
 

 

 

 

 

 

 

 

 

Copyright © 1972, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



SHORT-TERM GENERAL EQUILIBRIUM IN SPACE

by

Mario Ripper and Pravin Varaiya

Memorandum No. ERL-M349

21 August 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Abstract

A general equilibrium model is presented where space is treated as

a continuum rather than a finite number of discrete points. "Short-

term" is intended to mean that some of the capital goods may be fixed

in location and supply, that there are a finite number of market-places

fixed in location, and that migration opportunities for households and

firms may be limited. Firms may have non-convex production sets

provided that the fixed factors show non-increasing marginal products.

Similarly, households may have non-concave utility functions so long

as the marginal utilities of the fixed factors are non-increasing. The

transportation technology is linear. Under these conditions a Pareto-

efficient competitive equilibrium exists. Furthermore, every Pareto-

efficient allocation is sustainable as a competitive equilibrium.

-3-



!• Introduction and Summary

The models of Muth [1], Alonso [2], and Mills [3] are theoretically

limited if we use them to analyze land-use and land-rents in an urban

area. In-the first place they are partial equilibrium models, and

important rent and investment flows are simply treated as leakages.

Also the models are highly stylized and it is not obvious how to

extend them if there are many market places or if the urban area is

interacting with other urban areas. Secondly, the stock and spatial

distribution of locationally fixed capital, such as buildings, derived

using these models, is required to be in equilibrium; and locational

rents are derived simultaneously with this equilibrium stock. This

equilibrium solution depends upon the state of the technology, and the

size of the population as well as its income, taste etc. Now building

structures deteriorate very slowly and permit very little ex post substi

tution, so that the annual change in this capital stock is quite small.

Therefore, if we suppose that the technology or the population composi

tion is constantly changing, it is unlikely that the current distri

bution of this capital stock is in "equilibrium" in the sense of these

models.

This paper is an attempt to overcome the two limitations mentioned

above. It is a short-term general equilibrium model of a system of

cities. "Short-term" means that some of the capital stock may be fixed

in quantity and location and no changes in this stock is permitted.

(However, one may consider long-term equilibrium, in the sense of the

models discussed above, simply by taking land as the only fixed factor.)
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Migration of households and firms is permitted but in a very rudimentary

manner: any household or firm is allowed to choose, without cost, any

location within a pre-specified area. Commodities which are not loca-

tionally fixed can be transported anywhere. The transport technology

is linear.

The production sets of firms are required to show non-increasing

marginal products in the fixed factors only. Similarly households must

have non-increasing marginal utilities in these factors. (No distinction

is made between a capital good and the services delivered by this good

and used either for consumption or as a factor of production.) The

precise statements of these conditions is given in the next Section.

Section 3 consists of the main welfare theorem. It roughly states

that every Pareto-efficient allocation can be sustained as a competitive

equilibrium, that is, there is a redistribution of endowments among

households and a system of prices at market-places and locational rents

for the fixed factors under which the allocation is sustained assuming

profit-maximizing firms and utility-maximizing households. The proof of

this theorem is straightforward and standard in the literature.

In Section 4 we show that there exists a competitive equilibrium

which is compatible with the prespecified distribution of endowments.

The proof of this result is somewhat complicated. The reason is that

the capital good at different locations must be treated differently so

that in effect we have an infinite-dimensional commodity space. Never

theless the outline of proof is standard. We follow the version

presented in [4]. The technical difficulties are overcome by using
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some of the results presented in [5], [6], [7],

An interesting by-product of these results is the existence of

locational rents for the fixed factors, whether or not the disbribution

of these factors is in equilibrium. It also turns out that the rents

can be interpreted as the value of the marginal product of these factors

Presumably in a dynamic model, which permits changes in building stock,

these rents can serve as signals which guide building investment. How

ever, this possibility is not explored in the paper.

The model permits zoning regulations of a simple kind whereby firms

and households may be restricted as to where they may locate. But since

we do not allow household utilities or production possibilities of firms

to be affected directly by the location of other economic activities,

therefore the use of zoning as a tool for internalizing locational

externalities is not explored.

