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ON THE INPUT-OUTPUT PROPERTIES OF CONVOLUTION FEEDBACK SYSTEMS

by
Frank M. Callier

ABSTRACT

This dissertation considers n-input n-output convolution
feedback systems characterized by y = G*e and e = u-y. The con-
tinuous-time case as well as the discrete-~time case are considered
in the framework of the convolution algebras ({ and 21 respectively.

A graphical test is developed for checking the condition

inf |1 + g(s)| > 0 where g is the sum of a finite number of
Re s >0

poles and a term in Ci (i.e. the Laplace transform of an integrable
function plus a series of delayed impulses). This is a significant
extension of the Nyquist plot test because, in our case, as lw| > o
the function w H-é(jw) is asymptotically almost periodic rather than
tending to zero as in the classical case. The discrete-time counter-
part of this test as well as its extension to the n-input n-output
case are also given.

The relation between the open-loop operator G and the closed-
loop operator H is discussed. Thereby the importance of systems
considered by Vidyasagar is demonstrated i.e. of systems with
open~loop transfer function é(s) = ﬁ(s)[a(s)]-l where ﬁ, a Eféznxn

1

or é(z) = 5(2)[6(2)]-1 where f, 6 € inxn' It is shown that if the
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. = CZan
closed-loop impulse response H is stable in the sense that H or

H € 2an then the open-loop transfer function is of the above form.

Moreover necessary and sufficient conditions for stability are

given using this open-loop transfer function representation.

Finally necessary and sufficient conditions for stability are

given when the open-loop transfer function is of the above form with
a finite number of poles in the open right half-plane Re s > 0 or
in the open annulus |z| > 1.

The dissertation concludes by giving (a) necessary and sufficient
conditions for stability when constant singular feedback is present
in a simple case and (b) an application of the above theory to the

stability analysis of nonlinear feedback systems.
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(1.1) 1.1

1. INTRODUCTION

This dissertation considers linear time-invariant feed-
back systems with n ‘inputs and n outputs. As it will become
apparent there is no loss of generality in taking the feedback
to be unity. We shall consider both continuous-time and
discrete-time convolution feedback systems. Therefore a

description and preliminaries are given for both cases.

1.1.1 System Description in the Continuous-time Case.

For the feedback system under consideration, the input

u, output y and error e are functions from F?}, (defined as
R® . . .

[0,2)), to or corresponding distributions on W?+. The

open—-loop system is of the convolution type so that we have:
(1.1) y = G%e
(1.2) e = u-y

where G is an nxn matrix whose elements are distributions on
FQ+. Let H denote the closed-lcop impulse response of the

feedback system, i.e.:
(1.3) y = H*%u

and let G, H denote the maps G: ep—»G*e, H: ubl—>H*u

respectively.

» o—



(1.4)

(1.4) 1.2

We shall repeatedly use the convolution algebra CZ [1,2]:

f is said to be in CZ iff

0 for t <0
f(t) =

£_(t) + P £, 8(t-t;) fort >0 )
i=0

‘e

o0
where fa(t) € Ll[O,w) (i.e. S Ifa(t)[dt < ™), £, € Rfor all i,
0
i . © 1, 3
8(+) is the Dirac é-function, {f,} € (i.e. 2:|f.| < )
1 . 1
i=0 i=0
and 0 = t, <t, <t, < ... <t, < ... . Thus f is a distribution
0 1 2 i
of order 0 with support on ﬂ?+, An n-vector v(nxn matrix A)
is said to be in A" (Clnxn) iff all its elements are in CL.
Let f denote the Laplace transform of £:f belongs to the con-

volution algebra A if and only if E belongs to the algebra

A with pointwise product. Similarly v € Oln, AEA™™. e

shall also use the Banach spaces L:[O,w) for some q € [1,~].

A function v mapping ﬁ?+ into ﬁ?n belongs to Lg[O,m) for some

q € [1,~] iff the function t F—»Iv(t)l, where |:| denotes any

vector norm in ﬁ}n’ belongs to Lq[O,M) for the same q € [1,*]

o

(i.e. J. |v(t)|th < » when q € [1,®) or |v(-)| essentially
0

bounded when q = ).

1.1.2 System Description in the Discrete-time Case.

For the feedback system under consideration, the input u,
output y and error e are functions fromizi (the set of non-

negative integers) into ﬁ?“. The open-loop system is of the



(1.1")

(1.2")

(1.3")

(1.4")

(1.1")

convolution type so that we have

]

y = G*e

it

e = u-y

where G is specified by a sequence of real nxn matrices

m
. ©
. ' =
{G,} ; thus (1.1') is equivalent to Yo 12.-_-:0 Gm-i e for

i4=0

m=0,1, 2, ... . Let H denote the closed-loop impulse

response of the feedback system i.e.:
y = H*u

and let G, H denote the maps G: e}—G*e, H: u}—»H*u
respectively.

We shall repeatedly use the convolution algebra 21 s £ is

said to be in ol iff

f= (fo,fl,fz,...)

where £, € R for all i and > |fi| < @, The product of two

i=0 .
elements f, g € 21 is given by their convolution: (f*g)m =

m
E f .g. form=0, 1, 2, ... and it is easy to show that
i<0 m-i~i

fxg € 2.1[3]. An n vector v (nxn matrix A) is said to be in

R.i(zan) iff all its elements are in 21. Let f denote the

~

z-transform of £, i.e. f(2) = Z fiz-l: f belongs to the
i=0

l.3



Nt - ST = T ——

convolution algebra 21 iff f belongs to the algebra il with
1 ; e 1

n’ ann We shall also

pointwise product. Similarly vE1
use the Banach spaces 2: for some q € [1,«]. A function v
mapping.z} into R belongs to 2: for some q € [1,~] iff the

X n
function i —»|v where |+| denotes any vector norm in R®,

il
[

belongs to 29 for the same q € [1,»] (i.e. 2: |vi|q < » when
i=0

q € [1,) or {lvil}°° essentially bounded when q = =).
i=0

1.2 General Remarks.

Notation

Unless specified otherwise explicitly, following notation

is used throughout the dissertation:

R ) field of real (complex) numbers

T ring of integers

“?+ set of nonnegative real numbers
7L+ set of nonnegative integers

R® set of real n-vectors

R set of real nxn matrices

| the imaginary unit

s complex variable of the Laplace transform
z complex variable of the z-transform

Re s real part of the.complex quantity s

I unity matrix

1.4

lower case letters are used to indicate scalar-valued or vector-

valued quantities
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Capital letters are used to indicate matrix-valued quantities.

£ Laplace-transform of f

Fh 2

z-transform of £

g (G) scalar-valued, (respectively, matrix-valued) open-
loop impulse response

h (H) scalar-valued, (respectively, matrix-valued) closed-
loop impulse response

(o,w) cartesian coordinates of the complex variable s

(psy) polar coordinates of the complex variable z

Note to the Reader

For reasons of clarity all statements, formulas, remarks,
conventions and facts are indexed by a reference number.
Theorems and corollaries have their own indexing system. Index
numbers terminated by a prime refer to discrete-time convolution
feedback systems.

Except for section 1, i.e. the introducfion, an attempt
has been made to group as much as possible in self-contained
blocks results on the discrete-time case and results on the
continuous-time case. In each block reference numbers and the
index numbers of theorems and corrolaries are ﬁonotonically
increasing.

For ease of reference on top of each page appears the
first new reference number used and the theorems or corrolary
stated on this page, as soon as they occur.

Special terminology used in the dissertation

minor determinant of a square submatrix
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principal part of G (G) sum of the local principal parts

of G (G) in Re s > 0 (|z| > 1)

1.3 Historical Backg;ound

Convolution feedback systems have been studied for a
long time in control and circuit theory. In fact it may be
said that they gave the starting pulse for the set-up of linear
control and systems theory as we know them today. The elegance
of these systems lies in the fact a) that through the super-
position principle one needs only to study the impulse response
of such systems and b) that through transform-techniques such
as the Laplace- and z-transform the convolution of two operators
is replaced by a pointwise product of them in the transform-
space, where the powerfull results of analytic function theory
and linear algebra are available. Therefore very sharp results
concerning the input-cutput properties of convolution feedback
systems can be obtained.

Initially authors were mainly concerned with single-input
single-output lumped convolution feedback systems [8,9] and the
extension of the ideas in [8] to n-input n-output lumped con-
volution feedback systems [e.g., 10]. Of central importance for
lumped systems is Nyquist's graphical test in [8] which in the
single-input single-output continuous-time case is necessary

and sufficient to insure that the input and output of the system

are related by an ordinary differential equation with stable modes.

In the sequel authors tried to extend Nyquist's graphical

(LT
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test to distributed convolution feedback systems. A first

step is Desoer's paper [11], who works in the Banach space
Ll[O,“) and uses the Paley-Wiener Theorem [12]. A second

step was the definition by Desoer and Wu [1] of the convolution
algebra CZwmich was possible by a result of Hille and Phillips
[13]. The central fact here is that it is possible to handle
distributions in (A whereas in Ll[O,m) this is not so, more-
over A is an algebra isomorphic to the algebra of its Laplace
transforms Cj. Based on these ideas results on the input-
output properties of convolution feedback systems were further
presented in J. C. Willems [14,15)], Baker and Vakharia [16],
Desoer and Wu [2,3], Desoer and Vidyasagar [17], Desoer and

Lam [18,19,20], Vidyasagar [21], Nasburg and Baker [22] and

Desoer and Callier [4,5,6,7].

1.4 Contributions of this Dissertation.

This dissertation is partly a reorganization of recent
contributions of Callier and Desoer [4,5,6,7], and is therefore

subdivided in following sections below:

Sec. 2. A graphical test for checking the stability of a
single-input, single-output convolution feedback system.

Sec. 3. Continuous-time n-input n-output convolution feedback
systems.

Sec. 4. Discrete-time n-input n-output convolution feedback
systéms.

Sec. 5. Conclusion
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In section 2 a graphical test is developed for checking

the condition

inf |1 +g(s)]| >0 .
Re s >0
where é consists of a term in (1 and a finite number of poles &8

in Re s > 0. As a consequence 1 + g is, in Re s > 0, asymptotic

to an almost periodic function say f as lslk—+—m.

Theorem 2.1 gives a necessary and sufficient condition in-

volving the curve {f@w)|w € R} to insure that inf |§(s)| > 03 i
Re s >0

corollary 2.l'gives a corresponding graphical test.

Theorem 2.2 and Corollary 2.2 give necessary and sufficient

(1.6)

conditions involving the curve {1 + g(jw) | € R} and a graph-
ical test, to insure (1.5) a condition essential for the 1.9 -
stability of the continuous-time feedback system under study.
Theorem 2.2 and Corollary 2.2 constitute a two-way generalization
of Willems result [14,15], first we do not assume that the

impulses of g are equally spaced and second we allow g to contain

IS

a finite number of poles in Re s > 0.

Next by decomposition—lemma A.2 we show that the graphical ’5
test as given by Corollary 2.2 can be used for checking the
condition

inf I det [I + G(s)] I >0 ;
Re s > 0 |

where G(s) is a matrix-valued transfer function consisting



(1.7) 1.9

of a tenm:h161nxn and a principal part corresponding to a finite
number of poles in Re s > 0.
Finally a graphical test is developed for checking the

discrete-time counterpart of condition (1.5) in Theorem 2.2°'

and Corollary 2.2'. We show thereby the simplification that

occurs due to the fact that, in this case, the open-loop
transfer function é becomes asymptotically constant as |z| +> o,
We show also that Corollary 2.2' has implications for the
discrete-time counterpart of (1.6) as well. Thus sectiom 2
shows the applicability of a graphical test to check conditons
(1.5), (1.6) and their discrete-time counterparts. It is inter-

esting to note that recently J. H. Davis [34] has obtained simi-

lar results using different techniques.

Sections 3 and 4 present input-output properties of
continuous-time respectively discrete-time n-input n-output
convolution feedback systems. Their structures are analoguous

First the overwhelming'importance of systems in Vidyasagar's
setting [21] is shown, i.e. of systems described by either

(1.1) - (1.2) and

A

1.7) (s) = 28
Q(s)

where f('), 6(') belong to &an
or (1.1') - (1.2') and

(x.7" G(z) = 2@
Q(z)

where P(-) and Q(*) belong to Ran.
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Indeed in Theorems 3.1 and 4.1' we show that, under mild

assumptions, é(s) (and G(z)) are of the structure (1.7) (respec-
tively, (1.7')) if the closed-loop impulse response H is sup-
posed to be in A™M M (respectively, ﬂan). These theorems extend
results of Nasburg and Baker [22] to the n-input n-output case
and greatly relax the conditionms imposed by previous authors.

Moreover in Theorems 3.2 and 4.2' necessary and sufficient

conditions involving (1.7) (respectively, (1.7')) are presented
for H to be an element of Clnxn (respectively, Lan) if the
open-loop impulse response G is supposed to be Laplace -
(respectively, z-transformable). These theorems again con-
stitute an extension of a result of Nasburg and Baker [22] to
the n-input, n-output case. As a second part of sections 3
and 4 necessary and sufficient conditions for H to belong to
nxn . 1.
a (respectively, ann) are presented when the open-loop
transfer function G (respectively, G) consists of a term in
Snxn =1 . i
CZ (respectively, 1an) and a principal part due to a finite
number of poles in Re s > 0 (respectively, |z| > 1).

Theorems 3.3 and 4.3' culminates a series of investigations

by Desoer, Wu and Lam [1,2,3,18,19,20], and handles the case

-~

where G (respectively, é) consists of a term in éznxn (respec-—
tively, iixn) and a principal part due to a higher order pole
in Re s > 0 (respectively, |z| > 1). Theorem 3.4 makes an
interpretation of the conditons of Theorem 3.3 possible and
establishes a link with C. T. Chen's result [10]. Theorems

3.5 and 4.4' state the reinterpreted conditions for H to belong

lo

&

s
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(1.14)
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X ~ ~
to AT (respectively, lan) when G (respectively, G) con-
2y nX
sists of a temm in A™ " (respectively, Qixn) and a principal
part due to a finite number of poles in Re s > 0 respectively

|z] > 1. These conditions are new and have not yet appeared

in the literature.

In section 5 after discussing the previous results, we
state in Theorem 5.1 necessary and sufficient conditions for
X
H to belong to a™™® for a simple convolution feedback system

where a singular nonunity constant feedback is present. Finally

in Theorem 5.2 we state sufficient conditions for the input-
output stability of a nonlinear time-varying 2n-input 2n-output
feedback system, where we use a result of the dissertation
namely Theorem 3.5. We show thereby that the results of this
dissertation have immediate implications for the stability
analysis of nonlinear feedback systems through the application
of the small gain theorem, passivity theorem, and loop transfor-

mation theorem [15,20].

1.5.1 Preliminary Results for the Continuous-time Case

We state now some well-known results concerning the

algebra a. (See among others [1],[2],[13] p. 150)

If g belong to d, then é is analytic in Re s > 0, bounded
in Re s > 0, and each function w F—>§(0+jm) where s 4 o + jw

is uniformly continuous for all ¢ > 0.

If g belongs to A then g is invertible in A if and only if

inf |g(s)| > 0
Re s >0
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nxn

If G belongs to & then G is invertible in A"

if and only if

(1015) ~
inf |det G(s)| > 0
Re s >0 ,x
If H belongs to CZ“X“ and y = H*u then
(1.16) x
u € L1[0,) =y €L1[0,®) for all q € [1,=]
(1.17) Remark. Concerning the system defined by (1.1) - (1.2) we
see that H € ava implies Lg - input - output stability for
this system for any q € [1,»] and therefore the system (1.1) -
(1.2) is said to be stable iff H € AW ",
1.5.2 Preliminary Results for the Discrete-time Case.
We state next some well-known results concerning the
algebra 21. (See among others [3]p.19)
(" 1 = ..
If g belongs to &, then g is analytic in |z| >1,
‘ bounded in |z| > 1, each function Yk—a-é(peJY) is uniformly
(1.13") .
continuous on [0,27] for all p > 1 (after setting z = peJY)
and lim é(z) = g, = constant. ) A
. z|7e
é 1 R . . 1., .
| If g belongs to &, then g is invertible in &~ if and 2
only if
.14")  § ]
inf Ig(z)l >0
z| > 1
If G belongs to 21 then G is invertible in 21x if and
nxn n*n
(1.15") only if

inf |det é(z)| >0
|z > 1



(1.16") 1.13

If H belongs to 21 and y = H*u then
’ nxn

(1.16") q q .
wu€e =y€2e forall q € [1,7]

(1.17')  Remark. Concerning the system defined by (1.1") - (1.2') we

1

q _ _ cqs
¥n implies Ln input - output stability for

see that H € &

this system for any q € [1,] and therefore we agree to say

1

that the system (1.1') - (1.2') is stable iff H € 2an'
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2.1

2. A GRAPHICAL TEST FOR CHECKING THE STABILITY OF A

SINGLE-INPUT SINGLE-OUTPUT CONVOLUTION FEEDBACK SYSTEM

2.1 Introduction

It is well-known that the classical graphical test [8]
for stability is extremely important for two reasons: (a) it
is based on experimental data that are easy to obtain with
great accuracy and (b) in case of instability it gives clear
indications of the required design modifications. Recently
J. C. Willems [14,15] developed a graphical test for a single-
input single-output continuous-time convolution feedback system
with constant feedback, where the open-lcop impulse response
g(t) belongs to the algebra CZ and contains equally spaced
impulses. This section generalizes previous result in that
(a) the open-loop transfer function é(s) is the sum of a term
in 52 and a finite number of poles in Re s > 0, and (b) it does
not require that impulses of g(t) be equally spaced. As a
consequence the funtion S|-—->§(s) is asymptotically almost
periodic in Re s > 0 for ]s| -+ o, and the conformal mapping
technique of Willems does not work. We have to rely heavily
on the theory of almost periodic functions [23,24,25]. It
should be stressed that this difficulty is not encountered in
the case of an analog single-input single-—output discrete-time

~

system. Indeed if z{—» g(2z) consists of a term in il and a



(2.1) y

(2.2) e

(2.1).

finite number of poles in |z| > 1 then z —>»g(z) has constant
asymptote in |z| > 1 for |z| + « and therefore a graphical
test can be obtained by a simple technique. Furthermore an
important observation will be that the préblem handled here
has implications for the n-input, n-output case as well. All

this will be handled in the paragraphs below.

2.2 Graphical Test for the Continuous-time Case.

2.2.1 Description of the System and Assumptions.

We consider a continuous-time scalar linear time-
invariant system with input u, error e and output y. The

latter are functions mapping ﬁ?+ into ﬂ? and satisfy

g*e

u-y

where g is a real-valued distribution with support onlﬁ?+
As will become apparent there is no loss of generality in
taking a unity feedback. Let é denote the Laplace-transform

of g. We assume that é has the following form

2 mk—l
R - ‘ -m, tm
(2.3) g(s) = g.(s) + Z Z rkm(s-pk)

k=1 m=0

where

2.2

®

o
e
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(2.5) 2.3

the poles p, are either real with real coefficients Tm

(2.5)

or conjugate complex with conjugate complex coefficients rkm;
(2.6) Re pk_z 0 for k=1, 2, ..., &,
Note that because of (1.13) aad (2.4)

ér(-) is analytic in Re s > 0, bounded in Re s > 0
(2.7) and each function w&—a-ér(c + jw) with s 4 o+ jw

is uniformly continuous for all o > O.
It follows therefore that

g(+) is meromorphic in Re s > 0, well defined and
(2.8)

continuous almost everywhere in Re s > O.

