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ON THE INPUT-OUTPUT PROPERTIES OF CONVOLUTION FEEDBACK SYSTEMS

by

Frank M. Callier

ABSTRACT

This dissertation considers n-input n-output convolution

feedback systems characterized by y = G*e and e = u-y. The con

tinuous-time case as well as the discrete-time case are considered

in the framework of the convolution algebras Ci and I respectively.

A graphical test is developed for checking the condition

inf |l + g(s)| > 0 where g is the sum of a finite number of
Re s > 0

poles and a term in ^ (i.e. the Laplace transform of an integrable

function plus a series of delayed impulses). This is a significant

extension of the Nyquist plot test because, in our case, as |u| -*• «

the function w h- g(ja>) is asymptotically almost periodic rather than

tending to zero as in the classical case. The discrete-time counter

part of this test as well as its extension to the n-input n-output

case are also given.

The relation between the open-loop operator G and the closed-

loop operator H is discussed. Thereby the importance of systems

considered by Vidyasagar is demonstrated i.e. of systems with

A a/v n AA^»nVn

open-loop transfer function G(s) = P(s)[Q(s)] where P, Q^h

or G(z) = P(z)[Q(z)]~ where P, Q € I . It is shown that if the
^J ^ nxn
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closed-loop impulse response H is stable in the sense that H <= u. or

H £ A then the open-loop transfer function is of the above form.
n*n

Moreover necessary and sufficient conditions for stability are

given using this open-loop transfer function representation.

Finally necessary and sufficient conditions for stability are

given when the open-loop transfer function is of the above form with

a finite number of poles in the open right half-plane Re s > 0 or

in the open annulus |z| > 1.

The dissertation concludes by giving (a) necessary and sufficient

conditions for stability when constant singular feedback is present

in a simple case and (b) an application of the above theory to the

stability analysis of nonlinear feedback systems.
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1. INTRODUCTION

This dissertation considers linear time-invariant feed

back systems with n inputs and n outputs. As it will become

apparent there is no loss of generality in taking the feedback

to be unity. We shall consider both continuous-time and

discrete-time convolution feedback systems. Therefore a

description and preliminaries are given for both cases.

1.1.1 System Description in the Continuous-time Case.

For the feedback system under consideration, the input

u, output y and error e are functions from IK,, (defined as

[0,°°)), to 1R or corresponding distributions on 1R . The

open-loop system is of the convolution type so that we have:

(1.1) y = G*e

(1.2) e = u-y

where 6 is an nxn matrix whose elements are distributions on

H+» Let H denote the closed-loop impulse response of the

feedback system, i.e.:

(1.3) y = H*u

and let G, H denote the maps G: e|—»»G*e, H: ul—*-H*u

respectively.
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We shall repeatedly use the convolution algebra (2. [1,2]:

f is said to be in CL iff

(1.4) f 0 for t <0
f(t) =

fa(t) + £ f± 6(t-t.) for t10 j
i=0

J 00

|f (t)|dt <°°)» f± G^for all i,
0 a

oo

6(.) is the Dirac 6-function, {f.}°° ^ £- (i.e. 2 |f.| < °°)
1 i=0 i=0

and 0 = tn < t- < t„ < ... < t. < ... . Thus f is a distribution

of order 0 with support on 1R . An n-vector v(n*n matrix A)

is said to be in CC LCX^^) iff all its elements are in CL.

Let f denote the Laplace transform of f:f belongs to the con-

volution algebra <a if and only if f belongs to the algebra

CL with pointwise product. Similarly v £ CL ,A £ CL . We

shall also use the Banach spaces Lq[0,°°) for some q £ [l,00].
n

A function v mapping lR , into H belongs to L [O,00) for some
+ n

q G [1,°°] iff the function tf—*-|v(t)|, where |»| denotes any

vector norm in lRn, belongs to Lq[0,°°) for the same q£ [l,00]

(i.e. I |v(t)|qdt <» when q£ [l,00) or |v(-)| essentially

bounded when q = °°) .

1.1.2 System Description in the Discrete-time Case.

For the feedback system under consideration, the input u,

output y and error e are functions from U- (the set of non-

negative integers) into H . The open-loop system is of the

v*

f

CT
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convolution type so that we have

(1.1») y = G*e

(1.2») e = u-y

where G is specified by a sequence of real nxn matrices

oo m
{G } ; thus (l.lf) is equivalent to y = V* G . e, for

1 i=0 m i=0 m_:L *

m = 0, 1, 2, ... . Let H denote the closed-loop impulse

response of the feedback system i.e.:

(1.3') y = H*u

and let G, H denote the maps G: e\—*-G*e, H: ul—*H*u

respectively.

We shall repeatedly use the convolution algebra £ : f is

said to be in H1 iff

(1.4*) f= (f0>£lff2,...)

where f. £ 1R for all i and /J If.l < °°. The product of two
1 i=0 x .

elements f, g € £ is given by their convolution: (f*g) =
m

m

2J fm <8j f°r m = 0, 1, 2, ... and it is easy to show that

f*g € £ [3]. An n vector v (nxn matrix A) is said to be in

A«(A«v„) iff a11 its elements are in & . Let f denote the
n n*n

•v 00

z-transform of f, i.e. f(z) = £ f<z~±: f belongs to the
i=0
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convolution algebra I iff f belongs to the algebra l with

~1 ~1
pointwise product. Similarly v £ i ,A£ fcnxn* We sha11 also

use the Banach spaces £q for some q G [1,°°]« A function v
n

mapping X into tRn belongs to £q for some q^ [1,-] iff the

function iI—•|v.|, where |«| denotes any vector norm in R ,

00

belongs to Zq for the same qS [1,«] (i.e. £ lv,- |q < °° when
i=0

q £ [l,00) or {|v. |}°° essentially bounded when q - °°) .
1 i=0

1.2 General Remarks.

Notation

Unless specified otherwise explicitly, following notation

is used throughout the dissertation:

1R «C) field of real (complex) numbers

X ring of integers

TR set of nonnegative real numbers

%• set of nonnegative integers

1Rn set of real n-vectors

lRnXn set of real nxn matrices

j the imaginary unit

s complex variable of the Laplace transform

z complex variable of the z-transform

Re s real part of the complex quantity s

I unity matrix

lower case letters are used to indicate scalar-valued or vector-

valued quantities

M
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Capital letters are used to indicate matrix-valued quantities.

f Laplace-transform of f

f z-transform of f

g (G) scalar-valued, (respectively, matrix-valued) open-

loop impulse response

h (H) scalar-valued, (respectively, matrix-valued) closed-

loop impulse response

(a,w) cartesian coordinates of the complex variable s

(p»y) polar coordinates of the complex variable z

Note to the Reader

For reasons of clarity all statements, formulas, remarks,

conventions and facts are indexed by a reference number.

Theorems and corollaries have their own indexing system. Index

numbers terminated by a prime refer to discrete-time convolution

feedback systems.

Except for section 1, i.e. the introduction, an attempt

has been made to group as much as possible in self-contained

blocks results on the discrete-time case and results on the

continuous-time case. In each block reference numbers and the

index numbers of theorems and corrolaries are monotonically

increasing.

For ease of reference on top of each page appears the

first new reference number used and the theorems or corrolary

stated on this page, as soon as they occur.

Special terminology used in the dissertation

minor determinant of a square submatrix
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principal part of G (G) sum of the local principal parts

of G (G) in Re s ^ 0 (|z| _> 1)

1.3 Historical Background 5**

Convolution feedback systems have been studied for a -•-

long time in control and circuit theory. In fact it may be

said that they gave the starting pulse for the set-up of linear

control and systems theory as we know them today. The elegance

of these systems lies in the fact a) that through the super

position principle one needs only to study the impulse response

of such systems and b) that through transform-techniques such

as the Laplace- and z-transform the convolution of two operators

is replaced by a pointwise product of them in the transform-

space, where the powerfull results of analytic function theory

and linear algebra are available. Therefore very sharp results

concerning the input-output properties of convolution feedback

systems can be obtained.

Initially authors were mainly concerned with single-input

single-output lumped convolution feedback systems [8,9] and the #

extension of the ideas in [8] to n-input n-output lumped con-

volution feedback systems [e.g., 10]. Of central importance for ?•

lumped systems is Nyquist's graphical test in [8] which in the

single-input single-output continuous-time case is necessary

and sufficient to insure that the input and output of the system

are related by an ordinary differential equation with stable modes.

In the sequel authors tried to extend Nyquist's graphical
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test to distributed convolution feedback systems. A first

step is Desoer*s paper [11], who works in the Banach space

L [O,00) and uses the Paley-Wiener Theorem [12]. A second

step was the definition by Desoer and Wu [1] of the convolution

algebra CL which was possible by a result of Hille and Phillips

[13]. The central fact here is that it is possible to handle

distributions in Q. whereas in L [0,°°) this is not so, more

over u is an algebra isomorphic to the algebra of its Laplace

transforms C\» Based on these ideas results on the input-

output properties of convolution feedback systems were further

presented in J. C. Willems [14,15], Baker and Vakharia [16],

Desoer and Wu [2,3], Desoer and Vidyasagar [17], Desoer and

Lam [18,19,20], Vidyasagar [21], Nasburg and Baker [22] and

Desoer and Callier [4,5,6,7].

1.4 Contributions of this Dissertation.

This dissertation is partly a reorganization of recent

contributions of Callier and Desoer [4,5,6,7], and is therefore

subdivided in following sections below:

Sec. 2. A graphical test for checking the stability of a

single-input, single-output convolution feedback system.

Sec. 3. Continuous-time n-input n-output convolution feedback

systems.

Sec. 4. Discrete-time n-input n-output convolution feedback

systems.

Sec. 5. Conclusion
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(A) In section 2 a graphical test is developed for checking

the condition

(1.5) inf |l + g(s)| > 0
Re s > 0

where g consists of a term in (X and a finite number of poles .£

in Re s > 0. As a consequence 1 + g is, in Re s ^ 0, asymptotic

to an almost periodic function say f as |s|l—• ».

Theorem 2.1 gives a necessary and sufficient condition in

volving the curve {f(ja))|oj ^ R} to insure that inf |f(s)| > 0;
Re s > 0

corollary 2.1 gives a corresponding graphical test.

Theorem 2.2 and Corollary 2.2 give necessary and sufficient

conditions involving the curve {1 + g(jw)|u> ^ "R } and a graph

ical test, to insure (1.5) a condition essential for the L -

stability of the continuous-time feedback system under study.

Theorem 2.2 and Corollary 2.2 constitute a two-way generalization

of Willems result [14,15], first we do not assume that the

impulses of g are equally spaced and second we allow g to contain ^

a finite number of poles in Re s >_ 0.

Next by decomposition-lemma A. 2 we show that the graphical ->

test as given by Corollary 2.2 can be used for checking the

condition

(1.6) inf | det [I + G(s)] |> 0
Re s > 0

where G(s) is a matrix-valued transfer function consisting
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of a term in 61 and a principal part corresponding to a finite

number of poles in Re s ^ 0.

