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Abstract. This paper developes a model for the allocation of urban

land among the residential and transportation sectors and the Central

Business District. The model is used to derive the intensity of land

use, that is the capital per unit of land, in the residential and

transportation sectors. Two different institutional arrangements are

discussed: a central planning agency, and a competitive market. It

is shown that the externalities imposed by traffic congestion results

in the market city being larger (for the same population), and with

flatter density profiles.
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1. Introduction and Summary.

Consider a circular city with rotational symmetry. There is a

dominant pole of attraction - the Central Business District (CBD) - at

its center. The land outside the CBD can be put to one of two uses:

it can be used for residences or for providing transportation to the

CBD. Households have an inelastic demand for living space, but by

erecting structures, that is, by substituting capital for land, larger

number of households can be accomodated per acre of (physical) land.

Similarly the effective surface available for transportation can be

increased by investment of capital. Thus there are five variables:

size of the CBD, land and capital devoted to housing, land and capital

devoted to transportation.

Every household has a member who works in the CBD. Consequently

each household incurs a private cost of transportation to the CBD. This

cost increases with the traffic density so that each household imposes cost

on the other households. The sum of three costs - interest on capital,

transportation cost, and an opportunity cost for land is the total social

cost. We are interested in determining the allocation of land and capital

and the resulting city shape and social costs under two institutional

arrangements.

In the first setting there is a central authority which determines

the allocation that minimizes total social cost. This allocation will

be called the optimal solution. In the second alternative we suppose

that the allocative power is decentralized. On the one hand landlords,

taking the rent profile as given, determine the amount of capital devoted
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to housing which maximizes their profit. On the other hand the city

government, taking the rent as given, determines the amount of land and

capital devoted to transportation which maximizes net benefit. We

will call the resulting allocation the market solution.

Section 2 displays the mathematical model. The optimal solution

is derived in Section 3, and in Section 4 it is shown that this solution

cannot be sustained by a market institution of the kind described

above. However any one of a number of appropriate taxation schemes in

combination with a market will sustain the optimum solution. In Section

5 we derive the market solution. The two solutions are compared in

Section 6. In particular it is shown that the market city is more

spread-out than the optimal city, it has flatter density profiles. The

market city devotes too much resources to transportation at the center

and too much resources to housing at the periphery. We also obtain

the ratio of the two city sizes and the two CBD sizes.

Three recent papers [1-3] have explored issues similar to those

considered here. However none of these allows for possibilities of

substitution between capital and land. Furthermore they mainly discuss

the optimal solution^ and do not develop the market solution. Of

course, many people [4-6] have explored the possibilities of substitu

tion between land and capital, in the absence of externalities. The

contribution of this paper lies in combining both of these aspects.

2. The Model

Every point of the city is at some distance u from the center.

This distance may be the usual Euclidean distance but it does not need
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to be. The CBD consists of all points within a fixed distance e > 0

from the center. £ is given exogenously, but as we shall see later e

will have to increase as the size of the population increases. The

area of (physical) land which lies at a distance between u and u+du

from the center is 6(u)du where 0(u) > 0 is given exogenously. For

example, if w E 2 it we have a circular city, if W = 9 < 2 it we
u u

have the pie-shape city of [1], if w = 16 it we have the eight-layer

city of [7]. The total area 0(u), at distance u ^ e, is divided into two

parts. JL,(u) is devoted to transportation, and the remainder £u(u) =
1 n

9(u) - £m(u) is devoted to housing. Both £ , £ are determined within
T In

the model.

Each household demands one unit area of living space. If the

density of households at u is ^(u) per unit area of land, giving a

total of m (u)£„(u) households at u, then the capital costs necessary

to support this density is a (rn^(u)) , where a > 0 and 3„ > 1 are

constants. Similarly the effective surface available for transportation

at u is nu(u)Jl_(u) , at a capital cost of a (ra (u)) where a > 0 and

$ > 1 are constants. Let n(u) be the number of households living at

a distance at least u from the center. Then

n(u) =$~&- =-ni^uHjjOi), (1)

and if the total number of households in the city is n, given exogenously,

then

n(e) = n, n(u) = 0, (2)
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where u is the edge of the city, u is determined endogenously

We suppose that everyone travels to the CBD at the same time. Then

the peak density of traffic at u is d(u) = m („u (u) * Following

[1-3] we assume that the transport cost per person per annum over a

P2
distance u to u+du is p-(d(u)) where p > 0 and p2 > 0 are constants.