A necessary and sufficient condition that the closed-loop
impulse response h of the system (2.1) - (2.6) is in A (and
thus stable as defined by remark (1.17)) is:

(2.9) inf 1 + g(s)| > o.

Re s >0
For a proof see the appendix, lemma A.l.

The problem is to develop a graphical test for (2.9) based

on the curve {1 + é(jw)lw € ﬁ?}. Observe that because of (2.4)

ér has following structure:

~ - - -st,
2.0 £.() =g () + ) g e |

i=0



(2.11) 2.4

where
(2.11) ga(-) is a real-valued function belonging to Ll[O,«O;
(2.12) giEP for i=0, 1, 2, «ou}
(2.13) E ; lggl <=3
i=0
(2.14) 0= to < tl < vee < ti < eee o
Let
=z -st t -st,
(2.15) - f(s)§1+z g e 'iéz e .
i=0 i=0

Then f(s) is a Dirichlet-series with Dirichlet-exponents -ty

subject to (2.14) and Dirichlet-coefficients fi such that
(2.16) £.=1+g fi =8 for i=1, 2, ...

where the coefficients 84 satisfy (2.12) - (2.13). First we
develop a condition expressed in terms of the curve {f(jw)lw e Ry

insuring that inf If(s)l > 0, and then we use this result
Re s >0

to develop the condition involving {1 + g(jw) |w € R} that will
insure (2.9).
Given s = 0 + jw we denote by V0 the vertical line in ©

o. Moreover by g(s) we

(i.e. the complex plane) with Re s

mean the complex conjugate of f(s). Finally let

R



(2:17)

(2.18)

(2.17)

A A
n, = the number of poles of g(s) counting multiplicities

with Re Py > 0.

2.5

2.2.2 A Necessary and Sufficient Condition Involving the Almost

Periodic Curve {£(jw)|w € R} to insure inf |£¢s)] > o.

Re s > 0

Note that f defined by (2.15) - (2.16), is in X as a

consequence of (2.12) - (2.14) and can be uniformly approximated

in Re s > 0 by a finite number of terms of the series (2.15).

Hence

L B

is bounded and uniformly continuous in Re s > 0 and

Hho>

is analytic in Re s > 0 .

We state next some standard definitions [23,24] and facts which

streamline the proof of Theroem 2.1.

Given a line L, a set S C L is said to be &-relatively

dense on L iff any open interval of length % on L contains at

least one point of the set.
Given a complex-valued function w : DT, an element T

of D is said to be an e-translation-number of w on D iff

|w(x+t) - w(x)| < e for all x €D.

A complex-valued function w of a real variable x is said

to be almost periodic iff, given any e > 0, there exists a

real number & = 2(e) > 0 such that the set of e-translation-
numbers T = T(e) of w on W{ is f-relatively dense on W‘.

Let == < o < B < =, A complex-valued function w of a



(2.18a)

(2.18a) 2.6

complex variable s, analytic in a (vertical) strip (a,B), is

said to be almost periodic in a strip (a,B8) ([c,B]), iff given

any € > 0, there exists a real number 2 = 2(e¢) > 0 such that
the set of imaginary e-translation numbers jt = jt(e) of w on
the strip (a,B) ([a,B]) is Z-relatively dense on the imaginary
axis. |

Note that this last definition requires that the functions
wp—>w(o + jw) be almost periodic on any V, foro € (a,B)
([¢,B]) with an almost periodicity that is independent of o,

for o € (a,B8) ([@,B]).

Fact.

The function f defined by (2.15) - (2.16) is almost periodic

in the strip [0,x).

Proof:
i) f(jw) is almost periodic on V0 because f(jw) can be
uniformly approximated by a trigonometric polynomial

N
£ (3w = Z :fi-e 1 (1251p. 9.
1=0 :

ii) We claim that the set T(g) = {jr(e)lr(e) = g-translation-
number of f(jw) on Vo} is the set of e-translation-numbers of
f(s) on the strip [0,=).

Indeed by (2.18)

-st;
1

. R R z -jTt.
m_(s) 8 2 + j1) - £(s) =Z £, (e T e
i=1

3
~




2.7

is a Dirichlet-series bounded and uniformly continuous in
Re s > 0, analytic in Re s > 0 and by (2.14) all its Dirichlet-
exponents -ti, i=1, 2, ... are negative, which implies that
M (o) & sup_ |7 (o + 30|
0w € R

is decreasing on ¢ > 0 for any T ([25] p. 69-70). Let T = T(¢)

be any e-translation-number of %(jw) on VO, then
|f(jm + jT1) - f(jw)] = |§T(jm)] <e forallw G‘ﬁ{;

in other words MT(O) < €. Therefore, for all s in the strip

[0,=),
|st +31) - £(8)| = 7 () <M (o) <M (0) < e.

Thus T(e) is a set of e-translation-numbers of f£(s) on the
strip [0,») and since, by definition, any e-translation-number
T = j1(e) of £(s) on the strip [0,~) must be an e-translation-
number of E(jw) on VO’ we obtain that T(e) is the complete set
of e-translation-numbers of f(s) on the strip [0,«). Thus the
claim is proved.

Finally i) and ii) imply that given any € > 0, there exists
a real number 2(e) > 0 such that the set of imaginary %-translation-
numbers of f(s) on the strip [0,») is f-relatively dense on the

imaginary axis.

P |

Let us now consider the distribution of zeros of f(s) in

the strip (0,«)
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(2.18b) Fact.

If f(s), defined by (2.15) - (2.16), has a zero S0 = % + jwo
in the strip (0,«), then f(s) has infinitely many zeros in a
strip (a,B) (with 0 < o < B < ®) containing 8g> and their imaginary
parts are relatively dense on the imaginary axis (i.e. there
exists a number £ > 0, such that the imaginary parts are % -

relatively dense on the imaginary axis).

Proof:

Without loss of generality we assume that f(s) is not
identically zero in Re s > 0. Since %(s) is analytic in Re s > 0,
its zeros are not dense in Re 8 > 0, therefore we can choose

0 < r < g, such thét ]f(s)l >m>0on |s —'sol = r. By fact

0
(2.18a) for any 0 < € < m there exists a set of e-translation-
numbers jT = jt(e) of E on tﬁe strip [0,») that is relatively
dense gn the imaginary axis. Hence by’E(s +41) = £(s + jU) -
£(s) + £(s) it follows by (2.18) and Rouche's theorem (see [26],

theorem 9.2.3, p. 254) that %(s) has a zero in any disc Is -

T

(s, + jT)| < r, which proves the fact.
0

Definition of the Argument ¢(s) of £(s)

By definition

(2.19) ¢(s) = arg £(s) = Im log £(s) dinRe s > 0

with two additional conventions.

(2.19a) Convention. Let L denote a straight oriented line in Re s > 0.

By convention we take ¢(s), s € L, as the right argument of
i f(s) on L, i.e. ¢(s), s € L, i8 an arbitrary branch of the argu-

ment which is continuous except at the zeros of f(s) on L, while

™

'y
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(2.19¢)

(2.194d)

(2.19b) 2.9

it is discontinuous with a jump of +mm, when s goes through
a zero of f(s) of order m in the positive direction of L. At
any discontinuity point we assign to ¢ the mean value of its
one-sided limits. The function ¢(s), s € L, is then well

defined (mod. 2m) because of (2.18).

Convention. Because f(jO) is real and because it will later be

assumed to be nonzero we pick for wp—»¢(jw), w € ﬁ?, that
branch of the argument such that ¢(jO) = 0 (or w) according as

g(jO) is positive (or negative, respectively).

Remarks.

Remark. It is important to observe that by convention (2.19a)

and (2.18) the principle of the argument may be applied to f(s)
on any rectangle in Re s > O which is oriented in clockwise

sense and which has no zeros of f£(s) on its cornmers.

Remark. Because of (2.18) and (2.19), for any strip (a,B8) in

Re s > 0 such that 0 < @ < B < = and inf |£¢s)| > 0,
B>Res>a

$(s) is well defined (mod. 2w) and uniformly continuous in the
strip [a,B] and analytic in the strip (a,B).

Since by Fact (2.18.a),(nh~»f(jw) is almost periodic we have:

(2.19e) Fact [24].

(2.20)

Let f be defined by (2.15) - (2.16). 1If

2 A
inf If(jm)l = K>0
w € R
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then

(a) wp—>0¢(jw) is well defined on R and is of the form

(2.21) ¢(Jw) = Aw + w(jw)

where A is a constant and w}—>w(jw) is almost periodic; the
constant A will be called "the mean angular velocity of f(jw)"
(In the literature the term '"mean motion of f(jw)" is used,

however this is borrowed from celestial mechanics),

(b) if N is the least meodsdss integer such that

(2.22) E‘ |£,] < K sin(8/2) for some 0 < 6 <=
M1

then the mean angular velocity A of £ (jw) may be written in both

the forms

where the coefficients ho, hl, ceey hN are integers with sum 1

and

where the coefficients r,, r,, ..., I, are nonnegative rationals
0’ "1 N

with sum 1,

(¢) with
(2.25) € < Ksin(8/2) & <7

any e-translation-number t(e) of wl—>f(jw) satisfies

o




(2.26)

(2.27)

(2.26) 2.11

|6Gu + 37) = $(4uw) - c 2r| <& for all w € R

AT - ¢ 2n]| <8

where c, is an integer depending on T,

(2.28)

(2.29)

(2.30)

(2.31)

(d) the function w —»¢(jw) is almost periodic if and only if

the mean angular velocity X of f(jm) is zero or equivalently if

and only if there exists an increasing sequence {wn}+°°

= =00

satisfying

< w < vee S W <w.=0<w, < ¢ee <w_ < ...

0 1 n

]
8

1lim W,
n-oe

such that

)]

¢(jwn) ¢(30) formn= ..., -2, -1, 0, 1, 2, ... .

Proof

Part (a) is a straightforward transcription of [24] p. 167
Theorem 1. Part (b): the mean angular velocity of %(jw) is
the same as the mean angular velocity of an exponential polynomial
N -jut
%N(jm) = ;;% fi e i where N satisfies (2.22) (see [24] p. 170-
176). Part (c) follows from [24] p. 168 — 170. The first state-

ment of part (d) is obvious from part (a). The second state-

ment is established as follows:
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= Since
(2.32) £(-ju) = £(Juw) for all w € R
(2.33) $(Gw) - 6(30) = $(30) - ¢(-jw) for all w € R

So unless ¢(jw) = ¢$(jO0), then for some w' > O either

¢(Gw') > ¢(30) > ¢(-ju")
or

¢ (Ju') < ¢(30) < ¢(-ju")

Then (2.28) - (2.31) follows by the continuity and almost

periodicity of ¢ (jw) on R and by (2.33).

< The existence of the sequence {wn}m implies that
: n=-—o

¢ (jw) is bounded on TR, hence the mean angular velocity of

f(jm) is zero and thus by (2.21) wp—>»¢(jw) is almost periodic

X

Before we give Theorem 2.1 we give a last interesting

result.

(2.33a) Fact.

Let f be defined by (2.15) - (2.16). If

(2.20) inf_ |fGw)| &k >0
w€R

Then:

given any ¢ > 0, there exists a positive real number
Co depending on o such that

[6Co + jw) - ¢(Juw) | < C, unifornly in w.

cF
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Proof:
Because of (2.20) and (2.18) there exists a o* > 0, o¥ < 0

such that inf |£¢s)| > 0, so by remark (2.19d) and
ok > Re s >0

convention (2.19b), ¢(s) is well-defined and uniformly con-
tinuous in the strip [0,0*] such that there exists a positive

constant Co* depending on ¢* for which
|¢(U* + jw) - ¢@Guw)| < Cc* uniformly in w.

Observing that [o*,0] is a closed substrip of the strip [0,=),
in which f(s) is almost periodic by fact (2.18a) it follows
that there exists a positive constant Co~o* depending on

o - o¥% such that
¢ (o + jw) = ¢(o* + jw)| < C,_y« uniformly in w,

([24], p. 178-179, Theorem 3(iv)). Combining the two results

we obtain that with Co = Co* + Co-o* the fact is true.

Theorem 2.1

Let f(s) be the Dirichlet-series defined by (2.15) - (2.16).

Under these conditions

(2.34) inf |£(s)| > 0
Re s > 0
if and only if

i)

(2.35) =1+ &g #0

£o



ii)
(2.20) inf_ |£(jw)| =K > 0
we€R
iii)
(2.36) the mean angular velocity A of f(jm) is zero.
Proof:

<« a) Observe that because of (2.15) - (2.16), (2.18) and

(2.35)

(2.37) 1im £(o + ju) = f, # 0 unifornly in o

g

Thus there exists a o* > 0 such that

(2.38) inf  |£(s)| > O.
Re s > o*

—

So by Remark (2.19d) ¢(s) is well defined (mod. 2#) and
uniformly continuous in the strip [o*,~). Hence (2.37) implies

for any branch of ¢(s)

(2.39) lim ¢(o + jw) = ¢, uniformly in
o>

where ¢ = arg f, (mod. 27). Moreover we can pick a o, > 0
© 0 1

so large that

(2.40) oy > o%

and

(2.41) |¢(01 + jw) - ¢w| <1, uniformly in w.

réh



In view of (2:20), (2140) and (2.38), we will have established

(2.34) if we show that inf |£¢s)| > o.

>
01 Re s > 0

b) As a first step let us establish that

(2.42) f(s) # 0 in 9 >Res>0= inf |§(s)| > 0.
o, >Res >0
1
Indeed assume inf |f(s)| = 0, then there exists
% >Res >0

¢ ® c 4 i
a sequence {sk}k=2 {s|cl >Re s >0}, 5 = o + 3oy such

that lim |f(sk)| = 0. Because by assumption £(s) # 0 in
koo

01 > Re s > 0 and because of (2.20) and (2.38) it follows then

for this sequence that lim Iwkl = © and lim inf o > o,

ke ke

lim sup 0, < ©;. The sequence'{ok}oo is a bounded infinite set
koo k=2

of real numbers and so by Bolzano-Weierstrass' Theorem it contains
an accumulation point. Thus without loss of generality we may

assume that {Uk}°° is convergent say to O, thus lim o, 4 Oys
k=2 koo

0 < 00 < ;- Finally by the uniform continuity of f(s) in

Re s > 0 we conclude:

there exists a real number 00 and a sequence

{wk}°° with 0 < 0, < 0, and lim |wk| = o, such that
k=2 kv A

(2.43)

lim IE(GO + jwk)l = 0.

k>
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Observe that f(s) is nonzero and almost periodic on V0 so:
0

there exist positivé real numbers 2 and d such that
any interval of length £ contains a point 00 + jw for

which lfﬁ(o0 + jwy| > 4.

Therefore by a result of [25] (Theorem 3.6, p. 71), (2.18)
and (2.43) - (2.44) imply that £(s) vanishes in the strip
(oo - 6, % + §8) for any § > 0. Clearly this contradicts our
assumption that f(s) # 0 in o, > Re s > 0. So our claim is

true.

c) Having established claim (2.42) we will have proved
(2.34) if we show that f(s) # 0 in the strip (0,01). By con-
traposition of fact (2.18b) this will be true if we show that
the number of zeros N of f(s) in the strip (0,01) is bounded.

Consider therefore a sequence of rectangles {Rn}oo defined by
- n=1

Rn A [0,01] x [-n,n] for n=0, 1, 2, ..., and let the corre-
sponding number of zeros of f(s) inside Rn be Nn forn=1, 2,
... . Observe that because of (2.20), (2.38) and Remark (2.19c)
the principle of the argument may be applied to each of these

rectangles oriented in the clockwise sense. We show now that

the sequence {A¢n}°° (where ¢  is the net increase in
=] ’

argument around the rectangle Rh) is bounded. This follows

easily if one observes

i) that by (2.20) and (2.36) and Fact (2.19e)(d)

w9 (jw) is almost periodic and hence bounded

Y

(A

e




2.17

S

ii) that by (2.20) and Fact (2.33a)
l¢(01 + jw) - d@Gw) ]| < C, uniformly in w.
1
iii) that by (2.41) any branch of w F—>¢(°1 + jw) is bounded.

In view of this it follows then that there exists a positive

constant C such that

A

N2 1lim N_ = 1lim |A¢_| < C.
n n

n>eo n>®

= First observe that the first equality of (2.37) still
holds, so (2.34) implies (2.35). Next (2.34) implies (2.20),
hence by fact (2.19e)(a) wp—>¢(jw) is well-defined and sat-
isfies (2.21). Furthermore by (2.34) and (2.18) and convention
(2.19b), s —>¢(s) is well-defined and uniformly continuous
in Re s > 0. Hence again (2.37) implies (2.39) and again we
can pick a o, > 0 such that (2.41) is true.

We claim now that wl—>¢(jw) is almost periodic. For this
purpose, in view of (2.20), it is sufficient to show that ¢ (jn)
forn=0, 1, 2, ... remains bounded as n *> «. Consider

therefore the rectangles {Rr'l}°° defined by R; = [0,01] x [0,n]
n=1

forn=1, 2, ... . By (2.34) and (2.18) it follows that the
principle of the argument can be applied to each of these
rectangles; hence the net change in ¢ around each R; is zero
forn =1, 2, ... . Now by the uniform continuity of sp—¢(s)
in Re s > 0, there exists a constant C independent of n such

that for any horizontal segment H; 4 {s=0+jn; 0< o0 j_ol}

forn=0,1, 2, ... : |¢(01 + jn) ¢(jn)| < C. This fact
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with (2.41) implies that the sequence {¢(jn) - ¢(jO)}:=0
bounded. Hence, because ¢(j0) is 0 or @ by (2.19b) the
sequence‘{¢(jn)}:=o is also bounded. So our claim is true and
by fact (2.19e)(d) the mean angular velocity of f(jw) is zero

which implies (2.36). z

It is interesting to observe that under the conditions
of Theorem 2.1 sign f(jO) = sign fO = gign (1 + go). Hence

if 1 + go > 0 (respectively < 0) then ¢(jO) = 0 (or m).

We want now to develop a graphical test involving

{£@w) |o € R} to insure inf If(s)l > 0. Here again it
Re s >0

will be the almost periodicity of w|——>f(jw) that will save us.
We start giving some definitions and two facts.

Let 2(e) be the "density-length' for the e-tramslation-—
numbers of w|——>£(jw). Observe that e-translation-number of
E(jw) can be determined by diophantine analysis (see e.g. [25]
p. 146-149). From their pattern a "density-length" can be
determined.