Finally a graphical test is developed for checking the

discrete-time counterpart of condition (1.5) in Theorem 2.2f

and Corollary 2.2'. We show thereby the simplification that

occurs due to the fact that, in this case, the open-loop

transfer function g becomes asymptotically constant as |z| -»•«».

We show also that Corollary 2.2' has implications for the

discrete-time counterpart of (1.6) as well. Thus section 2

shows the applicability of a graphical test to check conditons

(1.5), (1.6) and their discrete-time counterparts. It is inter

esting to note that recently J. H. Davis [34] has obtained simi

lar results using different techniques.

(B) Sections 3 and 4 present input-output properties of

continuous-time respectively discrete-time n-input n-output

convolution feedback systems. Their structures are analoguous

First the overwhelming importance of systems in Vidyasagar's

setting [21] is shown, i.e. of systems described by either

(1.1) - (1.2) and

(1.7) G(s)=^
Q(s)

where P(-), Q(-) belong to#n*n

or (1.1*) - (1.2') and

<1.7») G(z) =1^-
Q(z)

where P(') and Q(*) belong to l
n*n
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Indeed in Theorems 3.1 and 4.1* we show that, under mild

assumptions, G(s) (and G(z)) are of the structure (1.7) (respec

tively, (1-71)) if the closed-loop impulse response H is sup

posed to be in #nXn (respectively, A^). These theorems extend
results of Nasburg and Baker [22] to the n-input n-output case

and greatly relax the conditions imposed by previous authors.

Moreover in Theorems 3.2 and 4.21 necessary and sufficient

conditions involving (1.7) (respectively, (1.7')) are presented

for H to be an element of #nxn (respectively, &nXn) if the

open-loop impulse response G is supposed to be Laplace -

(respectively, z-transformable). These theorems again con

stitute an extension of a result of Nasburg and Baker [22] to

the n-input, n-output case. As a second part of sections 3

and 4 necessary and sufficient conditions for H to belong to

(2nXn (respectively, Z1 )are presented when the open-loop

transfer function G (respectively, G) consists of a term m

(7nXn (respectively, I1 )and aprincipal part due to a finite
nxn

number of poles in Re s > 0 (respectively, |z| >_ 1).

Theorems 3.3 and 4.3' culminates a series of investigations

by Desoer, Wu and Lam [1,2,3,18,19,20], and handles the case
>#nxn ,

where G (respectively, G) consists of a term in OL (respec

tively, l1 ) and a principal part due to a higher order pole
J nxn

in Re s > 0 (respectively, |z| >_ 1). Theorem 3.4 makes an

interpretation of the conditons of Theorem 3.3 possible and

establishes a link with C. T. Chen's result [10]. Theorems

3.5 and 4.4* state the reinterpreted conditions for H to belong
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nxn
to a (respectively, A ) when G (respectively, G) con-

nxn

A V 1

sists of a term in CL (respectively, I ) and a principal

part due to a finite number of poles in Re s > 0 respectively

|z| >^ 1. These conditions are new and have not yet appeared

in the literature.

@ In section 5 after discussing the previous results, we

state in Theorem 5.1 necessary and sufficient conditions for

H to belong to tZ for a simple convolution feedback system

where a singular nonunity constant feedback is present. Finally

in Theorem 5.2 we state sufficient conditions for the input-

output stability of a nonlinear time-varying 2n-input 2n-output

feedback system, where we use a result of the dissertation

namely Theorem 3.5. We show thereby that the results of this

dissertation have immediate Implications for the stability

analysis of nonlinear feedback systems through the application

of the small gain theorem, passivity theorem, and loop transfor

mation theorem [15,20].

1.5.1 Preliminary Results for the Continuous-time Case

We state now some well-known results concerning the

algebra (Z. (See among others [1],[2],[13] p. 150)

(1.13)

(1.14)

r If g belong to CL, then g is analytic in Re s > 0, bounded

A
in Re s > 0, and each function in |—•gCo+jto) where s = a + jw

is uniformly continuous for all o >_ 0.

If g belongs to CL then g is invertible in CL if and only if

inf |g(s)| > 0
Re s > 0



(1.15) <

(1.15)

C If G belongs to <#nXn then G is invertible in (X

if and only if

inf |det G(s)| > 0
Re s > 0

1.12

nxn

^

(1.16)

nxnIf H belongs to d and y = H*u then

u e Lq[0,«) => y e Lq[0,«) for all q G [l,oo]
n n

(1.17) Remark. Concerning the system defined by (1.1) - (1-2) we

see that H G CLn*n implies Lq - input - output stability for
n

this system for any q £ [l,00] and therefore the system (1.1)

(1.2) is said to be stable iff H € «

1.5.2 Preliminary Results for the Discrete-time Case.

We state next some well-known results concerning the

algebra & . (See among others [3]p.l9)

(1.13')

(1.141)

(1.15')

r If g belongs to I , then g is analytic in |z| > 1,
*** T "V

bounded in |z| >_ 1, each function Yl—*g(peJ ) is uniformly

\y
continuous on [0,2tt] for all p > 1 (after setting z = pe )

and lim g(z) = gQ = constant.

If g belongs to Jl , then g is invertible in I if and

only if

inf |g(z)| > 0
Izl > 1

^

r 11 G belongs to I then G is invertible in £ if and
° nxn n*n

only if

inf |det G(z)| > 0
v z > 1
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if

(1.16')

r If H belongs to I v and y = H*u then
n*n

(1.16') I
u G £q => y G Aq for all q G [1,»]

n n

1.13

(1.17') Remark. Concerning the system defined by (1.1') - (1.2') we

see that H e a1 implies £q - input - output stability for
n*n r n

this system for any q £ [l,00] and therefore we agree to say

that the system (1.1') - (1.2') is stable iff H G J^.
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2. A GRAPHICAL TEST FOR CHECKING THE STABILITY OF A

SINGLE-INPUT SINGLE-OUTPUT CONVOLUTION FEEDBACK SYSTEM

2.1 Introduction

It is well-known that the classical graphical test [8]

for stability is extremely important for two reasons: (a) it

is based on experimental data that are easy to obtain with

great accuracy and (b) in case of instability it gives clear

indications of the required design modifications. Recently

J. C. Willems [14,15] developed a graphical test for a single-

input single-output continuous-time convolution feedback system

with constant feedback, where the open-loop impulse response

g(t) belongs to the algebra CL and contains equally spaced

impulses. This section generalizes previous result in that

(a) the open-loop transfer function g(s) is the sum of a term

in CL and a finite number of poles in Re s >^ 0, and (b) it does

not require that impulses of g(t) be equally spaced. As a

consequence the funtion s|—»*g(s) is asymptotically almost

periodic in Re s > 0 for |s| ->• «>, and the conformal mapping

technique of Willems does not work. We have to rely heavily

on the theory of almost periodic functions [23,24,25]. It

should be stressed that this difficulty is not encountered in

the case of an analog single-input single-output discrete-time

system. Indeed if z[—•g(z) consists of a term in £ and a
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finite number of poles in |z| >_ 1 then z|—*g(z) has constant

asymptote in |z| _> 1 for |z| -> °° and therefore a graphical

test can be obtained by a simple technique. Furthermore an

important observation will be that the problem handled here

has implications for the n-input, n-output case as well. All

this will be handled in the paragraphs below.

2.2 Graphical Test for the Continuous-time Case.

2.2.1 Description of the System and Assumptions.

We consider a continuous-time scalar linear time-

invariant system with input u, error e and output y. The

latter are functions mapping W? into 1R and satisfy

(2.1) y = g*e

(2.2) e = u-y

where g is a real-valued distribution with support on v\

As will become apparent there is no loss of generality in

taking a unity feedback. Let g denote the Laplace-transform

of g. We assume that g has the following form

I n^-l
-m,+m

(2.3) £<•) =lr(s) +2 2 rkm(s-Pk>
k=l m=0

where

(2.4) gr e a ;
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f the poles p, are either real with real coefficients r

(2.5) I
l^or conjugate complex with conjugate complex coefficients r, ;

(2.6) Re p, > 0 for k = 1, 2, ..., I .

Note that because of (1.13) and (2.4)

g (•) is analytic in Re s > 0, bounded in Re s > 0

" A
(2.7) < and each function oj \—•g (a + jto) with s = a + jw

is uniformly continuous for all a >_ 0.

It follows therefore that

f"g(.) is meromorphic in Re s > 0, well defined and
(2.8) I

l^ continuous almost everywhere in Re s >^ 0.

A necessary and sufficient condition that the closed-loop

impulse response h of the system (2.1) - (2.6) is in C\ (and

thus stable as defined by remark (1.17)) is:

(2.9) inf |l + g(s)| > 0.
Re s > 0

For a proof see the appendix, lemma A.l.

The problem is to develop a graphical test for (2.9) based

on the curve {1 + g(jco) |w £ IK}. Observe that because of (2.4)

g has following structure:

E-st.

g± e X
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where

(2.11) g (•) is a real-valued function belonging to L [0,«);
a

(2.12) g. elR for i = 0, 1, 2, ...;

(2.13) ^ |gi| <«>
i=0

(2.14) 0 = tQ < tx < ... < t± <

Let

~st± £V "st'
i=0 i=0

^ -st. *^—\ ~st.

(2.15) f(8)^l+2-rgie =2-Tfie X'

Then f(s) is a Dirichlet-series with Dirichlet-exponents -t±

subject to (2.14) and Dirichlet-coefficients fi such that

(2.16) f0 = 1+ gQ; f± = g± for 1=1,2, ...

where the coefficients g± satisfy (2.12) - (2.13). First we

develop a condition expressed in terms of the curve {f(jto) |co £ IK)

insuring that inf |f(s)| > 0, and then we use this result
Re s > 0

to develop the condition involving {1 + g(jw) |w € TK } that will

insure (2.9).

Given s = a + ju we denote by V the vertical line in <C

(i.e. the complex plane) with Re s = o. Moreover by I(s) we

mean the complex conjugate of f(s). Finally let
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n = the number of poles of g(s) counting multiplicities

with Re p. > 0.
k

2.2.2 A Necessary and Sufficient Condition Involving the Almost

Periodic Curve {f(jio) [to £ jR} to insure inf 1f(s) [> 0,
Re s _> 0

Note that f defined by (2.15) - (2.16), is in CL as a

consequence of (2.12) - (2.14) and can be uniformly approximated

in Re s > 0 by a finite number of terms of the series (2.15).

Hence

f is bounded and uniformly continuous in Re s >^ 0 and

•;?..i;:;
f is analytic in Re s > 0 •

We state next some standard definitions [23,24] and facts which

streamline the proof of Theroem 2.1.

Given a line L, a set S C L is said to be ^.-relatively

dense on L iff any open interval of length £ on L contains at

least one point of the set.

Given a complex-valued function w : D I—*-(H, an element t

of D is said to be an e-translation-number of w on D iff

|w(x+t) - w(x) | <_ e for all x £= D.