Hence the total transport cost per annum is

u

P;L(d(u)) n(u)du. (3)1
The interest on capital is r per annum, so that the total annual cost

on capital is

.u

r

e

I {aH(mH(u)) H£H(u) +a^m^u)) T*T(u)}du. (4)

Finally if we take an opportunity cost for land (arising say from

agriculture) we get a total of

Ra 1 6(u)du. (5)1 6(u)du.

The social cost to the city is the sum of items (3), (4), and (5)

3. The Optimal Solution

We want to determine the land use, I (u), ^u(u) = 6(u) - £T(u),

the investment program m (u) _> 0, m„(u) >_ 0, and the city boundary u,
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which accomodates n- households i.e., satisfies

n(u) = - 11^(11) (8(u) - &T(u)), ££ u _< u, (6)

n(u) = 0, n(£) = n, (7)

and at the same time minimize the total social cost

J |pl(mT(uUT(u)) n(u) +raH(mR(u)) H(0(u) -^(u))

6 1

+ raT(mT(u)) ^(u) + Ra6(u) >du.

This is a relatively straightforward optimal control problem [8].

Let p denote the adjoint or co-state variable, and define the

Hamiltonian

H(u,n,p,mH,mT,JlT)

-Plfe) *+™H "/^"V* ™T mTT *T +Rae(u)" PV^'V

Then at the optimal solution, the adjoint variable must satisfy the

adjoint equation

(8)

• Jit! Po _
P(u) = - •—• (u) = - P;L(p2+l)(d(u)) •, e <u < u. (9)

Furthermore the Hamiltonian must be minimized over the set m >_ 0,
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nL, >^ 0, 0(u) >^ £_, >^ 0, which implies that m^ and dl, are given respec

tively by

raH3H(mH(u)) = P(u)' (10)

3T-1 p.+l
ra^On^u)) =Plp2(d(u)) Z , (11)

whereas SL- is given by

3H P2+1 3T 3H
Ti~ = " P1P2mr^u^ (d^u)) + raT(mT(u)) - ra (n^(u))

+ ^(UJPCU) = 0, (12)

provided that (12) yields JL, £ 6(u), otherwise

8H

9*m
T *T= 6(u)

< 0, and then

£T(u) = 9(u). (13)

The set of u for which I is given by (12) will be called the unsatu

rated region, whereas the set of u for which £T(u) = 6(u) will be called

the saturated region.

Finally, the optimal value of u must be such that the Hamiltonian

vanishes at u = u, which implies that

- 3H
R + rau(nL,(u))

u) = . (14)
^(u)
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From (10) and (14) we can see that the optimal value of the adjoint

variable at u, p(u), is independent of u and hence of n. Let this

value be p.

We can now solve (6)-(14) and obtain the optimal solution. We

start with a trial choice of u, and integrate the system (6) and (9)

backwards using the known boundary conditions n(u) = 0, p(u) = p. The

system is completely deterministic. Since the values of m , m , and

I can be calculated in terms of p(u) from (10)-(13). We check to see

if the boundary condition n(E) = n is satisfied. If it is, then we

have the optimal solution, otherwise we have to try a new value for u.

We see that the optimal solution is parametrized by u, each value of u

corresponding to a particular value of n = n(u). We will sometimes

index the variables by u to denote different optimal solutions: p(u,u),

£T(u,u), d(u,u), etc.