Consider now the path

(2.45) v(e) & {EGw) |w € 10,2(e)1}

and its closed e-neighborhood N(e) defined by

2.46) N 2 x€T| | x-EGw] < 3 w€ 0,2

0w

.
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We prove now Fact (2.46a), which allows by the simply
knowledgé of the path y(g) = {f(jw)|w € [0,2(e)]} to locate
the closure of the set’{f(jw)lw € ﬁk}, and Fact (2.46b) which

informs us about the minimal value of A if it is nonzero.

(2.46a) Fact (Fig. 2.1)

Let f(jw) be defined by (2.15) - (2.16) (setting s = ju).
Consider the path y(e) and neighborhood N(e) given by (43),
respectively (44). Under these conditions

(a) for any £ > 0, N(e) contains the closure of the set

{(£@w) |0 € R1}.

(b) as e + 0, then N(g) tends towards the closure of the

set {£(jw)|w e R).

Proof:

Observe that for any € > 0, the e—translation-numbers
T.= t(e) of u)k—>§(jw) are 2-relatively dense on ﬁ?. So given
any w E.F{, there exisﬁs an e-translation-number T = T(¢)
belonging to [-w,-w+l] and shifting w into an element
w+ T € [0,2] such that |£(jw) - E(jw + jr)| < €. Hence
f(ju) € N(e) for any w € R. Hence the set {f(jm)lm G'FK} is
contained in the closed set N(e) and so is its closure. This

proves the first statement. The second statement is a direct

Bl

consequence of the first ome.

(2.46b) Fact.
Let E(jm) be given by (2.15) - (2.16) (setting s = jw).

Assume that




(2.20) inf_ |£Gw) | & k > 0.

w€R

Under these conditions: (a) it is possible to determine the

set X given by:

N

N
(2.47) X 4 {x = - E hiti = - E riti; hi = integer
i=0 i=0

fu

and r, = nonnegative rational for all i;

N N
E hi = 13 ri = 13 N is the least
i=0 i=0

integer, such that E Ifil < K sin(8/2)
N+1

some 0 < § < 7},
where -ty and fi are Dirichlet-exponents and —coefficients
of f(s); (b) moreover there are only a finite number of elements

in X and, if N i_l,+ then X ~ {0} is nonempty, such that

(2.48) Apin 4 nin |x|
x€X

is well defined, and (¢) as soon as the mean angular velocity

(et

A of £(ju) satisfies |A| < A . then A = O.
min

Probf:

(a) 1is an immediate consequence of (2.20). (b) is a

consequence of the fact the set {-ti}N admits a finite integral
i=0

base i.e. a set of real numbers {Bj}M such that i) there exists
j=1

fIf N = 0, then by Fact (2.19e)(b) X = 0, therefore this case will
be omitted in the sequel.



2

(2.49)

(2.49) , 2.21

no integers hj’ j=1, ..., M, not all zero, such that

M
E:tﬁ Bj = 0 and ii) each number —ti can be expressed in a
=1

unique manner in the form —ti = h§i) Bj for i =0, 1, ...
j=1

N where h§i) are integers (see [24] p. 146, [23] p. 82-83).
Equivalently the N+l numbers -t; can be represented by lattice
points (i.e. with integer coordinates) in ﬁKMFspace, indeed
each point --ti may be represented by the M-vector (hii), hgi),
eoey héi)) with integer coordinates. Now (2.47) merely
expresses the fact that the numbers x can be represented as a
subset of lattice-points in F{M that are in the closure of the
convex hull of the M+1 lattice-points h(i), i=0,1, ...y N
in W(M. Hence the set X is finite. Moreover -ti, for i =1, 2,
«++s N, belongs to X ~ {0}. Therefore (b) is true. Concerning
(c) observe that because of Fact (2.19e) (b) the mean angular
velocity A of f(jw) belongs to X and that also 0 belongs to X,
hence (c) is a direct consequence of (b). g
As a final rema;k;';ﬁserve that because the e-translation-

numbers are relatively dense on ﬁi it follows that as soon as

(2.20) is satisfied we can pick a translation-number t(e)

such that
L
T7(€) f-kmin°
We are now ready for a graphical test insuring inf |£¢s)] > 0.

Re s >0
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Corollary 2.1

Let f(s) be the Dirichlet-series defined by (2.15) -
(2.16) and (2.12) - (2.14). Let y(e) and N(e) be given by
(2.45) and (2.46). Under these conditions
(2.34) inf  |f(s)| > O
Re s > 0
if and only if
i)
(2.35) f0 =1+ 8o #0
ii) the origin 0 of the complex plane is positioned with
respect to {£(jw)|w € R such that

a)

(2.50) there exists an ¢ > 0 such that 0 does not belong to N(g)

b)

Fforane >0, with 0 < e <K 2 inf lf(jw)l, for
w €

< which the corresponding e~ translation-number t(g)

(2.51) ‘
satisfies (2.49), where Amin is defined by (2.47) -

L (2.48), then |¢(jT) - ¢(j0)| < 7 must hold.

Proof:

Because of Theorem 2.1 we need only to show that (2.50) -
(2.51) are equivalent to (2.20) and (2.36). Clearly by Fact 2.5
(2.50) <= (2.20). So we are left to prove the equivalence of

(2.51) and (2.36) under the assumption (2.20).

n

v




(2.51a)

(2.51b)

(2.51a) 2.23

= We assume that (2.51) is true. Then ¢ < K implies

€ < K sin(8/2) with same § < m. So immediately by Fact (2.19¢e) (c)
l[6GT) - ¢G30) - c, 2r| < 6 < m. Thus by (2.51) ¢ = 0 and
hence by (2.27) [at| < s or A <2 <L S0 by 47) Al < Ay
which by Fact (2.46b)(c) implies A = 0. X

<  We assume that (2.36) is true. Let 0 < € < K sin(§/2),

§ < 7 and let t(c) satisfy (2.49) then immediately from

Fact (2.19e)(c) IcT21r| <8§<mi.e. c = 0. Hence from (2.26)

1541

l6GGT) - $(30)]| < 6 < m.

Remarks
Remark, It is important to observe that the knowledge of the

density—lengfh 2(c) allows us to locate the closure of the set

-{E(jm)lw € R} and that the knowledge of a translation-number

T(e) allows us to replace the condition A = 0 by a condition

on the increase in argument.

Remark. If wl——»E(jw) is periodic with period Wy two important
simplifications occur i.e.:
a) {EGw e € R} = {£Gw | € [0,u,]
b) if (2.20) is sgtisfied then ¢(jw) = Aw + w(jw) where
w(jw) is periodic with period Wy

Hence: A = 0 < ¢(jw,) = ¢(jO) and hence: for the case

»
thatlnk—*g(jw) is periodic with period ¥ part ii) of Corollary
2.1 can be replaced by: the origin O of ahe complex plane is
positioned with respect to'{E(jw)Iw € R} such that

a)

0 does not belong to.{f(jw)lm € [O,wO]}

b) |

¢(:iwg) = ¢(30).




(2.52) 2.24

2.2.3 A Necessary and Sufficient Condition involving

{1 +4é§jw)|w € R} to insure inf 1 + é(s)[ >0
Res >0

Definition of the argument 6(s) of 1 + é(s) subject to

(2.3) - (2.6).

By definition

(2.52) 0(s) = arg[l + g(s)] = Im log[l + é(s)] for Re s > 0

with two additional conditions.

(2.52a) Convention. Let L denote a straight oriented line in Re s > 0

By convention we take 6(s), s € L as the right argument of

1+ g(s) onL, i.e. 6(s), s € L, is an arbitrary branch of the
argument which is continuous except at the zeros and poles of
1+ g(s) on L, while it is discontinuous with a jump of
+mw(—mkn), when s passes, in the positive direction on L a
zero (pole) of 1 + é(s) of order m(mk). At a discontinuity-
point we assign to 6 the mean value of its one-sided limits.

The funciton 6(s), s € L, is then well defined (mod. 2m) because

of (2.8)

(2.52b) Convention. Because 1 + é(s) is real for s = ¢ > 0 and

meromorphic in Re s > 0, there exists an interval (0,0*) on
which 1 + g(o) is real, finite and different from zero. We

pick for w |—>06(jw) that branch of the argument such that

»

G




Theorem 2.2 (2.53) 2.25

6(j0) 4 0 (or w) according as 1 + é(o) is positive (or

negative) on (0,0%).

Theorem 2.2

Given §(s) defined by (2.3) - (2.6), let £(s) be the
Dirichlet-series given by (2.15) - (2.16) and let n, be given
by (2.17). Under these conditions:

(2.9) inf |1+ g(s)]| >0 .

Re s >0
if and only if

i)

(2.35) 1+ &g £ 0,
ii)

(2.53) |1 + gGw)| > 0,

wER
iii)
(2.36) The mean angular velocity A of m}—q»f(jw),is Zero,
iv)

(2.54) lim [6(jw) - ¢(Gw)] = 0(j0) - ¢(jO) + np, m =D 27
W

where b is an integer.

Proof:

(a) Let us first study the asymptotic behavior of
1+ é(s). In view of (2.11), the Riemann-Lebesque lemma
implies ga(s) + 0 as lsl + » in Re s > 0, hence by (2.3), (2.10)

and (2.15) - (2.16)
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(2.55) 1+ g(s) » £(s) as |s| > = in Re s > 0.

An important conclusion is that because of (2.55) and Fact (2.18a)
W —1 + é(jw) has an asymptotic almost periodic behavior on
R and s b—>1 + é(s) has an asymptotic almost periodic behavior
in Re s > 0 (for |s| + =).

(b) < . We first show that

(2.34) inf |£(s)| > 0.
Re s > 0

Indeed (2.53), (2.55) imply lim inf |f(jm)| > 0. Hence, since

|m|-+oo

w F—»f(jm) is almost periodic on V0 by Fact (2.18a),

(2.20) inf_ |f@w)| & k > 0.

w E‘ﬂQ

So by (2.35), (2.20) and (2.36) it follows that (2.34) is true
by Theorem 2.1.
Observe that by Fact (2.19e)(d), (2.20) and (2.36) are

o
equivalent to the existence of a sequence {mn} satisfying

n=-oo

(2.28) - (2.31). Now choose W, with positive index from this
sequence and a g% > 0, both sufficiently large so that:

(a) The open rectangle ABCD 4 (0,0%) x (—wn,wn) (Fig. 2.2),
i) has all poles of 1 + g(s) with Re p, > 0 in the interior of
ABCD, ii) has all poles of 1 + g(s) with Re p, = 0 on 4B, iii)
neither A nor B are the location of a pole of 1 + é(s);

(b) in the complement of this rectangle with respect to
{s|Re s > 0} except for AB: 1 + g(s) is sufficiently close to

£(s) such that 1 + é(s) is bounded away from zero by (2.55) and
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(2.34) in this complement, except for AB. The principle of
the argumeht can be applied to ABCD. Denote by AeAB the net

change in argument on the oriented seqment AB. By the principle

of the argument along with (2.17) it follows that:

(2.56) AeABCDA = (nP - nZ)Zn

where n, is the number of zeros of 1 + é(s) inside ABCD.

Remember that f(s) is analytic inside ABCD, continuous on the
boundary ABCDA and by (2.34) bounded away from zero in Re s >0
hence again by the principle of the argument

(2.57) A¢ABCDA = 0.
Moreover since W, and o have been chosen sufficiently large
it follows from (2.55) that

(2.58) A¢BCDA = AeBCDA

where = indicates that equality is reached as w, > and

ok > », From conditions (2.29), (2.31), (2.54), the fact that

8(juw) - 6(30) = 6(30) - 6(-juw) because 1 + kg(-jw) = L + kg(Ju)

and (2.53),
(2.59) A¢AB = 0
(2.60) AeAB = ny 2T .

Hence (2.57) - (2.59) imply A¢BCDA = AGBCDA = 0, which along

with (2.60) and (2.56) implies n, = 0. Thus, for sufficiently



2,28

large W and o%, 1 + é(s) has no zeros in ABéb. Furthermore
by construction 1 + §(s) is bounded away from zero in the
complement of ABCD with respect to {s|Re s > 0}, and by (2.53)
1+ é(s) is bounded away from zero in the complement of ABCD
with respect to {ise s > 0}. Hence (2.9) follows.

(c) = . Immediately (2.9) implies (2.53). Thus because
of (2.9) and (2.55), we can pick an w = w* and ¢ = 0% so large
that the rectangle ABCD = (0,0%) x (-w*,w*) (see Fig. 2.2) is
such that E(s) is bounded away from zero in the complement of
ABCD with respect to {s|Re s > 0} except on AB. Since by
Fact (2.18a)$ w y—>f(c + jw) is almost periodic on any line
Vo, o € [0,»), it follows then that f(s) is bounded away from

zero on all these Vc’ Hence

(2.34) inf |£(s)] > 0

Res >0
which by Theorem 2.1 implies (2.35), (2.20), and (2.36). Hence
because of Fact (2.19e)(d) there exists a sequence {wn}m
such that (2.28) - (2.31) hold. h

We show now that (2.54) holds. From now on, pick the
parameters of ABCD, so that w* is aﬁ element of the above
sequence with positive index and so that w* and o* are so
large that (2.55) holds; finally all poles of 1 + é(s) with
Re Py > 0 should be inside ABCD and all poles of 1 + g(s) with
Re P = 0 should be on AB but neither A nor B should be the

location of a pole. Again the principle of the argument can

be applied with ABCDA oriented in clockwise sense. Hence

W
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= n, 27. Similarly A0 0. By the construction

ABCDA = "'P ABCDA
i Ae = A =
of ABCD again 46, 0 implies eBCDA 0. Hence by (2.55)

AD

again A6 = 0 such that 46, = n_ 27, Thus for w s D >0,

BCDA AB P
sufficiently large, because 6(jw) - 6(j0) = 6(jO) = O(-jw) and
(2.29): e(jwn) = 8(30) + n, T. This implies by (2.30) and

(2.31) 1lim [0(jw) - ¢(jw)] = 6(jO) - ©(jO) + n, 7 which because
W

1>

of (2.55) implies (2.54).

In order to establish a graphical test it is interesting
to observe that because of (2.52), the validity of condition
(2.54) can be determined in principle by considering 1 + é(jw)

and f(jw) only over a finite interval. Moreover given the

neighborhood N(¢), defined by (2.46), it follows by the

asymptotic and symmetry-properties that

(a) given any € > 0, there exists 2(e) such that

(2.61) w> ) = |1+ g(w) - £@w)] < ¢

= 1 + g(juw) € N(2¢), where
(2.618)  N(2e) & (x €C | |x - £G0)| < 2e5 w € [0,2(e)]}

(b) inf__ |1+ g(w)| > 0
w€R
<> the origin 0 of the complex plane is positioned
w.r.t. {1+ g(fw) |0 € R} and {£Gw) |o € R}
such that there exists an € > 0 such that
i) 0 does not belong to N(2¢)

ii) 0 does not belong to {1 + g(jw)|w € [0,9(e)]1}.
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From this discussion, Theorem 2.2, Theorem 2.1 and Corollary

2.1 we conclude with the following graphical test:

Corollary 2.2 (Graphical test)

Given é(s) defined by (2.3) - (2.6). Let f(s) be the
Dirichlet-series defined by (2.15) - (2.16). Let y(e), N(2¢),
Q(e) be given by (2.34), (2.6la) and by (2.61). Under these
conditions:

(2.9) inf |1+ g(s)| > 0

Re s > 0
if and only if

i)

(2.35) f0 =1+ &g #0
ii) the origin O of the complex plane is positioned with
respect to {f(jw)lw € W{} and {1 + é(jm)lw € R} such that

(a)

{:there exists an ¢ > 0 such that 0 does not belong to N(2¢)

(2.62) .
and {1 + g(jw) |o € [0,0(e) 1}
(b) |
f for an € > 0 with 0 < ¢ < K 4 inf If(jw)], for which
w€ R
4 the corresponding e-translation-number 1(c) satisfies
(2.51)
(2.49), where Amin is defined by (2.47) - (2.48), then
. |$(31) - $(j0)| < 7 must hold.
(c)
(2.54) lim [6(jw) - ¢(Gw)] = 8(30) - $(3O) + n, M= b 27

>eo

10

“

v(‘
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where b is an integer. (Note that, by (2.17), n, is the number

of poles with positive real part)-

Comment

a) It should be noted that the graphical test as given in
Corollary 2.2 requires the knowledge a priori of the asymptotic
part £(s) of 1 + g(s). This however is the price we have to
pay for admitting an almost periodic asymptote in the transfer
function

b) J. C. Willems' conditions [14,15] are easily derived
from Theorem 2.2, Corollary 2.2 and Remark (2.51b) if we take
his assumptions i.e. |g0| < l;(nﬁ-yg(jw) is periodic with period

~

wy and g € {. Then

inf |1+ g(s)| >0
Res >0

if and only if

i) inf_ |1+ gGw]| >0

w€R

ii) 1im 6(jn wo) = 6(j0) =0 forn=20,1, 2, ... .

n->e

2.2.4 Implications for the n-input, n—output case

The aim of this paragraph is to show that the above theory

allows us also to check the conditon

inf  |det[I + G(s)1]| > O
Re s > 0

when é(s) is the transfer function of a real n-input n-output
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convolution feedback system consisting of a term in Cznxn and
a principal part due to a finite number of poles with positive

real part, i.e.
bom-l
+m
@66 66 =D D Ro(s - pk)-mk +6_(s)

k=1 m=0
where

r Gr belongs to 6lan
Re Py >0 fork=1, 2, ..., &;
< the poles P, are real or pairwise conjugate complex;

the matrices ka are real or pairwise conjugate

\. complex n*n matrices according to the poles.

Following the theory of the decomposition-Lemma A.2 in the
Appendix and its subsequent corrolaries we finally get from
Corollary A.2.4 after adding and subtracting 1 on the right

hand side of (A.15) and regrouping (observe that 1 € ({ ):

L' m'-1
~ ~ i mk —m]'(-'-m
(2.65) det[I + G(s)] =1 + gr(s) +Z Z rhn(s -pk)
k=1 m=0
where
e € &;
L' < 23

< m' 1is the order of the pole at p, of det[I + G(s)1,
thus )0 #0fork=1, 2, ..., £;

the coefficients Tym 2Y€ either real or conjugate

\. complex constants according to the corresponding poles.

"

"

'
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2' !..1
e -t
Observe that with é(s) 4 gr(s) + E E rkm(s-pk)
k=1 m=0

we get completely the same structure as in (2.3) - (2.6) and
thus checking (2.63) is the same as checking (2.9) such that

all the results of the previous paragraphs are applicable.

2.3 Graphical Test for the Discrete-time Case

2.3.1 Description of the Systems

We consider a discrete-time scalar linear time-invariant
system with input u, error e and output y. The latter are

sequences mapp:i.ng‘:zq~ into ﬁ? and satisfy

y = g*e

e = u-y

where g is specified by a sequence of real numbers {gi}m
i=0

i
and (2.1') is equivalent to vy = Z gi-—j ej fori=0,1, ...
j=1

As will become apparent there is no loss of generality in
assuming a unity feedback. Let g denote the z-transform of g.