A complex-valued function w of a real variable x is said

to be almost periodic iff, given any e > 0, there exists a

real number £ = £(e) > 0 such that the set of e-translation-

numbers T - f(e) of w on IK is £-relatively dense on IK .

Let -00 < a < B < °°. A complex-valued function w of a
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complex variable s, analytic in a (vertical) strip (a,3), is

said to be almost periodic in a strip (a,3) ([a,33), iff given

any c > 0, there exists a real number £ = £(e) > 0 such that

the set of imaginary e-translation numbers jt = jx(e) of w on

the strip (a,3) ([a,3]) is ^-relatively dense on the imaginary

axis.

Note that this last definition requires that the functions

wj—*w(a + jw) be almost periodic on any V for a £ (a,3)

([a,3]) with an almost periodicity that is independent of a,

for a G (a,3) ([a,3]).

(2.18a) Fact.

The function f defined by (2.15) - (2.16) is almost periodic

in the strip [0,»).

Proof:

i) f(jw) is almost periodic on V. because f(j<*0 can be

uniformly approximated by a trigonometric polynomial

N A -

f±-e ([25]p. 9).
i=0

ii) We claim that the set T(e) = {jt(£)|t(e) = £-translation-
a,

number of f(jw) on Vn) is the set of £-translation-numbers of

f(s) on the strip [0,»).

Indeed by (2.18)

a ^ r^ -JTt. -st.
t?t(s) =f(s +jt) -f(s) =2^ f±(e X-De X
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is a Dirichlet-series bounded and uniformly continuous in

Re s ^ 0, analytic in Re s > 0 and by (2.14) all its Dirichlet-

exponents -t., i = 1, 2, ... are negative, which implies that

M (a) = sup Itt (a + joo) I

is decreasing ono> 0 for any T ([25] p. 69-70). Let T = x(e)

be any e-translation-number of f(jw) on VQ, then

|f(jw +Jt) -f(jw)| =|*T(ju)| <e for all uelR;

in other words M (0) _< e. Therefore, for all s in the strip

[0,«0,

|f(s +jt) -f(s)| =^(s) <Mt(o) <Mt(0) <£.

Thus T(e) is a set of c-translation-numbers of f(s) on the

strip [0,») and since, by definition, any E-translation-number

jt = jt(e) of f(s) on the strip [0,«>) must be an s-translation-

number of f(jw) on V_, we obtain that T(e) is the complete set

of E-translation-numbers of f(s) on the strip [0,°°). Thus the

claim is proved.

Finally i) and ii) imply that given any £ > 0, there exists

a real number £(e) > 0 such that the set of imaginary ^-translation-

numbers of f(s) on the strip [0,») is ^-relatively dense on the

imaginary axis. X

Let us now consider the distribution of zeros of f(s) in

the strip (0,«)
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(2.18b) Fact.

If f(s), defined by (2.15) - (2.16), has a zero sn = o„ + i«
0 0 J 0

in the strip (0,«), then f(s) has infinitely many zeros in a

strip (a,3) (with 0 <a<3<°°) containing sQ, and their imaginary

parts are relatively dense on the imaginary axis (i.e. there

exists a number £ > 0, such that the imaginary parts are £ -

relatively dense on the imaginary axis).

Proof:

Without loss of generality we assume that f(s) is not

identically zero in Re s ^ 0. Since f(s) is analytic in Re s > 0,

its zeros are not dense in Re s > 0, therefore we can choose

0 <r < c0 such that |f(s) | >_ m >0 on |s -' sfl| = r. By fact

(2.18a) for any 0 < e < m there exists a set of e-translation-

numbers jt = jx(e) of f on the strip [O,00) that is relatively

dense on the imaginary axis. Hence by f(s + jt) = f(s + jt) -

f(s) + f(s) it follows by (2.18) and Rouchefs theorem (see [26],

theorem 9.2.3, p. 254) that f(s) has a zero in any disc |s -

(sn + jt)I < r, which proves the fact. X

Definition of the Argument 4>(s) of f(s)

By definition

(2.19) <J>(s) = arg f(s) » Im log f(s) in Re s > 0

with two additional conventions.

(2.19a) Convention. Let L denote a straight oriented line in Re s > 0.

By convention we take <f>(s), s €E L, as the right argument of

f(s) on L, i.e. <J>(s), s ^ L, is an arbitrary branch of the argu

ment which is continuous except at the zeros of f(s) on L, while

*.
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it is discontinuous with a jump of -Hmr, when s goes through

a zero of f(s) of order m in the positive direction of L. At

any discontinuity point we assign to <{> the mean value of its

one-sided limits. The function <|>(s), s £ L, is then well

defined (mod. 2tt) because of (2.18).

A

(2.19b) Convention. Because f(j0) is real and because it will later be

assumed to be nonzero we pick for u)}—•<()(jto), co £ fK , that

branch of the argument such that <j>(j0) = 0 (or it) according as

f(j0) is positive (or negative, respectively).

Remarks.

(2.19c) Remark. It is important to observe that by convention (2.19a)

and (2.18) the principle of the argument may be applied to f(s)

on any rectangle in Re s > 0 which is oriented in clockwise

sense and which has no zeros of f(s) on its corners.

(2.19d) Remark. Because of (2.18) and (2.19), for any strip (a,3) in

Re s > 0 such that 0 <_ a < M» and inf |f(s) |> 0,
3 _> Re s _> a

(J>(s) is well defined (mod. 2tt) and uniformly continuous in the

strip [a,3] and analytic in the strip (a,3).

Since by Fact (2.18.a), u) l—• f(jw) is almost periodic we have:

(2.19e) Fact [24].

Let f be defined by (2.15) - (2.16). If

(2.20) inf |f(Ju)| = K > 0
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then

(a) u>| •<J>(jw) is well defined on H and is of the form

(2.21) <Kjw) = Aw + w(jw)

where X is a constant and a> f—•w(ja)) is almost periodic; the

constant X will be called "the mean angular velocity of f(jio)"

(In the literature the term "mean motion of f(ju>)" is used,

however this is borrowed from celestial mechanics),

(b) if N is the least paaa+amm integer such that

(2.22) ^J |f±| <. Ksin(6/2) for some 0<6<ir
N+l

then the mean angular velocity X of f(jw) may be written in both

the forms

(2.23) X = - hQt0 -h^ - ... - hjjtjj

where the coefficients hft, h., ..., h are integers with sum 1

and

(2.24) X=-r0t0-r1t1- ... -rNtN

where the coefficients rfl, r., ..., r are nonnegative rationals

with sum 1,

(c) with

(2.25) £ <. K sin(6/2) 6 < tt

any c-translation-number t(e) of w |—•f(jw) satisfies
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(2.26) |*(jw + jx) - <J>(jw) - ct2tt| < 6 for all u H

(2.27) |Xt - ct2tt| <6

where c is an integer depending on t,
T

(d) the function w •—•<(> (jt»0 is almost periodic if and only if

the mean angular velocity X of f(jo>) is zero or equivalently if
+00

and only if there exists an increasing sequence {w^}
n=-oo

satisfying

(2.28) ... < u)_n < ... < w-]L < o>0 = 0 < a)1 < ... < wn < ...

(2.29) -o^_ = w for n = 0, 1, 2, ...

(2.30) lim wn = «

such that

(2.31) 4»(j(o ) = 4>(j0) for n = ..., -2, -1, 0, 1, 2, ... .
n

Proof

Part (a) is a straightforward transcription of [24] p. 167

Theorem 1. Part (b) : the mean angular velocity of f(jw) is

the same as the mean angular velocity of an exponential polynomial

N -jut.
fw(jw) = ]£ f. e where N satisfies (2.22) (see [24] p. 170-
N i=0 1

176). Part (c) follows from [24] p. 168 - 170. The first state

ment of part (d) is obvious from part (a). The second state

ment is established as follows:
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=* Since

(2.32) f (-jto) = f (jco) for all w€ R

(2.33) (J)(jw) - <|>(j0) = <j>(j0) - <l>(-jw) for all u e 1R

So unless <J>(jw) = <KjO)> then for some u' > 0 either

<Kju)f) > <f>(jO) > <f)(-jtof)

or

♦ (j»') < <KjO) < <j)(-ja>f)

Then (2.28) - (2.31) follows by the continuity and almost

periodicity of <J>(ju)) on R and by (2.33).
00

**= The existence of the sequence {to } implies that
n=-oo

<f>(jaO is bounded on K, hence the mean angular velocity of

f(ju>) is zero and thus by (2.21) u |—*•4>(jco) is almost periodic

X

Before we give Theorem 2.1 we give a last interesting

result.

(2.33a) Fact.

Let f be defined by (2.15) - (2.16). If

(2.20) inf If Cto) | = K > 0

Then:

given any a > 0, there exists a positive real number

C depending on o such that

iKo" +.jw) - <Kjo>)| < C uniformly in oj.
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Proof:

Because of (2.20) and (2.18) there exists a o* > 0, o* < o

such that inf |f(s)| > 0, so by remark (2.19d) and
a* _> Re s > 0

convention (2.19b), (j)(s) is well-defined and uniformly con

tinuous in the strip [0,c*] such that there exists a positive

constant C ^ depending on a* for which

|<|>(a* + jto) - <f>(jw)| < C . uniformly in uj.

Observing that [o*9a] is a closed substrip of the strip [0,~),

in which f(s) is almost periodic by fact (2.18a) it follows

that there exists a positive constant C_ _* depending on

o-o* such that

|<J>(cr + jco) - <J>(g* + jw)| < C ^ uniformly in o>,

([24], p. 178-179, Theorem 3(iv)). Combining the two results

we obtain that with C = C^ + C \ the fact is true.
a a* a-a*

Theorem 2.1

Let f(s) be the Dirichlet-series defined by (2.15) - (2.16).

Under these conditions

(2.34) inf |f(s)| > 0
Re s > 0

if and only if

i)

(2.35) fQ = 1+ gQ t 0
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ii)

(2.20) inf |f(jw)| - K > 0

iii)

A

(2.36) the mean angular velocity X of f(ju>) is zero.

