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ABSTRACT

This paper is concerned with the foundational aspects of an impor

tant subclass of nonlinear n-ports; namely, the class of algebraic n-ports

which includes, among other things, the resistor, inductor, capacitor, and

memristors as special cases. Sufficient conditions which guarantee an al

gebraic n-port to admit of all 2 hybrid representations are given. Both

global and local characterizations are considered in detail. In particular,

certain global properties are shown to be invariants relative to the modes

of hybrid representation. The concept of reciprocity is explored in depth

and shown to play a surprising role in determining such global properties

as losslessness and passivity.
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I. INTRODUCTION

An electrical n-port is a black box with n pairs of external termi

nals called "ports" such that the current entering a terminal of each

port is equal to the current leaving the second terminal. The theory of

n-ports is probably the most fundamental aspects of network theory since

most network theoretic concepts such as reciprocity, passivity, lossless-

ness, etc. are defined only for n-ports. In fact, with the help of the

"connection n-port" recently introduced by Brayton [1], any network may be

viewed as an interconnection of appropriate n-ports. Although circuit

theorists have succeeded in developing a unified theory of linear n-ports

during the last two decades [3-6], very little has yet been done for non

linear n-ports. The relatively slow progress in the theory of nonlinear

n-ports is due not only to the difficulty in the mathematics involved, but

also to the lack of a precise and logical characterization and classifica

tion of n-ports.

The class of nonlinear n-ports is very large. Indeed, it includes all

n-ports! In order to obtain useful results, we will restrict ourselves in

this paper to an important subclass; namely, the class of algebraic n-ports

to be defined in Section II. This subclass includes not only the four basic

n-ports—resistors, inductors, capacitors, and memristors [7],'but many

more. The various modes for representing algebraic n-ports are presented

in Section II along with a theorem giving sufficient conditions for an

n-port to admit of all 2 hybrid representations [8-11]. In Section III,

we present several global characterizations of algebraic n-ports which

can be interpreted as generalizations of the monotone property of one-
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ports. Some of these characterizations are shown to be "invariant" in

the sense that they are independent of the modes of representation. In

Section IV, we introduce a new definition of reciprocity for algebraic

n-ports which applies to a larger class of n-ports than that given by

Brayton [1]. We prefer this definition not only because it is more gen

eral, but also because it bears the same familiar form as the well-known

Lorentz reciprocity relation for linear n-ports [4], even though it is

not as geometrically appealing as Brayton's definition. We then define

two generalized potential functions for reciprocal algebraic n-ports which

reduce to such well-known potential functions as content> co-content,

energy, co-energy, etc. in special cases. The last section is concerned

with the power and energy related properties of algebraic n-ports. Suf

ficient conditions are given for various algebraic n-ports to be passive

or lossless. Contrary to the common beiief that reciprocity, passivity,

and losslessness are independent properties, we found reciprocity to play

an important role on the passivity and losslessness of a nonlinear n-port.

Among several surprising results, we prove that a linear non-reciprocal

inductor cannot be lossless and a linear anti-reciprocal inductor cannot

be passive.

Throughout this paper, we let R denote the Euclidean k-space and

U•II the usual Euclidean norm. Vectors are denoted by lower case letters

and matrices by upper case letters. A column vector will usually be de

noted by x = [x.. ,x?,* •• ,x,]. Since we will be dealing mostly with vector

quantities, we will distinguish the scalar components of vectors by arable

subscripts. A literal subscript will normally denote sub-vectors. For

example, we usually partition a vector x = [x^x^-••.x^x^^,*•*xn] e R
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into x = [x^x^, where x& = [x^x,,,- ••,^1 and ^ = \.\+1>\+2>' *' »xn^ •

In addition, we let x denote the time-derivative of the vector x. Finally,

the symbol <•»•> denotes the Euclidean inner product.

II. REPRESENTATION OF ALGEBRAIC N-PORTS

Let /I be an n-port with the port voltage v. and port current i

defined with current entering the positive terminal. Let v = [v^v^***,

vn], i = [i1,i2,--«,in], <j> = [$1A2*'"*tn\> and q = [q1,q2> *' *»<In] de~

note the port voltage, current, flux-linkage, and charge vectors, respect-

ively, where <(> = v. and q = i.. A mixed vector is one whose components

consist of a mixture of at least two different types of port variables.

We say two mixed vectors £ = [£.. ,£«,••• ,£ ] and n = [ru »n2* **>n 1 are

dynamically independent if £. f r\., £ # n.» and r\ ^ £.. For example,

£ = [v- ,i?,§A and n = [i-.jV.-jq.J are dynamically independent whereas

A A •E, = [v1,i2,<|)3] and n = [<j>1,v2,q3] are not since E)± = v± = <J>1 = r^. An

n-port characterized by a constitutive relation

R(C,n) = 0 (1)

between two dynamically independent port vectors £ and n is said to be

an algebraic n-port. In the special case where {£,n) takes on the 4

combinations {v,i}, {<J>,i}, {q,v}, and {q,<f>}, 7% is said to be an n-port

resistor, inductor, capacitor, and memristor [7], respectively. However,

the class of algebraic n-ports is much larger than these 4 basic types

because there exist many more distinct combinations. For example, the

3rd degree traditor [12] defined by v1 = - Aq2i3> v2 •'= - Aq^, and

<J>3 = Aqxq2 is an algebraic 3-port with B, = [v^v^^] and n= U^^'S^*

Definition 1. The constitutive relation (1) is said to be C -parametrizable
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k- . ,, ,\ Ar,., tJH «2n
if it can be represented by a C -function (k >_ 1) u » [5,n]: R -> R ;

i.e.,

£ = C(p) and n = n(p) (2)

5G Rn, nG Rn, and pG Rm, 0 <_ m <_ n; such that the rank of the 2n x m

Jacobian matrix 9y(p)/8p is equal to m V p G R . in this case, the n-

port is said to have dimension m and will be denoted by /I (k,m).