We assume that é has following structure

ol -
TEEPACED DI PEEMCEES s

k=1 m=0

where

g €73
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the poles p are either real with real coefficients r
(2.5") k : km
or conjugate complex with complex conjugate coefficients L.

(2.6") lp | 21 fork=1,2, ..., 2. .
Note that because of (1.13') and (2.4")

ér(') is analytic in |z| > 1, bounded on |z]| > 1,
2.7") each function Yp_»ér(p er) is uniformly continuous on

[0,27] (after setting z = p edY) and Ile g(z) = gor= constant
Z | oo

It follows therefore that

2.8% {ié(') is meromorphic in |z| > 1, well defined and
2.8

continuous almost everywhere in |z| > 1.

A necessary and sufficient condition that the closed-loop
impulse response h of the system (2.1') - (2.6') is in Rl (and
thus stable as defined by remark (1.17')) is

(2.9") inf |1+ g(z)| >0
|z] 21

"

For a proof see the appendix, lemma A.1l'.

The problem is to develop a graphical test for (2.9') based

W

on the closed path [27] {1 + g(z); z = eJY; vy € [0,21]}. Observe

that

(2.10") lim 1 + é(z) =1+ g, = constant.
AR

Thus here the asymptote of 1 + é(z) for |z| + o is constant

e




(2.11") A 2.35

and therefore an investigation of the asymptotic case will
not be necessary here.

As a last remark let

e

the number of poles of é(z) counting multiplicities

(2.11") n,

with |pk| > 1.

2.3.2 A Necessary and Sufficient Condition involving

{1+3g(2);z= er; y € [0,27]} to insure | Tnf [1 fﬁéﬁz)l >0
z| > 1

Definition of the argument 6(z) of 1 + é(z) subject to (2.3') -

(2.6")

By definition -
(2.12") 0(z) = arg[l + g(z)] = Im log[l + g(z)] for |z] > 1
with two additional conventions,

(2.12a') Convention. Let C denote a path [27] in |z| > 1. By convention
we take 6(z), z € C, as the right argument of 1 + g(z) on C, i.e.
8(z), z € C, is an arbitrary branch of the argument, which is
continuous except at the zeros and poles of 1 + g(z) on C, while
it is discontinuous with a jump of +mm (—mkﬂ) on C, when s passes,
in thelpositive direction on C, a zero (pole) of 1 + g(z) of order
m(mk). At a discontinuity point we assign to 6 the mean value
of its one-sided limits. The function 6(z), z € C is then well

defined (mod. 27) because of (2.8').

(2.12b') Convention. Because 1 + g(z) is real for z = p, p real and Ip[ >1,
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and ﬁeromorphic in |z| > 1, there exists an interval (1,p%*)

on z = p, p positive real and |p| > 1, on which 1 + é(p) is real,
finite and different from zero. We pick for Y;——»O(ejy),

Yy € [0,27], that branch of the argument such that e(ejo) 49

(or m) according as 1 + g(p) is positive or negative on (1,p*).

Theorem 2.2'

Given g(z) defined by (2.3') - (2.6') and let n, be
given by (2.11').

Under these conditions:

(2.9 inf |1+ g(2] >0
z| > 1 ‘

if and only if

i)
(2.13") Iinw 1+g(z) =1+ gy = constant # 0 ,
i1)
(2.14") inf 1+ 83%] >0,
6 € [0,21]
1i1)
(2.15") 0(e3?™) - 8(e?%) = n 2n . _
Proof

(a) * . Observe that because of (2.13') there exists a

positive number p* > 1 such that:

1 + g(z) has no poles in |z| > p*;
1 + g(z) is uniformly continuous in |z| > p* and

(2.16") inf |1+ g(2)| > 0.
lz| > p*

W,

]

W
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It follows therefore that 6(z) as given by (2.12') is well
defined (mod. 2m) and uniformly continuous in |z| > p, hence

lim 6(z) = 6, = constant where
|2 [+

(2.17Y) 8, 4 arg(l + go) (mod. 27)

and there exists a positive number Py such that

(2.18") > p*

91_

and

(2.19") Ie(plejy) - ewl <1 for all y € [0,27].

Observe now that because of (2.18') and (2.16') we will have

established (2.9') if we show that inf |1+ gz)] >0

1< |z| < Py

or equivalently
(2.20") 1+ g2 #0 inlcz |z] <o,

because the closed annulus 1 < |z] < p* is compact. Observe
further that because of (2.8') and convention (2.12a') the
principle of the argument can be applied to the closed annulus

1< ]zI Y resulting in
@21 0™ - o - 1o, &) - 0o, %1 = (@, - n)2n

where n, is as given in (2.11') and n, is the number of zeros
of 1 + é(z) in the interior of 1 < |z| j'pl). Note that on
|z| =1 ([zl = pl) the positive direction is the counterclockwise

(clockwise) sense and that the annulus 1 < |z| 2P, can be
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converted in a simply connected domain by making a cut along

any radius z = p eJY, Yy = constant and Yy € [0,21]. Note also that

because of convention (2.12b') z}—» 68(2) is well defined on

Y

|z| = 1. Finally by (2.21') and (2.15') we obtain that
n, 27 = B(p1 ern) - e(p1 ejo), hence by (2.17') and (2.19')
lnz 2m| < 2 which because n, is an integer implies n = 0.

Hence 1 + g(z) # 0 in the interior of 1 < z < p,- In addition

because of (2.16'), (2.18') and (2.14') it follows that (2.20')

151

is true and hence we are done.

(b) ® . Immediately (2.9') implies (2.14'). Next observe
that (2.9') and (2.;0') implies (2.13') such that by analog
reasoning as in (a) there exist a positive number Py > 1 such
that (2.19') with (2.17') is true.

Therefore on |z| = P1

(2.22") oo, &32™ - 0o, %] < 2.

Applying again the principle of the argument to the annulus

9

1< |z| < p, we obtain (2.21') where however n, = 0. Therefore

along with (2.22')

W

Observe now that e(eJZ“) and e(eJo) can only differ by an
integral multiple of 27 because they are arguments of the same
complex number 1 + g(1). Therefore (2.23') implies (2.15")

and we are done X
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Comment

Observe the simplicity of the proof and note that this is
caused precisely because of (2.10'). Indeed in the continuous-
time case an analog result as (2.10') is valid for 1 + g(s)
when Re s = 0 tends to + «, however 1 + é(s) does not alway
tend towards a constant as |s| > = in Re s > O which causes
precisely the difficulties encountered in paragraph 2.2.

We state now the graphical test for the discrete-time case

which is now an easy translation of Theorem 2.2'.

Corollary 2.2'

Given g(z) defined by (2.3') - (2.6') and let n,, be defined
by (2.11').
Under these conditions:
(2.9") inf |1+ g(2)]| >0
z| > 1
if and only if
i)

(2.13") lim 1+ g(z) =1+ g, = constant # 0 ,

z| > =

ii) the origin O of the complex plane is positioned with respect
to the closed path {1 + g(2); z = eJY, vy € [0,21]} such that

(a)

S (2.23") 0 does not belong to the closed path {1 + g(z); z = eJY;

y € [0,27]}
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(b)
the closed path {1 + g(z); z = eJY, v € [0,2n]}
encircles 0 exactly n, times in counterclockwise

sense when y increases from 0 to 2w.

2.3.3 Implications for the n-input, n-output Case.

The aim of this paragraph is to show that the above theory
allows us to check the condition

inf  |det[I + G(=z)]]| > ©
2] > 1

when G(z) is the transfer function of a real n-input n-output

-~

convolution feedback system consisting of a term in ann and
a principal part due to a finite number of poles with absolute value

larger than one, i.e.
L mk—l
~ .m ~
G(z) = E E ka(z - pk)-mk + Gr(z)

k=1 m=0
where

1
r .
Gr belongs to ann,
kal >1fork=1, 2, ...,

4 the poles P, are real or pairwise conjugate complex;

the matrices.ka are real or pairwise conjugate complex

L nxn matrices according to the poles.

Following the theory of decomposition Lemma A.2' and Remark

(A.12b') in the appendix we are able to rewrite det[I + G(2)]

"

(8

L &
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in the following form:

[ mﬁ-l
' [
3 . )39 “mytm
1] - -
(2.27") det[I + G(2)] = 1 + gr(z) + rkm(z pk)
k=1 m=0
where
( g € ol;
[

mé is the order of the pole at Py of det[I + G(2)],
thus 0 #0fork=1, 2, ..., 2}

the coefficients T, 3re either real or complex

L conjugate constants according to the corresponding poles.

2 mé—l

Observe that with g(z) = ér(Z) + 2 Z rkm(z - Pk)
k=1 m=0

-m'"+m

we get completely the same structure as in (2.3') - (2.6') and
thus checking (2.27') is the same as checking (2.9') such that

all the previous results of paragraph 2.3.2 are applicable.
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3. CONTINUOUS-TIME N-INPUT N-OUTPUT CONVOLUTION

FEEDBACK SYSTEMS.

3.1 Introduction

This section considers continuous-time feedback systems
with n inputs and n outputs as described in paragraph 1.1.1.

First the relation between the'open-loop operator G and
closed-loop operator H is discussed. (a) In Theorem 3.1 below
we prove that, under very mild assumptions on the open-loop
impulse response G and on the closed-loop system, if the closed-

loop impulse response H € A™™ then ¢ is of the form
(3.1) &(s) = 2(s)[Q(s)]1 7"

where P, 6 G;éian. Thus we show the importance of systems
given by (1.1) - (1.2) and (3.1) which is the class of systems
introduced by M. Vidyasagar [21]. Theorem 3.1 is also an
extension of a result of Nasburg and Baker [22]: the extension
is in two directions, first, the n-input n-output case is con- .
sidered and, second, the requirements on G are greatly relaxed.
(b) Theorem 3.2 is a straightforward extension of a result of
[22]): it shows again the iméortance of systems introduced by M.
M. Vidyasagar in that A € A™® if and only if & is of the
form (3.1) and inf |det[P(s) + Q(s)1| > O.
Re 8 >0
Next necessary and sufficient conditions for stability

are discussed when G is of the form (3.1) with a finite number



Theorem 3.1 (3.2) 3.2

of poles in Re s > 0. (a) Theorem 3.3 gives these conditions
for a higher order pole in Re s > 0 and consecutive remarks

take care of the multiple pole case. (b) Theorem 3.4 enables

b

an interpretation of these condtions and a simpler formulation
of the multiple pole case which is stated as Theorem 3.5. These

theorems extend results of Desoer, Wu, Lam and Chen [1,2,10,19,20].

3.2 The Relation Between G and H

Theorem 3.1

Let G be an nxn matrix whose elements are distributions
with support on ﬁ?+. Suppose that in a neighborhood of the
origin, say V C:ﬁ?, G includes at most 6-functions (i.e. on V,
it is a distribution of at most order O). For the system
defined by (1.1) and (1.2), assume that the closed-loop impulse

response H exists and is uniquely defined by

Under these conditions, if H € ({ an, then

(]

(a) G is Laplace-transformable and for some finite o > O
et e ™™  (i.e. the product of each element of G with
e % belongs to () ;

(b) € is of the form
(3.1) &(s) = P(s)[Q(s)]™t for Re s > 0

where §(~) and 6(-) e g™ :
(e) G can at most have a countable number of poles in the

vertical strip 0 < Re s < 0 , and has no poles in Re s > 0.



(3.3)

Comment. This theorem shows that under mild conditions on G
regarding its behavior near t = 0, once the closed-loop system
is well defined and stable, then G is necessarily of the form
(3.1), can at most have poles in the strip O < Re s < 0 and is

analytic for Re s > a.

Proof

X
(a) By assumption, H € Czn n’ i.e.
Ha(t) + E Hid(t—ti) fort >0

i=0

H(t)

]
o

for £t <0

where H_(+) € 11 [0,#), B, € R™® for 1 =0, 1, 2, ... and

0= tg <ty <ty < el "By assumption G can at most have an

impulse at the origin. By the Abelian Theorem of the Laplace-
transform [29] and the properties of distributions, if G has

an impulse G, at t = 0, G(8) > G, as Re s -~ @, Clearly from

0 0

3.2), if G0 is the zero matrix, then H, = 0. If G0 # 0, then

0

by balancing impulses at the origin in (3.2) we have (I + GO)HO

GO' Ey assumption H, hence H,, is uniquely defined by (3.2)

03
hence det(I + Go) # 0. Furthermore by direct calculation

(1 + Go) (I - Ho) = I so that det[I - HO] # 0.

3.3

The function I - ﬁ(s) is analytic and bounded for Re s > O,

continuous on Re's = 0, and tends to I - HO as Re s » o,

Consequently, there exists a ¢ > 0 such that

inf det[I - ﬁ(s)]l > 0.
Re s >0



(3.4)

Next observe that e °° H(*) and e ° [I§(.) - H(:)]E U

— .
and that (e o H(*))(s) = H(s + o) for Re s > 0 and

//\
{e % [18(-) - H(-)]} (s) = I - H(s + 0) for Re s > O.

Therefore by (3.3) and (1.15) [I - H(- + 0)]-1, for

Re s > 0,€ aA™®,  Finally

(3.4) Gr(- + o) LA + o) [I -8 +0)]7L,
for Re s > 0,€ A™™".

Next from (3.2)
(3.5) e H+ e G *e H=-e G
such that if G has a Laplace-transform
(3.6) &(* + 0) = A(- + 0) + G(- + 0) H(- + 0).

Now observe that (3*(- + o) given by (3.4) satisfies (3.6).
Because all tlerms are in &an an inverse Laplace transform
of Eq. (3.6) where (3(' +0) = G*(+ + o) may be performed.
Therefore e-qt G* satisfies (3.5) and so by the uniqueness

implied by the convolution algebra of distributions on TR +

G- +0) =H( +0) [I -H(- +0)] " for Re s > 0

and 6(- + g) € dnxn.

Thus e °t G € a™® and é(‘) = ﬁ(-) [1 - H(-)]_1 for Re s > O.

This proves (a).

3.4

nxn

N

"



(3.7) 3.5

b) Since by (1.13) () and [I - ﬁ(- + 0)]_l are analytic
for Re s > 0, [I - 1-1(-)]-1 has at most a countable number of

poles in the strip 0 < Re s < ¢ and by analytic continuation
(3.7 @(-) = H(.) [I - H(-)]"! for Re s > O.

Choose f(-) = ﬁ(-), 6 = [I - ﬁ(-)]. Thus (b) and (c) have

|»<1

been established.

Remarks
(3.7a)Remark. It is important to reflect on the fact that under the

conditions of Theorem 3.1; we have
[T +G(-)]J[I -H(:)] =1 for Res >0

This expression emphasizes the symmetrical role played by

e

and G : H is obtained from G by a negative feedback of I; G

is obtained from H by a negative feedback of (-I) (to cancel

the preceeding one!l).
(3.7b)Remark. A little more can be said about the poles of @(-):
G(+) = B()IQ)T™L = P(+) AdjIQ(-)1/det Q(.).

The function ¢ : sp}—»det é(s) 4 det{I - ﬁ(s)] is analytic and

bounded in Re s > 0 and because of (3.3) inf |det Q(s)| > 0.
Res >0

Therefore ¢ has at most a countable number of zeros Py for k = 1,2
in the strip 0 < Re 8 < 0. Moreover by a theorem of [30, p. 457]
Re Py
E ——————— < », Therefore G(:) either has a finite

2
e 1t Il

3 oo



Theorem 3.2 (3.8) 3.6

number of poles Py in the strip 0 < Re 8 < 0 or else it has an

infinite sequence of them in the strip 0 Re s < ¢ such that
- and

they accumulate on the imaginary axis {or } at the point

|im s| = » (i.e. they "shoot at infinity" along a vertical line

in the strip 0 < Re s < 7).

Theorem 3.2

Let G be an nxn matrix whose elements are Laplace-trans-
formable distributions with support on F§+. For the system
defined by (1.1) - (1.2), assume that the closed-loop transfer
function ﬁ is well defined for almost all s in the half plane

of convergence of é(-), i.e.
(3.3) H(s) = G(s)[I + G(s)] T

for almost all s in the half plane of convergence of é(-).

Under these conditions,

(3.9) peaq™™™
if and only if there exists P, § € &nxn such that
(3.10)  G(s) = B(s) [G(s)1 7T

and

(3.11) inf  |det[B(s) + Q(s)1| > O.
Res >0

Proof

= ., From (3.8) - (3.9) by algebra

a(s) = ﬁ(s) [T - l:i(s)]-1 for Re s > 0.

N



(3.11a) 3.7

Choose P = H and 6 =1 - H. Hence by (3.9) P and é eq™ ™
and (3.10) follows. Finally, since P + Q = I (3.11) holds.

< ., From (3.8) and (3.10)
fi(s) = P(s) [B(s) + Q(s)17 .

In view of (1.15) and (3.11) H €<5ann as the product of two

~ x -
elements of (" . X

Remarks
(3.11a) Remark. It is clear from (3.10) that a given G does not define
the ordered pair (f, 6) uniquely; for example, they might have
a right common factor. In order to be able to express the
condition (3.11) in a form which depends on G only, we impose
the Vidyasagar no-cancellation condition (N) [21]:
the ordered pair (a,b) where a, b:C }—> C is said to
satisfy the no-cancellation on a set A C € iff, for all
® sequences {sk} in A, a(sk) +0 iﬁplies that
lin inf|b(s, )| > O. | |
It is then easy to show that, [5], if (det Q(s), det[P(s) + Q(s)])
satisfies (N) on Re 8 > o, then (3.11) is equivalent to
inf  |det[I + G(s)]| > O.
Re s >0
(3.11b) Remark. Observe that (3.11) can always be tested graphically
by the method described in paragraph 2.2 setting g(s) 4

det[ﬁ(s) + a(s)] - 1 which is in 6%7

3.3 Necessary and Sufficient Conditions for Stability.

By stability we mean stability as defined in Remark (1.17)



(3.12) 3.8

In this paragraph we consider systems of the form (1.1) -

(1.2) where the open-loop transfer function G is given by

L mk-l
3.12)  &¢s) -Z Z ka(s-pk) ", é_(s)
o ar

where (a) the poles Py and the corresponding matrices ka

are real or pairwisé complex conjugate for k =1, ..., ¢

1l

andm =0, 1, ..., mk-l, (b) Re P >0 fork=1, 2, ... &
and (c) ér'e am™®,

Observe that if

' -1
A A 2 mk
(3.13) G(s) = P_(s) NI(=-p,) I
1 k
k=1
where fl € Cann, I is the unit nxn matrix and mﬂ are integers
larger than or equal to m, for k=1, 2, ..., &, then (3.13)
can be brought in the form (3.12). This follows from
Corollary A.2.3 in the appendix. Furthermore observe that é(s)

as given by (3.13) can be rewritten in the form.
)
-1

. "
SRR HEN
(3.14) Gy = | Ts+D K5 (s
k=1 e\ St )

1 (S B pk) -
—_— = €
Hence, since(sll)and s T 1 for k 1, 2, veey 2 A

we obtain that the "numerator" and "denominator' on the R.H.S.

of (3.14) are in Clnxn, so G(s) as given by (3.14) is of the
form (3.1). This establishes a link with previous paragraphs in

that G as given by (3.12) can be derived from a form (3.1) where

13
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G has a finiﬁe number of poles in Re s > 0.