Proof:

«= a) Observe that because of (2.15) - (2.16), (2.18) and

(2.35)

(2.37) 11m f(a + jco) » fQ ^ 0 uniformly in w
a-x»

Thus there exists a a* > 0 such that

(2.38) inf |f(s)| > 0.
Re s > a*

So by Remark (2.19d) <f>(s) is well defined (mod. 2tt) and

uniformly continuous in the strip [a*,»). Hence (2.37) implies

for any branch of c|>(s)

(2.39) lim <|>(a + jto) = $ uniformly in

where <|> « arg f~ (mod. 2tt) . Moreover we can pick a a- > 0

so large that

(2.40) a± >_ o*

and

(2.41) |<Ko\ + jw) - 4> | < 1, uniformly in u.
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In view of (2^20), (2.40) and (2.38), we will have established

(2.34) if we show that inf |f(s)| > 0.
o > Re s > 0

b) As a first step let us establish that

(2.42) f(s) i 0 in a > Re s > 0 => inf |f(s)| > 0.
1 a > Re s > 0

Indeed assume inf |f(s)| = 0, then there exists
o > Re s > 0

asequence {sk}°° C{slo^ >Re s>0}, sfc = ok +jo^ such
k=2

that lim |f(s,)| = 0. Because by assumption f(s) j 0 in
k-*» k

a > Re s > 0 and because of (2.20) and (2.38) it follows then

for this sequence that lim |to |= °° and lim inf \ > °»
k-*«> k^*0

lim sup a, < a,. The sequence {a. }°° is a bounded infinite set
k-~> k 1 k k=2

of real numbers and so by Bolzano-Weierstrass' Theorem it contains

an accumulation point. Thus without loss of generality we may
A

k=2 fc*»

oo , - . £} _assume that {a } is convergent say to oQ, thus lim ofc - aQ,

0 < a < a . Finally by the uniform continuity of f(s) in

Re s > 0 we conclude:

(2.43)

there exists a real number o and a sequence

r {w }°° with 0 < on < o and lim |u>, |= °°, such that
k k=2 ° X k*-

lim |f(a + j\)\ =0.
k-x»
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Observe that f(s) is nonzero and almost periodic on V so:
Q0

r there exist positive real numbers £ and d such that

(2.44) / any interval of length £ contains a point o + jo) for

^which |f(crQ +ju>)|>d.

Therefore by a result of [25] (Theorem 3.6, p. 71), (2.18)

and (2.43) - (2.44) imply that f(s) vanishes in the strip

(an -6,0-+$) for any 6 > 0. Clearly this contradicts our

assumption that f(s) ^ 0 in c. > Re s > 0. So our claim is

true.

c) Having established claim (2.42) we will have proved

(2.34) if we show that f(s) t 0 in the strip (0,0^. By con

traposition of fact (2.18b) this will be true if we show that

the number of zeros N of f(s) in the strip (0,a.) is bounded.

00

Consider therefore a sequence of rectangles {R } defined by
n=l

R = [0,a.J x [-n,n] for n = 0, 1, 2, ..., and let the corre-
n l

sponding number of zeros of f(s) inside R be N for n = 1, 2,

... . Observe that because of (2.20), (2.38) and Remark (2.19c)

the principle of the argument may be applied to each of these

rectangles oriented in the clockwise sense. We show now that

00

the sequence {A<f> } (where A<{> is the net increase in
n - n

n=l

argument around the rectangle R ) is bounded. This follows

easily if one observes

i) that by (2.20) and (2.36) and Fact (2.19e)(d)

(D|—•<J>(jo)) is almost periodic and hence bounded

Tf
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ii) that by (2.20) and Fact (2.33a)

U(o\, + jo>) - ♦(ju) | <C uniformly in u).1 a±

iii) that by (2.41) any branch of u) |—^(o^ + jw) is bounded.

In view of this it follows then that there exists a positive

constant C such that

N = lim N = lim |A(J) | < C.
n n

n-x» n-*»

=> First observe that the first equality of (2.37) still

holds, so (2.34) implies (2.35). Next (2.34) implies (2.20),

hence by fact (2.19e)(a) co |—><J>(ju>) is well-defined and sat

isfies (2.21). Furthermore by (2.34) and (2.18) and convention

(2.19b), s|—fr-iKs) is well-defined and uniformly continuous

in Re s > 0. Hence again (2.37) implies (2.39) and again we

can pick a a > 0 such that (2.41) is true.

We claim now that (ol—xKju) is almost periodic. For this

purpose, in view of (2.20), it is sufficient to show that <J>(jn)

for n = 0, 1, 2, ... remains bounded as n •* «. Consider

therefore the rectangles Wf defined by R* = [0,a ] x [0,n]
n - n i

n=l

for n = 1, 2, ... . By (2.34) and (2.18) it follows that the

principle of the argument can be applied to each of these

rectangles; hence the net change in <J> around each R^ is zero

for n = 1, 2 Now by the uniform continuity of sj—>.<|>(s)

in Re s >^ 0, there exists a constant C independent of n such

that for any horizontal segment H^= {s =a+ jn; 0<_o<.o1>

for n=0, 1, 2, ... :U^ +jn) -<Kjn)| <C. This fact
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with (2.41) implies that the sequence {<Kjn) - ^CjO)}*

bounded. Hence, because <J>(jO) is 0 or ir by (2.19b) the

CO

sequence {<Kjn)} =n is also bounded. So our claim is true and

by fact (2.19e)(d) the mean angular velocity of f(jw) is zero

which implies (2.36). X

It is interesting to observe that under the conditions

of Theorem 2.1 sign f(jO) = sign fQ = sign (1 + gQ). Hence

if 1 + g > 0 (respectively < 0) then 4>(j0) = 0 (or tt) .

We want now to develop a graphical test involving

{f(jw) |u> ^ H\} to insure inf |f(s)| > 0. Here again it
Re s > 0

will be the almost periodicity of u |—>f(jtu) that will save us.

We start giving some definitions and two facts.

Let 1(e) be the "density-length" for the £-translation-

numbers of ui |—•f(jio). Observe that E-translation-number of

f(jw) can be determined by diophantine analysis (see e.g. [25]

p. 146-149). From their pattern a "density-length" can be

determined. ^

Consider now the path

(2.45) y(e) ='{£(jw)|uS [0,£(£)]}

and its closed £-neighborhood N(e) defined by

(2.46) N(e) = {x GCE | |x - f(Jw) I1 '> w G I0,£(e)]}.



w
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We prove now Fact (2.46a) , which allows by the simply

knowledge of the path y(e) = {f(jco)|co ^ [0,£(e)]} to locate

the closure of the set {f(jco) |co £ K}, and Fact (2.46b) which

informs us about the minimal value of X if it is nonzero.

(2.46a) Fact (Fig. 2.1)

Let f(joi) be defined by (2.15) - (2.16) (setting s = jco) .

Consider the path y(e) and neighborhood N(e) given by (43),

respectively (44). Under these conditions

(a) for any e > 0, N(e) contains the closure of the set

{f(jco)|co € 1R}.

(b) as £ 4- 0, then N(e) tends towards the closure of the

set {f(jco) |co £ 1\}.

Proof:

Observe that for any £ > 0, the £-translation-numbers

t = t(e) of u) I—•f(jw) are £.-relatively dense on Ha . So given

any co ^TR, there exists an E-translation-number t = t(e)

belonging to [-co,-co+£] and shifting to into an element
A A

to + t e [0,£] such that |f(j<o) - f(ju> + jt) |1 e. Hence

f(jco) S N(e) for any co €"R. Hence the set {f(jco) |co ^IR} is

contained in the closed set N(e) and so is its closure. This

proves the first statement. The second statement is a direct

consequence of the first one. X

(2.46b) Fact.

Let f(jco) be given by (2.15) - (2.16) (setting s = jco).

Assume that



(2.20) inf |f(jco)| = K > 0.
co G 1R
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Under these conditions: (a) it is possible to determine the

set X given by:

N N

(2.47) X={x =-/ jht =-y~J r.t.; h. =integer
i=0 i=0

and r. = nonnegative rational for all i;

N N

/ ^ h. = 1; / a r = 1; N is the least

i=0 i=0

integer, such that / j |f. | <. K sin(6/2)
N+l

some 0 < 6 < tt},

where -t. and f. are Dirichlet-exponents and -coefficients

A*

of f(s); (b) moreover there are only a finite number of elements

f
in X and, if N >_ 1, then X ~ {0} is nonempty, such that

(2.48) X . & min |x|
min x e X

x ^ 0

is well defined, and (c) as soon as the mean angular velocity

X of f(jco) satisfies |x| < X . then X = 0.
1 ' mm

Proof:

(a) is an immediate consequence of (2.20). (b) is a

consequence of the fact the set {""t.} admits a finite integral
1 1=0

base i.e. a set of real numbers (3.) such that i) there exists

J j=l

t
If N = 0, then by Fact (2.19e)(b) X = 0, therefore this case will
be omitted in the sequel.
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no integers h , j = 1, ..., M, not all zero, such that

M

Y^h. 3. = 0 and ii) each number -t. can be expressed in a
j=l J J

unique manner in the form
M

-t4 = T\ hfi) 3. for i=0, 1, ...,
1 j-1 3 J

Nwhere h(i) are integers (see [24] p. 146, [23] p. 82-83).

Equivalently the N+1 numbers -t. can be represented by lattice

KM
r _ -space, indeed

each point -t. may be represented by the M-vector (h^ ,h^ ,

..., h^) with integer coordinates. Now (2.47) merely
expresses the fact that the numbers x can be represented as a

subset of lattice-points in "R, that are in the closure of the

convex hull of the N+1 lattice-points h^,i=0, 1, ...,N

in R . Hence the set X is finite. Moreover -ti» for i= 1, 2,

..., N, belongs to X ~ {0}. Therefore (b) is true. Concerning

(c) observe that because of Fact (2.19e) (b) the mean angular

velocity X of f(jco) belongs to X and that also 0 belongs to X,

hence (c) is a direct consequence of (b). X

As a final remark, observe that because the e-translation-

numbers are relatively dense on 1R it follows that as soon as

(2.20) is satisfied we can pick a translation-number t(e)

such that

<2-49> 7G)±Xm±a-

We are now ready for a graphical test insuring inf |f(s)| > 0,
Re s > 0



Corollary 2.1 (2.50)

Corollary 2.1

Let f(s) be the Dirichlet-series defined by (2.15) -

(2.16) and (2.12) - (2.14). Let y(e) and N(e) be given by

(2.45) and (2.46). Under these conditions

(2.34) inf |f(s)| > 0
Re s > 0

if and only if

• i)

(2.35)

ii) the origin 0 of the complex plane is positioned with

respect to {f(jco) |co £ 1R such that

a)

(2.50) there exists an e > 0 such that 0 does not belong to N(e)

(2.51)

*0 - i + s0 * °

b)

r for an e > 0, with 0 < £ < K = inf |f(jco) |, for
to G r\

which the corresponding e- translation-number t(e)

satisfies (2.49), where X . is defined by (2.47)
mm J

^ (2.48), then |$(jr) - <Kj0)| < tt must hold.

2.22

Proof:

Because of Theorem 2.1 we need only to show that (2.50) -

(2.51) are equivalent to (2.20) and (2.36). Clearly by Fact 2.5

(2.50) *=* (2.20). So we are left to prove the equivalence of

(2.51) and (2.36) under the assumption (2.20).
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=*• We assume that (2.51) is true. Then e < K Implies

e£ K sin(6/2) with some 6 < tt. So immediately by Fact (2.19e)(c)

|<f»(jT) - <|>(j0) - c 2tt| < 6 < tt. Thus by (2.51) ct = 0 and

hence by (2.27) |Xt| <6or |x| <|- <̂ . So by (47) |x| <Xm±n
which by Fact (2.46b)(c) implies X = 0. X

«= We assume that (2.36) is true. Let 0 < £ <_ K sin(6/2) ,

6 < tt and let t(e) satisfy (2.49) then immediately from

Fact (2.19e)(c) |c 2tt| <_ 6 < it i.e. c = 0. Hence from (2.26)

|<KJT) - <KjO)| < 6 < tt. X

Remarks

(2.51a) Remark. It is important to observe that the knowledge of the

density-length A<e) allows us to locate the closure of the set

{f(jco) |to G 1R} and that the knowledge of a translation-number

t(e) allows us to replace the condition X = 0 by a condition

on the increase in argument.

