all u,v <= B(xQjr).

(2.25)

Define r to be the unique solution of

2m

fco(r +- ; >

Under these conditions, if |f(xQ) -y| ^ mr*, then the corre

sponding sequence [x^ "defined by eq. (1.7) remains in

B(x ;r )and converges to the unique solution x at least quad-
ratically.

Broof. Claim: |f(x) - y| ^ mix - x*| for all x* JA.

(2.27)

lf(x) - y I- lf(x) - f(x*)|

• 1
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Df( x*+ r (x - x*) ) d?-(x-x*)j ^ Taylor's
' JO

formula.

* mix - x*j by (2.6), (2.7) and Lemma 1-2, (j).

Claim: the condition (2.25) implies the condition (2.13).

Let r„ ^TH be such that r > jx* - x j, and define
0 + 0 > 0'

A
r» as T" —

0
x - x j > 0.

Since x - x • < r implies that

x - xrt! ** X - X + X - X, <r + jx - xQj =rQ,

we obtain the relation: B(x*; r) C B(xQ; rQ).

! *From the condition (2.25), for all rQ > jx - xQ|,

(2.28)

(2.29)

II Df(u) -Df(v)|| *k0(r0)|u-v| for all u,v ^B(xQ; rQ) (2.30)

Hence, for all r > 0,

Df(u) -Df(v) 1| *kQ(r0)lu-v I for all u,v *B(x*; r)

r B(x0, rQ). (2.3D

Since kn(#) is monotone increasing, we obtain for all r > 0,

||Df(u) -Df(v)|| *kQ( r+|x*- x0j )|u-v|

51
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*kQ( r+ |f(xQ) -y|/m )|u-v| for all u,v 4B(x*; r)

by (2,28) and (2.27). (2.32)

Let k*(r) »kQ( r+ |f(xQ) -y|/m ). Then, eq. (2.32) becomes

the condition (2,13), since k*(») is continuous and monotone

increasing. Also, note that by eq. (2.27),

fxcpd ||f(x) -y| *mr*j C B(x*, r*). (2.33)

Then, Theorem 2-6 is applied to complete the proof. O

The Newton-Raphson method of solving the D. C. equation

(1,6) with finite-precision machine gives:

Vl "*k *(m(\) ^ (f(V 'y)+ &**>' k." !' 2> •'•
(2.3^)

with xQ given, where £(x )denotes the local round-off error

incurred at (k+l)-th step. We assume that there exists an

f^cc> 0 such that

,(^V'* £*o f^ a11 \ generated by eq. (2.34). (2.35)

In order to discuss the effect of the local round-off error, we

use a modified version of Hurt's corollaries, [I3J .

Consider a difference equation:

fxk+l -f<**)
J (2.36)xQ: given.

where \*TR for all k*;?+, and fiF--— ??* is continuous.
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dConsequently, for all xA £ 'p , the solution .'x(k;x Jf of

(2.36) is uniquely defined and for each fixed k * & » the

mapping x |—> x(k;x ) is continuous.

Lemma 2-8. (Modified version of Hurt's corollaries, Tl3J.)

Let V and W map ]P into 'R, and let W be continuous. For some

Tf> 0, let G=(x^d jV(x) *^] .

Assume further that

(i) V(x) ^ 0 for all xtG;

(ii) G is compact?

(iii) there exists a constant w ^ 0 such that

Av(x) « V( f(x) ) - V(x) * -W(x) * w for all x ^ G;
(2.36)

(2.37)

(iv) Let N= -f xe GW(x) *0[ and b«sup V(x) <•->-;
1 " X€N

(v) Let A• {x €#?d|v(x) *b+w] ;b+w<?.
Let S « inf W(x).

x e G-A

Under these conditions,

(a) NrAcG, N is closed and £* 0.

(b) For all xQ£G, x(kjxQ)^G for all k £ Z7^ i.e., G is an

invariant set of eq, (2.36),

(c) For all x <= G, x(k;x ) ^A as k -^ ^ and A is an invariant

set of eq. (2.36). If, in addition n > 0, then there is a

k*(x0) such that x(k;x )<• A for all k> k*(x0).
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(d) For all x €G, the positive limit set (set of all the limit

points) M(xq) of the sequence jx(k;xQ) j is asubset of Aand

M(x ) is an invariant set of eq. (2.36).

Proof. (a) If x€H, then V(x) 6b^b+w<?, by assumptions

(iv), (iii) and (v). Hence N^AcG.

Since N = w" ( (-cx?,0 ])DG and W is continuous, N is closed as

the intersection of two closed sets.

Since W(x) > 0 for all x«G-N and G-ACG-N,

S - inf W(x) * 0.
x£G-A

(b) Since xQfG, it is enough to show that for all i ^ /?+

x(i;x0)<?G implies x(i+l}xJ<rG,

Case i) x(ijx )€G-N.

By assumptions (iii) and (iv),

V( x(l+l;x0) ) * V( x(i;x0) ) - W( x(i;xQ) )

< v( x(ijxQ) ) * 2r,

So, x(i+l;x )£G.

Case ii) x(i;x )<? N.

By assumptions (iii), (iv) and (v),

V( x(i+l|X0) ) ^ V( x(l|XQ) ) - W( x(ifx0) )
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6b- w( x(i;x ) )* b + w< If .

So, x(i+l;xJ^ACG.

Hence, G is an invariant set of eq, (2.36).

(c) Claim: A is an invariant set of eq. (2.36).

It is enough to show that x<^A implies f(x)fA, Similar to the

proof of the invariance of G, if x<=A-N, then f(x)<=A and if

x <=^N, then f(x) ^ A.

Claim: for all x € G, x(k?x )->A as k->co.

Let d(»,«) be a distant function defined by

d(x,A) - inf |x-a|, (2.38)
a '= A

Proof is done by contradiction. Suppose not, i.e.,

r\y [v x €G VS>0 3N VkM d( x(kjx ),A ) ^ f. J. (2.39)

That is,

qx'eG q£f > 0 ¥ N 3k^N d( x(kjx'),A ) > £ ». (2.40)

Let J be the infinite set of integers defined as

fk^,^+ jd( x(k;x^),A )> /•-,•] .

Note that lx(k;x'W is a subsequence of x(«;x\) and that
<" 0 J k *J °

the sequence x(«;x') stays outside the set A, because A is in

variant. Thus VkfJ, x(kjx')^G-B(Aj £') CG-ACG-N.
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Hence by assumptions (iii) and (iv), the subsequence

kh>V( x(k;x») ) is strictly monotone decreasing. Since V =* 0

on G, this subsequence converges. Hence, AV( x(k;x!.) ) >0

as k-^oc, k^J, and so, W( x(k;x*) ) tends to 0 as k~>^'f k ^J,

since W( x(k;x^) )>0 for all k€J.

Now,

inf„ «/, ^(z) = min / nW(z)» since G-B(A; £) isz^G-B(Aj£) zfcG-B(A|/=)

compact,

A
8 > 0 , since W(z) > 0 for all

w

Z*G-B(A;£)CG-N. (2.4l)

So, W( x(k;x») ) ^ 6 > 0 for all k£J. This is a contra-
u w

diction.

Claim: if S>0, then ¥xQf.G 3k'(x) such that x(k?xJ^.A
¥k>k'(xQ).

Since A is an invariant set, it is enough to show that ¥ x ^G

3k'(xQ) such that x( k'(xQ);x )a.

Use contradiction. Suppose not, i.e.,

IX^GV^/+ x(kix^). G-A. (2.42)

Then,

V( x(k;x^) )*V( x(k-ljx^) )-W( x(k-l,x^) )
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* V( x(k-ljx^) ) -§, by (iii) and (v).

Thus,

V( x(k;x') ) * V(xj) -k£. (2.43)

So, V( x(kjx') )->-oo as.k-V*. But, ¥k <= if v( x(k;x') )
0 +0

> b + w ^ 0 since x(k;x')^G-A, ¥k^7» r^ls is a contra-
0 ' +

diction.

(d) Claim: M(xQ) is an invariant set of eq. (2.36).

M (x ) is compact, since M(x )<".G «G and M(xQ) is closed. Let

p^M(xn). Then, there exists a convergent subsequence

'x(k ;x )> such that x(kn; xQ)~>p as n-> 00.
n^O

Define:

y (k) =x(k-*nJ xQ) =x(k+kn) ¥k<i /?^ ¥n-" ^. (2.44)

Then, y (•) is the solution of eq. (2.36) with the initial con-
n

dition y (0) = x(kn? xQ), Also, y (0)~>p as n->^.