We consider now first and in detail the case where 6 has a
real pole of order m in Re s > 0. The extension to the case
of a finite number of poles will be done in subsequent remarks.
We consider thus the open-loop transfer function é defined by

m-1
(3.15) é(s) = Z R, (s - py ™, é_(e)

i=0

where p € WR, p>0, ér € CZan’ L 4 rank of R0 <n and R,
(i=0,1, ..., m=1) are nXn matrices with real coefficients.

We start by pointing out some facts which will streamline

the proof of Theorem 3.3.

(3.15a) Fact

Let
m=-1 o
refL1_) A _y-o+i] fs-p
(3.16) R*(s+l)- Z R, (s-p) (s+l)
i=0 :

~ (1 \. 1
* 3 : .0
then R (EII) is an nxn complex polynomial matrix in (s+l) of

degree m. This is obvious by considering the Laurent expression

of ﬁ*(;%f) about s = -1,

(3.16a) Fact. (Smith Canonical form [31]).

For the nxn polynomial matrix R*(E%I) there exist unimodular

(i.e. with nonzero constant determinant) polynomial matrices in

1 . af 1 ~f 1
(;:I) viz. S(;;I) and T(;;I) s such that



(3.17) 3.10

1\ auf 1\ 21
(3.17) T(s-i-l) R*(s+1) S(s+l) =

1 ~ (1 ~ (1
diag{a ( +1) gesey A, (S"‘l) 9oy ar*('s_'._l)’ 0,0.,000, 0}
\ ~ J \'—“\/———J

r* n-r*

where i) r* = rank of R*( il) = order of the largest minor of

R*( il) which is not equal to the zero polynomial;

ii) the aj(sil) j =1,2,... r* are the invariant

polynomials of R*( il) and each polynomial éj(-) divides

aj+1('), j=1,2,0.., T*-1;

iii) the diagonal matrix in the R.H.S. of (3.17) can be

obtained by elementary operations.‘

(3.17a) Fact.

1 1 Anxn
The polynomial matrices S( +l) and T(s+1) e and

A

X
their inverses are polynomial matrices in (E%I) also in 6Zn o,

(3.17b) Fact.

Let ;j(-), j=1,2,..., v* be as in (3.17) and let r, be

the rank of RU’ then

(a)

a (1/(p+1)) = 0 for ry + 1 < j < r*

(3.18) . by definition of s
aj(l/(P+1)) #0for1<j=<r,

b

k4



(3.19) 3.11

Cc

3
~f 1 \_o~f( 1 5-p .
(3.19) aj(_s-l-l) = bj(_s+l)(s+l) for rp+1l<j=< r*

where cj is the order of the zero of ﬁj(') at s = p;

bj(-)'is a polynomial with

(3.20) ﬁj (1/(p+l)) # 0, (see [32]), and

l<c¢ < c < eee < C e
—_ il — _ &
r0+1 r0+2 r

Proof

Set s = p in (3.17) and note that the L.H.S. becomes
T(1/(p+1)) Ry(p+1)™ §(1/(p+1)). Since $() and T(-) are
unimodular, exactly (r-ro) polynomial aj(-) are zero at s=p.
0 + 1 < 3j < r*. Hence
(3.18) and (3.19) follow with the properties of the latter as

By ii) of (3.17) Sj (1/(p+1)) = O for r

|41

a consequence of ii) of (3.17).

Note that the exponents cj in (3.19) may, for some j, be
larger than m (in fact Cox < r*m).
Therefore, since the ¢

3

cj - m may be of any sign, partition the index set K =

are monotonically increasing and since

{r0+l, r0+2,..., r*} into

(3.21) K_ ’{ro+1,r 4+2,...,0} = {j|1 < ¢, < m}

0 3
(3.22) Ky = {o+l,042,...,8} = {jlcj = m}
(3.23) K, = {B+1,B+2,...,7%} = {jlcj > m} .

We are now ready for Theorem 3.3.



Theorem 3.3 (3.24) 3.12

Theorem 3.3

Consider the system defined by (1.1), (1.2) and (3.15).

21 ~f 1 . .
Let S(S+1) and T(s+1) be the polynomial matrices defined in

(3.17). Suppose that the index sets K , Ko, K, as defined in
(3.21) - (3.23), are not empty.

Consider the partitioning

[0} n-o
DRI
) . . o L..(s) + L. .(s)

(3.24) T(;%I) [T+ (s)] S(E%I) - { A
n-a{ £, | Ly,(s)

and let b 4() be the polynomials defined im (3.19). Finally

let H be the closed-loop impulse response of the system con-

sidered. Under these conditions

(3.25) e amn

if and only if

inf |det[I + é(s)] >0
Re s > 0

and

det{ﬁzz(p) + diag[ﬁaﬂ(l/(pﬂ)),...,GB(1/(p+1)),o,o,...,01} # 0.

Proof

<, Since I - ﬁ(s) = [I + G(s)]-l, we need only show that

1 +é¢)1 e ad™,

w

S



(3.28) 3.13

By fact (3.17a), (3.27) is equivalent to

-1
(1 A af 1 ~nXn
{T(——._'_l) [I+6()] s(—'ﬂ)} eq .

Introduce now the following multiplier:

(3.28) figs) &

m-c m-c

Ao NI oA, M S om0 r0+l " r0+2 ~ TG
diag{z(s) ,z(8) ,...,2(s8) ,z(s) ,2(s) AN 1)) s
\ /J _J
~ NS
g v =T,
1,1’...,1}

——
n-o

with |
(3.29) 2 (s) éiﬁ%e a.
By (3.21) and (3.29)

(3.30) M(.) € Q™ .

Remark that

~ ~ ~ -l ~ - -
{T(sTll)[I + G(s)] S(E%—T)} = M(s) N(s)™} where

(3.31)  N(s) & {f(;%)[: + G(8)] §(—si—1)}ﬁ(s).

Clearly by (3.30) we are done if we can show that

ﬁ(.)-l € cinxn



(3.32) 3.14

Therefore by (1.15) we prove that N(+) € A" and

inf |det N(s)| > 0.
Re 8 >0

Rewrite (3.28), therefore

(3.32)  M(s) = z(s)™ &(s) i
where
(3.33) Aes) &
. -cr0+l R -cr0+2 . c,
diag{,1,...,1,2(8) ,2(s) seeesz(8)
— — ~ -
T, a-T,

2(8) ™,2(8) ™, eayz(s) )
¢ J

N

n-=o

By (3.31), (3.15), (3.32), (3.33), (3.29), (3.16), (3.17), (3.19)

and (3.20), we obtain

(3.34) N(s) = ﬁl(s) + ﬁz(s) where

o

(a)
(3.35) N (s) = D (s) (DD, (s) with

(3.36) D, (s)

~ l ~ 1 ~ 1 ~ l A 1 A —1.‘
diag{al(s+l)’82(s+l)""’aro(s+l)’br0+1(s+l)’bro+2(s+l),...,ba(s+l)}

- J .
N o~

ro a—ro
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(3.37) 3.15

(3.37) ﬁz(s) =

N 1 ~ l ~ 1 S 1 - cB-I-]__m
diag{ba+l(8+l)’bu+2(s+l ""’b8(5+1)’ b8+1(s+1)2(8) ’
- J
o~
B-a
[ -m —m
7 ~ +2 1 *
b6+2(§%i)z(s) g ’.--»b (s+1)2(s) ™ ,0,0,...,0}
" J/ \\/__J
r*-B n-r*

and (b)

(3.38) N ,(8) = T( )[1 +6 ()] s( il) M(s).

Immediately
(3.39) N(-) € QP

ﬁl(-) € ci“”“ because all its elements € Ci (indeed all its
nonzero elements are polynomials in (g%i) because there are no
negative powers of z(*) by (3.23)) and ﬁz(-) € Cian by Fact
(3.17a), (3.15) and (3.30).

Finally by (3.26) and since s( 11) and T( 1

+l) are unimodular

inf | det T(———) [I + G(s)] S(———)l >0
Re s > 0 s+l s+1

Hence, since by (3.28) - (3.29) det M(-) has only one zero for

Re s > 0 i.e. at p, we obtain with (3.31)

(3.40)  inf|det N(s)| > O
seu



(3.41) 3.16

where U is the half plane Re s > 0 with a small neighborhood
of p deleted.
Consider now det N(p).

Observe that by (3.38), (3.24) and (3.28) - (3.29)

o n—-c
r—’A‘"\.r~*”‘-\
a R..(s) + L, .(s)
(3.41) Ny (s) = { L L2
n—a( KZl(s) ; LZZ(S)
with

(3.42) Rll(p) =0
(3.43) k21(p) =0

Thus by (3.34), (3.35), (3.41) - (3.43)

det N(p) = det Dl(p) det[LZZ(p) + Dz(p)] with by (3.36),

(3.18) and (3.20)
(3.44) det ﬁl(p) #0
and by (3.37), (3.20), (3.29) and (3.23)
(3.45)  det[Ly,(p) + Dy(p)] =
det{f.zz(P) + diaglb_,, (1/ (p41) , ..., B4 (1/ (p+1)),0,...,01}

which is nonzero by (C). Hence

(3.46) det N(p) # O.

Since ﬁ(-) is continuous in Re s > 0, (3.39), (3.40) and (3.46)

"
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(3.47) 3.17

<1

imply that N(-)~1 € (™™,

= . Thus H € A™® by assumption.

(3.26) follows immediately by [17].

To establish (C) we use contradiction. So by (3.45) suppose
that det[ﬁzz(p) + ﬁz(p)] = 0. We are going to show that, for
some input u € 12[0,=), the system defined by (1.1) - (1.2)

has an error e not in Li[O,w). This is a contradiction because
by (1.16) u € L2[0,«) and B € @™ inmply that y = Bhu € L2[0,=)
and thus e = u~-y € Lﬁ[O,m).

The Laplace transforms of e and u are related by
(3.47) [I + G(s)] e(s) = u(s).

Multiply (3.47) on the left by f(;%f) and define the n-vectors

é%(+) and u*(-) by

(3.48) é(;%I) M(s) e%(s) = é(s)
(3.49) E(E%I) G(s) = u*(s).

By (3.47) - (3.49) and (3.31) obtain
(3.50) N(s) e*(s) = u*(s).

Because det [L22(p) + Dz(p)] = 0 we can pick a nonzero vector

n € R™® in the null space of [L22(p) + Dz(p)], hence

(3.51) [Ly5(P) +Dy(p)] n = 0.

Pick now the vector £ € R?® such that



(3.52) 3.18

(3.52) £ 2 - D@17 L,®) n

which is well defined because of (3.44) and the fact that all
elements of L12 and D1 are in

Hence with

- L (¢ )
(3.53) e*(s) g:;
n .

and .
ui(s) } a
(3.54) u*(s)

ﬁg(s) } n-a

and (3.50), (3.34), (3.35), (3.41), we obtain

(3.55) G’f(s)

{[B)(s) + Ry (8)] € + L ,(sIn}/ (s-p)

(3.56)  k(s) = {Ky (s)E + [Dy(s) + L ,(s)In}/(s-p).

All the components of the numerators of (3.55) and (3.56) are
in Ci; by virtue of (3.42) - (3.43) and (3.51) - (3.52) and

p > 0 they have at least a first order zero at p. Therefore
Gi(-) and ﬁ%(-) are analytic and bounded at s = p.

Thus G*(o) is analytic for Re s > 0, bounded in Re s > 0 and,
as |w| - », for eaéh component ﬁ?i)(') of u*(+) we obtain

|u

(i)(Re s + jw)[ is at most O(ﬁﬁr) uniformly for any fixed Re s > 0.

It follows therefore that the components of u*(+) are the Laplace-
transforms of elements of Lz[O,w) (Wiener's Theorem [12] p. 8).

From Fact (3.17a) and (3.49) we conclude that the same is true
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(3.57) 3.19

for the components of G(°), hence
2
(3.57) u € Ln[O,w).

Finally by (3.48), (3.53), (3.28) - (3.29 and since n # 0 and

§(;%I) is unimodular, there exists at least one component of

e(.) which has a nonzero residue at p. Thus
(3.58) e §120,%)
| and by (3.57) and (3.58) wg have established a contradiction. g
Remarks

(3.58a) Remark. If in Theorem 3.3 p = 0 then (3.26) and (C) are still
sufficient for stability; moreover (3.26) and (C) are also
necessary if the magnitude of the components of the numerators
on the R.H.S. of (3.55) and (3.56) are at least of order
o(]s - p|6) for some real number § > 0 at p.

The first statement is obvious from the sufficiency part
of the proof of Theorem 3.3.

Concerning the second statement observe that everything
carries over for p = 0 in the necessity pait of the proof of
Theorem 3.3 until (3.53).

Now with

3
(3.59) e*(s) = 1 Y , where y = l%i for some ¢ € (0,6],
(s-p)

n

and (3.54) we obtain



(3.60)

(3.61)

(3.62)

(3.60) 3.20

ut(s) = {[B,(s) + Ky, ()€ + Ly, (s)n}/ (s-p)"

ui(s) = {K, ()€ + [Dy(s) + L,,(s)In}/(s—p)" .

Observe that all the components of the numerators on the R.H.S.
of (3.60) - (3.61) are in.é? and have a zero at p. By
assumption their magnitudes are at least of order O([s - p|6)
at p, some § > 0.

Therefore because of (3.60) - (3.61)
ﬁ*(*) is analytic in Re s > 0.

Next observe that the magnitude of each component ﬁ?i>(-) of
u*(.) is at least of order 0(|s - p]G-Y) at p with, by (3.59),
§-v >~ %u Therefore there exists positive numbers 992 Yo

such that on all vertical lines Vc’ o € [0,00], the integrals

Im p+w0

|64y (@ + 30) 12 dw
Im p-wo

are uniformly bounded for all ¢ € [0,00]. Furthermore note
that ﬁ*(-) is bounded in {ise s>01} ~ [0,00] x [Im P-wg»

Im pt+w Finally as |w| > « for each i, for all fixed

0]'

o > 0, we obtain that
- =Y
|u?i)(o +jw) | <K, |u]

where Ki is a positive constant independent of o, and y is larger

than 1/2 by (3.59). Therefore for each i there exists a constant

Mi > 0 such that

]
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o«

(3.63) J~ Iafi)(° + ju) |%dw < M, for all fixed o > 0.

~-00

Hence by (3.62) and (3.63) it follows that (Wiener's Theorem
[12] p. 8) each component of u*(.) is the Laplace-transform
of an element of L2[0,m). From Fact (3.17a) and (3.49) we
conclude that the same is true for the components of G(-),

hence
2
(3.57) u € LZ[O,w).

Finally by (3.48), (3.28) - (3.29) and since n # 0 and

§(;%I) is unimodular, lim (s—p)Yé(s) is well defined and nonzero.
s=p

Therefore at least one component of e(+) is not locally absolutely

0 and thus a fortiori

not uniformly absolutely square integrable on all lines Vo

square integrable on the vertical line V
b4

o > 0. Therefore by Wiener's Theorem ([12 p. 8) at least one
of the components of e(+) is not the Laplace transform of an

element of LZ[O,M), i.e.
2
(3.58) e § L [0,=).
So by (3.57) and (3.58) we arrive again at a contradiction. g

(3.63a) Remark. Theorem 3.3 describes in detail what happens when the sets
K, KO, K, given by (3.21) -~ (3.23) are nonempty. When one or
more of these sets are empty the required modifications of (C)

and of the multiplier M(s) are straightforward.
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(3.63b) Remark. If there are & poles at Pys PyseeesPy of oxrders m
Myseeesiy with positive real part, one proceeds similarly as
in Theorem 3.3. The principal part of G is transformed into a
polynomial matrix in ;%I and Facts (3.15a), (3.16a), (3.17a)
and (3.17b) are repeated. In the proof of stability one uses
a product of multipliers similar to ﬁ(s). Note that ﬁ(s) is
diagonal. Observe that Condition (C) is used only to check
that det ﬁ(s) does not vanish at s = p. Therefore for the

more general case an appropriate condition (C) is required at

each pole. This was checked by us.

In order to give an interpretation of the condition (C)
we first give a result which will streamline the proof of

Theorem 3.4.

(3.63c) Fact.
Given the system (3.15).
Let the principal part of G be denoted by

m

(3.64) ﬁ(—l—)é Z R, (s-p) ™.

S=p
i=0

Let o be given by (3.21), let r* be the rank of the polynomial

A *
matrix R*(-) defined by (3.16) and let {cj}r be the set
j=r0+l

of exponents used in (3.19). Under these conditions the integer

r defined by

>

(3.65) r = mo - c

e
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. ~r 1
is the maximal order of the pole at p of all minors of R(T:; .

Proof

Immediately by (3.16)

ca i) - (23] ().

. A 1 ~o (1 .
Hence, denoting by mjk(;:;) and mjk(;:f)'a minor of order j of

-~ 1 S l
—— * f— = s ok
R(s-p) respectively R <s+1) for k = 1,2,...,j%*, where

x A n! 2
j* = ET?;:ETT , 1t follows that

) jm
o S Y O 5 “x [ —L s o
(3.67) mjk(s-p) = (s-p) mjk(s+1) for j 1,2,...,41n

k=1,2,...,j% .

Therefore since r* is the rank of R*(-)

a

(3.68) mjk(') =0 forr* <j<nand k = 1,2,...,j*% .

Now let a§(-) be the greatest monic common divisor of all
minors of order j of R*(+) then, by a result of Gantmacher
[31, p. 141], the invariant polynomials éj(-) of R¥(*) admit

a representation

;j(;%I) = ag(g%I)/ a?-l(E%I) for j = 1,2,...,r%

where 66(') 4 1. So immediately

(3.69) ci;s(—l—) -

~ /1
pwe;) L az(EiI) for j = 1,2,...,r*

¥ o=

Hence by setting
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(3.70) c:i =0 for j = l,2,...,r0
we get by (3.69) - (3.70) and (3.18) - (3.20) that &#(——1—)
j\+1

J
admits a zero of order Z c, at p for j = 1,2,...r*.
2=1

Observe now that the order of the zero at p of a;‘(_-]i:-'f)

is the minimal order of the zero at p of the minors of order

B
. ~ 1 ) ~ 1,7 s
% [ ——— % [ ——
j of R (-ll that is of the set {mjk<' Il)}k=1’ Consider now
s+l jo 1
. * .
the set of expressions {(—-—-s_p) mjk(———s l)}k=l then it is

immediately clear that the integer d 3
_ J
(3.71) dj 4 mj - E cy for j = 1,2,...,1%
=1

is the maximal order of the pole at p of the expressions
Fhis set. Therefore by (3.67) dj is the maximal order of the
1 3* |
pole at p of {ﬁjk('_:ﬁ) }k=1 i.e. of all minors of order j of
i)
--p/.