The difference between the dimension "m" and the port number "n"

is a measure of the pathological character of an n-port. For example,

a nullator [6] is a O-dimensional 1-port since it is characterized by

u: R° -> R2, where y(0) = [v(0),i(0)] = [0,0]. A norator [6] on the

other hand is a 2-dimensional 1-port since it is characterized by

\i: R2 -> R2, where y(p) = [v(p),i(p)] = [p1,P2], Vp=[p-^P^ eR•
Between these two pathological extremes lies the common class of n-ports

having dimension m = n. In this case, if it is possible to choose n(p) = p

(€(p) = p), then (2) reduces to £ = £(n) (n = n(£)) and /I is said to be

n-controlled (g-controlled). For example, the 1-dimensional 1-port char-

A 1

acterized by u(p) = [v,i] = [p ,p] is current-controlled since i • p and

hence v = i . Since any theorem formulated relative to the representation

(2) automatically specializes to the n-controlled or the ^-controlled case

upon setting p = n or p = £, it is usually more convenient to work with

the parametric representation (2).

Definition 2. An algebraic n-port fl(k,n) is said to admit a C -hybrid

representation (£ <_ k) if it can be represented by y = h(x) where h(*)

% n
is a C -function on R , and
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n=rABin^n <»LyJ LB AJLr, J Ln-

where A and B are diagonal n x n permutation matrices satisfying the

property that either A. . = 1, B.. = 0 or A.. = 0, B.. = 1.
' jj JJ jj JJ

Remarks 1.

(i) It is obvious that/l(k,n) admits a C -hybrid representation if,

and only if, there exists a pair of permutation matrices A and B such

that x = A£(p) + Bn(p) = f(p) is a C£-diffeomorphism of Rn onto Rn. In

this case, y = B £(p) + An(p) = g(p) = g°f~ (x) = h(x).

(ii) It can be shown that the matrix £ is orthogonal, symmetric, uni-

modular, and elementary. Hence, £ = i-». Moreover, we have A+B= I^y
AB = BA=0 , AA = A, BB = B, where I and 0 denote the identity and the

n* ' n n

zero matrix, respectively.

Although there are 2n distinct hybrid representations, only four are

commonly encountered in practice. They are the £-controlled, n-controlled,

the hybrid I and the hybrid II representations as defined in Table 1 (rows

1 to 4). Closely related to the hybrid I and II representations are the

four conjugate hybrid representations defined in Table 1 (rows 5 to 8).

These conjugate representations are extremely convenient for the study of

potential functions of reciprocal n-ports [8]. In addition, there are

two other frequently encountered representations useful in studying the

transformation properties of nonlinear n-ports. They are called the

transmission I and II representations and are defined in Table 1 (rows

9 and 10).
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Generally speaking, an algebraic n-port which admits of one hybrid

representation may fail to admit another mode of hybrid representation.

It is desirable therefore to derive conditions which prevent this from

happening [9-10]. More recently, Desoer and Oster [11] have obtained

conditions which guarantee a reciprocal n-port to admit all 2 hybrid

representations. We will consider the general case. Before we state the

main theorem, we will rephrase the global implicit function theorem [13]

as follow:

Lemma 1. Let an algebraic n-port/Z be characterized by a C -hybrid

representation

y =

(VV

wv
»h(x)

where [x,y] =£[S,n], *ae\k **> \ e\ =**'*> va GYa °**>
y G Y = Rn""S, and 0 < s < n. If the following conditions are satisfied;
b b

(1) det 9h (x)/9x JO V x G R
a a

(2) lim llha(xa,xb)II =» V^G^
tlx 0 -* ~

a

then 71 admits of the following equivalent hybrid representation:

Sa^a'V

_fb(ya'VJ
= s(ya»V

where g(* ,*) is a C -function on Y x^ = R ,

-7-



Theorem 1. Hybrid Representation Theorem.

If an algebraic n-port jj (k,n) admits a C -hybrid representation

y = h(x) where [x,y] = xl[g,n] and h: R •» R satisfies the following

two conditions:

(1) 3h(x)/3x is a P-matrix2, ¥xG Rn (4)

n-1(2) lim |h (x)| =-, V[x1,x2,-",xj__1,xj+1,---,xn] GR~ ,

and V j = 1,2,•••,n (5)

then^(k,n) admits of all 2 distinct C -hybrid representations.

a a V*** V*a n
Proof. Let [x ,y ] = 2-» [£,n] where 2^ is any one of the 2 distinct

permutations of [£,n]. Since [x,y] = £[£,n] and Z-» = 2-», [x ,y ] =

K-»ar-» A V^^ b b
Z-» 2-»tx»y] = 2-» [x,y]. Let A and B be the pair of permutation matrices

b Q K b . a »b . .b ,^ „b
associated with

a , , a

£". Then xa =Abx +Bby and ya =B"x +A"y. If B" =0n>
then y* = h(xa) since in this case, A = I , x = x, and y = y. If A =

0 , then Bb = I and hence ya = h" (xa) since (4) and (5) imply that h(*)
n n

is a C -diffeomorphism of Rn onto Rn [15-16]. It suffices therefore to

consider the case A ^ 0 and B ^ 0 . Rearrange the n hybrid equations
n n

y. = h.(x1,x2,---,xn), j = l,2,---,n into the form:

y -

~yA~ -hA(xA>xB)

_yB_ _wy]
= h^x')

where the variables y. and x. associated with the non-zero columns of B

are lumped together in y and x , respectively. The vectors yA and xA
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are similarly defined. Clearly, 3h (xf)/9x^ is a principal submatrix of

3h(x)/3x and has therefore a positive determinant in view of (4). More

over, (5) implies that

n-slim »hB(xA,xB)ll =« V xAG R'
X II -»• »

D

where s is the total number of non-zero columns of B . Hence, it follows

from Lemma 1 that /Z (k>n) admits of the equivalent representation:

XB = gB(xA'yB> and yA = ^A'V

where both g.(*,') and gn(,,#) are C -functions on R . It is clear that
A U

a A a a a
the components of y = [y.,y«,*••,y ] is a permutation of the components

of [y.,x^] and those of x = [x.,x„,'••,x ] is a permutation of the com-

a v aponents of [xA,y„]. That is, we can write y = E [y.,x^] and x =

x x y
E [xA,y_] where both E and EJ are non-singular, orthogonal, unimodular

A B

and orthogonal n x n matrices. Hence,

y

ya = Ey = EJ

LB

gA(xA'yB}

gB(xA'yB)
= Ey

where h(')« R "»"R isaC -function.

g o(EXxa)
A

g o(EV)
L-B

= h (x )

Q.E.D.