Since the solution of eq. (2.36) is continuous with respect to

xn» y (•)—>x(«;p) in the sense of pointwise convergence of
0 n

sequences: f k ^- / y (k)—>x(k;p) as n >rv>.
•+• n

Since ¥ n 4 /f ¥ k <- ,-'"' y (k) f-. ,P is on the sequence
+ + n

x(.jx ), for fixed k < ' , Jy (k) is a subsequence of
0 ' + • n ' n»i
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x(.,x0). such that yn(k)->x(k,p) as n->oo. So, x(k;p^ M(xq)

^"k^i?7 » i.e., M(x ) is invariant under eq. (2.36),

Claim: M(x )CA.

By the definition of M(xQ), -V- p£M(x ) 3a subsequence S(p) of

x(«;xQ) which tends to p. We have shown that the sequence

x(.;x )tends to A, Since S(p) is a subsequence of x(»;x0),

S(p) also tends to A, Hence p£A. O

Remark 1. ¥ is said to be a Lyapunov function. In the above

Lemma, ¥ takes on nonnegative values on G and is bounded from be

low on G. The continuity of ¥ is not required, and ¥ can

possibly increase on N along the solution sequence.

Remark 2. We note that Lemma 2-8 can be used to prove Theorem

2-6. By letting v(e) £ ie|, W(e) - -(|e|/r* -l)|ej, and

0< 7f <r*, we obtain A=N=jfel and G«B(6d;r*), using eq.

(2.15).

Now, we state the theorem concerning the effect of the

local round-off error.

Theorem 2-9. Consider the D. C. equation (1.6) with as

sumptions (Ai) and (Aii). Assume that f satisfies the con

dition (2.13) of Theorem 2-6. Assume further that the local

round-off error S(\) is bounded as in (2.35) and that

£co<**/5- (2.45)
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Under these conditions, if xQ£B(x*j r*- 2£j, then the cor-
oo

responding sequence ix. }• defined by eq. (2.34) remains in

B(x*j r*- 28^) and enters the region I(x*i 3£w) after a finite

number of steps and remains in it forever after.

Proof. From eq, (2.34), we can derive a difference equation a-

nalogous to (2.15)*

-irrie -(Df(x*- ek) )" (f (Df(x*- eR) -Df(x*- t efc) )d^-e^
{ •' 0 v

+ £(x*- e ), k - 1, 2, ••• (2.46)
k

Let ¥(e) = |e|. As we obtained eq. (2.19)» we get: for all

r > 0

A¥(e) * |e|( k*(r)/2m-|e| -1)+ |F(x*- eR)

* |e|( k*(r)/2m- |e|-1)+ £^, for all e€B(9d; r),

(2.47)

Corresponding to eq. (2.20), we obtain:

A¥(e) * |e|( |e|/r*- 1)+ &m, for all 0* |e| <r* (2.48)

In order to apply Lemma 2-8, let -W(e) be the rightr-hand side of

eq. (2.48):

W(e) - -|e|(|e|/r*- 1 ) - f; . (2.49)
CO
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Observe that W is continuous and w = f • Choose if

r*- 2 £^< r*. Hence we obtain
00

G- ( es 1f> d
1

**- 2£j - B(9,; r*- 2£ ), (2.50)
00

Check all the conditions of Lemma 2-8,

(i) ¥(e) - |e| ^ 0 for all eeG^d.

(ii) G= B(ed; r*- 2^) is compact.

(iii) Let w = £ . Then,

Av(e)_ ^ -W(e) ^ £m for all eeB(9,,j r*- 2£_J. (2.51)
!46)

(iv) N»(e6G W(e) *0f =J e6^Pd| |e| ^bJ - B(0 ?b)

where b is the smallest zero of

W(e) - -|e| /r*+ |e| - ^ =0

Therefore,

-1 +/l - 4£w/i L <r*

-2/r'
1- [l -J>t»fr

+ Z*/r* + •••, since 4£„/r* <1,
00 ^co

Since W(e)
|e|-£

« _ f.^/v* < 0 and W(e)
|e|«2 r,
1 i i

SJ-1* -vA* + 1) > 0, *-.„< b < 2 £„< rx-»#

(v) A- fee S* d ¥(e) * b +£ 1 - 5(9,,; b +£J.

(2.52)

(2.53)

(2.5*0

(2.55)

(2.56)

60



Ch.II Sec.2

b + 5 < 3 f < r*_ 2 £ by (2.55) and (2.45). (2.57)

From eq. (2.57)» we obtain

ACB(6dt 3^)r-G. (2.58)

Note that

S - inf W(e) - inf „ W(e)
esG-A b+g <|e|^r ~2£

00 00

- min(w(e)| ,W(e)| 7> 0. (2.59)
!leI «!>+£„ !|e|-r*-2y

Hence, all the conditions of Lemma 2-8 are satisfied and, conse

quently, the conclusion of the theorem follows. o

Remark. Theorem 2-9 shows that if the local round-off error

£ is sufficiently small, then the radius of the convergence

region is 26^ smaller than that of the infinite precision a-

rithmetic case, and instead of quadratic convergence to the u-

nique solution x*, we obtain the convergence to a ball centered

on x* with a radius 3^ in a finite number of steps.

Corresponding to Corollary 2-7, the following co

rollary which is stated using only a priori known quantities is

obtained from Theorem 2-9 in a similar manner.

Corollary 2-10. Assume that f satisfies all the conditions of

Corollary 2-7. Assume that the local round-off error 80O is

bounded as in (2.35) and that 6 < r*/5.
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Under these conditions, if !f(xj - y| ^ m(r*- 2£ ), then the

corresponding sequence jx, f defined by eq. (2.34) remains in

I(x*j r*- 2£ )and enters the region B(x*j 3£^) after a finite

number of steps and remains in it forever after.

Proof, Using the same techniques for proving Corollary 2-7, we

can show that Corollary 2-10 is the special case of Theorem

2-9. o

It is worthwile to note that error estimate is ob

tained by eq, (2.27). Let xV^ be a computed point. Then,

the estimate of the error x*- x is given by:

|x*- x| *!f(x) - y|/m. (2.60)
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CHAPTER III,

ORDINARY DIFFERENTIAL EQUATIONS

In this chapter, the upper and lower bounds of the so

lution of 0. D. E.*s are estimated using the measure M.(•).

1. Estimates for Upper Bounds on Solutions

We consider nonlinear time-varying 0. D. E.'s of the

form:

x » f(x,t) + u(t)
(1.1)

x(0) - xn

where x(t), u(t)£pd, for all t€JR -and fipdxp->]Rd.
We assume Al: f(Od,t) -9d for all t^iP jA2: xf >f(x,t) is

in C for all t £ /P ; and A3: the input u(«) and for each

fixed x€:JR th>f(x,t) are piecewise continuous on #?+. We

say that a function from 1R into 7R is piecewise continuous

iff on every compact interval J= [tQ, t] c ^ (i) the

function is continuous on J except for at most a finite number

of points; (ii) If t» £ (t , t ) is a point of discontinuity,

then the right- and left-hand limits of the function exist and

are finite; and (iii) at t = tQ the right-hand limit exists and

at t « t the left-hand limit exists, (5] , [23] .

We utilize Coppel's theorem for estimating those

bounds, Coppel's theorem gives the upper and lower bounds
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for linear time-varying 0. D. E.'s, where the measure /^(*) was

originally used for the stability analysis of 0. D. E.'s,

Dahlquist [1] , Coppel [2 ],

Lemma 3-1. Slightly generalized version of Coppel's inequality

[2],

Let A(»)*$?—>JR be piecewise continuous, Let <J (t,t ) be

the state transition matrix associated with A(«), i.e., by defi

nition:

-^t,t,J = A(t)q>(t,tJ

(3.1)
] ^-^(t.t0) =A(t)$(t,tQ)

S(t0.t0) -I

for all t^ tQ * 0.

Then,

exp[- f//( -A(^) )dr] 41/ |j [a(t,t0)J

<£(t,t0)|j *exp [ f //( A(r) ) ar]

-1

for all t ^ t ^ 0.

Proof. Consider a linear time-varying 0. D, E.:

x = A(t)»x

I x(tQ) -xQ

(3.2)

(3.3)

where t *t and trt £ 7P ,
u 0 +

Since A(») is piecewise continuous, letting D be an atmost

64
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denumerable subset of ffrf where for all t' €D there exists some

pair (i,j), i,j'' |1,2, ••• ,d / such that a .(•) is discontinu-

ous at t*. The solution x(.) of (3.3) is by definition a con

tinuous function:"^' —>7P such that (3,3) holds in "/p+-D.