Consider now the map j|_>d:j for j = 1,2,...,r*. Observe
that this map is concave because j = ¢ 5 is nondecreasing.
Rirthermore by the definition of a, B, vy in (3.21) - (3.23)
and by (3.70) it attains its maximum at j = o. Therefore, along
with (3.68), da is the maximal order of the pole at p of all
minors of ﬁ(—-_]:—p) and the same is true for the integer r since

by (3.65) da = r. X

®
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We try now to investigate the nature of condition (C).

Theorem 3.4.

Given the system defined by (1.1), (1.2) and (3.15).
Assume that the assumptions and preliminary operations of
Theorem 3.3 are valid, respectively performed. Let &ij(s)
be the cofactor of the ij-th element of I +(f(s) and let cij
be the order of the pole at p of aij(.) for i, j = 1,2,..., 0.
Moreover let

A

C = max c¢

1,5

i.e. let ¢ be the maximal order of the pole at p of the cofactors

of I +G (). Fnally let d be the order of the pole at p of

det[I +G (-)], and let r be the maximal order of the pole at

p of all minors of the principal part of G given by (3.64).

Under these conditions

(3.26) inf |det[I +G(s)]1| >0
Re s > 0

and either
(©  det{Ly,(p) + diaglb_,, (1/(+1)),...,b,(1/(p+1)),0,0,...,0]} # 0

or
(3.72) d=r
or

(3.73) c<d

are necessary and sufficient for




(3.25) 3.26

(3.25) R

Proof

(a) Observe that (3.26) and (C) < (3.25) is precisely
the statement of Theorem 3.3.

(b) 1In order to prove: (3.26) and (3.72) < (3.25) we
show that (C) < (3.72).

Hrst observe that because of decomposition-lemma A.2
and Corrolary A.2.4 of the appendix, det[I +(§ (s) ], where (: (s)
is given by (3.15), admits following representation:

d-1
(3.76)  det{I 4G ()= ) x,(sP)

m=0

+ sr(S)

where ér € A, the r are real coefficients for m = 0,1,2,...,

d-1 and T, # 0.

Next we go back to the proof of Theorem 3.3 where

~

(3.31) N(s) 8 T(-s-%_-i-)[ I +6 ()] s(gi—l-)n (s).

Observe that N € cann and that the expression of condition (C)

A

is in Cz. Therefore from the proof of Theorem 3.3:

"e)y" <> det N(p) # 0 and well defined;

(3.75)
"not (C)" < det N(p) = O.

We rewrite now det N(s).

Remember that T(;%T) and S(;%I) are unimodular polynomial

matrices, therefore

i}

®
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~ 1 _
(3.76) det T( s+l) CT = a nonzero constant
and
- 1 _ _
(3.77) det S( s+1) = CS = a nonzero constant.

. Moreover using (3.28)

(3.29) and Fact (3.63c) we obtain

(3.78) det M(s) = (:—3) i

Therefore using (3.31) and (3.74), (3.76) - (3.78)
d-1
S s-p\" E: -d+m , -~
det N(s) = CTCS(;;%) rm(s—p) + gr(s)

m=0

Finally by (3.75) and (3.74), (3.76) - (3.77):

"(C)" = d=r;
(3.79)
"not (C)" <= d <r.
So we are done . X

(c) We finally show that, (3.26) and (3.73) < (3.25).
First observe that,because of decomposition-lemma A.2 and its
subsequent corrolaries in the appendix and because of (3.15),
each cofactor aij(s) of I + é(s) admits a representation

c,.-1
1] -c,.+m

~ i ~ . .
(3.80) qij(s) = E rijm(s-p) J + qijr(s) for i,j = 1,2,...,n
m=0

~ A

where for i, j = 1,2,...,n: d 5r € C?Q Tijm 2T real coefficients

form = 0,1,... cij - 1 and rijo # 0. Therefore by (3.74), (3.80)
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and Cramer's rule each element fij(-) of [I + é(-)]_l, where

G(+) is given by (3.64), admits -a representation:

c.i-l
J —cji+m R
r - + q.. (s
& - E jm(s P) qur( )
ji m=0

E (s) = =
ij det[I + G(s)] 41

Z rm(s-p)_‘H1n + ér(s)

n=0

A

where qjir for i, j = ky2,...,n and g, € C?;

]

T for i, j 1,2,...,n and r are real constants for all m;

jim

rjiO # for i, j = 1,2,..f,n and N # 0.

This holds in Re s > 0 by analytic continuation if (3.26) is

satisfied.

We prove now: (3.26) and (3.73 = (3.25).

s+l
Observe that,because of (3.74) and (3.80), &ij(') ﬁ(-) for i, j =

d ~
= ., Introduce a multiplier n(:) given by n(s) A (§_2) €.

1,2,...,n and det[I + G(.)11(+) belong to A . Moreover

because of (3.26), (3.73) - (3.74) inf |det[I + G(s)D)n(s)| > 0.
Re s >0

A

Therefore by (1.14) {(det[I + é(-)]ﬁ(-)}'l € d and hence,by

(3.81),f () € Ci'for i,j = 1,2,...,n because fij can be

ij
written as a product of two elements in the algebra. Hence
1+ 6(-)]" €A™ and,because I - H() = [I + 6(-)17%,

(3.25) follows. X

~

< ., Immediately because of (3.25), [I + é(°)]_1 € q™".

"

L Nl
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Therefore {det[I + (’;‘(-)]}nl € ({ which by (1.13) implies that
{det][I + é(-)]}_1 is bounded in Re s > 0, thus (3.26) follows.
Hence each element Eij of [I + (;(-)]'-l admits a representation

(3.81). Moreover for all i, j = 1,2,...,n Eij(-) € C%, so

fij(p) must be finite for i, j 1, 2,...,n, thus by (3.81)

(3.73) follows. X

Observe that if (3.26) is satisfied but not (3.73),i.e.

c > dsthen at least one of the elements fij of (I + G)h1 and,
1

, also at least one element of H has a

since I - H = [I + G]

pole at p.

Remarks

(3.81a) Remark. From the proof of Theorem 3.4 it follows that for the
system of Theorem 3.3:
1) "@©" =d=rx

"ot ()" =>4 ¥

(ii) under the assumption of (3.26)
II(C)" E—3 c f_ d

"mot (C)" <= ¢ > d.

Hence following interpretation of condition (C) is possible:
"(C)" is equivalent to require that the order of the pole at
p of det[I + é(-)] equals the maximal order of the pole at p
of all minors of the principal part of é. Next, if

inf |det[I + G(s)]| > 0 but (C) is not satisfied,then at
Re s >0

least one element of [I + G(-)]-l and thus also of H(*) has a

pole at p and instability results.
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(3.81b) Remark. Theorem 3.4 describes what happens if the sets K ,

(3.81c)

(3.81d)

(3.81e)

KO, K+ given by (3.21) - (3.23) are nonempty. When one or

more of these sets are empty then, according to Remark (3.63b),

[

the condition (C) must be modified. The interpretation as

given in Remark (3.8la) however remains always valid.

Remark. If in (3.15) ér is a matrix in cian whose elements
are rational functions, then C. T. Chen's result [10, Theorem
9-10, p. 376] can be used and requires that,in addition to
(3.26), "d = the maximal order of the pole at p of all minors
of T + G(+)" is necessary and sufficient for stability. It
should be stressed that this last requirement is equivalent

to c <d. Indeed I + G is a matrix whose elements are rational
functions in this case. Let ej 4 the maximal order of the pole
at p of the minors of order j of I + é(-). Then,similarly as
for the map jt—e-dj in the proof of Fact (3.63c) (see (3.71)),

it can be shown that the map jhﬂ—ej is concave such that, since

e

=cand e =d, ¢ <d*“d=max e,.
n-1 n -

A
Remark. If there are 2 poles at Py» Pps «=vs p2 of orders

My My, eoey My with positive real part, which are either real
or complex conjugate, then an analog interpretation of con-

dition (C) at each pole can be obtained.

Remark. The maximal order of the pole at p of the principal

part of G is the exponent of (s-p) in the least monic common
denominator of all minors of this matrix whose elements are

rational functions.



Theorem 3.5

Finally to be more precise we state the extension of

Theorem 3.3 to the multiple pole case.

Theorem 3.5

Consider the system defined by (1.1), (1.2) and (3.12).

Let a(s) be the least monic common denominator of all minor

L -1
& mm o
of the matrix 2: ka(s—pk) , i.e. the principal
k=1 m=0

part of G and let a(s) be given by
2 r

d(s) = I (s-pk) k.
k=1

Let dk be the order of the pole at Py of det[I + é(’)] for
k=1, 2, ..., &. Under these conditions

HE Cann
if and only if

inf  |det[I + G(s)1|> O
Re s >0

and

for k=1, 2, ..., 2.

L]

k

3.31
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4. DISCRETE-TIME N-INPUT N-OUTPUT CONVOLUTION

FEEDBACK SYSTEMS.

4.1 Introduction

This section considers discrete-time convolution feedback
systems with n inputs and n outputs as described in paragraph
1.1.2. An analog program is followed as in Section 3. 1In
view of the simpler analytic nature of the problems discussed,
more elementary tools can be used in the proofs such that the
techniques used are clearer to the reader.

First the relation between the open-loop operator G and
the closed-loop operator H is discussed. Thereby we show the

importance of systems defined by (1.1') - (1.2') and

4.1')  é(2) = @3]

po s

P, Q €
where P, Q ann

. Furthermore results of Baker and Nasburg
[22] are extended.

Next necessary and sufficient conditions for stability
are discussed when the open-loop transfer function G is of the
for (3.1') with a finite number of poles in |z| > 1. Thereby
results of Desoer, Wu and Lam are extended [3,18].

Everywhere conpletely analog results as in section 3

are obtained.



Theorem 4,1° (4.2") 4,2

4.2 The Relation Between G and H

Theorem 4.1'

Let G be a sequence of real nXn matrices {Gi}°° . For
i=0

(]

the system defined by (1.1') and (1.2') assume that the closed-

loop impulse response H exists and is uniquely defined by

(4.2") H + G*H = G.

1

axn’ then

Under these conditions, if H € ¢

(a) G is z-transformable and for some finite p > 1

the sequence of real nxn matrices {G.p_i}°° € ll H
i 1=0 nxn
(b) G is of the form
(4.1") &(z) = P(2)[Q(=2)]™Y for |z| > 1
where E( ) and 6(-) € 21 H
* nxn °’

(c) G can at most have a countable number of poles in
the annulus 1 < |z| < p, and has no poles in the annulus
|z| > p.
Comment. This theorem shows that once the closed-loop system
is well defined, then G is necessarily of the form (4.1'), can
at most have a finite number of poles in any annulus of the
form 1 + € < |z| < p (e small and positive) and is analytic

for |z| > p.

Proof.

©

i=0

a) By assumption H = {Hi} is well defined and belongs

g
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zixn. Therefore HO is a well defined real nxn matrix. From

' = :
4.2Y) H0 + G0 HO GO’ so that, since Ho

det[I + G,] # 0. Hence since (I + Gy) (I -Hy =1,

is uniquely defined,

The function I - H(*) is analytic and bounded for |z| > 1
and tends to I - HO as |z| + ». Therefore there exists a

p > 1 such that

(4.3") inf |det[I - H(z)]]| > o.
z| > p
Next observe that {H.p-i}°° and {[I6,. - H ]p-i}°° (where
i . i0 i .
i=0 i=0
§.. = Kronecker delta ='{l for i = 0\ € 21 and that
i0 nxn
0 otherwise
\—/\/
{{Hip_l}°° }(z) = ﬁ(pz) for |z| > 1 and
i=0
\—_'/\_'/
{%[16. - H.]p-l}°° (z) = I - H(pz) for |z| > 1.
i0 i =0 -

Therefore,by (4.3') and (1.15'), [I - H(po)]_l, for ]zl >1, €

Eixn' Finally
(4.4") G (o+) £ H()IT - BT, for |z] > 1, €7 .
Next from (4.2')
i
4.5 Hp~t +Z (ci_jp'(i'j))(njp'j) =cp™ for i=0,1,2,...,
=0

Observe that the second term on the L.H.S. of (4.5') is due to

convolution of {Gip-l}°° with {Hip-l}°° , such that if G has
i=0 i=0



(4.6")

(4.6a'")

(4.6") 4.4

a z-transform
G(p+) = H(p+) + G(p+) f(p-).

Next note that é*(p-) given by (4.4') satisfies (4.6').
Because all terms are in Ean an inverse z-transform of

Eq. (4.6') where é(p') = G*(p*) may be performéd. Therefore

{G;p-l}co satisfies (4.5') and so by the uniqueness implied
i=0
by the convolution algebra of real sequences on'Z.+ (i.e. the

nonnegative integers)

G(p) = H(p*)[I - H(p)1™} for |z| > 1

~ 1
. e .
and G(p*) lan

Thus {G,p *}" € ¢}  and G(+) = H(:) [I - H(-)17? for |z| > 0.
i 1=0 nxn

This proves (a).

b) Since by (1.13') H(.) and [I - I':I(p-)]_1 are analytic
for |z| > 1, [I - I:I(')]-1 has at most a finite number of poles
in any annulus of the form 1 + e < |z| < p (¢ small and positive)

and by analytic continuation in the annulus 1 < |z| < p

G(+) = H()II - 8(:)1™Y for 2] > 1.

Choose P(-) = H(*), Q(+) = [I - H(-)]. Thus (b) and (c) have

B

been established.

Remarks

Remark. Observe that under the conditions of Theorem 4.1' we
have [I + é(z)] [T - ﬁ(z)] = I for |z| >1. Thus H and G play

a symmetrical role:

(]

g
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(4.8")

Theorem 4.2 (4.6b") 4.5

3=~}

is obtained from G by negative feedback of I;

G is obtained from H by negative feedback of -I.

~

Remark. A little more can be said about the poles of é(-):

&) = B()IAC)I™L = B(-) AdI[QC-)1/detQ(+).

The function ¢: zl—det 6(z) 4 det[I - ﬁ(z)] is analytic and

bounded in |z| > 1 and because of (4.3') inf |det a(z)l > 0.
lz| >0

Therefore ¢ has at most a countable of zeros P> fork=12, 2, ...
in the annulus 1 < [z[ < p. Moreover by a theorem of [33, pp-.
= 1
63-64] 2: 1 - kal‘ ) < ». Therefore G(.) either has a finite
k=1
number of poles in the annulus 1 <|z| < p or else it has an
infinite sequence of them in the annulus 1 < |z| < p such that

they accumulate on the unit circle.

Theorem 4.2°'

Let G be a sequence of nxn real matrices which is z-
transformable. For the system defined by (1.1') and (1.2')
assume that the closed-loop transfer function H is well defined
for almost all z in the domain of cdnﬁergence of é; more

precisely,
f(z) = G + &(=z)1 7"

for almost all z in the domain of convergence of G(-). Under

these conditions,



1

'
(4.9") H € ann

-~ -~

if and only if there exists P, Q € zan

(4.10')  G(2) = B(z) [Q(z)17*

and
(6.11") - inf |det[P(z) + Q(z)]] > O.
z| >1
Proof

= From (4.8') - (4.9') by algebra

(4.9") 4.6

such that

G(z) = H(z) [I - B(2)]1™Y for |z| > 1

Choose P = H and Q=1I - H. Hence by (4.9") P and Q € 3

1
nxn

and

(4.10') holds. Finally, since P+ 6 =TI (4.11') holds.

= From (4.8")

Mn=§&>ww)+ﬂnr¥

In view of (1.15') and (4.11") HE iixn as the product of two .

elements of the algebra il .
nxn

Remarks.

X

(4.11a') Remark. As in the continuous-time case (4.10') does not

determine the ordered pair (ﬁgé) uniquely. In order that con-

dition (4.11') depend only on é we may, as Vidyasagar, impose

on the pair (5,6) a no-cancellation condition [21].

(4.11b') Remark. Observe that (4.11') can always be tested graphically

by the method described in paragraph 2.3 by setting

”®

]
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2(z) 2 det[P(z) + Q(z)] - 1 which is in El.

4.3 Necessary and Sufficient Conditions for Stability.

By stability we mean stability as defined in Remark (1.17').
In this paragraph we consider systems of the form (1.1') -

~

(1.2') where the open-loop transfer function G is given by
L mk-l

~ . . — -'.m ‘ -~
(4.12Y) G(2) =Z kau - pk) K + Gr(z)
k=1 m=0

where (a) the poles Py and the corresponding residue matrices
ka are real or pairwise complex conjugate for k =1, 2, ..., %
and m =0, 1, ..., m -1, (b) lpkl >1for k=1, 2, ..., £ and
(c) é_eqmn,

r

Observe that if

-1

2 1

(4.13") G(z) = 131(z)< n(z - pkmk 1)
k=1

~1
e . .
1 2'n><n’ I is the unit nxn matrix and m, are integers

where f’
larger than or equal to m for k=1, 2, ..., & then (4.13'")
can be brought in the form (4.12'). This can be derived from

decomposition lemma A.2' and Remark (A.12b'). Furthermore

observe that (:‘v(z) as given by (4.13'") can be rewritten in the

form
' -l

'} m]g{ "'l~ 2 _pk mk
n z Pl(z) I (z I
k=1 k=1

z-p

(4.14") G(z)

Hence, since -i- and( k) for k =1, 2, ..., L € §_,we obtain

1’

that the "numerator" and the "denominator'" on the R.H.S. of
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(4.14') are in Eixn,so G(z) is of the form (4.1'). This
establishes a link with previous paragraphs in that G as given
by (4.12') can be derived from a form (4.1') where G has a
finite number of poles in |z| > 1.

We consider now first and in detail the case where G has
a real pole of order m in |z| > 1. The extension to the case
of a finite number of poles will be taken care of in subsequent
remarks.

We consider thus the open-loop transfer function G defined

by
Cme1t
(4.15") G(z) = 2 :Ri(z-p)“"*1 +G_(2)
i=0
where p € R, |p| > 1, 6_€ ot r, rank of R, < n and R
» P e nxn® 0 0 — i

(i=0,1,2,...,m~1) are nxn matrices with real coefficients.
We start by pointing out some facts which will streamline
the proof of Theorem 4.3'. Because of the analogy with

paragraph 3.3 proofs are omitted.

(4.15a') Fact.

Let
m-1
416 R/ &) R ep ™) (/2
i=0

then ﬁ*(l/z) is a polynomial matrix in (1/z) of degree m.

(4.16a') Fact. (Smith Canonical form [31]).