A.

(2.51b) Remark. If w|—*-f(jw) is periodic with period toQ two important

simplifications occur i.e.:

a) {f (jw) |co ETR} = {f (jco) |co G [0,coQ]

b) if (2.20) is satisfied then <Kjw) = Xco + w(jco) where

w(jw) is periodic with period wQ.

Hence: X= 0 ***• 4>(j^0) = ^(jO) and hence: for the case
A

that u\—^f(jw) is periodic with period ioQ part ii) of Corollary

2.1 can be replaced by: the origin 0 of the complex plane is
Ak __

positioned with respect to {f (jco) |co G 1F\} such that

a)
A,

0 does not belong to {f(jco) |co G [0,coQ]}

b)

<t»(jai0) = <KjO).
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2.2.3 A Necessary and Sufficient Condition involving

U + g(jto) U € K) to insure inf |l + g(s) | > 0
Re s > 0

A.

Definition of the argument 6(s) of 1 + g(s) subject to

(2.3) - (2.6).

By definition

(2.52) 0(s) = arg[l + g(s)j = Im log[l + g(s)] for Re s > 0

with two additional conditions.

(2.52a) Convention. Let L denote a straight oriented line in Re s > 0

By convention we take 8(s), s G L as the right argument of

1 + g(s) on L, i.e. 0(s), s G l, is an arbitrary branch of the

argument which is continuous except at the zeros and poles of

1 + g(s) on L, while it is discontinuous with a jump of

+mTf(-m,Tr), when s passes, in the positive direction on L a

A

zero (pole) of 1 + g(s) of order m(m,) . At a discontinuity-

point we assign to 0 the mean value of its one-sided limits.

The funciton 6(s), s G l, is then well defined (mod. 2tt) because

of (2.8)

(2.52b) Convention. Because 1 + g(s) is real for s = o _> 0 and

meromorphic in Re s > 0, there exists an interval (0,a*) on
At

which 1 + g(a) is real, finite and different from zero. We

pick for co |—>6(jco) that branch of the argument such that

*..
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6(j0) =0 (or tt) according as 1 + g(°) is positive (or

negative) on (0,cr*).

Theorem 2.2

Given g(s) defined by (2.3) - (2.6), let f(s) be the

Dirichlet-series given by (2.15) - (2.16) and let iip be given

by (2.17). Under these conditions:

(2.9) inf |l + g(s)| > 0
Re s > 0

if and only if

i)

(2.35) 1+ gQ t 0,

ii)

(2.53) infjl + g(jw)-l > 0,
coG 1R

iii)
At

(2.36) The mean angular velocity X of co |—*-f(jco). is zero,

iv)

(2.54) lim [8(jco) - <|>(jco)] = 6(j0) - <J>(jO) + np tt = b 2tt
co-*»

where b is an integer.

Proof:

(a) Let us first study the asymptotic behavior of

1 + g(s). In view of (2.11), the Riemann-Lebesque lemma

implies g (s) -»• 0 as |s| -*- « in Re s >. 0, hence by (2.3), (2.10)
ci

and (2.15) - (2.16)
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(2.55) 1 + g(s) -»• f(s) as |s| -> «» in Re s >_ 0.

An important conclusion is that because of (2.55) and Fact (2.18a)

co I—**1 + g(jco) has an asymptotic almost periodic behavior on

1r\ and s |—*1 + g(s) has an asymptotic almost periodic behavior

in Re s > 0 (for |s| •*• «).

(b) *= . We first show that

(2.34) inf |f(s)| > 0.
Re s > 0

Indeed (2.53), (2.55) imply lim inf |f(jco)| > 0. Hence, since

A*

co \—**f(jco) is almost periodic on VQ by Fact (2.18a),

(2.20) inf^ |f (jco) I ^ K> 0.
coGlR'

So by (2.35), (2.20) and (2.36) it follows that (2.34) is true

by Theorem 2.1.

Observe that by Fact (2.19e)(d), (2.20) and (2.36) are

CO

equivalent to the existence of a sequence {co } satisfying
n=-°°

(2.28) - (2.31). Now choose to with positive index from this
n

sequence and a a* > 0, both sufficiently large so that:

(a) The open rectangle ABCD = (0,o*) x (-to ,con) (Fig. 2.2),

i) has all poles of 1 + g(s) with Re p, > 0 in the interior of

ABCD, ii) has all poles of 1 + g(s) with Re p, = 0 on AB, iii)

neither A nor B are the location of a pole of 1 + g(s);

(b) in the complement of this rectangle with respect to

{s|Re s > 0} except for AB: 1 + g(s) is sufficiently close to

!(s) such that 1 + g(s) is bounded away from zero by (2.55) and
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(2.34) in this complement, except for AB. The principle of

the argument can be applied to ABCD. Denote by AS^ the net

change in argument on the oriented seqment AB. By the principle

of the argument along with (2.17) it follows that:

<2-56) A6ABCDA " (DP "V2"

where n is the number of zeros of 1 + g(s) inside ABCD.

Remember that f(s) is analytic inside ABCD, continuous on the

boundary ABCDA and by (2.34) bounded away from zero in Re s > 0

hence again by the principle of the argument

(2-57) ti,taa)k = 0.

Moreover since co and o have been chosen sufficiently large
n

it follows from (2.55) that

<2-58> A*BCDA * A9BCDA

where - indicates that equality is reached as ton •> ~ and

a* + «. From conditions (2.29), (2.31), (2.54), the fact that

e(jco) - 9(j0) = 6(j0) - e(-jio) because 1+ kg(-jco) = 1+ kg(jto)

and (2.53),

(2.59) A^ = 0

(2.60) AG^ * np 2tt .

Hence (2.57) - (2.59) imply ^CJ)k * AeBCDA * °J which al°n8

with (2.60) and (2.56) implies nz = 0. Thus, for sufficiently



2.28

large to and a*, 1 + g(s) has no zeros in ABCD. Furthermore

by construction 1 + g(s) is bounded away from zero in the

complement of ABCD with respect to {s|Re s > 0}, and by (2.53)
A*

1 + g(s) is bounded away from zero in the complement of ABCD

with respect to {s|Re s >_ 0}. Hence (2.9) follows.

(c) => . Immediately (2.9) implies (2.53). Thus because

of (2.9) and (2.55), we can pick an co = co* and a = a* so large

that the rectangle ABCD = (0,a*) x (-to*,to*) (see Fig. 2.2) is
A%

such that f(s) is bounded away from zero in the complement of

ABCD with respect to {s|Re s ^ 0} except on AB. Since by
At

Fact (2.18a): to |—>£(a + jco) is almost periodic on any line

Va, a G [0,«>), it follows then that f(s) is bounded away from

zero on all these V . Hence
a

(2.34) inf |f(s)| > 0
Res >0

which by Theorem 2.1 implies (2.35), (2.20), and (2.36). Hence

because of Fact (2.19e)(d) there exists a sequence {to }°°
n

n=-°°

such that (2.28) - (2.31) hold.

We show now that (2.54) holds. From now on, pick the

parameters of ABCD, so that co* is an element of the above

sequence with positive index and so that co* and a* are so

large that (2.55) holds; finally all poles of 1 + g(s) with

Re p, > 0 should be inside ABCD and all poles of 1 + g(s) with

Re p, = 0 should be on AB but neither A nor B should be the

location of a pole. Again the principle of the argument can

be applied with ABCDA oriented in clockwise sense. Hence
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A0ABCDA = nP 27r* Similarly A8ABCDA = °' By the construction
of ABCD again AG^ =0 implies A0BCDA = 0. Hence by (2.55)

again AQBCDA ~ 0 such that' AG = np 2tt. Thus for co^, n > 0,

sufficiently large, because G(jf>) - G(j0) = G(j0) = G(-jw) and

(2.29): G(jw ) ~ Q(j0) + n^ *. This implies by (2.30) and

(2.31) lim [G(jco) - Kjto)] = 9(j0) - G(j0) + rip tt which because

of (2.55) implies (2.54). X

In order to establish a graphical test it is interesting

to observe that because of (2.52), the validity of condition
At

(2.54) can be determined in principle by considering 1 + g(jto)

and f(jco) only over a finite interval. Moreover given the

neighborhood N(e), defined by (2.46), it follows by the

asymptotic and symmetry-properties that

(a) given any e > 0, there exists ft(e) such that

(2.61) co > fi(e) •» |l + g(jw) - f(jw)| 1 £

=*• 1 + g(jw) G N(2e) , where

(2.61a) N(2e) ={x GC ||x -f(jco) |<2e; co G [0,JI(e)] }

(b) inf^Jl + g(j«)| >0
to G IK

the origin 0 of the complex plane is positioned

w.r.t. {1 + g(jco)|coG R} and {£(jco) |co G IRj

such that there exists an e > 0 such that

i) 0 does not belong to N(2e)

ii) 0 does not belong to {1 + g(jco) |co G [0,fi(£)]>
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From this discussion, Theorem 2.2, Theorem 2.1 and Corollary

2.1 we conclude with the following graphical test:

Corollary 2.2 (Graphical test)

Given g(s) defined by (2.3) - (2.6). Let f(s) be the

Dirichlet-series defined by (2.15) - (2.16). Let y(c), N(2e) ,

Q(e) be given by (2.34), (2.61a) and by (2.61). Under these

conditions:

(2.9) inf |1 + £(s)| > 0
Re s > 0

if and only if

i)

(2.35) fQ = 1+ gQ ^ 0

ii) the origin 0 of the complex plane is positioned with

respect to {f(jto)|to e ^} and {1 + g(jto)|co G "R) such that

(a)

there exists an e > 0 such that 0 does not belong to N(2e)

and {1 + g(jto)|to e [0,fl(e)]}

(b)

A a

C for an e > 0 with 0 < e < K = inf If(jco) |, for which
toGlR

the corresponding E-translation-number t(e) satisfies

(2.49), where X . is defined by (2.47) - (2.48), then
mm

^ |<KJt) - <Kj0)| < tt must hold.