The inequalities (3.2) will follow if we show that for t * tQ

and for all xQ ^ 9

exp,- I M( -A(r) )dT| |x * |x(t)| ^
\+ ' J 1 0 I
^0

exp jf /<( A(r) )df" x I. (3.4)
L JV J 0I

0

This is easily seen by taking the infimum and supremum over

x. ^ 0, We first observe that A7( A(») ) is piecewise con

tinuous, since M{*) is continuous and A(«) is piecewise con

tinuous.

I*

of the norm lx(.)| of

any solution of (3.3) exists for all t <= Jp' , and
"T*

, ,. |x(t) + hx(t+0) I- |x(t) I|x(t)|+.ng+ ^ (3.5J

Observe that from (3.3) the right-hand derivative x(t+0) of x(»)

at t exists for all t ^ P .

Let 0 < 0 < 1. Then we have

|x(t) + 0hx(t+0) I - |0»( x(t) + hx(t+0) ) + (1-0)•x(t) '

* e|x(t) + hx(t+0) I + (1-G)|x(t) I (3.6)
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or

x(t) + 9hx(t+0) I-!x(t)! |x(t) + hx(t+0) I- |x(t) I ,
A - — (3.7)

9h h

|x(t) +hx(t+0) |- |x(t)|
Since h |—> —- is nondecreasing and it is

h

bounded from below by -|x(t+0)|, the limit in (3.5) is finite.

We now establish equality (3.5), For sufficiently small h > 0,

,. |x(t) + hx(t+0)| - |x(t)
x(t) ._

'+ h

| lx(t+h)| - |x(t)| , w Ix(t) +hx(t+0)| - |x(t)l
+ o(h)/h - _....

h h

z.
1

|x(t+h) |- |x(t) + hx(t+0)| + o(h)
h

x(t+h) - x(t) - hx(t+0) + o(h)

rt+h

\ A(t') x(t') df - hx(t+0) + o(h)
Jt

(3.8)

Since for sufficiently small h > 0 A(») is continuous in

(t,t+h] , the integral is A(t+0)x(t)h + o(h). Therefore, the

left-hand side of (3.8) is equal to o(h)/h. Hence, (3.5)

follows,

Since, |x(t) + hx(t+0)\ -|x(t) |

^ III + hA(t+0)||.|x(t)| - |x(t)|, (3.9)
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. ,. Ill + hA(t+0)ll' - 1
x(t) *lim - |x(t)!
1 !+ h^0+ h

U( A(t+0) )|x(t)! for all t 6 $?+. (3.10)

ALet w(t) = exp i - //( A(T) ) &f • |x(t)l for all

te1R.
+

(3.11)

Since M( A(«) ) is piece-wise continuous, the set D is a set of

measure zero and

w(t) =» exp [- ( //(A(T+0) dt]•|x(t)I for all

t e IK^. (3.12)

By eq.(3.10) and eq,(3,12),

r rw' (t) - exp - JU( A(T+0) ) dV; •] -M{ A(t+0) )!x(t) |

Jto

+ |x(t) I* I *0 for all t&. TR . (3.13)
l+j +

Hence w(t) is monotone decreasing, L2 J and then

«rp[- f/H ACT) )dt] |x(t)| =w(t) ŵ(t )
Jt

» X ,
I 0!

(3.1*0
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or

|x(t)| ^expf f U(A(r) )dr 1 xJ for all t*t.(3.15)
1 \t/jt0

01 0

The proof of the other part of the inequality (3.4) is analogous

to the previous one and uses left-hand derivatives. We also ob

tain that the left-hand derivative lx(t) I* of |x(t)| exists for

all t £ IP , and
T

1 /xxl- nj \*M\ - l*(t) - hx(t-0)j
,x(t)j -11m . (3.I6)
1 '- h^0+ h

We also obtain:

jx(t)| I*-//( A(t-O) )|x(t)j for all t6/? +. (3.17)

Let w(t) =exp[" f^.(-A(f") )df 1•|x(t)j for all

t€jR . Then, it is easily verified that w_(t) ^ 0 for all

t ~ 7J? , Hence, we obtain:
• +

r ftx(t)| iexp[ - /((-A(r ))dt j.!xQ . for all
jto

*AV <> (3.18)

Comment. The following calculation gives insight to the

meaning of /'(•) and its relation to the solution of 0. D. E.'s.

This was suggested by Rrof. W. Kahan. For simplicity, lot A(«)

be continuous.
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Define y(t) - exp(<rt)x(t) for all t* tQ (3.19)

where & > 0.

Then, y-(Cl +A(t) )y with y(t )=xq. (3.20)

Claim: |y(t)| ** |y(t)l for all tf.|?+t (3.21)
where ly(t)| is the right-hand derivative of !y(*)l.

Observe that for all dt > 0,

|y(t*it)|-|y(t)| |y(t) + y(t)dt + o(dt)l - |y(t)l

dt " dt

* |y(t)| + o(dt)/dt. (3.22)

From (3,20) and (3.21), we obtain:

y(t)|^ || CI +A(t)||-|y(t)i with |y(tQ)| = (3.23)

|xQ| for all t ^ t .

In terms of |x(t)| , eq.(3.23) becomes:

|x(t)|'* ! Ilcrl+A(t)ll -crl'!x(t)|, with (3.24)

jx(t0)| - jx ; for all t* tQ.

Let 9 « \/c and let (?-> +*• , and then

|x(t)T *lim Jii^®-*L_:JL|x(t)|-//( A(t) )-!x(t)l.
,+ ejOh 9

Hence, |x(t)| *' exp I ji(A((- ))d? j.|x j# (3.25)
0



Ch.III Sec.l

Thus, ||j£(t,t ).|j
x(t;x_)

sup .:

xo*0 !xo

*expj ( M{ A(t) ) dt
L J t'

(3.26)

Similarly, by using the left-hand derivative |y(t) | , we obtain:

f-f /^(-A(T) )d? } -infexp
x *e„

0 d

= 1/

jx(t|X0)|

(3.27)

Recall that we defined the class ;$?(•-• ) of functions by

(2.10). That is, a function m(»)ijp—>t is said to be in

•Jj7l\c, )iff m(o;) > 0 for all d £$ +and there exists a posi

tive constant 6 > 0 such that

rd

\ "
JO

(f )dc - rd for all c* £fc +. (2.10)

Theorem 3-2. Dahlquist, [1j ,

Consider the 0. D. E. (l.l) with assumptions Al, A2 and A3.

Assume that there exists an m(«) £«/?#(£ ) such that

-U [^f(x,t)] ^m( |x|) >0 for all x4V- , (3.28)

for all t £• 7P+.

Under these conditions, Ihe solution x(.jxQ) of eq.(l.l) with an

initial condition xQ t' //'l satisfies:

70
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,t

0

x(t)| ^exp(-ft).;x0J + iexp; -£(t-?')j .|u(r)ldC (3.29)

for all t£$? ..
+

Proof. Since the solution x(»;xQ) of eq.(l.l) exists and is

unique, x(.;x ) is equal to the solution of the following line

ar time varying differential equation:

I i- A(t)x + u(t)

) x(0) - xn

r1
where A(t) - D f(tx,t) dt for all t * ,f .

J 0 L

Here, we used the Taylor formula:

f(x,t) - f(9,t) + \ D f(T x,t) dt •:
Jo L

1

•^0

Df(?x,t) dr\ -x for all t f. 1R+.

We note that A(») is piecewise continuous.

Claim: ft( A(t) ) *• - £ for all t €f;+.

//( A(t) )« u{[ D1f(rx,t) dt~
/ LJ 0

o/

(3.30)

(3.3D

(3*32)

,1 *v^fC- x,t)\ dt , by Lemma 1-2, (d) &(f)
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^ j -m( |?x|) dt
10
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r|x| m(C< )
\ do' by letting Q. = lTx| = Tlxi
JO lxl

•* _ c < 0 , since m(.)€£/%(£). (3.33)

By Lemma 3-1» we obtain:

|Jf (t,tQ) |j ^exp f- £(t-tQ)] . for all t*tQ, (3.34)

t,t^P+.

Thus the inequality (3.29) follows. o

Remark. The inequality (3.29) shows that if the input u(») is

bounded on [0,oC) and if u(t)~> 9J as t->oc, then starting
d

from any initial condition x~<^1p , x(tjx^J-^O^ as t~*-o".
U 0 d

Since a constant function m is in </fl?.fa)t "the follow

ing corollary follows immediately.