It will prove convenient to change the independent variable from

u to t = u-u, the distance from the city's edge. Also define,

7r(t) = ir(t,u) = p(u-t,u),

6(t) = 6(t,u) = d(u-t,u),

AT(t) = XT(t,u) = &T(u-t,u),

v(t) = v(t,u) = n(u-t,u),

VR(t) = uR(t,u) = mH(u-t,u),

yT(t) = uT(t,u) = m^u-tju).
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In the unsaturated region, i is given by (12). From (10)-(12)

we obtain

3H
ir(t) = A (6(t))

where

3T 3-1

3T-i /eT-i (r°H3H)
V1

A = (P1P2)
V1

(raT3T)
BT-1

> 0,

Differentiating (15), and substituting from (9), we obtain

6(t) = B(6(t))Y,

where

B = p

and

Sm-1
T H ^ A^ B» >>0,

1V $t AV1

(15)

(16)

Y = (1+P2) 1 -
8t W1

.V1.
(17)

H / -I

Thus - * < y < 1+p . Similarly,

XT(t) =- <1+P2)(j-M B(6(t))Y"1 XT(t) +p2 B(6(t))Y"1 6(u-t),
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and

1 , fl+P
.-1 =r~

2

Y-l / 1 \ H 3H \ 3H AW -v(t) = -p B(6(t))Y v(t) +( —V A («(t)) e(u-t)
\ HPH /

(19)

The analysis is considerably simpler in the saturated region. We

must have X (t) = 9(u-t). Hence \)(t) = 0, so that v(t) is constant

over every connected interval in the saturated region. The traffic

density is

6(t) = _V(t) , (20)
9(u-t)uT(t)

where y can be expressed in terms of 6(t) via (11). Finally, ir(t)

still continues to be governed by (9).

It is clear that t = 0 (u = u) is in the unsaturated region.

Furthermore, tt(0) = p(u) = p > 0, and hence from (15), 6(0) = d(u) =

d > 0, independent of u. Since v(0) = 0, we must have X (0) = 0.

In the rest of this paper we will make some of the following

assumptions.

Al 6(u2) _> 9(ux) for u2 >_ u1.

A2 9(u2) 9(Ul)
9(u2) - 9(ux) 2-1

A3 liHl = constant.
— u

Proposition 1. Suppose Al holds. Then 6(t2,u) >_ 6(t1,u) for t2 >_ t1
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Proof. In the unsaturated region 6(t) >^ 0 by (16). In the saturated

region the monotonicity of 6(t) follows from Al, (20), and (11).

Corollary 1. ir(t,u), u (t,u) are non-decreasing in t, and if Al holds,

then u_(t,u) is also non-decreasing.

Proof. Since 6(t) > 0, the monotonicity of it follows from (9), and

then the assertion for uu follows from (10). Since 6(t) is non-decreas-
H

ing, we can deduce the monotonicity of y from (11).

As far as the behavior of X (t) is concerned, three cases may

arise as shown in Fig. 2. Case 1 is the normal one where the entire

city outside the CBD, £ <^ u <^ u, is in the unsaturated region. In case

2 there is a ring, e £. u <^ e, immediately surrounding the CBD which is

entirely devoted to transportation, whereas beyond £ the city is unsatu

rated. Case 3 is quite bizarre with alternating rings of saturated and

unsaturated regions. We now give two sufficient conditions which rule

out Case 3. Define X_ to be the fraction of land devoted to transporta

tion,

Vt,u)
X_(t) = X (t,u) =-^
T T 9(u-t)

Proposition 2. Suppose A. and A„ hold. Suppose further that y <^ 1

(see (17)). Then,

XT(t2,u) >_ XT(t1,u) when t2 >_ t^.

Proof. From (18) we can obtain the differential equation satisfied by
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X in the unsaturated region,

=(-(1+pJ rr^j B(6(t))Y 1+e(uH:)) X(t) +p B(6(t))'
1 * V1 9(G-t)J T 2

(21)

Also X (0) = 0. Let us suppose that (0,t) is in the unsaturated region

but t is saturated i.e., X (t) < 1 for 0 <_ t < t, and X (t) = 1.