III. GLOBAL CHARACTERIZATION OF N-PORTS

It is well known that the qualitative properties of nonlinear networks

depend to a great extent on the global characteristics of the elements*

nonlinearity. For networks made up of interconnection of 1-ports, various
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sufficient conditions have been obtained which ensure either the existence

and uniqueness of solutions for resistive networks [17-21], or the global

stability of dynamic networks [22-24]. Some of these conditions require

the resistors to be characterized by strictly monotonically-increasing

functions. Others require the resistors to be voltage controlled or cur

rent-controlled. Still others require the v - i curves to be uniformly

increasing, etc. A precise classification of n-ports in terms of their

global characteristics is fundamental not only to the analysis of non

linear networks but to synthesis as well [25]. In attempting to general

ize the various global characterizations of 1-ports to n-ports, many subtle

ties and complications arise. For example, whereas a 1-port is strictly

monotone if its constitutive relation is an injection from R into R ,

there exist homeomorphic mappings from R onto R which are not monotone

when n ^ 2 [26]. Moreover, as will be seen in the sequel, an n-port which

is bijective with respect to one hybrid representation may fail to be bi-

jective with respect to another representation if n > 1. On the other

hand, there are characterizations of n-ports which are independent of all

possible modes of hybrid representation and these characterizations are

said to be hybrid invariants. These possibilities make it necessary for

us to define many seemingly redundant but distinct global characterizations.

Definition 3. An algebraic n-port ^(k,m) represented by (2) is said to be

non-decreasing if

a(Pa,pb) =<e(pa)-S(pb), n(pa)-n(Pb)> >0

V pa and pb G Rm. It can be shown that an n-port which admits of ahybrid
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a b a b
representation is non-decreasing if, and only if, <h(x )-h(x ),x -x > >_ 0

V xa and xb G Rn [26].

Definition 4. Let/?(k,n) be an algebraic n-port which admits a hybrid

representation y = h(x) and let a(x ,x ) = <h(x )-h(x ), x -x > . Then

/Z,(k,n) is said to be increasing if a(xa,x ) > 0 V xa 4 x G R . It is

said to be x-uniformly increasing if there exists a constant c > 0 such

that a(xa,xb) >_ cllxa-xbH2 Vxa and xb G Rn. If in addition, h(-) G C1

and the Jacobian matrix J, (•) is bounded on Rn, then/£(k,n) is said to be
n

strongly uniformly increasing. /[ (k,n) is said to be proper if h(') is

surjective on R .

Theorem 2. Hybrid Invariant Characterizations.

The definitions for an increasing, non-decreasing, strongly uniformly

increasing, and proper n-port are independent of the mode of hybrid repre

sentation and are therefore hybrid invariant characterizations.

Proof. Let y = h(x) and yf = h^x1) denote any two distinct hybrid
t

representations of ^Z(k,n), where [x,y] =J^tCn] and [x'.y1] - £ [?,n].

It follows from 53 =53 and 53 =53 that [x,y] - 5353 [xSy1] and [x',yf] -

53 53[x,y]. Since permutation matrices form a group [27], there exist a permutation

matrix 53 =5353 with 53 =53 ,and a pair of associated permutation

matrices A and B such that

ChsXH** UP
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and

* *

cmh:« :c].
Now let Ua,na] and [E, ,n ] be any two points in R and let [xa,y ]

E[Ca,na], [x'a,y'a] =EV.n*], [x\yb] - EtsV] and [x'\y'b]
^* V 1~

53 [C ,n ]. It follows from Remarks 1 that:

<y'a-y'\x'a-x'b> =<B*(xa-xb),A*(xa-xb) >+<B*(xa-xb) ,B*(ya-yb) >

+<A*(ya-yb),A*(xa-xb) >+<A*(ya-yb),B*(ya-yb) >

=<B*(xa-xb),ya-yb >+<A*(xa-xb),ya-yb >

. a b a b v
= <y -y ,x -x )

<h'(xfa)-h,(xfb),x,a-x,b > =<h(xa)-h(xb),xa-xb >.

This proves that the definitions for increasing and non-decreasing n-ports

are invariants of the hybrid representations.

The definition for a strongly uniformly increasing n-port has been

shown to be invariant in [9-10]. It remains to prove that the defini

tion of proper n-ports is also an invariant representation. In view of

Remarks 1, we can write y = h(x) = gof" (x) and y' = hf(x) = g'o ff (x) ,

where f(«) and f'(0 are bijective maps. Now if h(*) is surjective, so

is g(»). It follows from the fact that 2-» is non-singular that g'(*) is

also surjective. Hence, h'(*) is surjective since it is the composition

of two surjective maps g*(') and f'~ (•) [28]. We have proved that h(-)
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is surjective «* hf(•) is surjective. Hence the definition of proper n-

ports is a hybrid invariant. Q.E.D.

Definition 5. An algebraic n-portJl (k,n) which admits a hybrid represen

tation y = h(x) is said to be x-homeomorphic {x-bijective} if h(') is an

injection [bijection].

Remarks 2.

(i) The basis for defining an "x-homeomorphic" n-port in terms of an in-

jective function is given by Brouwer's theorem on the invariance of

domain [29-30] : "any injective continuous function h: R -• R is

homeomorphic."

(ii) It can be shown that any increasing n-port represented by y *» h(x)

is x-homeomorphic [26]. However, the converse is false for n ^ 2.

A case in point is as follows: Let f\ be represented by i = g(v),

where i =v-+v and i« = v.,-v2. Clearly, /I is v-homeomorphic. How

ever, ^ is not increasing since a(a,b) « <g(a)-g(b),a-b > = - 1 when

a = [1,1] and b = [1,0]. Neither is 7? decreasing since ct(a,b) - 1

when a = [1,1] and b = [0,1].

(iii) The reason for attaching the prefix "x" to Definition 5 for homeo

morphic and bijective n-ports is because these characterizations are

not invariant relative to the different modes of hybrid representation.