2. The Model

Notation. E is the n-dimensional real vector space. If x = (x , ...,

x ) £ E , x £ 0 means x. > 0 for all i, x ^ 0 means x > 0 and x / 0,

x > 0 means x. > 0 for all i. En = {x £ En|x > 0}. Ixl = Z Ix.l.+ - ± i<
ln = (1, ...., 1).

2.1. The commodity space

a) Fixed commodities. Economic activity is distributed over a

2
compact subset S C E . Points s £ S are called locations. There are M

market places in S, fixed in location. The distance from location s to

the mth market place is given by a non-negative bounded measurable
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function 6 (s). Land at different locations is developed differently.

Thus there may be residential homes of different kinds, different kinds

of office buildings etc., or the land may be undeveloped (which is

considered as one type of developed land). In all there are L (> 0)

different types of developed land each of which yields a different type

of service which may be used for consumption or production. The services

given by a piece of developed land can be used only at the location of

this piece. Hence these services are called fixed commodities. The

amounts and spatial distribution of these fixed commodities is given

exogenously, and the function x : S -»• E, gives the amount of these

commodities per unit area, i.e., in any region R C s the total supply of

the fixed commodities is I x (s)ds.
JR

Assumption L. x : S -»• E is a bounded measurable function. Further,

there exists 6 > 0 such that xL(s) > 61 for all sG S.

The positive lower bound is imposed to guarantee that the equili

brium rents for fixed commodities are finite.

h) Non-fixed commodities. Besides the L fixed commodities noted

above, the economy deals in N other goods or services, and these can

be transported from one location to another. They are called mobile or

non-fixed commodities. Transportation of these mobile commodities

consumes some of these mobile commodities. (The transportation tech

nology is described later.) Whereas the fixed commodities are traded at

every location, the mobile commodities can be traded only at the market

places.
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2.2. Firms and households

The assumptions below are somewhat restrictive but permit great

simplification in the analysis.

a) Firms. There are F firms. The production possibilities open

to firm fare given by its input-output technology set QJ. CE2N+L. An

element of Qjf is denoted by yf =(y^Y^y^) with the interpretation
that yfi e E »yf G E are the inputs of the mobile and fixed commodities

respectively, and yfQ € E is the output of mobile commodities. Thus

firms can produce mobile commodities only.

Assumption Fl. QJf is acompact subset of E^N+L and 0G^Uf.

Each firm can operate simultaneously at different locations, and

it can employ different input-output techniques at different locations.1

Thus the decisions to be made by each firm include making a choice of

locations, of an input-output technique at each location, and of the

amount of trading to be conducted between each location and each market

place. As mentioned in the previous section, each firm has limited

opportunities of migration. This is formalized as follows.

Assumption F2. f can locate only in a prespecified measurable subset

S C s.

N N LNow suppose that f adopts technique (y >yfi>Yf) at s^ Sf, and

M

suppose that f divides the mobile outputs and inputs as y^ = X y,. ,
-fo _ yfo

M

yfi = £ yfi, such that yf is bought at and yf. is sold at the mth

If we require that each firm must adopt the same input-output technique
at every location where the firm operates, then there may be no equilibrium
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marketplace. Thus (y.. + yr.) must be transported over a distance 6 (s) .
tori m

This transportation itself consumes some mobile commodities, the amounts

of which are given by 6 (s)T(y^m + y^m).
. mv VJto 7fi

Assumption T. The transportation technology is described by a fixed

non-negative N x N matrix T.

The production plans of f can now be formally defined.

Definition 1. The set of production plans of f is the set of all non-

Nl NM Nl NM Tnegative, measurable functions (yfQ, ..., yfQ, yf£, ..., y yp defined

on Sf and such that for all s £ Sf

' (ly*(»). !,*(.), Vf(s))e% (1)
m m

Corresponding to each such production plan is the supply vector at

N Nl Wthe market-places Y® = (Y1?1, ..., Y*?1) e %m given by

vNm I rNm,N Nm, . „ . . . Nm, s Nra, %,,
Yf =J [yf0(s) - yfi(s) - Vs)T(yfo(s) +yfi(s))ids

f
sf

r m, . Nm, v _m/ N Nm, N, ,
r -(s)yfo(s) " T+(s>yfi(s^ds»

where T™(s) = [I + 6 (s)T], Tm(s) = [I - 5 (s)T], I= identity
~ i" — m

matrix.

b) Households. There are H types of household with II, > 0
y h
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households of the hth type, each of which has the same initial endowment

x^ = 0 of non-fixed commodities, and the same consumption set C, and
h

utility function Uh- The utility function may depend upon location.