Suppose that X is not non-decreasing over (0,t). Then there must

exist 0 <_ t1 < t2 <_ t such that (see Fig. 3)

XT(tx) = XT(t2), (22)

and

XT(tx) > 0 > XT(t2). (23)

Now since 6 is non-decreasing and y <_ 1 we must have

(S^))7"1 <(6(t1))Y"'1, (24)

and by hypothesis

9(u-tn) 9(u-t0)
^- < — . (25)

9(u-t1) 9(u-t2)

From (21), (22), (24), and (25) it is easy to get a contradiction of

(23). Thus X is non-decreasing over (0,t). Next we show that if

X (t) = 1 then X (t) = 1 for t >^ t. Indeed, if this is not the case,

there must exist t > t such that (see Fig. 3)
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XT(t) El, t < t < t ,

and

X(t) > 0 > X(t). (26)

Now, in the saturated region 6(t) is given by (20) and (11). It is

easy to check that 6(t) is again non-decreasing so that 6(t) _> 6(t)

and hence

(6(t))Y_1 < (6(i))Y"1.

But then the same argument as before will result in a contradiction

of (26).

Corollary 2. Under the hypothesis of Proposition 2, Case 3 of Fig. 2

cannot occur in an optimal solution.

Note that Proposition 2 gives conditions which guarantee that the

fraction of land devoted to transportation increases as we approach

the CBD. If we are interested only in avoiding Case 3, a much weaker

condition is possible. The proof of the next proposition is omitted

since the argument is quite similar to the one given above.

Proposition 3. Suppose Al holds. Suppose further that

(1+P9)

Tw (Y"1)"1
9(u)[9(u)] is a non-increasing function of u. Then, in

the optimal solution for X (t,u) either

1 e(u) (1+P2)
For example, constant and / —c- (y-1) - 1 < 0, or

u (3T+P2) ~*

8(u) = constant.
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X (t,u) < 1 for all t <_ u,

or there exists t < u such that

XT(t,u) < 1 for t < t,

X (t,u) = 1 for t _> t.

We will now derive some qualitative properties of the optimal

solution. More detailed properties will be derived in Section 6 for

a special case.

- - - 2 -Definition. Let t = t(u) be the smallest value of t for which XT(t,u)

= 1, where XT(t,u) is the solution of (21) with the initial condition

X(0,u) = 0. Let £ = e(u) = u - t(u). We call t the size of the resi

dential ring, and £ the size of the CBD. Let v = v(u) = v(t(u),u)

where v(t,u) is the solution of (19) with initial condition v(0,u) = 0.

v is called the population of the city.

Proposition 4. Suppose Al and A2 hold. Then X(t,u1) >_ X(t,u2) for

0 £ t _< u1 <. u~.

Proof. The differential equation (21) is of the form

XT(t,u) = f(t,u,XT(t,u)).

3f — -By A2 — (t,u,X) <_ 0 for X >^ 0. The assertion follows
3u

2If xT(t,u) <1for all t<_ u, let t(u) =u;
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Corollary 3. Suppose Al and A2 hold. Then t(u) is a non-decreasing

function of u.

Corollary 4. Suppose Al and A2 hold. Then v(t,u) and v(u) are non-

decreasing functions of u.

Proof. Follows from (19), and Corollary 3.

Thus both the size of the residential ring and the population

increase as the size of the city increases. Surprisingly, it is not

in general true that the size of the CBD increases with the city size

However the following special case does hold. The proof is straight

forward, but laborious, and it is omitted.

Proposition 5. Suppose that A3 holds. Then e(u) is non-decreasing

in u.

4. Benefit-Cost Analysis.

Let Q(n,u) denote the minimum social cost of accomodating n households

in the city beyond distance u including transportation cost up to u. The

adjoint variable p(u,u) satisfies the following relation,

p(u,u) = •£ (n(u,u),u).
on

Since there are no congestion externalities beyond u, p(u,u) = p is

just the marginal cost of accomodating one household when the opportunity

cost of land is R , and the cost of residential density of m is
a H

ajjOO . It follows that the 'optimal' rent profile per household at
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a distance u should be p(u,u).