For example, let Jl be represented by v.,(p) - p,, v2(p) =p2> v^(p) »p3;

ix(p) = - P1+3p2, i2(p) = P1 and i3(p) = - px+2p2+p3 where p =

[p-i.Po* «j] e R • Hence, 71 admits of the following two hybrid repre

sentations: y = h(x) with y = [i^.i^ij, x= iv1»^2,v3^f and y? "
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h^x') with y» = [V;L,i2,i3], x' = [±vv2,v3], where h(-) and h'O)

are defined respectively as follows:

h(x) &

-1 3 0 V
1 0 0 V2

-1 2 1
V3

_

= Hx, h'(x) =

-1 3 0

-1 3 0

1 -1 1 V.

^H»x'

Since det H ^ 0 and det H1 =0, it follows that ffi is both x-homeomorphic

and x-bijective. However, jl is neither x'-homeomorphic nor x'-bijective.

IV. LOCAL CHARACTERIZATION OF N-PORTS

An algebraic n-port can be characterized locally according to whether

it is reciprocal or not. As will be shown in Sec. V, this local property

influences the global qualitative behaviors of n-ports in a significant

way [31-32]. Reciprocity has been defined for nonlinear n-port resistors

of dimension "n" via differential geometric concepts [1,11]. In this

paper, we propose a more general definition which is applicable to all

algebraic n-ports of arbitrary dimension. Contrary to the common as

sertion that all one-ports are reciprocal, our definition shows that the

nullator and the norator are non-reciprocal one-ports! This classification

seems to be more appropriate in view of the fact that neither nullator nor

norator can be modeled by reciprocal elements alone. Another reason for

introducing our definition is that it reduces to the well-known Lorentz

reciprocity relation [4,6] when the n-port is linear.

Definition 6. An algebraic n-port #Z(k,m) (k >_ 1,0 <_ m <_ n) represented

by the parametric equations (2) is said to be reciprocal if, for each

peRm,
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<(de(P)),,(dn(p))n > = <(d5(p))",(dn(p))t > (6)

where [(d^(p))1,(dn(p))1] and [(d?(p))", (dn(p))"] are any two elements

m 2n
in the tangent space T (R ) attached to the point [£(p),n(p)] e R [33].

The n-port is said to be non-reciprocal if it is not reciprocal. In par

ticular, it is said to be anti-reciprocal if, for each p G R ,

<(dS(p))'>(dn(p))" > = - <(d?(p))",(dn(p))t > (7)

3
Theorem 3. Reciprocity Criterion

An algebraic n-port % (k,m) represented by the parametric form (2)

with k > 1 is reciprocal {anti-reciprocal} if, and only if, its associated

reciprocity matrix

R(P) *[*$* ]T [*§£* ] (8)

is symmetric {skew-symmetric}.

Proof. Since [(d£(p))',(dn(p))'] and [(d£(p))",(dn(p))"] are elements

of the tangent space T (Rm) attached to the point U(p),n(p)] ^ R n, it

follows that:

(d?(P))' =-2|^i (dp)', (dn(p))' -̂ (dp)'

(dc(p))" =if&i- (dp)", (dn(p))" =*%&- (dP)'

where (dp)1 and (dp)" are any two vectors in R . Hence,
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<(dS(p)),,(dn(p))" >=< &&- (dp)', -^i- (dp)" >=<R(p)(dP)',(dp)">
(9)

<(d?(p))",(dn(p))1 > = <R(p)(dp)",(dp)' > =<[R(p)]T(dp)',(dp)"> (10)

Substituting (9) and (10) into (6) and (7), respectively, we obtain

R(p) = [R(P)]T and R(p) = - [R(p)]T. Q.E.D.

Applying the reciprocity criterion (8) to a nullator and a norator

shows that they are both non-reciprocal. In the common case where the

n-port is of dimension n and admits of a hybrid representation, we have:

Corollary. An algebraic n-port which admits a C -hybrid representation

y = h(x), where [x,y] =]Cu,n] as defined by (3) is reciprocal {anti-

reciprocal} if, and only if, its associated hybrid reciprocity matrix

R^x) =[B+AJh(x)]T [A+BJh(x)] (ID

is symmetric {skew-symmetric}.

Proof. Since-L =S, we have £(x) = Ax + Bh(x) and n(x) = Bx + Ah(x).

Substituting 3n(x)/3x =B+ AJh(x) and 3£(x)/3x =A+ BJh(x) into (6) and

(7), respectively, we obtain R^x) =[RH(x)]T and Rfl(x) =-^(x)] .
Q.E.D.

The necessary and sufficient conditions for an n-port represented by

a hybrid or conjugate hybrid representation to be reciprocal {anti-

reciprocal} can now be easily determined by deriving the corresponding

reciprocity matrix Ru(x) and applying the preceding corollary. The re-
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suit is summarized in the first 8 rows of Table 1. The conditions on the

last 2 rows are derived using (8) of theorem 3 directly.

Theorem 4.

Let ft (k,n) be an n-port with a C -hybrid representation y = h(x),

where k > 2, 2 < %< k. If ff?(k,n) is anti-reciprocal, then it is neces

sarily an affine n-port in the sense that

y = h(x) = Hx + c

where H is an n x n constant matrix and c is a constant n-vector.

Proof. From Table 1, % (k,n) is anti-reciprocal implies that J,(x) is

skew-symmetric. If we let a..(x) denote the ijth element of J, (x), then

a (x) = - a (x) , i, j = l,2,*-*,n. Now I >_ 2 implies that:

3x7 [aik<*» "" 3^7 l-ki«] "- ix; [\J«] =3x7 ta*(X)1 <12)

3x7 !•*<*>] •^ iv*» - - •£; hi(x)1 =-£[ tajk(x)] (13)

Eqs. (12) and (13) imply that ~- [a±k(x)] =0 V i, j, k = l,2,-*-,n.

Hence J, (x) must be a constant matrix. Q.E.D.
n

Closely related to the concept of reciprocity are the potential

functions which we now consider.

n 1 n
Definition 7. Let S be a convex subset of R . AC -function f: S -*• R

is said to be a state function if the Jacobian matrix Jf(x) is symmetric
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¥ x G s. In this case, the line integral of f(«) between any two points

in S depends only on these endpoints and is therefore independent of the

path of integration [35].