Corollary 3-3. Consider the 0. D. E. (l.l) satisfying Al, A2

and A3. Assume that there exists a positive constant m > 0

such that

-It JD.jf(x,t)l *m>0 for all x4= 1R , for all (3.35)

tc '/R+.

Then, the solution x(»;x ) of eq.(l.l) satisfies:
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x(t)l ^ exp(-mt)« ;x !+ j exp [-m(t-'C) j•lu(? )| dt ,
°' Jo

far all t*^. o (3.36)

^2
Relation to previous work. The special case under / norm for

Corollary 3-3 is classical. The / norm case was studied by

Rosenbrock I14J , and the modification was done by Sandberg .15

and Mitra & So [16] , where jx| « iDxU» with positive diagonal

dxd matrix D > 0.

Theorem 3-4. Consider the 0. D. E. (l.l). Assume all the

conditions of Corollary 3-3 are satisfied. Let x (•) & x^(')
a

be solutions of eq.(l.l) with initial conditions x (0) & x (0),
a q

due to inputs u (•) and u (•), respectively,
a b

Under these conditions, the difference x (•) - x (•) of the two

solutions satisfies:

x (t) - x (t)| ^ exp(-mt).|x (0) - x, (0):
a b a b

+ \ exp r-m(t-m -lu Cf) - u.C> )|dr
Jo a b

for all t £ V . (3.37)
+

Proof. Note that:

»

Xa " fK»t) + u (0 for all t ' //' . (3.W
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and that

x =f(x ,t) + uv(t) for all t<k p . (3.39)
b D D t

By subtracting eq.(3.39) from eq.(3.38), we obtain

d r , 1^ |xa(t) - xb(t)J =f(xa,t) - f(xb,t) + ju (t) - u (t)

=|Vi\ +^(x -x )f t]df(x -x ) + [u(t)-u(t)~j
j0l L b abJ at La bJ

for all t€^P+. (3.^0)

Observe that:

1 1U\\ D.f [x +T. (x - x ), t]d?|
/ in lb a b JU0

,1 r 1
4 U D f f'x + 7; (x - x ), tj d? by Lemma 1-2, (d) &

)0/ L1 '- b a b J

(f)

^ -m < 0 for all t£p . (3.^1)

Similarly to the proof of Theorem 3-2, we obtain the inequality

(3.37). o

Remark. As before, the inequality (3.37) shows that if the

difference u (')-u (•) o1 tne two inputs Is bounded on jO.v)
a b

and converges to 0, as t --v, then starting from any two Initial
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conditions x (0) & x1_(0), the difference x (•) - x (.) of the
a b a d

two solutions converges to 9 as t ->'\s . This guarantees a

unique steady state solution for broad classes of electric

circuits.

Corollary 3-5. Consider the 0. D. E. (l.l). Assume all the

conditions of Theorem 3-4 are satisfied. Let x(.;xQ) be the so-

lution of eq.(l.l) with the initial condition xQ ^'f due to a

constant input u cf . Let x ^ be the D. C. solution of

9d = f(x) +u, (3.^2)

Under these conditions, the difference x(t) - x satisfies:

ix(t) -x | ^exp(-mt)«,x -xv j for all t 1.'?• . (3.^3)

Proof. In view of Corollary 2-4, the D. C. solution of eq.

(3.42) exists and is unique. Then, the inequality (3.43) is

the immediate consequence of Theorem 3-4, o

Relation to previous work. The special cases under the weighted

'• norm, i.e., ix! = (DxL & D > 0 is diagonal, for Theorem 3-4/-•

and Corollary 3-5 were proved, by Sandberg [15 ] and. Mitra & So

[16] .

2. Estimates for Lower Bounds on Solutions

Usinft the other hal.r of Coppel's Inequality (').'')» W(

can state theorems corresponding to those of Section I, giving

estimates for lower bounds on solutions.
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Theorem 3-6. Consider the 0. D. E. (l.l) with assumptions Al,

A2 and A3, Assume that there exists an m(«)- -/// (c ) such that

- //[-D f(x,t)] ^ -m( x ) for all xf //' , for all

+

and that u(t) = 9, for all t € IP .
d +

Under these conditions, the solution x(»;xQ) of eq.(l.l) with an

initial condition x ^ Ik? satisfies:
0

|x(t)| ^exp(-<Ct)|xoj for all tG fp+. (3>5)

Proof. The proof is analogous to that of Theorem 3-2. Let

A(«) be defined as in (3.i6).

Observe that:

rl

y/[-A(t)] - -A[- j\f(Txft) dZ]

(f)

fl r
^ - i M\--D.f(?x,t) d?.'i by Lemma 1-2, (d) &

J0/ L -1

flxim(c/) .
^- - do by letting t'-r'.'xi

3 0 |xi

*-«. (3.^6;

Then, Lemma 3-1 Is applied to obtain:



Ch.III Sec.2 77

exp f~-t(t-t0): 1̂/ jJd. (t,tQ) )-1 I, for all t =* t ,

t,tQ <- V^ (3.^7)

Hence, the inequality (3.45) follows. O

Corollary 3-7. Consider the 0. D. E. (l.l) with assumptions Al,

A2 and A3. Assume that there exists a positive constant ra > 0

such that:

- d .rr
~P r-Dif(x>t)j ^ -m for all x^ Ik ,for all t <: Ik +,

and that u(t) =? 9 for all t•' 7P+.

Under these conditions, the solution x(«;x0) of eq.(l.l) with an

initial condition x ;r kp satisfies:

!x(t)l ^ exp(-mt)jx |. o (3.^8)

Theorem 3-8. Consider the 0. D, E, (l.l) with assumptions Al,

A2 and A3. Assume that there exists a positive constant m > 0

such that

-/^-Djffot)} ^ -m for all x•- f ,for all t- [I +.

Let x (•) & x (•) be solutions of eq.(l.l) with initial con-
a b

ditions x (0) & x (0), due to the same input u(») = u (•) » u,(•)
a b a d

respectively.

Under these conditions, the difference x (•) - x,(•) of the two
a b

solutions satisfies:
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|x (t) - x. (t)| ^ exp(-mt).|x (0) -x (0) j for all
' a d 'a o

t-^+. o (3.49)

Corollary 3-9. Consider eq.(l.l). Assume that all the con

ditions of Theorem 3-8 are satisfied. Let x(.;xQ) be the so-

lution of eq.(l.l) with the initial condition xQ .< ffk due to a
r d A

constant input u £^ . Let x ^i::T; oe the D. C. solution of

eq,(3A2).

Under these conditions, the difference x(.) - x . satisfies:
no

X^ "" X<x !~exp(-nit)|x0 -x^ j for all t* ft +. (3.5O)

Relation to previous work. If we take fc norm, Theorem 3-8

and Corollary 3-9 are led to the results by Sandberg [15j .

Remark. In this chapter, the estimate of lower and upper

bounds is stated only for exponentially stable case: there exist

positive constants m and m such that
max min

-m
max

^ - /./ --D-,f(x,t);; 4 /' >Q f(x,t); ^ -m . for'all
x / •1 mm

x*.-£• ,for an t c p^ (3-51j

Using the same technique, it is easy to show the similar esti

mates for exponentially unstable cases: there exist positive

constants m and m such that
max min

m * -// f.Uf(x,t)j * ," jI)_f(x,t)] * m for all
min J- L max
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x£^d, for all t-€^P+i- (3.52)
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CHAPTER IV.

COMPUTATION OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

In this chapter, estimates for bounds on computed so

lutions of 0. D. E. with infinite precision arithmetic and on

accumulated truncation errors are given using the measure JA(•),
Also, we extend and relate the earlier results on D. C. equation

(Ch. II) to the implicit equation required by the backward Euler

method,

Section 1 gives trtimates for bounds on computed so

lutions and on errors, obtained from several computational

schemes. Theorem 4-1 and Corollary 4-2 give estimates for the

bound on the computed sequence by the backward Euler method.

The estimates consist of two terms: the first term shows that

the effect of the initial value decays exponentially and the

second is bounded if the input u(0 is bounded. Since the

backward Euler method is implicit, it requires in principle an

infinite number of arithmetical operations and function evalu

ations at each time step. In implementing the backward Euler

method at each time step, we modify it by truncating the iter

ation when the computed value is within some £ of the exact

value. Theorem 4-3 gives an estimate for the bound on the

error between the computed sequence by the backward Euler method

and the computed sequence by the modified implementable method.