But the rent profile R(u,u), which would arise from a competitive

market, in the absence of any taxes, will be such that R(u,u) = p, and

R(u,u) + (Average transport cost from u to CBD) = constant. Hence

P2 -R(u) =-Px(d(u)) Z, R(u) =p. (27)

Comparison of (27) with (9) shows that p(u) - R(u) increases as u

decreases. The distorting effects on allocation which would result if

R instead of p were the rent per household are evident. In the first

place, if residential construction were to be undertaken by profit-

maximizing landlords, then m^ would be determined by (10) with p replaced

by R, which would result in a lower residential density. On the other

hand, suppose the city government takes the opportunity cost of land

to be nv,(u)R(u) instead of m^(u)p(u). The net marginal benefit result

ing from devoting land at u to transportation (with the same intensity

m^u)) is

MB(u) = - 8
3*T rn^uH^u)

U(u) I / N
—^^ • n(u)

PT- raT(mT(u)) - mH(u)R(u)

P2+l 3T
= pxp2 rn^u) (d(u)) - raT(mT(u)) -mR(u)R(u).

Substituting from (10) and (12) we get

>(u) ={(1 - |- )p(u) - ROOhijjOi)MB i

h'H
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It then follows that MB(u) > 0 for e <_ u < u and MB(u) < 0 for u < u

£ u, where u is given by MB(u) = 0. Thus there will be a tendency to

devote too much land to transportation near the CBD and too little land

at the fringe. This argument is not completely correct, since what we

must do is to compare the optimal solution with the allocation that

results from a market equilibrium. This will be done in Section 6.

For the moment, all we can assert is that in the absence of taxes or

tolls the optimal solution cannot be sustained by a competitive rent

mechanism. Of course various taxation and toll schemes are possible

which would equate the private cost faced by a household at u with p(u).

5. The Market Solution

We use corresponding capital letters to denote variables. Thus

P replaces p, M and M replace m^, hl, respectively etc. Similarly

A replaces XT, A replaces 6, II replaces it, etc., however V replaces v.

To further aid comparison, we use the same equation numbers superscripted

with a prime.

Let P(u) be the competitive rent paid by a household located at u.

Since the only locational advantage in the model arises from differences

in transport cost, household equilibrium requires

p2P(u) = - p1(D(u)) , E<u<U, (9)

N(u) = - MH(u) (9(u)-LT(u)), E < u < U, (6)

t

N(u) = 0, N(E) = N. (7)
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In (9) , the traffic density D(u) is given by

N(u)
D(u) = MT(u)LT(u) *

We assume that all land is owned by landlords, who take the rent

as given, and adjust M_ so as to maximize profits. This leads to

raR3H(MH(u)) H =P(u). (10)

At U, the edge of the city, returns from household per unit of land

must equal the opportunity cost of land. Thus

- 3HM^POJ) -raH(MR(U)) H=R&, (14)

which gives P(U) = p(u) = p, independent of U.

The value of a unit area of land at distance u is

MH(u)P(u) -ra^Gi)) H,

We suppose that the city government buys land, L„(u), and invests in

transportation, MT(u), so as to minimize {Transportation cost + capital

costs + Value of land}. This leads to

3T-1 P2+l
raT3T(V = PiP2(D(u)) » (11)

and

p?+l 3 3H
-PXP2 Mt(u) (D(u)) +raT(MT(u)) -raH(MR(u)) +MR(u)P(u) =0,

(12)'
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provided that (12) yields L (u) £ 0(u). Otherwise the city govern

ment converts all land to transportation,

LT(u) = 9(u). (13)

» i

In the unsaturated region, we obtain from (10) -(12) ,

-H 2 \3T~V \ 3P /
n(t) = A H (A(t)) , (15)

where II(t,U) = P(U-t,U), A(t,U) = D(U-t,U). In particular, A(0) = 6(0)

_ _ i i

= d, independent of U. From (15) and (9) we get

A(t) =^1— (A(t))Y. (16)
1+P2

Similarly, in the unsaturated region, we have

and

^(t) =- (P2 +3^- +—^ ) B(A(t))Y 1AT(t) +p2 B(A(t))Y 19(U-t),

(18)'
^ 1 (1+>2\( 3T >\

1 / 1 \ H 3h V K AW
V(t) = - p9 B(A(t))Y"XV(t) + -^4~ A MO) e(u-t),

2 VraH3H/

(19)'

L(t) = -((p2 +-i— + 1 ) B(A(t))Y_:L +^=& ) L(t)T ^ 2 l+p2 3T-1 Q(-_t) J T

+ p2 B(A(t))Y 1. (21)
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It follows that all the qualitative results derived in Section 3,

continue to hold for the market solution.

