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ABSTRACT

We consider the response of a nonlinear, time-varying, coupled RLC

network starting from a given operating point. We view the response

as motion occurring in a differentiable manifold Ein IR x IR+, where

b is the number of branches. We impose two basic manifold conditions

on the network. First, the resistor characteristics are required to

be a manifold A. Second, the resistor characteristics and their connec

tions are such that the set of branch-voltages and branch-currents

satisfying both the Kirchhoff laws and the resistor characteristics is

a manifold Z. We then show that under the conditions imposed on the

RLC elements and the topology of the network, the network has a unique

response specified by a flow on E if and only if the capacitor voltages,

inductor currents, and time constitute a parametrization for Z. Finally

we show that our conditions include as special cases the determinateness

conditions previously obtained by several authors.

Research sponsored by the National Science Foundation, Grant GK-10656X1.



I. INTRODUCTION

The formulation of the nonlinear network problem requires answers

to two questions: (I) is there an operating point and is it unique?

(II) given an operating point what conditions are required in order to

have a unique well-defined trajectory? The first question concerns

with the existence and uniqueness of solutions of resistive networks

and is considered, for example, in [20]-[21], [12] for certain nonlinear

networks. In this paper we consider exclusively the second question.

The conventional formulation of the dynamic equations of nonlinear

network views the motion as occurring in the linear vector space IR

where n is the dimension of the state-vector. Following the geometric

viewpoint first explicitly stated by Smale [1], we consider the motion

as occurring in a differentiable manifold Z in a bigger space IR

x IR ,, where b is the number of branches. We allow elements to be
-r

nonlinear, time-varying, and coupled (among similar elements).

Our basic assumptions are in the form of two "manifold conditions"

(MCI) and (MCII) and some natural positive definiteness conditions on

the L's and C's. (MCI) requires that the characteristics of the p non

linear time-varying coupled resistors constitute a manifold in IR p x IR

(MCI) is a straightforward generalization of the basic assumption of

Smale. Physically, the operating point (v,i,t) £ IR x IR must

Roughly speaking, a manifold in IR can be thought of as a smooth

"surface" such that at every point of the surface there is a local

parametric representation of the surface (e.g. longitude and latitude

for a sphere in IR ). We will explain this in detail in Sec. II. For

an introduction to differentiable manifolds, see [2]-[5].



satisfy the Kirchhoff laws and lie on the resistor characteristics;

thus (MCII) requires that the set of points which satisfy these two

conditions constitute a manifold E in R x IR in Theorem 1, we
+

show that, under the conditions imposed on the elements and the topology

of the network, the physical laws specify a unique flow on the manifold

Z (hence the network has a unique well-defined trajectory starting from

any given operating point) if and only if the capacitor voltages,

inductor currents, and time constitute a parametrization for Z. An

immediate consequence of the manifold condition is that, at every

operating point, the small-signal equivalent network must satisfy the

determinateness conditions that Purslow [6] discovered for linear time-

invariant networks. We then show that conditions that several authors

[9],[10],[1S]-[17] needed in order to write the network dynamic equations

in normal form are in fact sufficient conditions for our manifold

conditions.

II. FORMULATION

II.1 Network JV1

We consider a nonlinear, time-varying RLC network J\] which, for

simplicity, is assumed to have a connected graph with b branches and

n « n + 1 nodes. Electrical coupling among branches of the same kind

is allowed; thus dependent sources are viewed as coupled resistors.

Each set of network variables (v,i), where v is the set of branch

voltages and i is the set of branch currents, is a vector in IR

partitioned as (vcJvr,v^,i ,i ,i^), where subscript c (r,£ resp.)
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denotes the variable pertaining to capacitors (resistors, inductors,

2bresp.). Thus IR is a direct sum

R2b =cv © <£v © ST © C1 © <& ® S£* (1)

II.2 Independent sources

Without loss of generality, we can assume that for any RLC netowrk,

given any tree, the independent sources are distributed in such a way

that each independent voltage source is connected in series with a link

and each independent current source is connected in parallel with a

tree-branch. This can always be brought about by source transformation

[7, pp. 709-414].

Thus a typical link and a typical tree-branch are of the form in

Fig. 1, where the rectangular box represents an element which is not a

source.