Lemma 2. Let ffi (l,m) be a reciprocal n-port represented by a C -parametric

m *
function g = g(p) and n = n(p)» P e R . Then f(») and f (•) as defined in

(14) and (15) below are both state functions on R :

f(p) =[*$*• ]T e(p) (H)

f*(p) =t̂ ]T n(P) (15)

Proof. It suffices to prove that f(-) is a state function. Differen

tiating (14), we obtain

Jf (p) =[̂ifii ]T [i|M ]+s(P) 4R(P) +s(P)

where R(p) is defined in (8), and S(p) is a symmetric matrix whose kj th

element is given by:

-< aSj Î ]•«">> =VP) (16)

Since^2(l,m) is reciprocal, it follows from theorem 3 that R(p) is also

symmetric. Hence Jf(p) is symmetric. Q.E.D.
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Definition 8. Let/ty(l,m) be a reciprocal n-port represented by a

C -parametric function £ = £(p) and n = n(p) P E R • We define the

generalized potential function fl(p,PQ) and the generalized co-potential
•ft

function ft (p,PQ) to be the following line integrals [35]:

0<P,P0> =J <5<P),dn(p) >+kA(P0)
r[n(pQ),n(p)

= f <f(p),dp >+kA(P()) (17)
r[pQ,p]

J2*(p,p0) A| <n(p),d£(p)> +k2(P0)
r[5(p0),5(p)

= f <f*(p),dp >+^(Pq) (18)
r[pQ,p]

where T[pn,p] denotes any path of integration from p. to p, and ^(Pq) »

k (pn) are constants (depending on pQ) such that

kA(p0} + kA(p0} =(5<p0) ,n(p0} > (19)

Remarks 3.

(i) In view of Lemma 2, the line integrals defined in (17) and (18) are

independent of path of integration.

(ii) In most cases, it is possible to choose €(pQ) and n(pQ) such that

<€(pn)»n(Pn) > = 0. For example, one can choose either £(pQ) - 0 or
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n(p0) =0. In this case, we can set k.(p0) = kA(P0) - 0 in (17) and (18)

(iii) In the case where JL (l,n) admits an n-controlled representation

K - £(n) {^-controlled representation n = n(£)}9 where £(•) and n(')

are C functions on R , then (17) and (18) reduce to the form given by

Millar and Cherry [36-37] as follows:

fi(n) = \ <S(n),dn > (20)
r[0,n]

fi*(S) =| <na),d£ > (21)
r[0,£]

In the special case where /2(l,m) is an n-port resistor, inductor, capaci

tor, or memristor, the generalized potential and co-potential functions

reduce to the familiar forms listed in Table 2.

V. POWER AND ENERGY RELATED CHARACTERIZATION OF ALGEBRAIC N-PORTS

Our objective in this section is to investigate several fundamental

properties of algebraic n-ports which are related to power and energy.

In particular, various criteria will be derived which guarantee a resis

tive, inductive, capacitive, or memristive n-port is passive, non-energic,

or lossless. The observation that reciprocity plays an important role in

determining these properties is somewhat surprising.

Definition 9. A pair of port voltage and current n-vector-valued time

functions (v(t),i(t)) is said to be an admissible pair of an n-port 71

if it satisfies the constitutive relation R (£,n) = 0 of fl, V t G R .
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If 71 is parametrizable, then each admissible pair (v(t),i(t)) gives

rise to at least one parametric waveform p(t) relative to each prescribed

parametric equation E, = £(p) and n = n(p). In our subsequent results, it

is crucial that p(t) be uniquely determined. This motivates our next lemma:

Lemma 3. Let ffj (k,m), k > 1, be characterized by g = g(p) and n = n(p).

If y(*) = [£(•),n(Q] is an injection on Rm, then there exists a unique

parametric waveform p(t) associated with each admissible pair (v(t),i(t)).

Conversely, if y(Q is not injective, then there exists an admissible pair

of ffl (k,m) which gives rise to more than one parametric waveforms p(t).

Proof. The proof is easy though quite lengthy [38] and is therefore

omitted.

Definition 10. An n-port Yl is said to be non-energic if <v(t),i(t) > = 0

¥ t G R and ¥ continuous admissible pairs (v(t),i(t)) of jl.

Definition 11. An n-port /2 is said to be lossless if the average

power

J.

P(v(t),i(t)) =lim| f<v(t),i(t) >dt =0 (22)
1 0

¥ bounded continuous admissible pair (v(t),i(t)) of /?. Otherwise, it is

said to be lossy.

Theorem 5. Lossless Criteria for n-port Inductors and Capacitors

Letj£(ltin) {f(l>pQ} be a reciprocal n-port inductor {capacitor}

represented by y = [<J>,i] {y = [v,q]}: R -> R . If:
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(1) y(*) is injective

(2) lim Hi(p)l = co {lim flv(p)H = »} (23)
HpU-X.0 !lp[|-Hx>

Then cC (l,m) {C (l,m)} is lossless.

Proof. It suffices to prove the inductor case. When m = 0, <J1(1,0) is

represented by a single point [<j>(p ),i(P )] e ^ x^* Hence, the only

bounded continuous admissible pair of ^L (1,0) is (v(t),i(t)) = (0,i(p )).

Hence (22) implies P(0,i(p°)) =0 and X (1,0) is lossless. Now suppose

m > 0. Let (v(t),i(t)) be a bounded continuous pair of d^(l,m). By

Lemma 3, 3 a unique parametric waveform p(t) such that

v(t) = d*<P(t)>, i(t) = i(p(t)) (24)

Clearly, p(t) is continuous since i(p) and i(t) are continuous and p(t)

is unique. Moreover, (23) implies that p(t) is bounded since i(t) is

bounded. Taking the time derivative of the inductor energy function

as defined in Table 2, we obtain:

dW (p(t),p ) . c d (t)
L 0 o_ r I t *f*\ A*(n\ > 1 QPVv

dt =|p-[J <i(P).d*(P)>l^
rpQ,p(t)

=<i(p(t)), dt<P<fc» > =<i(t),v(t)> (25)
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Substituting (25) into (22), we obtain

J dWT(p(t),p )
P(v(t),i(t)) = lim | — dt

T"~ 0

=lim ^ [W (p(T),p )-WL(p(0),p0)].