Assumption HI. Ch is aclosed subset of E^+L. (i) There is 6>0such
N L Lthat if ch = (ch,ch) € Ch then |cj >6. (ii) Uh is acontinuous func

tion defined on S x C . (iii) For all s e s, cu € Cu, the set {c,' € C I
11 n h h h'

V*3'0^ = Uh(s'ch)} is comPact. (iv) For all s€ S, c. = (c?,ch e n ,
n n n n

6>0, there exist c^ =(c^.c^) ec^ 0<e<1, such that |c^N -c*|
<6, chL <ec£ and Uh(s,c^) >̂ (s.c^).

(i) is used to guarantee that the density of households is bounded,

(iii) and (iv) together imply that an excess supply of all the non-fixed

commodities can be distributed so as to guarantee a minimum increase in

every household's utility.

Corresponding to Assumption F2 we have H2.

Assumption H2. A household of type h can locate only in a prespecified

measurable subset S, Cs,
h

Now suppose that a household of type h locates at s £ S , and

suppose it consumes amount ch(s) =x£(s) of the fixed commodities.
Let its consumption of non-fixed commodities be Ci (s) = x, + x +

h ho hi

NM NO -N
xhi* where \Q(= xn^ is the Portion of tne initial endowment retained

for consumption and x, £ 0 is purchased at the mth market-place. The

-N NOremainder (x^ - xhQ) of the initial endowment is delievered for sale to

. . . +

Nmthe various market-places, with x, going to the mth market place. The

household also uses the transport technology T. If we let ir, (s) be the
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number of households of type h per unit area located at s, then we can

define consumption plans as follows.

Definition 2. The set of consumption plans of households of type h is

NO Nl NM
the set of all non-negative, measurable functions (x, , x, , ..., x, ,

x,,, ..., x, ., x. )'• defined on S, and such that for all s *= S,
hi hi h h h

and

ch(s) -<x™(.) +£ x£"(s), x£(s)) ech. (2)
m

.. M Nm, x

? > E "ho00, (3)
h ~ a

m^O

K - 'I Ms)ds, (4)

;h'h'lv
and such that the integral in (5) below exists.

Corresponding to each consumption plan is the demand vector at the

market-places X, = (X, , .,,,X. )cE given by

ft rmm/ \ Nm,Xhm= f<(s)x^(s) -^(s)^(s)]1rh(s)ds, (5)
Sh

and the utility distribution

Uh(s) = Uh(s,ch(s)).
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c) Diminishing marginal products and utilities. The two assump

tions below imply respectively that production sets have non-increasing

marginal products in the fixed factors and households have non-increasing

marginal utilities in the fixed commodities.

Notation. Let Q C E and let its elements be denoted q = (qK,qL)
,L _ rz , ,_K L,), K L,

i

A > 0, all i, with £ A. = 1}. For any set A, cl A denotes the closure
i

of A.

Assumption F3. (Recall that QJf CE2N+L). [Qjf]L =c£lQjf].

Assumption H3. For all seS, uh GE1, [Ch(s,yh)JL =c£[Ch(s,uh)] where

ch(s>V ={ch e chiuh(s'ch> - V-

The model is completed by describing the ownership of firms and

the fixed commodities.

Assumption 01. The share of ownership in firm f of a household of type

H

h is c*hf. The ah are non-negative, and I a.f II, = 1, f = 1, ..., F.
h=l

The fixed factors are owned by K real-estate firms. The kth such

firm owns all the fixed commodities located in area S, . In turn these
k

firms are owned by the households.

Assumption 02. S is partitioned into K measurable subsets S , ..., S^,
1 K

with the kth real-estate firm owning all fixed commodities located in

S, . The share of ownership in firm k of a household of type h is B. .

H

The $hk are non-negative, and £ $,, n, = 1, k = 1, ..., K.
h=l

Then [Q] denotes the convex hull of Q and [Q]L = {Z A.(q*,qL)|(q^,qL) € Q,
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3. The Welfare Theorem

The main definitions and ideas of proof are borrowed from Reference

[4, Chapter 4].