Let V, (resp. I, ) denote the voltage across (resp. current through)

the composite branch, then we have

v, - e^.(t) if branch k is a link

if branch k is a tree-branch

(2)

i. if branch k is a link
k

H ~ ^w^ "^ branch k is a tree-branch.
\~

2
We assume, for simplicity, that the independent sources are C -

functions of time. As will be clear later the whole formulation is
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still valid if the independent sources are continuous functions of time,

in which case, however, the only modification needs to be made is to

invoke, instead, a continuous version of implicit function theorem [5,

Th. 9.3, p. 230; 8, Th. 5.2.4., p. 128],

II.3 Kirchhoff laws

Given any tree, KVL is expressed by B(v-e(t)) = 0, and KCL is

expressed by Q(i-j(t)) = 0, where B and Q are the corresponding funda

mental loop and cutset matrices, respectively; and as a result of source

transformation e(t) is a b-vector whose k-th component is equal to e, (t),
K.

the voltage source in series with branch k, if branch k is a link and 0

if branch k is a tree-branch; j(t) is a b-vector whose k-th component

is equal to jfc(t), the current source in parallel with branch k, if
9K

branch k is a tree-branch and 0 if branch k is a link. Let K C IR

x R+ be the set of all (v,i,t) such that (v,i) is aset of branch-

voltages and branch-currents that satisfy Kirchhoff laws at time t, i.e.,

K={(v,i,t) GIRb xIRb x[R+ |B(v-e(t)) =0, Q(i-j(t)) =0}
(3)

Tellegen theorem states that (v-e(t)) and (i-j(t)) lie in the complemen

tary orthogonal subspaces of each other [9; also 7, p. 422J. Since for

any linear map A: IRk + IRm, <£>(AT) © ^(A) =(Rk,

K={(v,i,t) e[R2b xIR+ |v=QTvt +e(t), i=BTix +j(t)} (4)

Note that v and i^ are the set of tree-branch voltages and the set of
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link currents, respectively. (See equation (2)). The map ij>„: (v ,i.,

t) K (v,i,t) is a C -diffeomorphism of IR x IR onto K. Let Kt»

denote the intersection of K and t - t' = 0. The map <J> (•,,,tl): (v ,

CO 1%

i.) —*• (v,i) is a C -diffeomorphism of IR onto K .. Thus K is a
A t

(b+1)-dimensional C manifold of IR * R+ and i|»K constitutes a

global parametrization for K. Moreover, for each time t1, K , is a

oo ir^ 2d
b-dimensional C manifold (in fact, an affine subspace) of H and

$„(•,•, t1) is a global parametrization for K ..
IN. t

II.4 Resistor characteristics

Let p be the number of (possibly electrically coupled) resistive

branches, which, as indicated before, may include dependent sources.

Let Abe the set of all (v ,i ,t) G^V *<^± xIR+,which satisfy the
resistor characteristics. Let A , denote the intersection of A and

t - t1 = 0. We impose the following basic requirement on the resistor

characteristics:

(MCI): A is a C2 submanifold of IR2p x R of dimension (p+1);

furthermore, for each t1, A . is a C submanifold of IK ,

of dimension p.

MCI means, by definition, that for each (p,t') 6 A, there exist an

open neighborhood U C R p of p, an open neighborhood T C [R of t1,

an open set V of Rp, and a C -function iK: (u,t) »-• (v y(u,t),
irV(u,t), t) with ij>. being a C -diffeomorphism of V x T onto A H (u

(2)xT). t|;a is a (local) parametrization of A. The local inverse

(2)
Subscript V is used to emphasize that these functions depend on V.
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of t|>A is called a (local) coordinate system of A about (p,tf). Further

more, for fixed te t, the map <|>A(-,t): u \-+ (vrV(u,t), iry(u,t)) is

a local parametrization of A . Hence the (2p) x p Jacobian matrix

Dl *A^u,t^ is of rank pfor dlu6v and tet/3^ In short, (v ,i ,
t) e A H (u x T) if and only if

Vr = VrV(u,t)

*r = W11'0

VrV(u»t)
and the 2p x p matrix

D2irV(u,t)
is of full rank for all

u = (u., ..., u ) S V C IRP and t G T C R .
i p +

(5)

(6)

An equivalent formulation of MCI is often useful [3, pp. 122; 4,

pp. 71-72]: for each (p,t?) € A there exist an open neighborhood

Up C of P. An open neighborhood TC IR Qf t! and aC -function

g: U x t -»• Rp such that

z GA HU C lR2p if and only if g(z,t) = 0

and (7)

rank[D-g(z,t)] = p for all z € U , t G T.

Remarks: (1) If all resistors are time-invariant. A. is the same for

all t. Therefore, (MCI) can be simplified as

A is a C -submanifold of R , of dimension p.

(3)D- <J>A(u,t) is the derivative map of the function 4>.0»t) at u.
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(2) In some cases, U can be chosen to be IR itself and V to be IR ,
P P

then <{>(»,t) = (v (*,t), i («,t)) is called a global parametrization

for A . For example, if all resistors are voltage-controlled, then we

Bp.