The estimate is the sum of two terms: the first term shows that

the effect of the initial error decays exponentially, and the
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second is proportional to the chosen £, incurred by truncating

the iterative method at each time step. We consider next the

algorithm where at each time step of the backward Euler method

we use only one step of the Newton-Raphson method. Theorem 4-4

gives an estimate for the bound on the computed sequence thus

obtained. Theorem 4-5 gives an estimate for the bound on the

error sequence between the computed sequence by the backward

Euler method and the one thus obtained. These estimates ob

tained are similar to those obtained in the previous theorems of

this chapter.

In Section 2, the estimate for the bound on the so-

called accumulated truncation error incurred by the backward

Euler method, is given by Theorem 4-6, Again the estimate is of

a similar form, consisting of two terms: the first term shows

that the effect of initial errors decays exponentially and the

second is proportional to the step size.

In Section 3> we extend and relate the results of

Chapter II to the implicit equation obtained by the backward

Euler method. The effect of the step size on the existence and

uniqueness of the D. C. solution as well as on the region of con

vergence for Newton-Raphson method with infinite and finite pre

cision arithmetic is stressed,

1, Properties of The Computed Solution of U. D. E. (l.l) When Jt

Is Computed by The Backward Euler Method (1.3) And Some of Its

Simplified Versions
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Throughout we assume an infinite precision arithmetic

for all computations. Consider the 0. D. E. (l.l):

' x = f(x,t) + u(t)

i , x (1.1)•x(0) = xQ

d
where x(t), u(t) ^ 'Ik , for all t <- f.' and f:T x k; •n-

We assume Al: f(9.t) « 0,, for all t e V ; A2: x|-->f(x,t) is
d cl ' "+

in C for all t <= p.l and A3: the input u(») and for each fixed

xg ffi , t| > f(x,t) are piecewise continuous on IP. . Recall

the backward Euler formula (1.3) and let Jy \ denote the com-
i mo

puted solution of eq.(l.l) by the backward Euler formula (1.3).

Theorem 4-1. If there exists an m(.)- '///.'( ) such that

-///[D1f(x,t)] ^ m(|x|) > 0 for all x'-fif ,for all

t € Ik +9 then the computed solution jy > of eq.(l.l) by the

formula (1.3) satisfies:

-n, , Jrl -(k+1) |
+ IL(l+5h) «h- u|yJ - (l+6h) y +HT(l+5h) «h- u .| for all

• n i ! ui ._q ! n-Ki

n * 1. (4.1)

Proof. From (1.3), we obtain:

y - hf(y ^,,n+l) = y + hu . (4.2)
n+1 n+1 n n+1

By Taylor's formula, we have:
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LHS of (4.2) = y -hi D,f(£y ,n+l) d'n+1 " Jo I'^'n+l'" "' Jn+1

" fZdxd - hLDlf(ryn+l'n+1) ^ i V (^3)

As in (3.33)» observe that from the assumption, we obtain:

f/.\ \ V(tyn+1.n+l) dt | * - £<0. (4.4)

rl "1 r r f"1
- H I-^ * + h l D-,f(^"y >n+l) d^ ' = - -( -1 + U !h :/ L dxd j0 1 ' Jn+1 -J / / 1. !0

Dlf^yn+l,n+lJ dri \ ' by Lemma 1~2t (e)

rrl
- 1 - hfi{\ V^yn+]fn+l) d?:'1 ' by Lemma -1"2, (c^

* 1 + h£ > 1. (4.5)

Using Lemma 1-2, (j), (4,2), (4.3) and (4.5), we obtain:

!yn! +hK+l! -Iyn +hun+l

s|[l ' •• 'n+1![Id^-hloV(^tt,l'n+:L>dr] 'yr

* (l+ne)|yn+1|. (4.6)

iyn+l| - (l+*h>~\\ +^+^h)"1-h'K+lj • (*.7)
Henco, we obtain:
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n-1 -(k+l)
|y |* (l+6h)" |y I+>..<(l+£h) .h-iu j. O (4.8)
i n i i vj s v=q ' n—ki

Remark. From Theorem 3-2, under the assumptions of the above

theorem, the exact solution x(«;xQ) of (l.l) is also bounded-

input bounded-output(B. I, B. 0.) stable.

Corollary 4-2. Suppose f(»,#) satisfies conditions Al, A2 and

A3. If there exists a positive constant m > 0 such that

-Z^[D1f(x,t)] =^ m> 0 for all xzfk » for all t >- %• +,

then the computed solution Jy ( of eq.(l.l) by eq.(l,3) satis-
'- nh

fies:

-n, n~l -(k+l)
|y I^ (1+mh) |y I+7..I (l+mh) -h-lu .j for all
'n' 0! ^_q < n-k I

n ^ 1. O (4.9;

Relation to previous work. Special cases of Corollary 4-2 were

fi 2 r
proved by Sandberg & Shichman under X- norms, !17 , ; and by

/;lSandberg under weighted /• norms, [3 ].

In order to solve the implicit equation (4.2) we use

an iterative method, say the Newton-Raphson method. In practice

we have to truncate the iterative method at each step of the

backward Euler method. For example, at each step of the

backward Euler method, instead of solving eq.(4.2) exactly for-
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.re

y and thus obtaining the sequence jy , we truncate the pro-
n+1 ' n J r\n+1 ' nJ0
:edure; this will give us a sequence \y I '

the (n+l)-th step we should solve (see eq.(4.2) ) the equation:

cedure; this will give us a sequence jy I '. More precisely, at

y* - hf(y* fn+1) = y +hu . for all n^0 (4.10)
n+1 n+1 n n+1

f°r y +t • Note that y ., is the (exact) solution of (4.10),

We solve (4,10) by iteration and we stop the iteration when we

obtain an iterate, say y* +,, such that for some 6 > 0

!y , - y* J * 6 * for all n •* 0. (4.11)
n+1 n+1!

( CO c.sj •rf)
Note that we have three sequences in mind: \ y f , .y I , and

' n)0 .- nj 0

jy } ,where y =yl and Vq is the initial condition for our

simplified calculation. The next theorem gives an estimate for

a bound on y - y ,
n *n

Theorem 4-3. Assume that all the conditions of Corollary 4-2

are satisfied. Let [y I and fy } be defined by eq.(4.2) and
• n!0 L 0

eq.(4.10) & (4.11). Then the difference between y' and y
n Jn

satisfies:

^ -n n-l -kjy -y j^ (1+mh) IyJ -y j+ f y ](1+^) ,for ^3.

n * 1. (4.12)

Proof. l^om eq.(4.2) and (4.10), we obtain:

yn-l 'Cl "hIf(yn+l' "+1) -fCl' "+1) I"yn "V ^^
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By Taylor's formula applied to f(yn+1» n+l) -f(yn+1, n+1),
eq.(4,13) becomes:

(i -hfat [<i-T)y*n+1 +Ty^, n+i] it] -(yn+1 -y^)

= y - 7 . (4.14)
n n

Similar to the proof of Theorem 4-1, we have, as in (4.5)»

-A-J +h(oDif [(1-r)Ci+ ^vi»n+1] d^

^ 1 + hm > 1. (4.15)

Then, by using Lemma 1-2, (j), eq.(4.l4) and eq.(4,15) we get:

*(1+hm) jy -y * |y -y |. (4.16)
! n+1 n+1! : n nI

From eq,(4,ll) and eq,(4,l6), we conclude that:

i^n+1 - yn+ll *IVl " yn+lS +lyn+l " yn+l!
* 8 + (l+mhf \yn - yn|. (4.17)

Hence, we obtain:

-n ^ n-l -k
jy - y i^ (1+mh) jy - y |+ *= 7';; (l+mh) , for all n * 1
In n« . 0 0; ktcQ

Relation to previous work. Theorem 4-3 Js a generalization of

earlier results: Sandberg in |3 1 proved, the same result under
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weighted / norms and Sandberg & Shichman in[17] proved the

similar result under / norms. In the literature [17 J» the

estimate of bounds includes a Lipschitz constant, but in Theorem

4-3 this constant is eliminated. In fact, it can be verified

that Theorem 4-3 gives a tighter estimate in view of the fact

-//(-A) *//(A) * llAil.