For the nxn polynomial matrix ﬁ*(l/z)'there exist unimodular

({4

"
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(i.e. with nonzero constant determinant) polynomial matrices
in (1/z), viz. T(1/z) and S(1/z), such that
(4.17")  T(/2)R*(1/2)§(1/2) =

diag{él(l/z),...,é (l/z),...,;r*(l/z),0,0,...,0}

R
1§ — J
r* n-r*

where i) r* = rank of ﬁ*(l/z) = order of the largest minor
of ﬁ*(l/z) which is not equal to the zero polynomial; ii)
éj(l/z), j=1,2,...,r% are the invariant polynomials of
R*(1/z) and each polynomial ;j(-) divides 5j+1(.), J = 152500,
r%-1; iii) the diagonal matrix on the R.H.S. of (4.17') can be
obtained by elementary operations.
(4.17a') Fact.
The polynomial matrices S(1/z) and f(l/z) € iixn and their

. N
inverses are polynomial matrices also in znxn'

(4.17b') Fact.

Let Ej(-) for j =1, 2, ...,r* be as in (4.17') and let

, be the rank of RO’ then
(a)
éj(l/p) #0 for 1< <rys
(4.18")
éj(llp) = 0 for r, + 1 <j<rk;
(b) by the factorization of the last r* - ry polynomials
. - c,
(4.19%) aj(llz) = bj(l/z)((z-p)/z) 3 for T, + 1 < j < r*, where

cj is the order of the zero of Sj(-) at z = p, gj(.) is a

polynomial with



- . . L4 -

. Theorem 4.3' - (%.20") 4.10

(4.20") Sj(llp) # 0, and

1= r 41 = cr0+2 — r*

0

Note. The cj may be larger than m (in fact Cox

monotonically increasing. Thus the (cj-m)'s take on any sign.

< r*m and are

Therefore partition the index set K 4 {r0+1, r.+2, ..., r*}

0
into:

(4.21%) K_= {r0+1, r0+2,...,a} =‘{j|1 j_cj < m}

(4.22") Ky = {otl, at2,...,8} = {3 c; = m}

(4.23") K, = {otl,042,...,r%} = {jlc.j > m}

We are now ready for Theorem 4.3’

Theorem 4.3

Consider the system given by (1.1') - (1.2') and (4.15'").
Let é(l/z) and E(l/z) be the polynomial matrices defined in
(4.17'). Supﬁose that the index-sets K _, Ko, K,» as defined
in (4.21') - (4.23') are not empty.
Consider the partitioning

~

]
o ( Lll(z): le(z)

(4.24") T(1/z) [I + &r(z)]é(l/z) = - e
n=a (| I,1(2)1 Lyy(2)
and let Bj(.) be the polynomials defined in (4.19'). Under these

conditions,

1
]
(4.25')  HEL

"0

0
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if and only if

(4.26") inf |det[I + G(2)]] >0
lz| > 1

and at the pole p the following condition holds

" det{l,,(p) + diaglb_,; (1/p),-..,by(1/p),0,0,...,0]} # 0

Proof

< ., Note that (4.25') is equivalent to [I + a‘(z)]-1 € Ean

which by Fact (4.17a') is again equivalent to {i(l/z)[I + G(2)]

1

~ _l -~
S(k/2)Y T €E_ .

Take now as multiplier

m—cC m=C

. A . o~ n - o ~ r0+l - r0+2
(4.27') M(z) = diag{s(z) ,s(z) ,...,8(2) ,s(2) »8(2) s
AN ~ —
o
m-ca
...,S(Z) ,1’1,0.0’1}
——
a-ro n—o.
with
, . A ~1
(4.28") s(z) = ((z-p)/2z) € &~.

As in the continuous-~time case, write
~ ~ ~ -1 ~ ~ -1
{T(1/2) [I + G(z)]S(1/z)} ~ = M(z) N(z) ~.

Then by using the facts above, (1.15') and (4.26') - (4.28"), a

1
nxn

detailed calculation shows that N € £ and as a consequence
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of (C") inf Idet N(z)l > 0, so ﬁ-l € ian. Since ﬁ is also
z| >1

in this algebra, the claim follows. X
—1 °
= Thus by assumption H € ¢ .
nxn

(4.26') follows immediately by [17].

X
To establish (C') we use contradiction. We show that if the
L.H.S. of (C') is zero, then there exists an input u € zi which
results in an error e not in 2§. This is a contradiction, since
2 1 2
c S i S .16" = -
u ln and H ann imply y En by (1.16'), soe=u -y
should be in £§.
The z-transforms of e and u are related by:
(4.29") I+ G(2)] e(z) = u(z).
Multiplying (4.29') on the left by T(1/z) and setting
(4.30") N(z) = T(1/z) [I + G(z)18(1/z) M(z)
(4.31") U*(z) = T(1/z)u(z)
(4.32") e(z) = §(1/2)M(z)e*(z) , .

we obtain

(4.33") N(z)e*(z) = u*(z).

Observe that
(4.34") M(z) = s(z2)"A(z)

where
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. A . _crd+l - -cr0+2 . -c
(4.35") A(z) = diag{l,1l,...,1,s(2) ,s(z) , ,s(2) .
-\ —— J
ry =T

s(z) ®,s(z) ™, ...,s(2) "}

— J
~

n-=o

With

. m~-1 ’
(4.36")  F () = ia/z)(Z Ri(z-pf‘“*]) 5(U/2M(2)
i=0
(4.37") ﬁz(z) = T(1/z) [I + ¢ (2)18(1/2)f(z)

(4.30') and (4.15') imply
(4.38") N(z) = ﬁlcz) + Ny(2) -

By (4.36'), (4.34'), (4.35"), (4.28'), (4.16'), (4.17'), (4.19")

and (4.22')
(4.39") N (2) =5,z @ D,(2)
where
(4.40") ﬁl(z) = diag{al(l/z),éz(l/z),...,ar (1/z),
0
_ —~—— J
o

Sr +1(1/z),13r +2(1/z),...,5a(l/z)}

0 0

A\ J
~—

a—ro
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(4.41") D,(2) = diag{5a+l(1/z),£a+2(1/z),...,BB(l/z),
— ~ J
8—a
. . Cpu.mm . Cp oM . . ¢ _.-m
B /2@ B ams@ B L W T,
o~ / :
r*-3
0,0,...,}.
——/
n-r*
By (4.37'), (4.24'), (4.27') and (4.28")
o] n-=o
e | ol
. a K,.(2) ! L..(2)
442 yG2) = ¢ D e
n-o { KZl(z) : L22(z)
where
(4.43") Ky (p) = 0
(4-44') ~K21(P) = 0 hd
Furthermore by (4.40'), (4.18') and (4.20') -
(4.45") det ﬁl(p) #0

and by (4.41'), (4.20'), (4.28') and (4.23'")

(4.46") "(C') not true" is equivalent to det[ﬁz(p)+i22(P)] = 0.

In order to establish the contradiction, using (4.46') we



~ 2 g
(4.49Y) ex(z) = E

(4.50") ;i(z)

(4.47")

n-a
can pick a nonzero vector n € ﬁ‘ in the null-space of

ﬁz(p) + izz(p), thus
[D,(P) + L,,(P)In = O.

Pick now the vector £ € R® such that

448" £= - [B,(®]17 L,0) n

which is well defined because of (4.45') and because all

elements of ﬁl(.) and ilz(-) are in El. Hence, setting

n

) uk (2)\ }a
u*(z)=

Gg(z) } n-a

(4.33"), (4.38"), (4.39") and (4.42') imply

{[Dy(2) + K ;(2)1€ + L,,(2)n}(z/(z-p))

(4.51") Gg(z) = {k21(z)g + [ﬁz(z) + izz(z)]n}(z/(z-p))-

Observe that because of (4.33') - (4.44') and (4.47') -
(4.48') the expressions between the braces in the R.H.S. of
(4.50') - (4.51') have a zero at p. All components of the
expressions between the braces on the R.H.S. of (4.50') -

(4.51'") are in %., hence are analytic in [z| > 1, such that

1,
their zero at p is at least of first order (|p| > 1!). Ther

ﬁ*(z) is well behaved and bounded at p these remarks and the

4.15

efore
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properties of the components of ﬁi(-) and Gg(o) imply that
u*(.) is analytic in |z| > 1, bounded in |z| > 1, continuous
on |z| = 1 and,as |z| + w,u*(z) — a constant. Therefore the
conditions of lemma A.3',i.e. the discrete-time counterpart of
Wiener's Theorem,are satisfied and so G*(:) € Ei. Furthermore
by (1.16"), (4.31") and Fact (4.17a") a(.) € &% or

2
'
(4.52") u € R.n .

Finally by (4.49'), (4.32'), (4.27') - (4.28') and since
S(1/z) is unimodular and n # 0, e(z)/z has a pole at p with

nonzero residue, thus

(4.53") e ¢ 2l

and by (4.52') - (4.53') we have shown the contradiction we

were after. X

Remarks

(4.53a')Remark. If Ipl = 1 then (4.26') and (C') are still sufficient
for stability; moreover (4.26') and (C') are also necessary
if the magnitudes of the components of the expressions between
the braces on the R.H.S. of (4.50') - (4.51') are at least of

order 0(|z-p|6) for some real § > 0 at p.

The first statement is obvious from the sufficiency part
of Theorem 4.3'.
The second statement can be shown by (a) using an analog

reasoning as in Remark (3.58a), (b) replacing (4.49') in the

"

?
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necessity part of the proof of Theorem 4.3' by

*(z) = (z/(z-p))" (E)where y =25, € (0,6), and (o) by
n

using lemma A.3'.

(4.53b') Remark. Theorem 4.3' describes in detail what happens when the

sets K_, K K+ given by (4.21') - (4.23') are nonempty. When

0’
one or more of these sets are empty the required modifications

of (C') and the multiplier ﬁ(z) are straightforward.

(4.53c') Remark. In case there are £ poles at Pys Pps «oes Py of order
Wy, My, ooes my with magnitude larger than one, which are either
real or complex conjugate, one proceeds similarly as in Theorem
4.3'. First the principal part of G is transformed into a poly-
nomial matrix in %-and Facts (4.15a'), (4.16a'), (4.17a') and
(4.17b') are repeated. Next in the proof of stability one uses
a product of multipliers similar to M(z). Observe that con-
dition (C') is used only to check that det ﬁ(z) does not vanish
at z = p. Therefore for the more general case an appropriate con-

dition (C) is required at each pole. This was checked by us.

(4.53d') Remark. Using completely similar techniques as in the
continuous~time case a completely similar interpretation
can be obtained for the condition (C').
Finally to be more precise we state the extension of
Theorem 4.3' to the multiple pole case where we use the least
monic common denomina;or of all minors of the principal part

of the open-loop transfer function G.



(4.59'")

(4.25"'

(4.26'

(C,k")

Theorem 4.4' (4.59') 4.18

Theorem 4.4°'.

Consider the system defined by (1.1'), (1.2') and (3.12').

Let a(z) be the least monic common denominator of all minors of the

<

L Tk-1 +m

matrix 2: 2: ka(s—pk)-mk » i.e. the principal part of é,
k=1 m=0 =
and let d(z) be given by
- L T
d(z) = I (z-p) .
k=1
Let d, be the order of the pole at p, of det[I + G(.)] for
k =1,2,...2. Under these conditions
1
€
) H R,an
if and only if
) inf [det[I + G(z)]]| > 0
zl_i 1
and
dk = rk for k =1, 2, ...,% . X -



5.1

CONCLUSION

5.1 Discussion of the Main Results of the Dissertation.

In this dissertation we have presented a series of results
related to the input-output properties of both continuous-time
and discrete-time convolution feedback systems. First a

graphical test was developed to check inf ll + é(s)l >0,
Re s > 0

where é is the sum of a term.hnéi aﬁd a finite number of poles
inARe s > 0. Implications for the n-input n-output case and

the counterpart of this test for analog discrete-time systems
were discussed in the sequel. Next in analog treatments, (:)
the representation of the open-loop transfer function given

a stable system and (:) necessary and sufficient conditions for
stability for both continuous-time and discrete-time convolution
feedback systems were discussed.

In all cases treated unity feedback was assumed. It is now
proper to make the following remark. The extension of the
graphical test and the representation of the open-loop transfer
function,vgiven a stable system, to the case of a constant non-
unity feedback is straightforward. The same can be said about
the necessary and sufficient conditions for stability as given
by Theorems 3.2 and 4.2'. Special care however should be used
concerning the necessary and sufficient conditions for stability

as given by Theorems 3.3, 3.4, 3.5, 4.3' and 4.4'. Indeed these
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latter theorems can only be extended without difficulty to a
constant non-unity nonsingular feedback. For example for the

case of Theorem 3.3 one still has the following relation be-

"

tween open-loop and closed-loop transfer functions é, respec-
tively ﬁ, when a constant non-unity feedback matrix K is

present, i.e.
A— A_l
I -KH= (I+KG) .

A straightforward adaptation of Theorem 3.3 can only determine
necessary and sufficient conditions such that (I + Ké)“l € Ci nxn
i.e. KH € éian_ Therefore if K is a singular matrix in Ro®
then only some components of H are guaranteed to be in C%, not
all of them! Hence additional research is needed if one allows

a singular constant non-unity feedback. As an introduction to
this, a necessary and sufficient condition for stability is
stated in Theorem 5.1 for the case of a simple n-input n-output
continuous-time convolution feedback system with a singular
constant feedback matrix.

Finally in order to show that the results of this dissertation &
have implications in the investigations of nonlinear stability-
analysis a sufficient condition for the Lgn[O,m) input-output
stability [any q € [1,~]] of a nonlinear time-varying 2n-input

2n-output feedback system is stated in Theorem 5.2.

5.2 Necessary and Sufficient Conditions for Stability of a

Simple n-~input n-output Continuous—-time Convolution Feedback

System With Singular Constant Feedback.




(5.1) u

(5.2) e

Theorem 5.1 (5-1)

System Description

We consider an n-input, n-output continuous-time con-
volution feedback system. The input u, output y and error e
. ﬁ{n . . s .
are functions from ﬁa+ to or corresponding distributions

on ﬁ?+. They are related by (see Fig. 5.1)

1]

G*e

[}

u—-Ky

where G is an nxn matrix whose elements are distributions on
“?+ and K is a singular real nXn constant matrix with rank

p < n. The Laplace transform G of G is given by

é(s)

R(s-p) " + G_(s)

where pER andp >0 ;
R is a real nxn constant matrix

Znxn
¢, €A™,

Theorem 5.1
Given the system defined by (5.1) -~ (5.3).
Let d be the order of the pole p of det[I + Ké(-)].

Let r be the rank of the constant matrix KR.

5.3

Let P, Q be two nonsingular matrices, elements of ERan such that

P n-p

TN

I o

QKP = e { —Efe-i——
n-p ( 0 : 0



(5.5)

where Ipxp is the p X p unit matrix, and let

(5.5) Pl g4 R

with R* partitioned into

n
{—ﬁ
(5.6) R¥ = (| 3 )
n-p{ R%

5.4

f

Finally let H be the closed-loop impulse response of the system

defined by (5.1) - (5.3).

Under these conditions,
(5.7) HE QY™
if and only if,

(5.8) inf  |det[I + KG(s)]| > 0
Re s >0

(5.9) d=r

and

(5.10) REIT + KG(P)) = O\ syxn

where O is the (n-p)xn zero matrix.

(n-p) *n

Sketch of the Proof

Observe that under the conditions of the theorem

(5.11) H=¢[1 + ket

b



(5.12) 5.5

and
(5.12) I-kA=[I+KE™T.

Moreover r is the maximal order of the pole at p of all minors
of the principal part of Ké. Therefore by an anolog reasoning

as in Theorems 3.3 and 3.4 and by (5.12)

(5.8) and (5.9) <>KH € ™™

Define now

n
,-*\“
~ A . P H%
a* £ p7l wieh B* = { —i .
n-p { H§

Observe that because P is nonsingular
i€ QY = jixe AV,
It can then be shown that

Ki € A™® < a11 elements of H*

} are in /4

and given (5.8) and (5.9)

(5.10) <= all elements of ﬁ§ are in /A . X

Remark. Observe that when K is nonsingular then ﬁi = H such that

no additional condition (5.10) is needed. Moreover if K is
nonsingular then the maximal order of the pole at p of the principal
parts of é and Ké are the same [Both principal parts of é and KG

are equivalent polynomial matrices in ;%; ]. Next if K is



(5.13)

(5.14)

(5.15)

(5.16)

(5.13) 5.6
nonblngular then r is equal to maximal order order of the pole
at p of all minors of the principal part of G: in our case the

rank of the constant matrix R.

"

5.3 A Sufficient Condition for the input—output Stability of

a Given 2n-input 2n-output Nonlinear Time-varying Feedback System. ®
System Description (Fig. 5.2)
In this paragraph we consider a 2n-input 2n-output non-

linear time-varying feedback system S as shown in Fig. 5.2.
The inputs Ups Uy, errors el, eys outputs yl, y, are functions
of time mapping ﬁi+ into ﬁ?“.
The block labeled ¢t is a memoryless, time-varying nonlinearity
whose input-output relation is defined in terms of a nonlinear
function ¢: R" xﬂ?+b-*m3n by

y1(8) = ole; (£),t]
The block labeled G is a linear time-invariant subsystem whose
input-output relation is defined in terms of its impulse response
matrix G by convolution, i.e. 2

t) = (G*
y,(£) = (G*e,) (£) -

The Laplace transform é of G satisfies (3.12).

The system equations are (5.13), (5.14), (3.12) and

e

]
[~

e, = u, + yl .
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Theorem 5.2 (5.17) 5.7

Definition

The system S (Fig. 5.2) defined by (5.13) - (5.16) and
(3.12) is said to be input-output stable if, given any
q € [1,®], to any input (ul,uz) belonging to Lgn[O,w) corresponds

an output (yl,yz) belonging to Lgn[o,w).

Note.
Let F be an element of C(nxn, i.e.
(5.17) F(t) = F () 2 F, 8(t-t;) for £ >0
i=0
0 for t <0
where F_(-) € LI];[O,co), F, € RV for alni=o,1, 2, ...,
E:IFil < = (where |'| is any matrix norm in ﬁ?an) and
i=0
O = t < t < t < L 4 .

0 1 2

Define a norm on (™™ by

(5.18) I7l_ = S |F_(t) |dt +Z|Fi|
0

i=0

where |*| is any matrix nomm in R™™,
It is well known that the pair (Clnxn,“’“a) is a Banach algebra

[2,20].

Theorem 5.2
Consider the system S defined by (5.13) - (5.16) and (3.12)
(see Fig. 5.2). Let a(s) be the greatest monic common divisor

of all minors of the principal part of G and let d(s) be given by
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2 T

(5.19) d(s) = 1 (s-p)) k.

k=1

Let Qt be the time-varying nonlinearity whose characteristic
9(+,*) has the following properties :

N.1. ¢(-,*): R?x ﬁ?+‘__,an and ¢ is a continuous
function with respect to its first argument and is a

(1)

regulated function with respect to its second argument .

N.2. There exist an nxn constant nonsingular matrix K

and a positive real number W such that

|¢(x,t) - ¢(x',t) - K(x=x")| < n|x - x'
for all t € ﬁi+ and all x, x' e'ﬁ?n;
moreover

$(0,t) = 0 for all t € E2+ .

Let H be the closed-loop impulse response of the n~input n-
output convolution feedback system with G as open-loop impulse

response and K as constant feedback matrix, i.e.
i 2ér+xé L

Let dk be the order of the pole at Py of det[I + KG(-)1.