(3) If A can be expressed as

can choose u = v and consequently v (»,t) is the identity map on

A= {(z,t)|g(z,t) =0, gG C2 and D g(z,t) is of full rank}, (7)

then MCI is satisfied.

(4) Note that MCI is more restrictive than characterizing a resistive

n-port element by g(v ,i ,t) = 0 where g: IR x[R x R +IR , For

2 2 2 2
example, let n = 1 and g(v ,i ,t) = sin ttv + sin iri = 0 (which con-

sists of all points in IR with integer coordinates) does not qualify

to be a resistor characteristic according to MCI, even though g(•»•,*)

is C .

(5) If a two-terminal resistor characteristic is parametrized by arc

2
length via an injective C -map defined over a compact interval, then

it satisfies MCI. It is a special case of the unicursal resistor of

Chua and Rohrer [10]. Note that the unicursal resistor is allowed to

have a characteristic that crosses itself.

II.5 Configuration space

Let Z be the set of all (v,i,t) ^ (R x IR such that (i) (v,i,t)

£ K and (ii) (v ,i ,t) £ A. In Lagrangian mechanics, 1 would be the

configuration space; any (v,i,t) £ Z satisfies both the Kirchhoff
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constraints and the constraints imposed by the resistor characteristics.

Let Z , denote the intersection of E and t - t' = 0. We impose the

additional basic assumption:

(MCII): Z is aC submanifold of R x R+, of dimension (b-p+1);
2

furthermore, for each t' ^ 0, E , is a C submanifold of

IR , of dimension (b-p).

(MCII) means that for any (m,t') £ Z, there exist an open neighbor-

hood W C IR of m, an open neighborhood T of t1, an open set Nm in

IR ., and a C -function <{>-, such that

(v,i,t) e Z H (w xt) if and only if

(v,i,t) = (<j>z(a,t), t) V (a,t) e Nm xT

OK 9

where <M-,t): N •> R is a C -diffeomorphism of N onto Z n W .
TZm m tm

Let us bring in: (i) the parametrization (4) of K;

v=QTvt +e(t)

. i=BTix +j(t)
(8)

and (ii) the parametrization (5) of A: locally, (vr»ir»t) € A if and

only if

v = v TT(u,t)
r rV

i = i „(u,t)
r rV '

(9)
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and

DlvrV(u>°
is of full rank for u in some open set V of R and

D^yCu.t)

t in an open neighborhood T C R of t1. Classifying the branches as

in (1), we partition B and Q as

[bc : Br : b,] i% : Qr i V (10)

Thus by combining (8) and (9), we conclude that, locally, (v,i,t) £ Z

if and only if

vrV(u,t)

irV(u,t)

T
Q v
^r t

B i.
r X

er(t) 0

(11)

jr(t) = 0

and

DlvrV(u,t) is of full rank for u € V and t ^ T. Note that the

VrV^'0

left hand side of (11) defines amap g(u,vT>ix,t) from a subset Vx IK

xT of [Rp+b+1 into IR2p. MCII is equivalent to requiring that the

Jacobian matrix [D g !D2g '. D.,g] be of full rank, i.e.,

rank J(u,t) = 2p V u G V Vt^T (12)

where

J(u,t) DlVrV(Ujt)
(13)

D1irV(u,t)

Remarks: (1) Equation (8) shows that the configuration space Z depends
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on the waveforms of the independent sources.

(2) Loosely speaking, if (MCI) is satisfied, (MCII) has the additional

requirement that the Kirchhoff constraints and the constraints imposed

by the resistor characteristics be "independent" in the sense that at

no point will the resistor characteristics duplicate any one of the

Kirchhoff constraints. Let us illustrate the point by the following

example (Fig. 2). In this example, IR = {(v..^,*., >i2)} and A =

{(v1 >v2»ii >i2^ Ivi = Rii» v9 = ki.,}, which is a two-dimensional C

submanifold of R for all k. However when k = R, the resistor con

straints v. = ri1, v« = ki. duplicate the Kirchhoff law v- - v« = 0,

MCII is not satisfied.

II.6 Capacitor and inductor characteristics

As indicated above, the capacitors and inductors are not-necessarily-

linear, not-necessarily-time-invariant, and possibly coupled. We make

the assumption:

(LC): (a) All capacitors are voltage-controlled and all inductors are

current-controlled, i.e., q = q (v ,t), $0 = 4» (i ,t), with
C C C X> jC x,

2q and <f>0 in C , hence (17)

dv 3 „

(18)

l<1*-t) & •v* -h ♦i<1i-t>

where C(vc,t) =D1q (v ,t) and L(i£,t) =D-J^i^t). (19)
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(4)(b) The matrices C(v ,t) and L(i£,t) are positive definite

for all (v ,i ,-t).