Since p(t) is bounded and W(•,pQ) is a continuous function of p, there

is a constant K, 0 <k <«, such that |WL(p(t) ,pQ)|£K ¥tGR . Hence

P(v(t),i(t)) = 0. Since (v(t),i(t)) is an arbitrary admissible pair,

cL (l,m) is lossless. Q.E.D.

The following examples show that the conditons of theorem 5 are as

sharp as possible:

Example 1. Let j\ be a 1-port inductor represented by i = i(p) =1 and

(j, = (j,(p) = p; i.e., a constant current source. Then /I is reciprocal and

y = [<J>,i] is injective. However, ft is lossy since P(v(t),i(t)) =
2 1 2P(sin t,l) = «• and (sin t,l) is obviously a bounded continuous admissible

pair. Hence only (23) is violated in this example.

Example 2. Let n be a 1-port inductor represented by:

i(p) = — (P+D- &* <Kp) = — (P-D + v^, p < 0
/2 ^2

i(p) = cos(p- y), <J)(p) = sin(p- j) , 0 < p < 2tt

i(p) = — (p-2tt+1) - VT, <J)(p) =— (p-2ir-l) + .^2, p > 2tt
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Clearly, /£ is reciprocal and (23) is satisfied. However, p(') =

[<K•),!(*)] is not injective since y(0) = y(2ir). Indeed, /[^ is lossy

since P(v(t),i(t)) = P(cos t,cost) = j and (v(t),i(t)) = (cos t, cost)

is a bounded continuous admissible pair.

To show that reciprocity also plays an important role in theorem 5,

we offer the following:

Lemma 4. Let ^L {C } be a linear, non-reciprocal (^-controlled {q-controlled)

n-port inductor {capacitor} characterized by i = L <ft {v = C q} where

L = [&.,_] {C = [c,_]} is an n xn constant matrix such that lim IIL <|>ll = «

{lim Dc^qll = «}. Then ^ {£} is lossy.
DqD-K»

Proof. It suffices to prove the inductor case. Let ok be represented by

the injective function y = [<|>,i]: R -*• R , where <J>(p) = p, i(p) = L p.

Let (v(t),i(t)) be any bounded continuous admissible pair. Let p(t) = <|>(t)

be the unique associated parametric waveform such that v(t) = j»(t) and

i(t) = L <j)(t). Clearly, <j>(*) is also bounded and continuous. Consider

T T n

j <v(t),i(t) >dt = f E ♦j(t>*jk *k(t)dt
0 0 j,k=l

n T n-1 n T

= E Ajj J(()j(t)ij(t)dt +E E J[fcjkij(t)(f,k(t)-)lkjik(t)(|)j(t)]dt
j=l 0 j=l k=j+l 0

n-1 n T

=Y(T) +E E Jc^-^jlijW^COdt (26)
j=l k=j+l 0
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where

n n-1 n

Y(T) =E I^jNjW-^W +E £ ^[^(1)^(^-^(0)^(0)]
j=l j=l k-jfl

is bounded for all T G R since <j>(T) is bounded ¥ T G R . Hence, "3 a

constant K such that

Sup |y(T)| IK (27)
TGR1

Notice that (26) and (27) are valid for any bounded continuous admissible

pair.

Since <k. is non-reciprocal and linear, _3 a pair of integers r and

s such that

a -a #o (28)
rs sr

In order to show that 1£- is lossy, it suffices to exhibit a bounded

continuous admissible pair (v(t),i(t)) such that P(v(t),i(t)) ^ 0.

Consider the admissible pair:

v.(t) = 0, for j = l,2,«»»,n, j $ r, and j ^ s

v (t) = sin t
r (29)

V (t) = cos t
s

i.(t) = - I. cos t + I. sin t, for j = l,2,«««,n
j jr js

and substituting it into (26), we obtain
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J <v(t) ,i(t) >dt =\ T[*r8-A8r-] +YX(T) (30)
0

where Y-, (T) =y(T) + U -I ][ \ (sin 2T-sin 0)] is bounded ¥TG R1 in

view of (27). Hence, P(v(t),i(t)) «-| [A -£ ]^0; i.e., £ is lossy.
<b xo s r

Q.E.D.

Corollary. Every linear non-reciprocal n-port inductor or capacitor

characterized by a non-singular inductance or capacitance matrix is lossy.

Theorem 6. Lossless Criteria for memristors.

Every anti-reciprocal (^-controlled or q-controlled memristor is non-

energic, and hence lossless.

Proof. It suffices to consider the q-controlled case. Let the memristor

be represented by (|>(p) = r(p) and q(p) = p. Hence y(*) = [<K*) ><!(•)]

is injective. Let (v(t),i(t)) be a continuous admissible pair. Then ^

a unique parametric waveform p(t) = q(t) such that v(t) = dr(q(t))/dt and

i(t) = dq(t)/dt. Hence

<v(t),i(t) > = <Jr(q(t))q(t),q(t) > = 0 (31)

since the anti-reciprocity condition implies that J (•) is skew-symmetric

by Table 2. Q.E.D,

Definition 12. An n-port is said to be initially relaxed at the initial

time t a t. if it has no stored energy at tfi.

Remarks 5.

(i) Both n-port resistor and memristor are always initially relaxed

-26-



since neither can store energy.

(ii) An n-port inductor is initially relaxed if, and only if,

$(tn) = 0. Observe that the initial inductor current need not be zero.

(iii) An n-port capacitor is initially relaxed if, and only if,

q(t ) = 0. Observe that the initial capacitor voltage need not be zero.

Definition 13. An initially relaxed n-port H is said to be passive

if

t

w(t) = f <v(t),1(t) >dT >-0, ¥t>tQ (32)
Z0

¥ admissible pairs(v(t),i(t)) in which (32) is integrable. XI is said

to be active if it is not passive.

Theorem 7. Passivity criteria for n-port resistors.

Let Ti be an n-port resistor represented by y = [v,i]: R •» R .

Then 7l is passive if, and only if <v(p),i(p) > >, 0¥ pG Rm. in particu

lar, if 7*- admits a C°-hybrid representation y= h(x) ,then % is passive

if h(Q is non-decreasing on R and h(0) = 0.