6. Comparison of Optimal and Market Solutions

We first compare the two solutions when the city sizes are the

same i.e., u = U. Next we consider the case where the two populations

are the same i.e., n = N. Finally we derive asymptotic relations for

the special case —-— = constant.
u

' 3
The differential equations (16), (16) yield respectively

6(t) = [B(l-y)(6+t)]1 Y , (28)

A(t) = [B(l-Y)(6+ t£— )]1-Y (28)
1+P2

where

£= (S(O))1 Y _ d1"7
B(l-y) B(1-y)

t

Note that (28), (28) are valid only in the unsaturated region. Also

6 < 0 if y >1, which leads to the following surprising result.

Definition. For y > 1, define t^ and T^ by the conditions I + tm = 0,

6 + f =0.
00

Note T^ = (l+p2)too.

3 If y = 1, (28) becomes S(t) =d exp (Bt). This can be obtained
directly from (16) or by taking limits in (28) as y approaches 1.
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Proposition 6. Suppose y > 1« Then the size of the residential rings

t(u) < ttt, f(u) < T^.

Proof. Follows from the fact that lim 6(t,u) = «, lim A(t,u) = »,
t -»• t t •* T

00 CO

independent of u.

Returning to (28), (28) we note that 6(t) > A(t) for t > 0 since
t

P2 > 0. It follows from (11), (11) that iil,(u) > ML(u) . Similarly
♦ i

from (15), (15) and (10), (10) we can conclude that p(u) > P(u) and

m„(u) > M^(u). This can be summarized as follows.

Proposition 7. Suppose u = U. Then, the intensity of land use in both

the transportation and housing sectors is greater in the optimal solu

tion than the market solution.

The relation between X-, and A is not unequivocal, and depends upon

t

the value of y. The differential equations (18), (18) are of the

form

XT(t,u) =(6(t))Y_1 <Kt,G,XT(t,u)), (29)

AT(t,u) =(A(t))Y_1 $(t,u,AT(t,u)) (29)'

with

<|>(t,u,X) < $(t,u,X) for 0 <_ t <_ u, 0 < X. (30).

Proposition 8. Suppose y £ 1- Then A™(t,u) > XT(t,u) for t > 0.

Proof. Since 6(t) >_ A(t) and y <_ 1, therefore (6(t))Y_1 <_ (A(t))Y~1.
t

The assertion follows from (29), (29) , and (30).
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Corollary 5. Suppose y < 1. Then t(u) > T(u) i.e., the size of the

optimal residential ring is greater than the market residential ring.

Also n(u) > N(u) i.e., the population of the optimal city exceeds that

of the market city.

Proof. t(u), T(u) are respectively given by X (t(u),u) = 9(u"-t(u)),

AT(f(u),u) = 9(u-f(u)). Since XT(t,u) <AT(t,u), it follows that

f(u) < t(u). Next,

ft(u)
n(u) = I mH(u-t,u)[9(u-t) -A^t.u)],

-T(u)

N(u") = I MH(u-t,G)[9(u-t) -AT(t,u)]dt
0

By Proposition 7 mH(u-t,u) ^^(u-tju), and since A < AT, t(u) > f(u),

it follows that N(u) < n(u).

i

If Y > 1, a comparison of (18), (18) shows that allocation of

land between transportation and residences for the two institutions can

take one of the two forms shown in Fig. 4. Similarly, if we compare

i

(19) with (19) we can see that the population of the market city may

be greater or smaller than the population of the optimal city. However,

since the case y > 1 does not appear to be the normal situation, we do

not pursue it any further.

We now turn to a comparison of the two situations when the popula

tions are the same i.e., n = N. We denote by u(n), £(n), t(n),

respectively, the size of the city, the size of the CBD, and the size

-24-



of the residential ring for the optimal solution when the total popu

lation is n. Similarly, we define U(n), E(n), and T(n).