Remarks: (1) It can be shown [8,pp. 142-143] that the positive definite-

ness assumption (b) requires that at every time t, the mappings qc(«,t)
(5)

and <j> («,t) be strictly monotone.
X*

(2) In the linear time-invariant case, passivity of the inductors and

capacitors is equivalent to the positive semidefiniteness of the L and

C matrices [19, pp. 127-148]. Our assumption of positive definite

ness at every point is stronger and it rules out degenerate networks

of "perfectly coupled" L's and Cfs [7, pp. 568-570].

II.7 Flows on Z

Let x = (m,t) be a point on the manifold Z. A (differentiable)

curve on Z through x is, by definition, a differentiable map a: I -»• Z,

where I C lr^ is an interval containing the origin, such that ot(0) = x.

Let w = dt" a(t) , then w is called the tangent vector to the curve

t=0

a(») at x. The set of all tangent vectors to Z at x is called the

tangent space to Z at x and is denoted by T (Z) . Indeed, if if; is a

parametrization of Z in the neighborhood of x with ^(0) = x, then T (Z)

is the image of the linear map DiKO): R •> IR , hence it is a

linear subspace of ^ , of dimension (b-p+1) [4, p. 74]. The

A not-necessarily symmetric matrix A 6 R is said to be positive
T

definite (semidefinite) iff x Ax > 0 (> 0) Vx^O.

A map F: DClRn-»-Rnis said to be monotone (strictly monotone)

on D if <x - ylFx - Fy > > 0 (> 0, for x ^ y, resp.), V x,y € D.
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tangent space T (Z) can be viewed as the best "local approximating linear

space" to the differentiable manifold Z at the point x. The network

interpretation of the tangent space is as follows; if x is the operating

point, T (Z) would be the configuration space of the small-signal

equivalent network obtained by replacing all nonlinear resistors by

linear resistors whose resistances are equal to the small-signal incre

mental resistances at the operating point x = (m,t) [7, pp. 720-724].

A flow on Z is, by definition, a differentiable map s: U C R x z

-*• Z, where U is an open set containing {0} x z, such that (i) s(0,x) = x;

and (ii) s(t'+t,x) = s(t, s(t',x)), whenever both sides of the equation

are defined. Thus, for each x € Z, s(-,x) is a curve on Z through x.

Under certain regularity conditions, Z can be considered as the state

space of the dynamical system describing c_Al and s is tnen the state

transition function [11, pp. 46-49]. On the other hand, a vector field

on Z is, by definition, a map which assigns to each x € Z a tangent vector

in T (Z). If s is a flow on Z, then for each x € Z the tangent vector

to the curve s(-,x) is defined. In this manner, the flow s gives rise

to avector field Xon Z, indeed |^- s(t,x) =X( s(t,x)) V(t,x) €U.
This can be visualized as analogous to the velocity field of a moving

fluid. Conversely, it can be shown that every C vector field on Z defines

a flow [5, p. 381].

The network variables are constrained by Kirchhoff laws and the

branch characteristics. Kirchhoff laws and resistor characteristics

force the network variables to lie on Z. Therefore the network solution,

i.e., the function t »-*-(v(t), i(t), t), for a given set of initial

-12-



conditions will be a curve on Z. Now at each point x € £ the capacitor

and inductor equations (18) specify certain components, namely (v^i^),

of the tangent vector (v,i,t) G T (Z) to the solution curve. Note that

the last component of the tangent vector,, t, is always equal to 1. If

equation (18) can specify a unique smooth vector field on Z the network

will have a unique response; in which case the corresponding flow of

the vector field is the solution of the network analysis problem.

Let tt denote the natural projection of R x R into (^ x yj x

R+, i.e., tt: (vc,vr>v£,ic>ir,i£tt) -* (vc>i£,t). To simplify notation,

we let f restricted to Z be denoted by a = tt|Z: Z—* Q, x S£ x R+.

Theorem 1. Let la) be a network as described in Sec. II.1 and satisfy

(MCI), (MCII) and (LC). Under these conditions, the capacitor and

inductor characteristics specify a unique C vector field on Z, hence

Jv! has a unique response starting from any' operating point, if and only

if given any point x£ E, o: E-»• £} xi£ x R, is a coordinate system

for Z about x (or, equivalently, a is a parametrization of Z).

Remarks: (1) In a network analysis problem, the first step is to

determine a set of variables which completely specify all the network

variables, i.e., to determine a coordinate system for Z. Theorem 1 shows

that under the stated conditions, this set must be (up to local diffeo

morphism) capacitor voltages, inductor currents, and time. This justifies

the normal tree approach.