Next, we consider a simplified computational algorithm

where, at each step of the backward Euler method, we use only

one step of the Newton-Raphson method. The iteration is then

given by:

fyn+l "yn "[I *hDlf(V n+l) ]̂ f-"hf(V n+l) "hUn+0
I y i given,

for all n ^ 0. (4.18)

The next theorem shows that under natural assumptions the

r _ ~)&
sequence ) y f computed by the formula (4,18) has an estimate

1 n o

consisting of two terms as in (4,20) below: the first term shows

that the effect of the initial condition is constant or decays

exponentially as n-->oo and the second shows that it is bounded

if the series )_"! Iilj is convergent.
k=6 K

Theorem 4-4. Assume that all conditions of Corollary 4-2 are

satisfied. Assume further that there exists a constant

k r jO.in | such that

iiD^ffr.t) -l^fO^x.t)!! * £ - m, for all x<•.%:;d,
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for all t € IP. . for all ct 6 [0,l] . (4.19)
+

Under these conditions, the computed solution -:y l by formula, n.Q

(4.18) satisfies:

n -k
f 1+ 6 h "I • h n~l I 1+ £ h i ,y | * | ill?. |y J + ;r> J |u ! R* lm (!K20)

n' i-l+mh J • 0! 1+mh k=0 Ll+mh J

Proof. By applying Taylor's formula to f(y , n+1), from eq,
1 " n

(4.18) we get:

-• -l r ri

• l
j 0

yn+l " yn ' t1 "^^n' n+l) j^[^Ca^'V n+1> d" *„

"hun+l]' or (4-21)

r r - -l r1 'i
yn, - i 1 + h II - hD f(y , n+1) j • VO-'y , n+l) d'" )• -y

n+1 i w in .i j q j- n \ n

+. [i - h&jf (yn, n+1)] " -hun+1. (4.22)

Thus,

!y * jl + h I - hD-f (y ,n+l) . Dnf(?-y . n+l) d?:
. n+1; It L J- n J Jo

•y | + jjjl - hD f(y ,n+l)l " jl-hju |. (4.23)-
in? ; • v. In -J j i n+1 •

We have:

ill- hD_f(y , n+1) j i! 4 l/(l+mh), for all y f ?Pd9 for
s: L in J ; n

all n =* 0, because (4.24)
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-II!
* 1 + mh > 1, by the assumption

,rI - hD_f(y , n+1) J
1 n

and Lemma 1-2, (JL)f (e) & (d)

We now claim that

rr ;
; r -, -i r1
li I + hi I - hILf(y , n+1) • . D.,f(?y , n+l) d
i L J-n J JqI n

l+6h ,
j^ Z T

1+mh ~ *

r _ - -1 r1 ;iI + h I I - hD,f(y , n+1) | • Dnf(£y , n+l) dT. jl
L J- n jj^in i-

(^.25)

I - hD
"5 -1

f(y , n+1) I I - hD f (y , n+1) + h | Lf(fy (
1 n JL in i o ft

n+1) dt

jl fl - hD„f(y , n+1) j" h
ML In J

- D.f(y , n+l)|I dt (•
in ,; \

( f1* l/(l+mh)«j 1 +h ( £ dt f

C1 I-' ,.,! 1 + h 1 !Df(?y , n+1)
! Jo1'-1 n

= (l+£h)/(l+mh), by (4.24) and the assumption (4.19)

Thus, from (4.23), (4.24) and ('-J.25), we have:

L ! . l+£h
=y

n+1! i+mh ! n
y j +

l+mh • n+ll
(4.26)

89
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Hence, the result (4,20) follows, O

Remark, Roughly speaking, the assumption (4.19) requires that

for each fixed t the function f(*,t) is not too nonlinear. The

above theorem shows that if the function f(«,t) is not too non

linear and if there exists a constant m > 0 such that

- //[Df(x,t)] => m > 0 for all x £ p. , for all t -< P %

then the above seemingly crude algorithm still gives a computed

sequence which is bounded by two terms as in (4.20),

Relation to previous work. Sandberg & Shichman in f17] pro

posed the above algorithm and proved the similar results under

/ norms. In the above theorem the flexibility of the measure

//(•) led us to more general and explicit estimate on bounds.

Using the same technique we are going to obtain an

estimate on the bound of y - y where \ y ( and •* v / are
n n /n } o n( 0

computed sequences by the above algorithm and the exact backward

Euler method, respectively.

r... '\a': r ^°°
Theorem 4-5. Let /y [ and \ y C satisfy respectively the

( n) o In' 0

simplified algorithm (4.18) and the backward Euler method (4.2).

Assume that all the conditions of Corollary 4-2 are satisfied.

Assume further that there exists a constant c^[0,m) such that

!JD f(x,t) -Df(^x,t)|! «k <m for all x Jl d,

for all. tr- /+, for all m'' I0,ll \ (4,>7)
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£that there exists a constant Z > 0 such that

Djf(x,t) || &I, for all x€IR , for all t e %?+ (4.28)
and that u(«) is bounded on [0,O0)a

Under these conditions, the difference between y and y satis

fies:

y - y
n n

-, n
l+£h"

yo~y0
zt +8(l+mh) (l+6h)n- 1

where ||u(»)

1+mh

z£+e

m(m- £ )

A

iu(-)

° sup
00 t ^ [0,oo)

00

u(t)|.

6 n+1
(l+mh)

Proof. Prom (4.2) and (4.3), we have:

[l-h[^f(tVl# n+l)dt] -y

Equation (4.21) is rewritten as:

- y + hu .
n+1 n n+1

|"l - hD f(y , n+l)l -y - \l - hD f(y , n+1)] -y
L J- n J n+1 '- In J n

+ h D,f(?y , n+1) dT «y +
lo X n n

hu
n+1

Subtracting (4.30) from (4.31), we obtain:

[l -hD^, n+l)]yn+i-[l - hj^V(7yn+l' "+1) d

(4.29)

(*.30)

(^.3D

•y
n+l

91
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I - hD,f(y , n+1) + h | D_f(Ty , n+l) d? ; »y - y . (4.32)
JLn in i n -tun

f1
+ h I

JO

Note that II - hD.f(y , n+l)j is nonsingular, since
L In J

|[I - hDf(yn, n+1)] z| ^ (l+mh)|zl >0, for all z * 9d,

Equation (4,32) becomes:

n+1
- [~l - hD.f(y , n+1)] " [~I - h f* Df(fy ^. n+l) dt]

L In -j l JO n l J

n+1

r -lr /"I
- 11 - hD_f(y , n+1) ] j I - hD.f(y , n+l) + h Df(f y ,

l In J l j. n j q j- n

-i -1n+1) dT ] -y - [~I - M^f(yn, n+l)J -y^ (4.33)

LHS of (*.33) - (yn+1 - yn+a) +fi - [J-hV(V n+1) J
-1

[l-hfWyn+1, n+1) dtj }-yn+1. (4.34)

RHS of (4,33) = l"l - hD,f(y , n+1)] " • [*I - hD,f(y , n+l)
L in JL -Ln

+ h D-f(?y . n+1) dt i «(y - y )
!« -i n n n

+ [i - hi)if(yn, n+1) j " • jI - nD-jfG^, n+l) +hI D/(? yn» n+l)

92
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Using (4.34) and (4.35), eq.(4.33) becomes:

yn+l " yn+l
-JI - [i - KD^y^ n+1)

Ch.IV Sec.l

(4.35)

"'^-"CV^W
-1

n+1) dt] ]*yn+1 + [i - M^V n+1)] [J~^l^V n+l) +

h f \tVtltf n+1) dt] -(yn - yn) + [i - hD^y^ n+1)] " •

•hD_f(y , n+1) + h V->t(Tyn, n+l) d?;
In J0 J- n

Hence we have:

V (*.#)

y - y
n+1 n+1

I - I- - hl^f(yn, n+1) ]"1 [i - hj B±f(

tyn+1, n+1) dt] - 1-1,I+[i - hl^fCy^ n+1)] ~h
n+1

fl
\ V<£V n+1) df
JO x n •!yn-yn Fl - hD..f(y . n+1)

l J- n

j -hD-jf(yn, n+1) +h \*{r?n. n+1) dt

In the proof of Theorem 4-4, we proved that

j! \l - hD.f(y , n+1)] ^j; ^ l/(l+mh),
1 I. -In J !

•iy.

-1 i

(4.37)

(4,24)

93
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and that

1 -1.jj I +[i - hD.jf^, n+1)J "hI ^(t?n» n+1) d?' jj

(l+£h)/(l+mh) < 1. (4.25)

i< r "i -1 r (^Claim: ||I - [i - M^f^, n+l)j [i - h I V^n+l' n+1^

dt]jj ^2ih/(l+mh) (4.38)

I- [l -hDlf(yn, n+1)] -"[ I-h[*V<*Vl' n+l) 6k?:] jj

/•i
-i rI I - hD.f(y , n+1) I I - hD.f(y , n+1) - I + h \

i l In .iL in ;

Dlf(Tyn+l' n+l) dt.

-Iii. f\ 1 .