(2.62)

(2.51)

(2.54)

(c)

lim [G(jto) - <j>(jco)] = G(j0) - <Kj0) + np tt = b 2tt
co->°0
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where b is an integer. (Note that, by (2.17), iip is the number

of poles with positive real part)•

Comment

a) It should be noted that the graphical test as given in

Corollary 2«2 requires the knowledge a priori of the asymptotic

part f(s) of 1 + g(s). This however is the price we have to

pay for admitting an almost periodic asymptote in the transfer

function

b) J. C. Willems* conditions [14,15] are easily derived

from Theorem 2.2, Corollary 2.2 and Remark (2.51b) if we take

his assumptions i.e. |gQ| < 1; coj—♦.f(jto) is periodic with period
p.

to0 and g G C{. Then

inf |l + g(s)| > 0
Re s > 0

if and only if

i) inf^ |l + g(jco)| > 0
coGlR

ii) lim 0(jn <oQ) = 6(J0) =0 for n= 0, 1, 2, ... .
n-*»

2.2.4 Implications for the n-input, n-output case

The aim of this paragraph is to show that the above theory

allows us also to check the conditon

(2.63) inf |det[I + G(s)]| > 0
Re s > 0

when G(s) is the transfer function of a real n-input n-output
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convolution feedback system consisting of a term in CL and

a principal part due to a finite number of poles with positive

real part, i.e.

- ^ - ^ -m,+m

(2.64) G(.) -]T 22 *km(s "*k> +6r(s)
k=l m=0

where

f G belongs to CLnxn

Re p, > 0 for k = 1, 2, ..., &;

< the poles p, are real or pairwise conjugate complex;

the matrices R, are real or pairwise conjugate

^ complex nxn matrices according to the poles.

Following the theory of the decomposition-Lemma A.2 in the

Appendix and its subsequent corrolaries we finally get from

Corollary A.2.4 after adding and subtracting 1 on the right
A.

hand side of (A. 15) and regrouping (observe that l€ t^):

*' K-1
(2.65) det[I +G(s)] =1+gr(s) +^ ^ r^s -pk)

k=l m=0

-m£hn

where

r gre di

V <_ %\

m^ is the order of the pole at p, of det[I + G(s)],

thus rfcQ 4 0 for k = 1, 2, ..., I;

the coefficients r, are either real or conjugate

v. complex constants according to the corresponding poles
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V mi-1
.^+m

k=l m=0

Observe that with g(s) =gr(s) +V^ V^ rkm^S"pk^

we get completely the same structure as in (2.3) - (2.6) and

thus checking (2.63) is the same as checking (2.9) such that

all the results of the previous paragraphs are applicable.

2.3 Graphical Test for the Discrete-time Case

2.3.1 Description of the Systems

We consider a discrete-time scalar linear time-invariant

system with input u, error e and output y. The latter are

sequences mapping^!, into K and satisfy

(2.1') y = g*e

(2.2?) e = u-y

00

where g is'specified by a sequence of real numbers {g.}
1 i=0

i

and (2.1f) is equivalent to y = £) g_. ^ e for i = 0, 1, ...
1 j=l J J

As will become apparent there is no loss of generality in

assuming a unity feedback. Let g denote the z-transform of g,

We assume that g has following structure

^Hc+m
rkmU " V

k=l m=0

where

(2.4f) gr^£1;

(2.3') i(z) =gr(z) +J3 Yj rkm(Z " Pk}
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C the poles p are either real with real coefficients r,
(2.5') I k km

1^ or conjugate complex with complex conjugate coefficients r, »

(2.61) |pk| >_ 1 for k= 1, 2, ..., A.

Note that because of (1.13') and (2.4*)

rg-(') is analytic in |z| > 1, bounded on |z| >_ 1,

(2.7*) \ each function y\—>g (p eJY) is uniformly continuous on

L[0,2tt] (after setting z = p eJY) and lim g(z) = gft = constant

It follows therefore that

Cg(') is meromorphic in |z| > 1, well defined and
(2.8') I

L continuous almost everywhere in |z| >. 1.

A necessary and sufficient condition that the closed-loop

impulse response h of the system (2.1f) - (2.6f) is in I (and

thus stable as defined by remark (1.17')) is

(2.91) inf |l + £(z)| > 0
Iz| > 1

For a proof see the appendix, lemma A.l1.

The problem is to develop a graphical test for (2.9') based

on the closed path [27] {1 + g(z); z = eJY; y G [0,2tt]}. Observe

that

(2.10') lim 1 + g(z) = 1 + g = constant.
Iz|-H»

Thus here the asymptote of 1 + g(z) for |z| -»• «• is constant
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and therefore an investigation of the asymptotic case will

not be necessary here.

As a last remark let

(2.11') il, = the number of poles of g(z) counting multiplicities

with |pk| >1.

2.3.2 A Necessary and Sufficient Condition involving

{1 + g(z); z = eJY; vG [Q^tt]} to insure inf ll + g(z) I> 0
hi 11

Definition of the argument Q(z) of 1 + g(z) subject to (2.3') -

(2.6')

By definition

(2.12') G(z) = arg[l + g(z)] = Im log[l + g(z)] for |z| > 1

with two additional conventions,

(2.12af) Convention. Let C denote a path [27] in |z| >_ 1. By convention

we take G(z), z G c, as the right argument of 1 + g(z) on C, i.e.

6(z), z G c, is an arbitrary branch of the argument, which is

continuous except at the zeros and poles of 1 + g(z) on C, while

it is discontinuous with a jump of +mTT (-hutt) on C, when s passes,

in the positive direction on C, a zero (pole) of 1 + g(z) of order

m(m-). At a discontinuity point we assign to G the mean value

of its one-sided limits. The function 6(z), z G c is then well

defined (mod. 2tt) because of (2.8').

(2.12b') Convention. Because 1 + g(z) is real for z = p, p real and |p| _> 1,
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and meromorphic in |z| > 1, there exists an interval (l,p*)

on z = p, p positive real and |p| >_ 1, on which 1 + g(p) is real,

finite and different from zero. We pick for y\—•G(eJY),

y G [0,2tt], that branch of the argument such that G(e^ ) = 0

(or tt) according as 1 + g(p) is positive or negative on (l,p*).

Theorem 2.2'

Given g(z) defined by (2.3') - (2.6') and let il, be

given by (2.11').

Under these conditions:

(2.9') inf |l + £(z)| > 0
Iz| > 1

if and only if

i)

(2.13') lim 1 + g(z) = 1 + gn = constant ? 0 ,
|z|-~> °

ii)

(2.14') inf |l + g(ej8)| >0 ,
G G [0,2tt]

iii)

(2.15') G(ej2ir) -G(ej0) «i^ 2ir .

Proof

(a) *= . Observe that because of (2.13') there exists a

positive number p* > 1 such that:

1 + g(z) has no poles in |z| >. P*5

1 + g(z) is uniformly continuous in |z| >_ p* and

(2.16') inf |l + g(z)| > 0.
|z| > p*
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It follows therefore that G(z) as given by (2.12*) is well

defined (mod. 2tt) and uniformly continuous in |z| _> p_ hence

lim G(z) = 6^ = constant where
|z|-x»

(2.17') Gw = arg(l + gQ) (mod. 2tt)

and there exists a positive number p. such that

(2.18') Pl>p*

and

(2.19') |G(P;LeJY) -6J <1 for all yG[0,2tt].

Observe now that because of (2.18') and (2.16') we will have

established (2.9') if we show that inf |l + g(z)| > 0
1< hi 1 Px

or equivalently

(2.20') 1 + g(z) t 0 in 1 < |z| < p

because the closed annulus 1 _< |z| j< p* is compact. Observe

further that because of (2.8') and convention (2.12a') the

principle of the argument can be applied to the closed annulus

1 ~ lzl £ Pi resulting in

(2.21') G(ej27r) -G(ej0) -[6(P;L ej2lT) -B(Q± ej0)] =(np -nz)2TT

where np is as given in (2.11') and n is the number of zeros

of 1 + g(z) in the interior of 1 _< |z| <_ p-). Note that on

|z| = 1 (|z| = p.) the positive direction is the counterclockwise

(clockwise) sense and that the annulus 1 _< |z| <_ p can be
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converted in a simply connected domain by making a cut along

any radius z = p eJY, y = constant and y G [0,2tt]. Note also that

because of convention (2.12b') zi—»-G(z) is well defined on

|z| = 1. Finally by (2.21') and (2.15') we obtain that

n 2tt = G(p. ej27r) - G(Pl ej0), hence by (2.17') and (2.19')
z 11

|n 2tt| < 2 which because n is an integer implies n^ = 0.

Hence 1 + g(z) ^ 0 in the interior of 1 <_ z <_ p.. In addition

because of (2.16'), (2.18') and (2.14') it follows that (2.20')

is true and hence we are done. X

(b) => . Immediately (2.9') implies (2.14'). Next observe

that (2.9') and (2.10') Implies (2.13') such that by analog

reasoning as in (a) there exist a positive number p- > 1 such

that (2.19') with (2.17') is true.

Therefore on |z| = p

(2.22') |6(Pl eJ27r) -G(P;L ej0)| <2.

Applying again the principle of the argument to the annulus

1 Ji lzl .£ Pi we obtain (2.21') where however n = 0. Therefore

along with (2.22')

(2.23') G(ej2lT) -G(ej0) G(^ 2tt -2, i^ 2tt +2).

Observe now that G(eJ 7T) and G(eJ ) can only differ by an

integral multiple of 2tt because they are arguments of the same

complex number 1 + g(l). Therefore (2.23') implies (2.15')

and we are done X
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Comment

Observe the simplicity of the proof and note that this is

caused precisely because of (2.10'). Indeed in the continuous-
At

time case an analog result as (2.10') is valid for 1 + g(s)

when Res = o tends to + », however 1 + g(s) does not alway

tend towards a constant as |s| •»• « in Re s > 0 which causes

precisely the difficulties encountered in paragraph 2.2.

We state now the graphical test for the discrete-time case

which is now an easy translation of Theorem 2.2'.

Corollary 2.2'

Given g(z) defined by (2.3') - (2.6') and let rip be defined

by (2.11').

Under these conditions:

(2.9') inf |l + g(z)| > 0
Iz| > 1

if and only if

i)

(2.13') lim 1+ g(z) « 1+ gQ = constant ^ 0 ,
|z| -*- »

ii) the origin 0 of the complex plane is positioned with respect

to the closed path {1 + g(z); z = eJY, y G [0,2tt]} such that

(a)

(2.23') 0 does not belong to the closed path {1 + g(z); z = e ;

Y G [0,2tt]}
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(2.25')

(2.26')

(2.24*) 2.40

(b)

r the closed path {1 + g(z); z = eJY, y G [0,2ir]}

/ encircles 0 exactly n^ times in counterclockwise

sense when y increases from 0 to 2tt.

2.3.3 Implications for the n-input, n-output Case.

The aim of this paragraph is to show that the above theory

allows us to check the condition

inf |det[I + G(z)]| > 0
1*1 > 1

when G(z) is the transfer function of a real n-input n-output

convolution feedback system consisting of a term in A and

a principal part due to a finite number of poles with absolute value

larger than one, i.e.

G(2) =Ls L, S*(z-^ + Gr(z)
k=l m=0

where

C Gr belongs to *,nXn;

|pkl >1 for k= 1, 2, ..., ;

< the poles p, are real or pairwise conjugate complex;

the matrices R, are real or pairwise conjugate complex

^ nxn matrices according to the poles.