(2) If a C vector field is defined on Z, the network, starting from a

given operating point, will have a unique response specified by the

-13-



corresponding flow. The flow is determined from the vector field by

solving the differential equations.

(3) Chua and Rohrer [10] have considered nonlinear time-invariant

networks with unicursal elements. They have given conditions for the

existence of normal form equations. Note that if the nonlinear mapping

F that they defined has an inverse, then the mappings (vc,i^,t) I—*

(- F_„v„ + eT)(t), F?_i_ + jn(t)) H- u exist, where the last mapping is

F . Hence (v ,i„,t) is a parametrization for E.
c x.

2 2
Proof. First note that I is a C submanifold, hence a is a C -map.

*= By assumption o is a local diffeomorphism. Hence Da(x) is a linear

homeomorphism of Tx(E) onto T ,n(CV* SP x^+>• Therefore any

(v ,in,l) specifies, via (Da(x))~ , a unique tangent vector in T (Z).
ex. x

It remains to show that the vector field thus defined on E is C .

Equation (18) defines, as a consequence of assumption (LC), a C map

• 1 —1(v,i,t) M- (v ,i„»l) and we have a C -map (Da(x)) : (vc>iA,l) H-
1

(v,i,l) S T (E). Therefore, the vector field is C .

2
•=> We know that a is C . Now we claim that the derivative map

Da(x): T (E) -* T , J PV x CP x R.) is nonsingular. Hence a will be
x a(x)vv>< ^*- +

a local diffeomorphism. Suppose Da(x) were singular, then some point

(v ,i„,l) ^ T , XC7 xSi1 x R .) would have no preimage and even if it
c' H a(x) ^ <=*• +

had, it would not be unique. This would mean that equation (18) could

not specify a unique vector field on Z. We reach the desired contra

diction. GD
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III. CIRCUIT-THEORETIC INTERPRETATION

If at every point x on the manifold E, a: E->-(_J x^ x IK+ is

a coordinate system about x, then the tangent space of E at x, Tx(E),

is isomorphic to(f x^xR. With the interpretation that the tan

gent space as being the configuration space of the small-signal equiva

lent network at x = (v,i,t), the fact that a is a coordinate system

about x means that (v ,i„,t) determines a unique set of voltages and

currents in the small-signal equivalent network. Let us justify this

from the rank condition.

Let us for the time being assume that c_Al has no capacitor-only loop

and no inductor-only cutset. Networks having capacitor-only loops and

inductor-only cutsets will be discussed later. Let v be partitioned

into (v„,vT,v„,v„), where the subscripts R, L, C, and G denote resistive
R L C Or

links, inductive links, capacitive tree-branches, and resistive tree

branches, respectively. Similarly for i. Hence, the fundamental loop

matrix is expressed as [7, pp. 516-521]

B =

I 0 F F
1 U RC RG

OIF F
u x LC LG

Equation (11) becomes

W11'0 + FRCVC + FRGVG " eR(t) = °

v (u,t) - vG = 0

-15-



iRV(u,t) - ^ = 0

iCT(u,t) -F^1R -F*^ -j(,(t) =0

and DiVu't:M

V6v(u,t)

DliRV(u't)
^1iGV(U,t)J

is of full rank for all u 6 V and t G T

MCII further requires (equations (12) and (13)) that

rank J(u,t) = 2p V u € V, V t e T.

where J(u,t) is the 2p x (p+b) matrix defined by

J(u,t) = DlVRV(u,t) -F
RC ~FRG 0

D1vGV(u,t) 0 I 0

D^u.t) 0 0 I

D^Cu.t) 0 0 FR
L

0

0

0

LG

(20)

(21)

(22)

(23)

Let us consider Theorem 1 and think in terms of the implicit function

theorem. The projection a: E-*• (^ xC£ xR+ is acoordinate system

for E (i.e., E is parametrizable by capacitor voltages, inductor currents,

and time) if and only if the 2p x 2p matrix

K(u,t) = D;LvRV(u,t) -FRG

DlVGV(u,t)
VRV<u,t)

VGV(u,t)

-16-
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is nonsingular Vu^V, Vt^T.