\l - hD f(y , n+1)] " |jh-| |kf(y . n+l) IJ + | kf(
L J- n j ;i j i • j. n I! !r\lJ-

Vy , n+l)i|d?" V ^ h»2//(l+mh), by (4,24) and the assumpti
n+1 :1 J

on,

!i r1
Claim: li-hD_f(y , n+l) + h ( D-f(f y , n+l) dt

I 1 n i n i n

Is f1 !i
jl-hD^Cy , n+1) + h \ D_f(T'y , n+l) dt\\
!i 1 n in ] n h

r1!! i'
h 1 |-D.f(y , n+1) + tt.f('fy . n+l)||dT

j q jl n x n j:

* Sh. (4.39)
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^ h£ , by the assumption (4.19),

From the part of the proof of Corollary 4-2, we can obtain:

|y.
4* |yJ + .— -—|U

! n+1> l+mh I nl l+mh ' n+H'

and, as a result, we get:

(4.40)

n

-n n"l -(k+l)
&(l+mh) yn + >j(l+mh) ]

u k=0 n-kl *
(4.41)

Thus, using (4.24), (4.25), (4.38), (4.39) and (4.40), eq.(4.37)

becomes:

y - y
n+1 n+1

^ 2ih/(l+mh)- [(l/l+rah) jy I +(h/l+mh) |u |1

+ [(l+£h)/(l+mh)] ly - y 1+ £h/l+mh- y I
l J I n n' n|

- Rl+ghJAl+nhjIy, - y I+ [2 ih/(l+mh)2 + £h/(l+mh)
L J n n I L

+2^h2/(l+mh)2. lu J .

n>

n+ll
(4.42)

-1 -2 -1Let j^ • (l+£h)(l+mh)~ <1 and P =2j(?h(l+mh)" +£h(l+mh) .

Then, from (4,42), we obtain:

y - y
n n

n-l

^

0Ji' n-k

f" yo " yo
n-l k, A p -*•

+ f9C Pjy . , + 2£h*(l+mh) •
J 2^0 ° 1 n-k-11

-2

(4.43)
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n-l k,
Claim: 2_.v ?„ jy

n-l -i -1
• ^ i(l+fh) - l| ; (l+mh) r- h

JSrl'-n-k-li L

+(l+mh) Fm(m-f )h

Using (4,4l), we have:

1-1 Ik-) i 0

1CO

y,

(4.44)

jy j ^ (l+mh)
i n-k-11

-(n-k-1) n-k-2 -(j+l) j
|yj + II (l+mh) hju

0 n-k-1-j*;0=0

-n+k+1. ii , ,: n-k-2 -(j+l)
* (l+mh) iyj+hj|u(«)j iJ (l+mh)

0:

-n+k+1 i -(i+1)
^ (l+mh) jyJ +h|!u(.)l! II (l+mh)

(l+mh)
-n+k+1

!y0 + h u(*)l| M.
09

(4.45)

Thus,

n-l n-ln-i t_ n-j. j> -n+1

J7?Jy v J ^C(l+€h) (l+mh) jy
k=0-5l' n-k-1i k==0 i 0k

n-l

U
k=0

-It k
C (1+6 h)(l+mh)

+ m~ llu(-)1!
'Or.)

oo
-n+1* (l+mhfn |yJ J"l(l+6h) + m~ ju(-)!! Tl (l+£h)(l+mh)

1 u'k=0 % k=*0

- (l+mh)~n |ynl f(l+gh)n-ll j~£h] ^ + m" ||u(-)!| (l+mh)(m- k)•
' u! L J L :! !V/f

-11*

h"1. (4.46)

"-1 k, , -1 -1 ii
Note that )",' P. uM J * (l+iHh)(m-f, ) h u(«)

k=0

(4.47)
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Using (4.44) and (4.47), we obtain from (4.43):

-n+1 -1 -1i ni , r n n -nt-i -j.

?n - yJ 'S lK0 " *o\ +Sz [(1+ £h) -1} (l+mh) 6 h
—1 —1 —1 "^ ? —2

y | + (l+mh)m~ (m- £) h" ||u(*)ll_. f+: 2^h (l+mh)" •
oo

(l+mh)(m-6)*" h'1||u(-)||
CO

i(l+£h)(l+mh)"" ] |yn - y_| + [2£h+(l+mh) £h] (l+mh)
-2

f(l+£h)n-l| (l+mh)~n £~h" ly 1+ j [2 i?h+(l+mh)£hi(l+mh)"" •
L J I 0! I L .j

(l+mh)m~\m-£ )"V-1 + 2ih2(l+mh)"2 •(l+mh)(m- I)' h f||u(-)
-1"

(1+6h) (l+mh) y0 ~ yo
n i -n-l

(l+£h) -1 (l+mh)

\zi +6 (l+mh) 1 £~ lyJ + |~2j£ +(l+mh)£ +2ihm j (l+mh)
l J I 0| L J

m-1(m-£)"*1||u(.)
co

[(l+£h)(l+mh)~ 1n|y0 -yQj + [z £+ £(l+mh)

(l+£h)n-ll (l+mhr^iyoi +(2/+£)m"1(m-£)"1!|u(.)|| .

-1
ti

-1

CO

2. Comparison of The Exact Solution of 0. D. E. (l.l) with The

Computed Solution of The Backward Euler Method (1,3)

Throughout this section we assume infinite precision

arithmetic for all computaions.

Consider the solution x(°;x ) of 0. D. E. (l.l).

Let jy f be the computed solution of (l.l) by the backward

Euler formula (1.3). The orror vector x - y is said to be the
n n

accumulated truncation error. In this section, under reasonable

97
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assumptions, we give an estimate of the accumulated truncation

error. We show that the error does not build up indefinitely,

and that the effect of an initial error decays exponentially.

Theorem 4-6. Assume that all the conditions of Corollary 4-2

are satisfied. If, in addition, for any fixed x h.kp , D f(x, •)

is piecewise continuous and u(«) is piecewise continuous, if both

u(.) and u(») are bounded on IP, and if there exist positive

constant C* and B such that

jlD-jf^t) j! *&. and JD f(x,t)! *fi ,for all x•-. 7k , for all

t <-. If- , then there exists a 0 > 0 independent of h such that

:xn -y|*(l+mh)"n!x0 -yi+j>h, for all n-0. (4.48)

Proof. From Corollary 3-3, the solution x(»;Xq) of (l.l) satis

fies the inequality (3»36)»

|x(t); * exp(-mt) |x.| + exp [-m(t-?T)] •lu('?:')idr . (3.36)
i u. \ 0

Since u(») is bounded on P, x(») is also bounded on %+, i.e.,

!jx(») !! « sup !x(t); < <*Om
"CO tr ff? '

Claim: x(-) is bounded on '/# . i.e., jix(«)i| < °°.
+ !. H^

x(t) =• f(x,t) + u(t). (1.1)

Differentiate both sides of (l.l) with respect to t:
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*x(t) « D1f(x,t)-x(t) +D2f(x,t) +u(t)

*D1f(x,t)« [f(x,t) +u(t)] +D2f(x,t) +u(t). (4.49)

So,

x(t)| * ||D1f(x,t)||-[f liD^^rx.^ljdr-|x(t)[ +ju(t)|j

+|D2f(x,t)| +|u(t)|

6 o( f^Noll + Hon j +/s + l!u(-)|| <«>.
L CO 00 J '

for all t e TR . (4.50)

Thus, x(») is bounded on "//?.. Define the local truncation
00

error J E C Dy:

? - x - x -hi , n A o. (4.51)
n nt-i n n+1

Claim the local truncation error £ has an upper bound, more
n

precisely, there exists a positive constant independent of h

such that

j?n| 6in o ,for all n*0. (4.52)

By applying Taylor's formula to each component of x , we obtain:
n

where j-th component FU 1 of U is equal to the j-th component
" nJ j n

x. of x evaluated at some point of [nh, (n+l)h ]. By the defi-

nition of £ , (4.52) and (4.53), we have:
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8 --fh2U ,for all n*0. (4.54)
n n

Since by (3.36) x is bounded on V+, U is also bounded. Thus,

iu i^ p, , for some P > 0, for all n * 0.
t n! j l ~> l

Hence, by (4.54),

|£ i-ih2^ ,for all n*0. (4.52)

Next, we derive a difference inequality with respect to iy -x •,
n n'

. yn+l "^W "+1) =yn +tan+l' ^

From (4,51),

x _,_, - hf(x ^, n+1) « x + hu J + £ . (4.55)
n+1 n+1 n n+1 rn

Subtracting (4,55) from (4.2), we get:

r l

y - xn+1 -h 1Af [fr-'^'^i+ *wn+1 ^d';' -(yn+i - Vl}n+1 n+1 3o n+1 n+1

y - x - p , (4.56)
n n ''n

or

r1

1-hj0Dlf [(l-? )xn+l +''"W n+l] d?'J '(yn+l "W

=(yn-x)-£. (*.57)
n n - n

Analogous to the part of the proof in Theorem 4-1, as in (4,6),

we get:
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iy - x j + j? i ^ !(y - x ) - £ ; ^ (l+mh):y - x ;
;Jn n • "m ' n n ~n: n+1 n+1.