Under these conditions,

if

inf |det[I + Ké(s)]| >0,
Res >0
d =r for k=1, 2, .c., 2,

k k

1

¢ )¢(x,t): TR“ xTRn.,. —>TR" is called regulated in t iff for
all fixed x eR s, $(x,t) has finite one-sided limits at
every t € Ing .

4]
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and

"H“a H <1,

then for .any q € [1,]
the maps (ul,uz)L-b(elsez)

are well-defined sending Lgn[o,w) into Lgn[O,m); moreover they
are bounded and uniformly continuous on Lgn[O,w). (Note that
the first statement implies that the given system is input-

output stable).

Sketch of the Proof

This theorem follows essentially by loop-transformation
[20]), Theorem 3.5, (1.16), assumption N.2 and the incremental

small gain Theorem [20].
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Lemma A.1 A.l

APPENDIX

A.l Results on Continuous-time Systems

Lemma A.1l.

Given the system defined by (2.1) - (2.6). Let h be the
closed-loop impulse response of the above system. Under these
conditions

hE€ A

if and only if

(2.9) inf |1+ g()]| >0
Re s >0
- Proof
" 2 s-pk m'k
< . Introduce a multiplier m(s) = I (s-l-l . Observe that
: k=1

n?(s) € A and that tH(s)-l is well defined except at s = for

Py

k=1, 2, ..., 2. Next observe that 1 - h = 1+ é)-l. So
: e G- ~ -1

we are done if (1 +g) ~ € (f . Observe that (1 + g) =

~

n;[(l + é)ﬁ]-l, hence h € A if [(1+ é)xﬁ]_l € A . This follows

by (1.14) observing that (1 + g)m € ( and by (2.9) and the structure of

m that inf I(l + é(s)n;(s)l > 0.
Re s >0

= . Immediately h € A implies (1 + é)—l € . Therefore by

(1.13) sup l —1

- | < = which implies (2.9).
Re s >0 1+ g(s)



Lemma A.2 (A.1) A.2

Decomposition-Lemma A.2

Let g be é complex~valued distribution of order O with

support on F?+, i.e.

g(t) 4 0 for t <0

(A.1)

g (t) + i;Ogiﬁ(t—ti) for t < 0

where ga(-) is a complex-valued function on ﬂ? 5 84 eC

for all i and 0 = to < t1 eee < ti < 4o o

Let the "magnitude" |g| of g be defined by

|g(t)| 4 0 fort <0

(A.2)

-]

lga(t)l + ié:o |gi| §(t-t;) for t >0

and assume that g is magnitude integrable, i.e.

(A.3) lg] € (.

[Observe that (] considers only real-valued distributions]

Under these conditions if

(A.4) v(s) = -5-5%2- where p € €, Re p > 0
then

(A.5) v(s) = 5{52 + Gr(s) where v_ € L}O.m)’ thus Ivrl € (.
Proof

We shall use the properties of convolution algebra LA

7]

‘o
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(A.6)

(LA+) of real-valued distributions of order O with support on
R (R, (11415 8). £ is said to be in LA (LA)) iff on its

support

f(t) = fa(t)-!- fi cS(t-ti)
i=0

where fa(-) is a real-valued function belonging to Ll(—w,w)
@'0,=), £, €R for1=0, 1, 2, ..., T |£| < and

i=0

o <t o<t < ... <t <. (0=t <t < bl <E, < 4l

0 1 i 0 1 i
Convolution in LA is defined by
(A.6) (f *fz) (t) = s fl(t)fz(t—r)dt

-—00

where integration is performed in the sense of distribution

theory.

That is : if £ (t) = £1,00) + g £,;8(t-t;) and if

£,(t) = £, (£) + Z £,58(t=t;) then

& "

o

(£,%£,) (6) & Lo £,,(0 £, (e-0)dt + Z £y814(tE,)

t.

=
E:ff(tt)-l-z f é(tt-t)
et 1i“2a e T e 1i%2;

It is easy to check that f., f_, € LA implies fl*f2 € LA.

1’ 72

A.3

Observe that LA+ = A and LA is an extension of A if the support



(A.7) A.4

of the distribution is extended to the whole real line. It
is therefore an easy matter to check that if fl € LA and

f2 € Lq(—w,w), then fl*f2 € Lq(-m,w) where q € [1,~]. Finally

observe that all the properties of LA are conserved if we consider

&
\

complex-valued distributions instead of real-valued distributionms.

Hence without loss of generality the lemma will be proved if we

proved if we restrict ourselves to the case where in (A.4)

(A.7) g€ 4 peR, p>o.

Consider now the complex-valued function Gr defined

~ ~

(A.8) Gr(s) A g(s) - g(p)

s -P
We are done if we show that v, € Ll(O,w).
Now by (A.7) and (1.13) é(s) is analytic in Re s > 0,
bounded and continuous in Re s > 0. Hence,because p € ﬁ?
and p > O,Gr(p) = é(p) which is well defined. Moreover ér(s)
is well-defined in Re s > 0. Hence Gr(s) is analytic in
Re s > 0. Furthermore Gr is bounded in Re s > 0 and continuous

in Re s > 0 and, as |w| > o,

L]

1

|vr(o + jw)] is at most 0( m

) uniformly for all
fixed o > 0.
Therefore by Wiener's Theorem ([12] p. 8)
v_ € L?[0,x)

(A.9) 1 N. R
vr(t) = 1l.i.m. E;'S vr(o + jw)e
w=-N

N>

(0+jw)tdw



(A.10)

where th: integration may be performed on any vertical line
{s = 0 + ju| o = constant > 0}.

Consider now a distribution h and functions e,, e mapping

+
F? into ﬁ? defined by:
A 0 for t < 0
h(t) = )
g(t) - g(p)s(t) for t >0
ept fort >0
A hl
e, (t) =
0 for t <0
A 0 for t > 0
e (t) = ¢
' -eP for t < 0 .

Observe that h € A C LA and that e_€ Ll(—w,w) r‘Lz(-“’,“’),

therefore h*e € Ll(-w,w) nL2(-e°,°°). Moreover using (A.6)

- S g(r)ep(t—T)dT for t > 0
t

(A.10) (hte ) (t) = (hke,)(t) =
' 0 for t < 0
therefore
(A.11) (ke ) = (h*e,) € L'[0,=) N12[0,w).

N
Note that because of (A.1l1), h*g+ is well-defined in Re s > 0,
analytic in Re s > 0 and bounded and continuous in Re s > 0.

Moreover, [12],

+N .
(A.12) (h*e+)(t) = 1l.i.m. ——-g '(h*e+)(o+jm)e(0+3w)tdw,any fixed

N-»co

A.5

o > 0.
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N\
We calculate now (h*e+)(s) for Re (s—p) > 0 using (A.10)

and integration by parts. Observe that

[--] 0
N - o 2
(h*e ) (s) = -S S g(r)e PTar ¢ (8P tyq,
0 1=t
Let us set
a(t) = - S g(r)e-pTdT
=t
—(s-p)t
b(t) = - —?g:ss——-where Re (s-p) > O.
" Introducing generalized derivatives ([28] p. 38 example 2) and
observing that integration by parts is allowed on ﬁ{+,if
Re (s-p) > O,because all terms converge, we obtain:
"\ ® © -
(h*e ) (s) = S a(t)b(t)dt = [a(t)b(t)] - 5 a(t)b(t)dt,
0
0 , 0
that is along with (A.8) ’ 3
h*e+ = v for Re (s-p) > 0. "

(A.13)

Therefore because of (A.9), (A.12) we obtain in L2—sense and

thus almost everywhere

0 for t < 0

v_(t) = (h*e)(t) = ©
r + -S g(r)ePEDdr for £ > 0
=t

|54t

which because of (A.ll) implies V. € Ll[O,w) Q.E.D.
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Corrolary A.2.1 (A.13a) A.7

(A.13a) Remark. It is easy to check that formula (A.13) is also valid
in the case where g is a complex-valued distribution, satisfying.
(A.1) - (A.3), p € € and Re p > 0.

(A.13b) Remark. If in (A.4) Re p = 0, then previous theory is not
valid. 1In fact if v, exists then V. satisfies (A.13), such
that for Re p = 0 the decomposition (A.5) is valid if and only

if

00

(A.14) - s S(T)ep(t-T)dT belongs to Ll[o,m).

™=t

this however is not automatically satisfied if |g| € (.

Consider following example:

0 £ <0
g(t) = 1 t € [0,1)
£3/2 re 1%

and let p =0

P P
Observe that g € CZ, however - s g(r)ep(t-T)dT = - S g(t)dr

t t
does not belong to Ll[O,w), furthermore it does not even belong
to L2[0,w). Therefore the decomposition of Lemma A.2 is not
applicable if Re p = 0. However if (A.1l4) is satisfied then
a decomposition (A.5) is applicable.

Some corrolaries from Lemma A.2 are now stated.

Corrolary A.2.1

Let

-~

- 8
v(s) =§-§_;Lwhereg€d,pe'?\, p > 0.



Corollary A.2.2 and Corollary A.2.3 A.8

Then

v(s) = g‘_%l + \;r(S), where V.. e A

[Observe that g and v, are real-valued] - <
Corollary A.2.2 =
Let
- g(s)
v(s) = 57— —
(s=p;) (s-p,)
where g € d; P> P, €C; P, = 1;2 (i.e. they are complex
conjugate) and Re Py = Re P, > 0. Then
Ao glpy) g(p,) 1
v(s) = . + v_(s)
pl-pz S-pl P2"P1 s—pz r
where v, e &
[Observe that this result is obtained after applying two times
Lemma A.2 and that g and v, are real valued].
Corollary A.2.3
)
Let
sy = —B(8)
v(s) T o A . R
I (s-p,)
k=1

where g € Q and the poles p, are such that (a) Re Py > 0 for
k=1, 2, ..., 2 and (b) they are either real or pairwise con-

jugate complex. Then



In

Corollary A.2.4 (2.64) A.9

L m.k-l
v(s) —Z Z rlcm -pk +m+\;r(s)
k=1 m=0

where vr € A and the coefficients rkm are either real or

conjugate complex according to the poles.

Corollary A.2.4

Let 6(5) be the open-loop transfer function of a real
n-input n-output convolution feedback system, given by
L m.k-l
(2.64) G(s) = E E ka(s-lk) + Gr(s)

k=1 m=0

where Gr € A™™, Re P > 0fork=1, 2, ..., %,, the poles
p, are either real or complex éonjugate and the matrices ka
are real or conjugate complex nxn matrices according to their
corresponding poles.
Then

2! ml'(-l e

(A.15) det[I + G(s)] = Z Z: Tm s-pk mk + ér(s)
k=1 m=1

where (8, €
' <2
t -
< m  is the order of the pole at Py of
det[I + G(s)], thus no * for k=1,2,...,2

the coefficients T, are either real or conjugate

L complex constants according to the corresponding poles.



A.10

~

[Observe that "crossterms" of the type —zﬁgi§l——aﬁ-may give
T (s=p,) ©
k=1
rise to "restterms" that are Laplace-transforms of complex- -
valued functions. However the sum of the "principal parts"
and the sum of the "restterms' always ére the Laplace-transforms

of real-valued distributions or functions].

®
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Lemma A.1' and Lemma A.2' (2.9 A.11

A.2 Results on Discretée-time Systems

Lemma A.1l'
Given the system defined by (2.1') - (2.6'). Let h be the

closed-loop impulse response of the above system. Under these

conditions

he gl

if and only if

(2.9") | inf |1+ g(z)]| >0
z| > 1

Proof

. A 2 z—pk mk
< . Introduce a multiplier m(z) = I 2 . Observe that
~ k=1

m(z) € il and that a(z)-l is well defined except at z = Py

for k=1,2,...,2. Next observe that 1 - R = (1 + é)-l. So
we are done if (1 + é)-l € El. Observe that (1 + é)-l =

al + gyl "L, hence neet if [(1 + g)m]"t € tl. This follows

by (1.14') observing that (1 + g)m € il and by (2.9') and the
structure of (2.9') that

inf |1 + g(z))m(z)| > 0.
lz| > 1

= , Immediately h € El implies (1 + é)-l € il. Therefore by

1 o whi . R '
(1.13") |ZTUE L |l y é(z)|< which implies (2.9').

Decomposition-Lemma A.2'

Let g be a complex-valued sequence, i.e.



(A.1") A.12

(A.1") g = {30’ 81> 8y +ecs By eeo}

where 84 € C fori=0,1, 2, ..., and assume that

(]

A ® 1
(a.2") lel = {lg;l} o €2

]

Under these conditions if

-~

(A.3") v(z) = 8(2) ere pEC, |p| >1

z-p
then
(A.4") v(z) = %égl + Qr(z) where |vr| 4 {lvril}:=0 € ot
Proof ‘

We shall use properties of the convolution algebra 2(2+)
of absolutely summable real-valued functions defined on L
(i.e. sequences) with support on Z (7[_+): f is said to be

oo
in 2(2+) iff on its support fi G‘ﬁ( and 2: Ifil < @

==

Lol
( 2:|fi| < w). Convolution in & is defined by
i=0 ’

(-]
A:E :
' %* = 1 -4 i = -
(A.5") (fl f2)i fljfZ(l j) for i eeesy —=1,0,1,...

j S0

1° f2 € ¢ implies fl*f2 € g. Observe

that $+ can be identified with 21, by assigning the value zero

It can be checked that £

to the elements of 2% on an additional subdomain £ _ - {0}.
Where necessary we assume that this has been done and denote
that by 2+ = 21. Note further that all the properties of 2%

are conserved if we consider complex-valued sequences instead



Y

(A.6") A.13

of real-valued sequences. Hence without loss of generality
the lemma will be proved if we restrict ourselves to the case

where in (A.3")

(.6 g€el=zg,amdpeR, |p| > 1.

Consider now the complex-valued function ;’r given by

(A.7") ;,r(z) Qﬂm

A

gL,

We are done if we show that v, €9 .
Observe that because of (A.6') and (1.13') g(z) is analytic
in |z| > 1, bounded on |z| > 1 and continuous on |z] > 1 and, as
lz] + o, g(z) > 8y = constant. Hence,because |p| > l,Gr(p) = é(p)
which is well defined. Moreover ér(z) is well defined in |z| > 1.
Hence ;rr(z) is analytic in |z| > 1. Furthermore {rr(z) is
bounded and continuous in |z| > 1 and,as |z| -+ o, Gr(z) -+ 0.
Therefore :Jr(z) admits a Laurent expansion ([27] pp. 239-240)

about z = 0, i.e.

-

;r(z) =Z vriz-i for [z]| > 1

i=0

such that \;r(z) is the z-transform of a sequence v.o= {vri} with

Voo = 0; from this, because of the uniform continuity of Gr(z) in the

compact annulus 1 < |z| < 2,we obtain for the value Vi of v,

27

b

' = B 5 Jvy i (= .

(A.8") VT 5 S vr(pe e’ '"dy for i 0,1,2,...
0



(A.9") A.14

with p any fixed positive number satisfying p > 1.

Consider now real-valued sequences h, e s e_ defined on

1 and given by

0 for i= -1, -2, ...
h 4 g~ - é(p) for i=0
i 0]
84 for i=1, 2, ...
A 0 for i=0, -1, -2, ...
e,. =
+1 pi 1 for i=1, 2, ...
A {:-pi_l for i=0, -1, -2, ...
e . =
-t 0 for i=1, 2, ...

Observe that h and e_ belong to the convolution algebra £,
therefore h*e_ is in &.

Moreover using (A.5')

0 for i = 0,-1,-2,...
&0 (h*e+)i ] (h*eﬁ)i ) - > 8jP(i-j)_l for i = 1,2,...
j=1
Therefore
(A.10') h¥e, = hte € 2, = gt

Note that because of (A.10'), h*e  is well-defined in |z| > 1,
analytic in |z| > 1, continuous and bounded in |z| > 1. An

analog reasoning as that used for deriving (A-8') leads to:

f

8
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(A.11") A.15

27

i — o e
(A.11") (h*e)); = %ﬂ- S (h*e,) (pedV)ed T dy, any fixed p > 1,

(A.12")

(A.12a'")

0
i=0,1,2,... .

Using (A.9') and summation by parts we obtain as in the

continuous—-time case

N

hke = ;r for |z| > |p].

Therefore because of (A.8'), (A.11') and (A.9")

0 for 1 =0
= * =
Vri (h e+)i ] (i .) 1
-233.p J for i =1,2,...
j=17
and hence by (A.10") v_ € &' Q.E.D. 3
Remarks
Remark. It is easy to check that formula (A.12') still holds

when g is a complex-valued sequence satisfying (A.1l') - (A.2")

and p € €, |p] > 1.

Remark. If in (A.3") |p| = 1, then previous theory is not valid

anymore. In fact if v, exists then v, satisfies (A.12') such

that for |p| = 1 the decomposition (A.4') is valid if and only if
[++] 00
E : 1-j)-1 E : i-j)-1 1
{0’ - gjp( j) 9 e o0y - gjp( J) s -oo} e 9;
j=1 j=1i

This is not automatically satisfied.



Lemma A.3' (A.12b") A.l6

[}
o

for 1

]
o

Indeed consider & and p =1

for i=1,2,...

H. ll—'
N

1}

then g € 21 however

1 1
0,{ - — & 2.
{ ;; jz} =1

i

(A.12b') Remark. Using the same reasoning,completely analog counterparts

of Corollaries A.2.1 - A.2.4 can be obtained.

Lemma A.3' [Discrete-time counterpart of Wiener's Theorem [12,p.8]].

Let v be a real-valued sequence defined on71.+, i.e.

(A.13") v = {vi}°°
=0

where v, € W{ for all i. Let v denote its z-transform.

Under these conditioms,

(A.14") v € 2?
&
if and only if
(A.15") {j v exists and is analytic for |z| > 1, e
lim v(z) + a constant as |z| + =,

and

there exists a positive constant M such that

m

(A.16") j. lv( eJY)|2 dy <M for any p > 1.



(A.22%)

[=<]

o  ji-1
(A.22") l;l(peJY)l2 = E vip-21 + 2 E E vivkp-(i+k)cos((i-k)y)
i=0 i=1 k=1

E :Ivitp .
i=0

A

Therefore the integration of the second expression of (A.22')
on |z| = ;,for any p > l,may be performed term by term as long
as the integration interval is compact.

Next note that

™
S cos(i-k)y) dy = 0

-

= 1,2,..0 .

.
o
H
P
-
=

f_"\

L

[

= O,l,oo., i-l-

Therefore

(=] [} o

j E =21 z : 2
%—'ﬂ’ S |V(peJY)|2 de = Vip 1 < Vi < o, for any p > 1.

oo i=0 i=0

[5<1

©
Hence (A.16') follows with M = 2: vi < o,
i=0

A.19

’
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LIST OF FIGURE CAPTIONS

The path y(e) and the neighborhood N(g).
The rectangle ABCD.

The convolution feedback system with singular constant
feedback. ‘

The nonlinear system S.
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