By elementary row operations, it can easily be shown that K(u,t)

is nonsingular if and only if

D^Cu.t) + FRG Vct0"'0

-FRG Vw(u,t) +DliGV(u't)

is nonsingular, i.e., if and only if

t1 FRG3

[-F
RG

I]

D^^u.t)

Vgv^'0

DliRV(u,t)

D1lGV(u,t)<

Au = 0

Au = 0

implies Au = 0. Since the 2p x p matrix

be of full rank, Au = 0 if and only if

DlVRV(u,t)

Vcv(u,t)
VRV(u,t)

DliGV(Ujt)

Au = 0,

DlVRV(u,t)

VGV(Ust)

D1iRV(u,t)

D i^Oi.t)

(25)

(26)

is assumed to

(27)

Therefore, K(u,t) is nonsingular if and only if (26) implies (27).
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Now let us derive a small-signal equivalent network^^ at (u,t)

from^\(. First, remove all inductors, replace all capacitors by short-

circuits, and set all independent sources to zero. Second, replace

resistors by linear resistors which are specified by the following

parametric representation Av = [D.v (u,t)]Au and Air = [D^i^u.t^Au.

Thus equations (26) are exactly the KVL and KCL for^^. Hence (26)

will imply (27) if and only if

<jyR has only the trivial solution Av = 0, Ai = 0. (28)

Remarks. (1) Purslow [6] has shown that for a linear time-invariant

network, if there exists a cutset (resp. loop) of dependent and indepen

dent current sources and none of the branch voltages (resp. currents)

in the cutset (resp. loop) controls any dependent sources, then the

network does not have a unique solution. This is in fact true for

nonlinear networks. We are going to show that if such a cutset (resp.

loop) exists, then (28) can not be satisfied. Consider the small-signal

equivalent linear network^(R at (u,t). Let all the branch-currents

and branch-voltages other than the branch-voltages (resp. currents) in

the cutset (resp. loop) be zero; and let each branch in the cutset (resp

loop) have a nonzero branch-voltage (resp. branch-current) 6. Clearly

this is a nontrivial solution foro\L, i.e., it satisfies KVL, KCL, and

branch-relations for<J\L'

(2) For a monotone network, i.e., a network whose branches are two-

terminal elements having monotone increasing characteristics [12],

(28) is satisfied at all points if after removing all inductors and

-18-



replacing all capacitors by short-circuits, the resulting resistive

network satisfies the following conditions:

(U ) every loop made of c.c. resistors contains at least one strictly

increasing resistor;

(U ) every cutset made of v.c. resistors contains at least one strictly

increasing resistor.

IV. SUFFICIENT CONDITIONS

Let ^Al be a network as described in Sec. II.1 and satisfy (MCI),

(MCII), and (LC). We shall give some sufficient conditions under which

equation (24) is satisfied at an operating point, i.e., the projection

a: Z -* O x ^ x R is a coordinate system for E about the operating

point. If at every point x E E any one of the sufficient conditions

given below is satisfied, then as a consequence of Theorem 1, the capaci-

1
tor and inductor characteristics (18) define a unique C vector field on

Z, hence the network will have a unique response specified by the

corresponding flow.

In this section, conditions are examined for fixed t, we will hence

forth suppress the variable t as if we were in the time-invariant case.

Also the subscript V will be dropped, however we must keep in mind that

all the conditions in this section are local conditions.

Case I. All resistors are voltage-controlled; in this case, u =

(vR,vG).

-19-



(SI): If D2iR(vR'VG)' is positive definite

then condition (24) is satisfied.

Proof: Since K(vR,vG) - I 0 -F
RG

0

0 I I 0

A a

Vr Vr 0 I

"1*8 Vg 0 F
R

is nonsingular if and only if

[-F
RG

I] Vr Vr

lVg Vg

-F
RG

I

is nonsingular

(30)

(31)

(32)

Hence (SI) follows. C

Remarks: (1) Condition (SI) requires the resistor characteristics

(vR,vG) H- (iR(vR,vG), iG(vR,vG)) be strictly monotone [8, pp. 142-143]

(2) Condition (SI) does not require the matrix be symmetric, hence

nonreciprocal elements, for example, dependent sources, are allowed.

(3) Quasilinear resistors [13, p. 35] constitute a special case of

condition (SI). Indeed, it is required for quasilinear resistors that

the matrix in equation (30) be uniformly positive definite, as well as

symmetric.

Case II. All resistors are current-controlled. (Dual to Case I.)
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Case III. Some resistors are voltage-controlled, and some are current-

controlled.

Assumption T: There exists a normal tree such that all resistors whose

voltages are controlling variables can be put in the links and all

resistors whose currents are controlling variables can be put in the

tree, i.e., u = (iG»vR).

(SIIIA): If every resistor whose voltage (resp. current) is a control

ling variable can form a loop (resp. cutset) with only capacitors (resp.

inductors), then condition (24) is satisfied.

Proof: Since K(ir,,v_) = 0 I "FRG 0

D„v„ I 0
1 G 2 G

D-,i« D0i„ 0 T
1 R 2 R

I 0 0
RG

is nonsingular if and only if

I

—<

0

+

0 I
RG

RG

0

D1VG Vg

Vr Vr

(33)

(34)

is nonsingular.