Following the theory of decomposition Lemma A.2' and Remark

(A.12b') in the appendix we are able to rewrite det[I + G(z)]
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in the following form:

-1V m-

(2.27') det[I +G(z)] =1+ir(z) +^ ^jTJ r^z -pfc)
-m^+m

k=l m=0

where

I 8r e *> 5

m^ is the order of the pole at p, of det[I + G(z)],

thus r,Q <t 0 for k = 1, 2, ...,£;

the coefficients r. are either real or complex
km

^ conjugate constants according to the corresponding poles.

-nL'+ra
I m.'-l

k

Observe that with g(z) =g (z) + 2-* £ rkm^z ~ pk^
k=l m=0

we get completely the same structure as in (2.3') - (2.6') and

thus checking (2.27') is the same as checking (2.9') such that

all the previous results of paragraph 2.3.2 are applicable.
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3. CONTINUOUS-TIME N-INPUT N-OUTPUT CONVOLUTION

FEEDBACK SYSTEMS.

3.1 Introduction

This section considers continuous-time feedback systems

with n inputs and n outputs as described in paragraph 1.1.1.

First the relation between the open-loop operator G and

closed-loop operator H is discussed, (a) In Theorem 3.1 below

we prove that, under very mild assumptions on the open-loop

impulse response G and on the closed-loop system, if the closed-

/7nxn A
loop impulse response H G CL then G is of the form

(3.1) G(s) = P(s)[Q(s)]_1

where P, Q G & . Thus we show the importance of systems

given by (1.1) - (1.2) and (3.1) which is the class of systems

introduced by M. Vidyasagar [21]. Theorem 3.1 is also an

extension of a result of Nasburg and Baker [22]: the extension

is in two directions, first, the n-input n-output case is con- .

sidered and, second, the requirements on G are greatly relaxed.

(b) Theorem 3.2 is a straightforward extension of a result of

[22]: it shows again the importance of systems introduced by M.

M. Vidyasagar in that HG 4nXn if and only if G is of the

form (3.1) and inf |det[P(s) + Q(s)]| > 0.
Re 8 > 0

Next necessary and sufficient conditions for stability

At

are discussed when G is of the form (3.1) with a finite number
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of poles in Re s > 0. (a) Theorem 3.3 gives these conditions

for a higher order pole in Re s > 0 and consecutive remarks

take care of the multiple pole case. (b) Theorem 3.4 enables

an interpretation of these condtions and a simpler formulation

of the multiple pole case which is stated as Theorem 3.5. These

theorems extend results of Desoer, Wu, Lam and Chen [1,2,10,19,20].

3.2 The Relation Between G and H

Theorem 3.1

Let G be an nxn matrix whose elements are distributions

with support on lR . Suppose that in a neighborhood of the

origin, say V G 1R 9 g includes at most 6-functions (i.e. on V,

it is a distribution of at most order 0). For the system

defined by (1.1) and (1.2), assume that the closed-loop impulse

response H exists and is uniquely defined by

(3.2) H + G*H = G.

Under these conditions, if H G C{ , then

(a) G is Laplace-transformable and for some finite a >_ 0

e"at G G #nxn (i.e. the product of each element of G with

e belongs to CL) ;

(b) 6 is of the form

(3.1) G(s) = P(s)[Q(s)]"1 for Re s >0

where P(-) and Q(-) G tfnXn ;
At

(c) G can at most have a countable number of poles in the

vertical strip 0 < Re s <_ o , and has no poles in Re s > a.

♦
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Comment. This theorem shows that under mild conditions on G

regarding its behavior near t = 0, once the closed-loop system

is well defined and stable, then G is necessarily of the form

(3.1), can at most have poles in the strip 0 < Re s < a and is

analytic for Re s > a.

Proof

(a) By assumption, H^fl , i.e.

H(t) r=Ha(t) +TJ H^Ct-t^ for t>0
i=0

= 0 for t < 0

where H (•) G l* [0,«), H, G lRnXn for i= 0, 1, 2, ... and
a nxn i

0 = t0 < t- < t„ < ... . By assumption G can at most have an

impulse at the origin. By the Abelian Theorem of the Laplace-

transform [29] and the properties of distributions, if G has

A

an impulse G. at t B 0, G(s) + G. as Re s •>• °°. Clearly from

(3.2), if GQ is the zero matrix, then HQ = 0. If GQ 4 0, then

by balancing impulses at the origin in (3.2) we have (I + G0)H. =

G_. By assumption H, hence H^, is uniquely defined by (3.2)

hence det(I + GQ) ^ 0. Furthermore by direct calculation

(I + GQ) (I - HQ) = I so that det[I - HQ] ^ 0.

The function I - H(s) is analytic and bounded for Re s > 0,

continuous on Re s = 0, and tends to I - Hn as Re s -»• ».

Consequently, there exists a a >^ 0 such that

(3.3) inf det[I - H(s)]| > 0.
Re s > a



(3.4) 3.4

-o*' „, %. , -cj• r-r i. / \ tt/ \i c= /7nxnNext observe that e~ ' H(') and e" ' [16(0 - H(01 G CL

and that (e"0' H(0)(s) = H(s + a) for Re s > 0 and

Therefore by (3.3) and (1.15) [I - H(« + a)]"1, for

Res> 0,G dnxn. Finally

(3.4) G*(- + a) = H(- + a) [I - H(» + a)]"1 ,
for Re s > 0,G #nXn.

Next from (3.2)

(3.5) e-0t H+ e-0t G* e-at H= e-at G

such that if G has a Laplace-transform

(3.6) G(* + o) = H(- + a) + G(- + a) H(. + a).

Now observe that G*(» + o) given by (3.4) satisfies (3.6).

Because all terms are in CLn n an inverse Laplace transform

of Eq. (3.6) where G(* + o) = G*(* + a) may be performed.

Therefore e~Gt G* satisfies (3.5) and so by the uniqueness

implied by the convolution algebra of distributions on IK+

G(- + o) = H(* + a) [I -H(- + o) l""1 for Re s>0

and G(. + a) G tfnXn.

Thus e"at GG anXXi and G(0 =H(0 [I -HO)]"1 for Re s> a,

This proves (a).
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b) Since by (1.13) H(0 and [I - H(. + a)]"1 are analytic

for Re s > 0, [I-H(0] has at most a countable number of

poles in the strip 0 < Re s < o and by analytic continuation

(3.7) G(0 = H(0 [I - HO)]"1 for Re s > 0.

Choose P(0 = H(0, Q = [I - H(0]. Thus (b) and (c) have

been established. X

Remarks

(3.7a)Remark. It is important to reflect on the fact that under the

conditions of Theorem 3.1, we have

A* A*

[I + G(0][I - H(0] = I for Re s > 0

This expression emphasizes the symmetrical role played by H

and G : H is obtained from G by a negative feedback of I; 6

is obtained from H by a negative feedback of (-1) (to cancel

the preceeding one!).

(3.7b)Remark. A little more can be said about the poles of G(0*

G(0 = POMQCO]"1 - P(0 Adj[Q(0]/det Q(.).

The function f : s|—*det Q(s) = det[I - H(s)] is analytic and

bounded in Re s > 0 and because of (3.3) inf |det Q(s)| > 0.
Re s > a

Therefore $ has at most a countable number of zeros p, for k = 1,2,

in the strip 0 < Re s <_ o. Moreover by a theorem of [30, p. 457]

E pk j < ». Therefore G(0 either has a finite

k=i 1 + W
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number of poles p, in the strip 0 < Re s < o or else it has an

infinite sequence of them in the strip 0 Re s < a such that
and

they accumulate on the imaginary axis {or } at the point

|lm s| = » (i.e. they "shoot at infinity" along a vertical line

in the strip 0 < Re s < a).

Theorem 3.2

Let G be an nxn matrix whose elements are Laplace-trans

formable distributions with support on H\,. For the system

defined by (1.1) - (1.2), assume that the closed-loop transfer

function H is well defined for almost all s in the half plane

At

of convergence of G(0» i.e.

(3.8) H(s) = G(s)[I + G(s)]"1

At

for almost all s in the half plane of convergence of G(«).

Under these conditions,

(3.9) HGtfnxn

if and only if there exists P, QG #n n such that

(3.10) G(s) = P(s) [Q(s)]"1

and

(3.11) inf |det[P(s) +Q(s)]| > 0.
Re s > 0

Proof

. From (3.8) - (3.9) by algebra

G(s) = H(s) [I - H(s)]""1 for Re s >0
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A. A* j± At At *s -^^\XT!

Choose P = H and Q = I - H. Hence by (3.9) P and Q G U

and (3.10) follows. Finally, since P + Q = I (3.11) holds.

<= . From (3.8) and (3.10)

H(s) = P(s) [P(s) + Q(s)]"1.

In view of (1.15) and (3.11) H G #nXn as the product of two

elements of (^ X

Remarks

(3.11a) Remark. It is clear from (3.10) that a given G does not define

the ordered pair (P, Q) uniquely; for example, they might have

a right common factor. In order to be able to express the

condition (3.11) in a form which depends on G only, we impose

the Vidyasagar no-cancellation condition (N) [21]:

^the ordered pair (a,b) where a, b:(C I—• (£ is said to

satisfy the no-cancellation on a set A C (C iff, for all
(N){

sequences {s, } in A, a(s, ) + 0 implies that

ilim inf|b(sk)| > 0.

It is then easy to show that, [5], if (det Q(s), det[P(s) + Q(s)])

satisfies (N) on Re s >_ a, then (3.11) is equivalent to

inf |det[I + G(s)]| > 0.
Re s > 0

(3.11b) Remark. Observe that (3.11) can always be tested graphically

* / A
by the method described in paragraph 2.2 setting g(s) =

+t At *

det[P(s) + Q(s)] - 1 which is in <%.

3.3 Necessary and Sufficient Conditions for Stability.

By stability we mean stability as defined in Remark (1.17)
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In this paragraph we consider systems of the form (1.1) -
A.

(1.2) where the open-loop transfer function G is given by

(3.12) G(s) -£ £ W"^ +VS)

where (a) the poles p, and the corresponding matrices R.

are real or pairwise complex conjugate for k = 1, ..., A

and m = 0, 1, ...» ul-1» (b) Re p, > 0 for k = 1, 2, ... I

and (c) Gr G£nXn.
Observe that if

(3.13) G(s) =P^s) ( II (s -pk)^I

where P- GCLnXTit Iis the unit nxn matrix and m£ are integers

larger than or equal to m, for k = 1, 2, ..., £, then (3.13)

can be brought in the form (3.12). This follows from

Corollary A.2.3 in the appendix. Furthermore observe that G(s)

as given by (3.13) can be rewritten in the form.

r£ x - i r * (s - pk\(3.14) G(s) = n(s +1) p1(s) n [ s +±) T

Hence, since (•-—j and ("T^TJ) for k=1, 2, ..., £G CZ
we obtain that the "numerator" and "denominator" on the R.H.S.

of (3.14) are in ^nXn, so G(s) as given by (3.14) is of the

form (3.1). This establishes a link with previous paragraphs in

that G as given by (3.12) can be derived from a form (3.1) where
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At

G has a finite number of poles in Re s > 0.