Proof. The first half of Theorem 7 is obvious. Hence it suffices to

prove the second half. Since h(») is non-decreasing on R , we have

<h(xa)-h(xb) ,xa-xb >>0 ¥xa, ^ GRn (33)

In particular, let ^ =0 and x& =x. Since h(0) = 0, (33) reduces to
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<h(x),x> =<y,x>= <v,i> >_ 0. Q.E.D.

Theorem 8. Passivity Criteria for n-port inductors and capacitors.

Let JC (l,m) {l(l,m} be a reciprocal n-port inductor {capacitor} repre

sented by y= U.i]; Rm + R2n {y £ £v,q]; Rm + R2n}, where y(-) is an

injection on R. Suppose 3 apoint p G Rm such that <Kpq) •0

{q(pQ) =0}» Then J? (l,m) {£(l,m)} is passive if, and only if the asso

ciated inductor energy W-(p1pQ) {capacitor energy Wc(p,pQ)} is non-negative

¥ p G R . in particular, if Jk {C} is a reciprocal non-decreasing <|>-

controlled n-port inductor {q-controlled n-port capacitor} such that

i(<j>) = 0 when 4> = 0 {v(q) = 0 when q =* 0}, then A~ {£} is passive.

Proof. It suffices to consider the inductor case. Let (v(t),i(t)) be a

continuous admissible pair which is consistent with the assumption that

<{>(t0) = 0. Lemma 3 implies that 3 a parametric waveform p(t) such that

v(t) =d£(p_It21 i(t) =1(p(t))f and ^(p(to)) =o-<Kpq).

Clearly, p(t) is continuous and unique. Hence,

W(t) ^I<v(T),i(T) >dT =J^ [WL(P(T),P0)]dT
'o fco

= wL(p(t),P()) - wL(P(t0),p0)

Now,

WL(p(t0),P()) =J <i(p),d<J>(p) >
r[<j>(p0),(|»(p(t0)]
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J <i(p),d(j>(p) >= o.
r[o,o]

Jy- ii

In the special case where ck. can be represented by i - i(<{>), we have

Hence, w(t) = WT (p(t) ,pn) >^ 0 and A. is passive.

wL(*) = j" <i(«J)),d<|> >

r[o,<j>]

and i(<j>) = VW_ (<J>) . But i(«) is non-decreasing and hence W (•) is a convex
Li l

function on Rn [26]. Since VWT (0) = i(0) = 0, <j> = 0 is a global minima
Li

of the convex function WT (<f>) . Hence W(<J>) ^ 0 ¥ <J> G Rn. Thus <X is
L L»

passive. Q.E.D.

To show that reciprocity plays a crucial role in the passivity of

n-port inductors and capacitors, we offer the following:

Lemma 5.

Every anti-reciprocal linear n-port inductor {capacitor} is active.

Proof. We prove only the inductor case. Let ck. be characterized by

i = L~ <J>, where L~ = [£.v] is an n x n non-zero constant matrix. Let

(v(t),i(t)) be a continuous admissible pair of dC which is consistent with

the assumption <j>(tn) = 0. Then ^ a unique parametric waveform p(t) = <j>(t)

0>such that v(t) = i(t), i(t) = L_1<J)(t), and <j>(tn) = 0. Since v(-) is con

tinuous, <!>(•) is C on R . Hence,

n

w(t) = f<v(t),1(t) >dx = f E Ajkij(T)(J)k(T)dT
tQ tQ j,k=l
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n-1 n t

« E E i [Ajj^WijCT) +\j(f,j<T)*k(T)]d'
j=l k=j+l tQ

n t

+E Ajj f ♦jWijWdi (34)

XTo show ck is active, it suffices to exhibit a continuous admissible pair

such that <KtQ) = 0 and w(t.) < 0 for some time t > tQ. Since L is a

non-zero matrix and c)C is anti-reciprocal, ^ exists a pair of integers

r and s such that I = - % $ 0. Consider the admissible pair:
rs sr r

Vj(t) = 0, ¥ j= l,2,---,n, j t rand j* s

v (t) = e*
r

v (t) = aet[sin t+ cos t] (35)
s

±j(t) =Zjr[et:'e °] +£jsa[et Sin *"e°Sin V'

¥ j = 1,2,...,n

where the constant a is to be assigned later. The associated parametric

waveform <f>(t) is given by:

<J> (t) - 0, ¥ j = 1,2,«« *,n, j t r and j i s

<J>r(t) = e - e

<|> (t) =ate*1 sin t - e ° sin tn] (36)
s u
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Substituting (35) and (36) into (34), we obtain

t

t t *"0
19. et rt\a sin t - p ein t

0
w(t) = j 2I e'ole1 sin x- e ° sin tjdx

fc0

t t

- ^rs[e " e ][a(e sin t- e sin tQ)]

2 2x
- SL a{-=- e (2 sin x - cos x)]

rs 5

t , 'o . r , t to1
- 2e sin t_[e - e ]

'o
t t

- [e - e ][e sin t - e sin t-]} (37)

Setting t = t. = tQ + 2ir, (37) reduces to:

1 0 4ttw(tQ + 2tt) =| a^rs e u[sin tQ +2cos tQ] (l-eH1T) (38)

If sin t. + 2 cos t ^ 0, we can let a = sin t- + 2 cos tfl and

w(tn + 2tt) <0. Hence X- is active. If sin tQ + 2 cos tQ =0, then

sin tQ = - 2 cos tn ^ 0 and we can let t« = tQ + n, and w(tQ + tt) =

a£ e 0 cos t_ [—- - be*]. Hence, if we let a = - cos tn [ —- - 4e ],
rs 0 5 0 5

then w(t0 + ir) <0and dC is active. Q.E.D,

Theorem 9. Passivity criteria for memristors.

Every non-decreasing q-controlled or <j>-controlled n-port memristor

is passive.

Proof. Let ft be charactorized by q = q(<j>) and let (v(t) ,i(t)) be a

continuous admissible pair. Let p(t) = <}>(t) be the associated unique

parametric waveform. Then
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<v(t),i(t) > = <<Kt),J (<Kt))<Kt) > >.0 (39)
s

since q(') is non-decreasing. Q.E.D.