Note that the assumption in (SIIIA) implies F..-, = 0. Hence

(SIIIA) follows. [U

Remarks: (1) Condition (SIIIA) imposes only topological constraint on

the network. Indeed, electric coupling between links and tree-branches

is allowed. The resistor characteristics

-21-
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necessarily symmetric, hence nonreciprocal elements are allowed.

(2) The class of complete networks [9] for which F G = 0 satisfies

(SIIIA). However, Brayton and Moser considered only uncoupled

resistors.

(SIIIB): If Vg Vg

Vr Vr

is positive semidefinite and symmetric,

(resp. is positive definite); then condition (24) is satisfied.

Proof: It follows from (34) and Fact 1 (resp. Fact 2) in the Appendix.

m

Remark: It can be shown [8, pp. 142-143] that Vg Vg

Vr Vr

is posi

tive semidefinite if and only if the resistor characteristics (iG9vp)

H- (vG(iG»vR)» ^-b^g^R^ is monotone (see Footnote (5)). If the matrix

is positive definite, then the resistor characteristics are strictly

monotone.

(SIIIC): Suppose there is no electric coupling between resistive links

and resistive tree-branches. If Dv.(L) and Di_(v„) are positive semi-

definite, and either one of them is symmetric, (resp. either one of

them is positive definite); under these conditions, then (24) is

satisfied.

Proof: Equation (34) becomes

0

RG

-F
RG

0

Dv,

-22-
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which is nonsingular if and only if

[I + FRG(DiR)FRG(DvG)] is nonsingular, or (36)

[I + FRG(DvG)FRG(DiR)] is nonsingular. (37)

Hence (SIIIC) follows from Fact 1 (resp. Fact 2) in the Appendix. (U

Remarks: (1) For the monotone networks considered by Desoer and

Katzenelson [14], if we further require that the resistor characteris-

tics be differentiable, then Dv_ and Din are both positive semidefinite
b R

and diagonal, hence satisfy (SIIIC).

(2) Varaiya and Liu [15] have considered the following classes of

networks; Dv_, and Di_, are positive semidefinite and either one of them
b K

is positive definite and symmetric (resp. either one of them is positive

semidefinite and diagonal). These classes of networks satisfy (SIIIC).

(3) Ohtsuki and Watanabe [16] have considered the class of netowrks

for which elements characteristics are uniformly positive definite,

hence they satisfy (SIIIB).

(4) Fujisawa and Kuh [17] have considered the following classes of

networks; (i) (DvG)FRG (Dip)FRG G Po> (i:L) DvG is positive semidefinite
T *

and diagonal, and F_r,(Di_)F_,_ ^ P.. They have shown that in these cases
Kb R Kb U

(36) is nonsingular. Hence these classes of networks satisfy condition

(24).
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V. CAPACITOR LOOPS AND INDUCTOR CUTSETS

Suppose that \J\j has y capacitor-only loops and X inductor-only

cutsets. Because of the constraints imposed by the Kirchhoff laws,

not all the capacitor voltages and inductor currents are independent.

One would expect from Theorem 1 a posteriori that solution curves are

constrained to a submanifold of Z. We are going to justify this fact.

Pick a normal tree. Let v be partitioned as (v-jV^jV-,v_,,v_,v_);
D R L b b 1

similarly for i, where the subscripts S, R, L (C,G,r) denote link

(tree-branch) capacitors, resistors, and inductors, respectively. The

corresponding fundamental loop matrix is then given by [8]:

B = I 0 0 Fsc 0 0

0 I 0 F
RC

F
RG

0

0 0 I F
rLC

F
LG FLF

The capacitor and inductor equations (18) written in terms of

the above partition, become

• c<we) h:
— —

vs 3t 5s(vs»vct)

^ vc qc(vs,vc,t)
*— — L *J L_

""* —"

VL =K^.lp.t) |j-
f— —

+lr *L(iL,ir,t)

vr \ *p(iL,ir,t)

Note that the Kirchhoff laws require

-24-

(38)

(39)



[I Fsclrv " es(t) (40)

LVC_J

[-F„ I] = jr(t)

l_xrj

Thus,

[I Fsc] c'^VV^ St's<'>

(41)

[-F^r I] L1(iL,ir,t) vl " at ♦l(1l'V:) "3t *r«>

vr " 8t ♦r(1L'ir«t)

Hence the Kirchhoff laws (40) and the capacitor and inductor characteris

tics impose on the network variables (y+\) additional algebraic con

straints, namely (41). Let K1 be the set of all (v,i,t) satisfying

both Kirchhoff laws (3) and (41). Note that K' C k. Our assumptions

imply that K' defines a (b-y-X+1)-dimensional C -submanifold in (R 2b x

IR . Indeed, first note that (3) and (41) are in ftie form of (b+y+X)

equations g(v,i,t) = 0 (see Eq. (7)), second, the Jacobian matrix of g

is of full rank because

[I ^c^W^ and [-F.
Lf

sc

-25-
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are both nonsingular by (LC).