We consider now first and in detail the case where G has a

real pole of order m in Re s > 0. The extension to the case

of a finite number of poles will be done in subsequent remarks.
At

We consider thus the open-loop transfer function G defined by

m-1

(3.15) G(s) -V" R±(s -p)"1**"1 +Gr(s)
i=0

where p<= 1R, p>0, Gr GC(n*n9 Tq =rank of RQ <nand R±

(i = 0, 1, ..., m-1) are nxn matrices with real coefficients.

We start by pointing out some facts which will streamline

the proof of Theorem 3.3.

(3.15a) Fact

Let

m-1

°f **fe

then R*(-Tr) is an nxn complex polynomial matrix in I'TTT") of

degree m. This is obvious by considering the Laurent expression

s+1j about s--1.

(3.16a) Fact. (Smith Canonical form [31]).

For the nxn polynomial matrix R*(~ir) there exist unimodular

(i.e. with nonzero constant determinant) polynomial matrices in

(A) VlZ- S(ife) 3nd *(irl) '8UCh th3t
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(3.17) f(JL) £*(-L.) s(^-) =

diag{al(s+t) ••-• aj(s+l) "••• ar*(s+l)' °»°V» 0}
V ^_ yv ^ >

r* n-r*

where i) r* =rank of R*(~+y) =order of the largest minor of

R*(~r-J which is not equal to the zero polynomial;

ii) the a(-^-), j=1,2,... r* are the invariant

polynomials of R*(-rr-) and each polynomial a. (O divides

a (•), j = 1,2,..., r*-l;

iii) the diagonal matrix in the R.H.S. of (3.17) can be

obtained by elementary operations.

(3.17a) Fact.

The polynomial matrices Sf-^j-J and t("s+y) G^ and

their inverses are polynomial matrices in ("Tjt) also in CL

(3.17b) Fact.

Let a.(0, j = 1,2,..., r* be as in (3.17) and let rQ be

the rank of Rq, then

(a)

a.(l/(p+l)) = 0 for rQ + 1 <j < r*
(3.18) ( by definition of rQ;

a (l/(p+l)) ^ 0 for 1 < j < rQ
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ci

<3-19> ^iKfc£t)(«) for rn + 1 <_ j < r*

where c. is the order of the zero of a.(•) at s = p;

b.(') is a polynomial with

(3.20) b (l/(p+l)) # 0, (see [32]), and

l<c ., <c .«<...< c -.

- r0+1~" V"2~ " r*

Proof

Set s = p in (3.17) and note that the L.H.S. becomes

T(l/(p+l)) R0(p+l)"-m S(l/(p+l)). Since S(0 and T(0 are
A,

unimodular, exactly (r-r0) polynomial a.(0 are zero at s=p.

By ii) of (3.17) a (l/(p+l)) = 0 for rQ + 1 <j < r*. Hence

(3.18) and (3.19) follow with the properties of the latter as

a consequence of ii) of (3.17). X

Note that the exponents c. in (3.19) may, for some j, be

larger than m (in fact c ^ £ r*m).

Therefore, since the c, are monotonically increasing and since

c. - m may be of any sign, partition the index set K =

{rQ+l, rQ+2,..., r*} into

(3.21) K_ - {rQ+l,r0+2,...,a} = {j|l <c <m}

(3.22) KQ = {oH-l,a+2,...,$} = {j |c =m}

(3.23) K+ = {6+1,3+2,...,r*} = {j|c >m} .

We are now ready for Theorem 3.3.
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Theorem 3.3

Consider the system defined by (1.1), (1.2) and (3.15).

Let s(———J and T(-^rr) be the polynomial matrices defined in

(3.17). Suppose that the index sets K__, K0, K as defined in

(3.21) - (3.23), are not empty.

Consider the partitioning

n-a

(3.24) ;(i+t) [I +6r«l fi
x / n-a

•{
{

Lu(s)

LL21(S)

L12(s)

L22(S).

and let b.(0 be the polynomials defined in (3.19). Finally

let H be the closed-loop impulse response of the system con

sidered. Under these conditions

nxn
(3.25) HG#

if and only if

(3.26) inf |det[I + G(s)] > 0
Re s > 0

and

(C) det{L22(p) + diag[ba+1(l/(p+l)),...,b6(l/(p+l)),0,0,...,0]} 4 0.

Proof

-1
*= . Since I - H(s) = [I + G(s)] , we need only show that

(3.27) [I + GO)]'1^ <2nXn



(3.28)

By fact (3.17a), (3.27) is equivalent to

-1

m [I + GO)] S(4 nxn
e«

Introduce now the following multiplier:

(3.28) M(s) =

m-c ,, m-c . „
* ro+l A ro

diag{z(s) ,z(s) ,...,z(s) ,z(s) ,z(s) ,...,z(s) ,

^ J K.

a-r.

i,i,...,ij

n-a

with

(3.29) £<8) =f^e a

By (3.21) and (3.29)

nxn(3.30) M(0 e CL

Remark that

^[I +GCs)] S(^ \~1 At At "I

= M(s) N(s) where

(3.31) N(s) =sm [I +G(s)] s(^)Ws).
Clearly by (3.30) we are done if we can show that

-1 <~ /?nxnN(0 e CL

3.13

m-c

J
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nxn
Therefore by (1.15) we prove that N(0 e CL and

inf |det N(s)| > 0.
Re s > 0

Rewrite (3.28), therefore

(3.32) M(s) = z(s)m A(s)

where

(3.33) A(s) =

"Cr0+1 a ""°ro+2 ~ Ca
diag{,l,...,l,z(s) ,z(s) ,...,z(s) ,

V __ J

ro a"ro

z(s) ,z(s) ,...,z(s) }
v ^ : '

n-a

By (3.31), (3.15), (3.32), (3.33), (3.29), (3.16), (3.17), (3.19)

and (3.20), we obtain

(3.34) N(s) = Nx(s) + N2(s) where

(a)

(3.35) N^s) =D-^s)©!)^) with

(3.36) D1(s) =

diag{al(s+l)'a2(s+l)»''*'ar0(s+l)'br0+l(s+r)'br0+2(s+l),...,ba(s+l)}
J v

ro a"ro
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(3.37) D2(s)

diag{Vlls+l)'Vzfi+l)'' *' 'Vi+l)' VlW+lT (s)

Co.r.-m . - . ^ c j.-m

V2(s+t)^8) ^ -•-br*(i+t)^(s) "* »0>0>"-.°>

r*-3

and (b)

(3.38) N2(s) =t(j^-)[I +Gr(s)] s(^-) M(s)

Immediately

(3.39) N(0 e^nXn

nxnN.(0 ^ (^ because all its elements G ^ (indeed all its

nonzero elements are polynomials in (~tt) because there are no

negative powers of z(0 by (3.23)) and N2(0 G CX by Fact

(3.17a), (3.15) and (3.30).

Finally by (3.26) and since S(-vr-) and T( ——) are unimodular

As

Hence, since by (3.28) - (3.29) det M(0 has only one zero for

Re s > 0 i.e. at p, we obtain with (3.31)

(3.40) inf|det N(s)| > 0
SGu
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where U is the half plane Re s ^_ 0 with a small neighborhood

of p deleted.

Consider now det N(p).

Observe that by (3.38), (3.24) and (3.28) - (3.29)

a n-a

(3.41) N2(s) =
n-a (

Ku(s)

K21(s)

t12(s)

L22(S)

with

(3.42) Ku(p) = 0

(3.43) K21(p) = 0

Thus by (3.34), (3.35), (3.41) - (3.43)

det N(p) = det D^p) det[L2£(p) + D2(p)] with by (3.36),

(3.18) and (3.20)

(3.44) det D1(p) i 0

and by (3.37), (3.20), (3.29) and (3.23)

(3.45) det[L22(p) + D2(p)] =

det{L00(p) + diagfb .n(l/(p+l),...,bft(l/(p+l)),0,...,0]}
'22 a+1

which is nonzero by (C). Hence

(3.46) det N(p) ^ 0.

Since N(0 is continuous in Res >0, (3.39), (3.40) and (3.46)



(3.47) 3.17

-1 /- y^nxnimply that N(-) € CLnxu. g

** . Thus H G CL by assumption.

(3.26) follows immediately by [17].

To establish (C) we use contradiction. So by (3.45) suppose
At At

that det[L22(p) + D2(p)] = 0. We are going to show that, for
2

some input u G l [0,«>), the system defined by (1.1) - (1.2)

2
has an error e not in L [0,»). This is a contradiction because

n

by (1.16) uG L2[0,«) and HG #nxn imply that y = H*u G L2[0,»)
n n

2
and thus e = u-y G L [0,»).

The Laplace transforms of e and u are related by

(3.47) [I + G(s)] e(s) = u(s).

Multiply (3.47) on the left by ^(~7t) and define the n-vectors

e*(0 and u*(0 by

(3.48) S^) M(s) eA*(s) =e(s)

(3.49) T^j u(s) =i2*(s).

By (3.47) - (3.49) and (3.31) obtain

(3.50) N(s) e*(s) = u*(s).

Because det [L„„(p) + D«(p)] = 0 we can pick a nonzero vector

nG TR in the null space of [L„«(p) + D2(p)], hence

(3.51) [L22(p) + D2(p)] n = 0.

Pick now the vector £ G Ka such that
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(3.52) ?=-[^(p)]"1 £12(P) n

which is well defined because of (3.44) and the fact that all

A.At A. ^.^

elements of L-2 and D- are in CL

Hence with

(3.53) e*(s) =̂
and

(3.54) u*(s) =

u*(s)\ } a

u*(s) / } n-a

and (3.50), (3.34), (3.35), (3.41), we obtain

(3.55) u*(s) = {[D^s) + Kn(s)] ? + L12<s)n}/(s-p)

(3.56) u*(s) = {K21(s)C + [D2(s) + L22(s)]n}/(s-p).

All the components of the numerators of (3.55) and (3.56) are

in CL\ by virtue of (3.42) - (3.43) and (3.51) - (3.52) and

p > 0 they have at least a first order zero at p. Therefore

At At

u*(0 and ujjf(0 are analytic and bounded at s = p.

Thus u*(«) is analytic for Re s > 0, bounded in Re s >_ 0 and,

as |co| -*• «>,for each component u*..v(0 of u*(0 we obtain

|u%.v (Re s+ jo)) |is at most Ol-i—r) uniformly for any fixed Re s>_ 0.

It follows therefore that the components of u*(0 are the Laplace-

2
transforms of elements of L [O,00) (Wiener's Theorem [12] p. 8).

From Fact (3.17a) and (3.49) we conclude that the same is true
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