(4.58)

or

-1 "I
.y - x i ^ (l+mh) i'y - x + (l+mh) S

n+1 n+i: ; n n ni

* (l+mh)" jyyi - x i + jrh (l+mh)"" <> . (4.59)
I n n! .j JL

Solving the recursive inequality (4,59),

-n 2 n ~k
!y - x • * (l+mh) iyft - xnl + |h <° Li &+*h)
' n n! : u u> Jl k=i

-n 2
^ (l+mh) y« - xj + 4h o / a (l+mh)! 0 0' j1 k=sl

-n 2- (l+mh) jyQ - xq! +i-h p /mh. (4.60)

By letting J?= ^ /2m, we obtain the result. o

«5. -k

Remark. As in (4,48) the estimate of the accumulated truncation

error shows that the effect of the initial error decays expo

nentially as (l+mh) and that the effect of the local truncation

error does not build up indefinitely; in fact proportional to h.

Relation to previous work. The special case of Theorem 4-6

under weighted / norms was proved by Sandberg [3 ].

3. Extensions and Relation to Results from Earlier Chapters

In Chapter II, we discussed properties of D, C.
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equations. In this section we extend and relate those results

to the implicit equations obtained by the backward Euler method:

y - hf(y , n+1) = y + hu . (4.2)
n+1 n+1 n n+1

We assume that all conditions of Corollary 4-2 are satisfied,

i.e.,

f(0 ,t) « 0J for all t^lPt xh>f(x,t) is in C for all
d d. +

* <"- P ,1 and there exists a positive constant m > 0 such that
"T*

-//fDf(x,t)j ^m> 0 for all xr-f- d, for all t-71- .
/ - 1 +

Observe that Lemma 1-2, (e), (d) and the above assumption imply

-U f-( I- hD_f(y , n+1) )! ^» 1 + mh > 1 for all
/ L 1 n+1 j

n ^ 0. (4.61)

3.1 Using Corollary 2-4, it follows that for each integer

n ^ 0, for any fixed h > 0 and for any u „ & y , the solution
n+1 " n

y of (4,2) exists and is unique. Furthermore, y is a
n+1 n+1

continuously differentiable function of the previous value y ,

the step size h and the input value u ...
n+1

r i -, ^
3.2 Let - y ';• be a computed sequence of (4.2) by the

n+1.) i=o

Newton-Raphson method with infinite-precision arithmetic. Prom

s ^d i d
Theorem 2-6, we conclude that if the mapping f(.,n+l): :-( •>]'*-

satisfies the condition(2.13), then by defining r to be the
h

unique solution of
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r » 2(l+mh)/hk*(r), r> 0, (4.62)

r i i °°
the computed solution y , y starting from inside the ball

I 'n+lj i=o

B(y ; r, ) remains in this ball and converges to the unique so-

lution y at least quadratically. Since,
n+1

r* « max mini r, (2m + 2/h)/k*(r)f ,
r>0

the convergence region is enlarged if either m becomes large, or

if h becomes small, or if f(») becomes less nonlinear, i.e.,

k (r) is decreased for each fixed r > 0. For any fixed m and

for any fixed k*(0, h!->r- is strictly decreasing; r ir as
h h

h-5» +00, where

r* = max minfr, 2m/k*(r) } as in (2.24).
r>0 * -'

Furthermore, r -•> 00 as h}0+. j

These conclusions can easily be made obvious by con

sidering the original implicit equation (4,2). If h is suf

ficiently small, then (4,2) is close to a linear equation. If

h is sufficiently large, then (4,2) is approximated by:

-f(y ... n+1) - u . (4.63)
n+1 n+1

Then, using Theorem 2-6 directly, the convergence region is

B(y jr ), where r is defined as in (2,24),
n+1

3,3 Using Corollary 2-7, it follows that if the mapping

d d
f(«, n+l):F—>7R satisfies the condition (2.25), then by

defining r to be the unique solution of
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2(l+mh)

hk fr + y° - hf(y °, n+l) - y - hu |/(l+mh)"j
OL n+l n+1 n n+li J

r > 0, (M4)

and assuming jy°+1 -h*(y +1 »n+1) "^ "hUn+J *^^V
r i \°°then the corresponding Newton-Raphson sequence | yR+1 \ re-

mains in B(y* ;r ) and converges to the unique solution y at
n+1 h n~j.

least quadratically.

3.4 If we take into account the local round-off error on

the Newton-Raphson method, then as in Theorem 2-9, for suf

ficiently small local round-off error, the radius of the con

vergence region is 2£ smaller than that of the infinite pre

cision arithmetic case, and instead of quadratic convergence to

the unique solution y ., we obtain convergence to within a ball

centered on y*+1 with aradius 36M in a finite number of

steps,

3.5 Let y zTP d be an intermediate result in the course
n+1

of solving (4,2) by any iterative algorithm. Let y be the
rn+l

Fn+1 _ Jn+lr
exact solution. The error, namely y - y , is bounded by

V — V ™

^n+l *n+l I

•Vy^-, - hf(y_„, n+1) - yn - hu^ /(l+mh) ,
n+1 wn+l n n+1

for all n ^ 0, (4.65)

3.6 In Section 1 and Section 2, we assumed that the infi

nite precision arithmetic for integrating the 0. D. E. (l.l).

Concerning local round-off errors note that the effect of local

round-off errors is equivalent to some additional input. So,
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if the local round-off errors are bounded on i?f+, then under

conditions of Theorem 4-1, Corollary 4-2, Theorem 4-3 or Theorem

4-6, the accumulated rouhd-off error is bdunded on ^+.
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APPENDIX

dxri ^r- dxd d
Lemma A-l. Let A £ V and B(x,t) f p for all x, T ,

for all t C7k , If A is symmetric positive definite and
+

B(x,t) is uniformly positive definite in f' x If (not necessari

ly symmetric), more precisely there exists a positive constant

F > 0 such that
B

/y,B(x,t)y\ ^ f jy: for all xrp , for all t * - +, (A-l)

... d
for all y •: 7k , then there exists a nonsingular constant matrix

-1
P such that PAB(x,t)P is uniformly positive definite: there

exists a positive constant ^.n > 0 such that
AB

-1 » 2 d
;y,PAB(x,t)P y\ ^ k \y\ for all x '7k , for all t • 'k ,

' AB "*"

for all y '• '#; .

1

2 .

(A-2)

Proof. Since A is symmetric positive definite, A is uniquely

defined, real, symmetric and positive definite. Furthermore

A 2»A2 = I. So, we pick P = A 2. Then, we obtain:

1 — — \ ' - ~/y,PAB(x,t)P* y) = /y,A2B(x,t)A2y/ = /A2y»B(x,t)A2y>

i 2
r 2 !

VAJ: • (A-3)

Note that !A2y ^ |!ia""2 .'! •;y! , for all y •-' ft , (A-4)

and that

JL •

A"2:! > 0.

By letting ' = >;.•' A • > 0, we obtain the

(A-5)

(A-6)

106
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inequality (A-2). o

Corollary A-2. Assume that all the conditions of Lemma A-l are

satisfied. Then all the real parts of the eigenvalues of

AB(x,t) is greater than or equal to k^ >0for all x <• flk ,

for all t £7P +.

Proof. Observe that the eigenvalues of any matrix are invari

ant under similarity transformations. For any i « 1,2, "Sd,

%X (AB(x,t)) - %\(PAB(x,t)P"1)
i ' 1

* -// (-PAB(x,t)p" ) by Lemma 1-2, (i)
/ 2

= m^n X (symmetric part of PAB(x,t)P~ ') by Lemma 1-3, (c)

/y,PAB(x,t)p"* y> , _ , .
«inf--' - -.-•-** k >0 by Lemma A-l. O (A-7)

v%0 j |2 AB

Remark. All the conclusions in Lemma A-l and Corollary A-2

hold true for B(x,t)A where the order of the product is reversed,

Relation to previous work. Similar results for the product of

two constant matrices are found in Oster & Desoer [25 J and Chua

& Alexander [ 22 ] .
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