Let Z1 be the set of all (v,i,t) such that (a) (v,i,t) G k' and

(b) (vR,vG,iR,iG,t) £ A. Therefore, for the present case, (MCII) must

be modified to read:

(MCII'): Z' is a C2-submanifold of IR2b x IR Qf dimension (b-p-y-X+1);
+

2 in 2bfurthermore, for each t' ^ 0, Z' . is a C -submanifold of In ,

of dimension (b-p-y-X).

It turns out that (MCII') holds if and only if equations (20) hold and the

rank condition on J(u,t) (defined by (23)) holds.

Let a' be the restriction to Z' of the projection map (v,i,t) I—»•

(v ,i ,t), then for the present case Theorem 1 becomes:

Theorem 1'. Let J\i be a network as described in Sec. II.1 and having

y capacitor-only loops and X inductor-only cutsets. Suppose that (JVJ

satisfies (MCI), (MCII'), and (LC). Under these conditions, the capaci

tor and inductor characteristics specify a unique C vector field on

Z' if and only if given any point x£ Z', a': Z'+G x^- x^+

is a coordinate system for Z' about x.

With the implicit function theorem in mind, it can be shown that

a' is a coordinate system for Z' if and only if the 2p x 2p matrix

K(u,t) (which turns out to have precisely the same form as (24)) is

nonsingular, for all u £ V and t £ T.
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Appendix

Fact 1. Let A and B be two nxn matrices with real elements. If A and

B are positive semidefinite, and either one of them is symmetric, then

(I+AB) is nonsingular.

T
Proof: Suppose B is symmetric. First we claim that x Bx = 0 implies

n

Bx = 0. Since B is symmetric, we can write x = Z a e. where e 's are
i=l

n

orthonormal eigenvectors of B. Bx = Z X.a.e. where X.'s are eigen-
.,111 i
i=l

T n i 12 T
values of B. Hence x Bx = Z X. a. , since e.e. = 6J.. Note that

l-l *' l' lJ iJ
T

X. >_ 0 because B is positive semidefinite and symmetric. Therefore, x Bx = 0

implies X.ct, = 0 for all i, i.e., Bx = 0.
i i

Now we are going to show (I+AB) is nonsingular by contradiction.

Suppose there were an x ^ 0 such that (I+AB)x = 0, i.e., x = -ABx.

T T T T
Therefore, x B x = - x B ABx; but A and B are both positive semidefinite,

T
hence x Bx = 0. This implies Bx = 0. But this would lead to x = 0

because x = -ABx, hence we reach a contradiction. If A is symmetric,

consider (I+AB)T = I+ BTAT. El

Fact 2. Let R and S be two nxn matrices with real elements. If one

of them is positive definite and the other is positive semidefinite,

then (I+RS) is nonsingular.

Proof: Suppose R is p.d. and S is p.s.d. For the other case one needs

only to take the transpose. By contradiction. Suppose there were an

x ^ 0 for which x + RSx = 0. Then x S x = - x S RSx, hence x S RSx = 0.



Now note that Sx ^ 0, because if it were, then x = 0. So we have

T
(Sx) R(Sx) = 0 and Sx ^ 0, which contradicts to the fact that R

is p.d. E]



FOOTNOTES

(1)
Roughly speaking, a manifold in In can be thought of as a smooth

"surface" such that at every point of the surface there is a local

parametric representation of the surface (e.g. longitude and latitude

for a sphere in IR ). We will explain this in detail in Sec. II. For

an introduction to differentiable manifolds, see [2]-[5].

(2) Subscript V is used to emphasize that these functions depend on V.

(3) D.. <j>A(u,t) is the derivative map of the function <j>A(*,t) at u.

(4)A not-necessarily symmetric matrix A ^ IR is said to be positive

T
definite (semidefinite) iff x Ax > 0 (> 0) Vx^O.

A map F: D C IR -»- IR is said to be monotone (strictly monotone)

on D if <x - y|Fx - Fy > > 0 (> 0, for x f y, resp.), V x,y £ D.
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Fig. 1. Network element (a) a typical link,

(b) a typical tree-branch.



Fig. 2. A network satisfying (MCI) but not

(MCII) when k = R.
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