Proposition 9. Suppose Al holds. Then

V((l+p2)u) >_ (l+p2)v(u) for all u^ 0.

V((l+p )t, (1+P2)u)
Proof. Define W(t) = W(t,u) = (1+P~1 ' Then fr°m (19) '

we see that

W(t) =- p2 B(6(t))Y"*1 W(t)

^ 1_ (1+p2V\
f i VH 3h V 3h AW+ —V- A H (6(t)) H/Ni 9((l+p_)(u-t))
\raH3H/ 2

If we compare this with (19), and note that 9((l+p2)(u-t)) >_ 9(u-t) by

Al, we can immediately conclude that

V((l+p )t, (l+p2)u)
W(t,u) = ££ ^_ v(t,u) for 0 <_ t <_ t(u).

V((l+p2)u) > _ _
Hence — — v(u).

1+P2

Corollary 6. Suppose Al and A2 hold, and suppose y £. 1« Then

u(n) < U(n) <_ (1+p )u(n) for all n _> 0.

Proof. Since Al and A2 hold, it follows from Corollary 3 that u(n)
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and U(n) are non-decreasing functions of n, and so the first inequality

follows from Corollary 5. The second inequality is an immediate conse

quence of Proposition 9.

The result above establishes bound between the size of the optimal

and market cities with the same population. Proposition 9 implies also

that the sizes of the two residential rings satisfy the inequality

T(n) <^ (l+p-)t(n). By laborious manipulation one can refine this to

obtain the following result. The proof is omitted.

Proposition 10. Suppose A3 holds, and y <_ 1. Then,

£(n) < E(n) < (l+p2)£(n),

t(n) < f(n) < (l+p2)t(n).

Now suppose A3 holds. Then we can explicitly solve for the dif-

• _ _ _ _

ferential equation (21), (21) and obtain t(u), T(U) by setting

X (t(u),u) = 1, A (T(U),U) = 1. The asymptotic behavior of these

functions is given below. The derivation is omitted.

Proposition 11. Suppose A3 holds, and suppose y £. 1* Then

i• t(u) .. . f(U) TTlim —^— = w, _lim —-— = W,
u -»• »> u U ->• °° U

where the constants w, W are given by

w = 7 z r , W =

wrw2 wrw2
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with

"l =a+p2){Th)' W2 =p2

In particular, 0 < W < w < 1.

t

We can also solve (19), (19) and use the preceding result to

obtain the asymptotic behavior of \)(u), V(U).

Proposition 12. Suppose A3 holds, and y < 1. Let W = 9 > 0. Then

u ->• °° U

lim j=+2 - e0 S
u -*• °° U

1 ( P2 \
where s, S are constants with 0 < S < s, and e = -—— I1 +

From this result we can conclude that the average gross density

-^r , —-^r- becomes unbounded as the population grows. Furthermore
eQ u' e0u

the ratios of the city sizes _ approaches a constant less than 1
U(n)

as the population grows.

7. A Critical Comment

The model presented here has two serious defects. First of all,

taking access to the CBD as the sole determinant of rent is a very

crude assumption. More serious is the fact that the market solution

is an equilibrium solution in a very weak sense. That is to say, no
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realistic adjustment process can be conceived which can bring about

this solution. The reason for this is that capital in residences and

transportation is 'sunk' capital, with little or no ex-post substituta-

bility. Hence it is impossible that the allocation of capital in city

structures is in static equilibrium.
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Footnotes

1 9(u) (1+P2)
For example, w = constant and tQ , >. (y~D - 1 < 0, or

u (pt+p2; —

9(u) = constant.

2 If X (t,u) <1 for all t <_ u, let t(u) = u.

3 If y = 1, (28) becomes 6(t) = d exp (Bt). This can be obtained

directly from (16) or by taking limits in (28) as y approaches 1
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Case I

Fig. 2. Possible behaviors of XT(t).
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Fig. 1. Land use in the city.
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Fig. 3. Illustration for Proposition 2
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Fig. 4. Land allocation when y > 1.
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