VI. CONCLUDING REMARKS

A unified theory of algebraic n-ports has been presented via the

parametric representation (2). The dimension of an n-port is introduced

and shown to be a logical tool for classifying and separating regular

n-ports from such pathological elements as nullators, norators, nullors,

etc. A new definition of reciprocity is proposed which led to the logical

conclusion that every one-port of dimension 1 is reciprocal, and that the

nullator and the norator are both non-reciprocal one-ports. Several

surprising results have been obtained: (1) contrary to the well-known

result that every linear n-port can be decomposed into a reciprocal and

an anti-reciprocal n-port, theorem 4 shows that no such generalization is

possible with nonlinear n-ports. (2) Contrary to the common belief that

reciprocity is an independent local property, Lemmas 4 and 5, as well as

theorems 5 and 8, show that this property plays a significant role in de

termining the losslessness and passivity of n-ports.

It is hoped that the global and local characterizations in Sections

III and IV will provide a foundation for the synthesis of algebraic n-

ports. The basic philosophy would be to decompose a prescribed n-port

into an appropriate interconnection of component n-ports chosen from among

the subclasses defined in this paper.
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FOOTNOTES:

1. To economize on symbols, we use the same generic index "n" for dif

ferent "n" ports. We will also assume that whenever necessary, our

n-ports are provided with internal isolation transformers so that

arbitrary interconnections will not introduce circulation currents [2].

2. An n x n matrix A is said to be a P-matrix if all its principal sub-

matrices have positive determinants [14].

3. This reciprocity criterion was first derived in this coordinate-free

form for linear n-ports in [34]. This criterion had also been derived

for nonlinear n-ports by Brayton [1].

4. The definition of passivity as presented by Youla et al., [3] has been

shown to be unsatisfactory when measurable admissible pairs are al

lowed [39-40]. However, since we restrict our admissible pairs to be

continuous time functions, no such difficulty arises in our case.
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Table 2. Generalized potential and co-potential functions Associated with

algebraic n-ports.

Type of N-Port Corresponding Terminologies

Reciprocal algebraic

nport 97 5
n

Generalized Potential Generalized Co-potential

0(p>PQ) n(n)
*

fi (P.Pq) n*«>

resistor jrf v i

content co-content

G(p,pQ) G(i) G (p,P0) G*(V)

inductor ^^ <f> i

inductor co-energy inductor energy

w*(p,p0) W*(i) wl(p,p0) wL(«0

capacitor v q

capacitor energy capacitor co-energy

wc(p,p0) Wc(q) w*(p,p0) W*(v)

memriston d7/v <J> q

action co-action

AM(p,P0) V"> AM(p,p0) *£<♦>



Tabic I. RcprvMcntatlon ol At(-,i:l>ralc N-l'ortH and Tln-lr Critctia

Reciprocity and Anti-reclproclty.

Mode of

ReproseutatIon

1. (-controlled
Representation

2. n-controlled

Representation

3. Hybrid I
Representation

4. Hybrid II
Representation

5. Conjugate
Hybrid I
Representation

6. Conjugate
Hybrid II
Representation

7. Conjugate
Hybrid III
Representation

8. Conjugate
Hybrid IV
Representation

9. Transmission I
Representation

LVL tiling KqualJous

n - 6(C)

5 - r(n)

"a "hX'V

'a - h;<w

\" wv

"a "haX'\>

«b "C«a,nb>

- nu

«." ha2<VV

Hw 2 ~ ".

*3. *

*a* ha <W

*3„ *

«b-V<W
*

5 2 - t.

< - hX»«b>
nb *C'VV

*

5 « - C

%*

10. Transmission II
Representation

<b - VW

%m W"a>

'!_ ? " "-

Jacobian

Matrix

g ar.

Jr Dn

l*1

u*2

u*3

•**

Dh1 Dh1
a a

Ka 3nb

3*« 3nh

2 2
3h_ 3h_

3n. 35

L3na 35>

/- *1 *1 •r 3h * 3h A

H„ 3n,

3C 3hl
35a 3nw J

r3h*23h*2
a a

U9na 3*b

-3h*33h*3

a?.
an,

*3

»V 3h!
* aiu.

I 3*

3b*4 3b*4
3na 35

3h*4 3h
•b "b

3*a 3<b

r!!i!il
35b 3n,

J , »

L»W J

2 7

Hi !!i
3<a

*

3n„
a

2 , ?
at at

, 'i .-11
!>'. *

u ii ""I-

for

Necoisiiary anJ Sufficient
rendition* for Reciprocity

.1 is symmetric

J la aycamtrie

(a) ah1/35 is aymmetric

(b) Dlw?nb la symmetric

(c> 3hJ/anb - - [3hJ/Ha]T

(a) 3h*/3na Is aymmetric

(b) 3b^/3tb Is aymmetric

(c) 3ba/3Cb --t3hJ/3na]T

J .. is aymmetric
h *

J #_ is aymmetric
h 2

J *, la symmetric
h 3

J *, la symmetric
h*4

(a)

(b)

(c)

(a)

(b)

(c)

KJ «b

P*fr»

KJ ,<

K] "o

la,»*J a"0

kj <

is synaetric

is symmetric

M>-» 3nb

fit1* 3tJ

is symmetric

la symmetric

at"2 f at?
..'I ...A

• I.

Necessary and Suflicient
Conditions for

Ault-JU»clproclty

J la akev-symmotric
8

J la akev-»ymmetric

J , is skew-symmetric

J , is skew-symmetric

u*l(a) 3h /35 la skew-symmetric
a a

(b) ah^/Sn^ Is skew-symmetric

(c) ah^/anj - ObJ1/*?,]1

(a) 3h*2/3n is akew-aymmetrlc
a a

(b) 3hf2/3C. la skew-symmetric

(O 3ba2/3Cb -tahj2/^]7

(a) 3h*3/3C* Is akew-symmetric

(b) 3hf3/anb is skew-aymaetric

(c) ah^/si^ -Uh*>Ca)T

(a)^ 3h*4/3i» Is skew-symmetric

(b) 3b^4/35b is skaw-aymmetric

(c) 3h*4/3Cb -[3hJ4/3na]T

r»*if 3tS
U'-bJ »«b
r^if 3ti fatif ate

f=t[ i i.
Kj 3?a

Kl an* *kl a< U

(8)

(b)

is akev-syometric

la skew-synmetric

akew-sytswtric

la skcw-ayBoctric
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