3.1. Preliminary results

Definition 3. For s€ S, y = (y , ..., y )£ E ,let W(s,y) C e+ be
N N N Nl

the set of all vectors w = w(s) = (y (s) , x (s), ir(s)) where y (s) = (y ,

NM. N, N , Nl NMN , N , N , . _ .
..., y ), x (s) = (x , .., x ), ir(s) = (it , ..., it ), such that there exist

/4N . , c ,r L. , Nl NM Nl NM L.
(i) for each f, a vector Uf»yf) = (yfo» ••» vfo> yfi» ••» yfi» yf)

which satisfies (1) if sG S ,and (Sf,yf) = 0 if s? S ,

t--\ c u ^ /a L. , NO NM Nl NM L.(n) for each h, a vector (eh»xh) = (xnQ, .., x^q, xhi> .., xhl, x^

which satisfies (2), (3) and c, £ Ch^s»yh^ if s G Sh' and ^9h,xh^ = ° if

(iii) for each h, a number \ ^ 0 if s ^ S^, and tt^ = 0 if s £ SK,

and such that

(iv) xL(s) > D y^ + Z xj; tt, , (6)
" f f h h h

/ \ Nm, N v» ,mm, s Nm _i, , NmN ,-j^(v) y (s) = L (T_(s)yfQ - T+(s)yfi), (7)

f .* Nm, . v* /mm/ \ Nm mm/ * Nm* , * /Q\
(vi) x (s) = 2-. (T+(s)xhi "^^^ho^h^^*

h

Let ^ f(s) and ®h(s,y.) respectively denote the set of all vectors
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L L(Cf,yf) and Oh,xh) which satisfy conditions (i) and (ii) of Definition

3 above. Proposition 1 follows readily from Assumptions F3, H3.

Proposition 1. For s6 Sf, cZ[ ?f(s)] =[Tf(S)]L

mm

For sGSh, cJl[(H)h(s,yh)] =[®h(s,yh)]L

= {(xN0 v^ XN1 v1 vL^ > nlr ^Nm < ~N /> N0 j. r Nm L,UXho' •- xho> xhi' •- ^i' xh> = °IZ \Q = V (*ho + Sx xh)

[Ch(s,yh)]L>.

For s G S, y G EH,

e
"hi ' "h'

m m

[W(s,y)] ={(yN,xN,ir)|af,y^) G[jrf(8)]Lf (6^) G[®h(s,yh) ]L,

TTh t 0 if s Gsh, irh =0 if SGSh, and (6)-(8) hold}.

The next two lemmas are crucial in establishing rents for the

fixed commodities.

u

Lemma 1. Let y G E be fixed, and for each s G s let A, = <J>, (s) , n =
h rh f

Hf(s), A = A(s) be vectors of appropriate dimension. Suppose that an

optimal solution of the programming problem (9)-(ll) exists.

Max E <ve£> - £ «*h,eh> -xh)v (9)
t h

subject to

(Sf,yf) eSf(s), (Qh»x^) G ®h(s,yh), Trh i0if sGs

it. = 0 if s G S,, (10)
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and

E yf +£ 3c tt <xL(s). (11)f r h n n -

,L „L, . , v r- „LThen there exists a closed convex set R = R (s,$,n,X) c E+ such that

for every r G r each optimal solution of (9)-(11) is also an optimal

solution for the following problem:

max £ «nf,£f )-<rL,y^ >)-£ «̂ >+<r\x£ >-X)ir
f h

+ <rL,xL(s) >

subject to (10);

and furthermore the two optimal values are the same.

Proof. See Appendix.

Lemma 2. If in Lemma 1 the functions <j>(s), n(s), A(s) are measurable

in s, then r (s) G R (s,<J>(s) >n(s), A(s)) can be chosen to be measurable.

Proof. See Appendix.

Notation: Let T be a (point-to-set) correspondence from S into subsets

of E . Then we denote by ^T the set of all integrable functions

Y : S- -• En such that y(s) G r(s) for almost all s; also denote fr =

f f y(s)ds|Y ev3Tr |.
Definition 4. LBt<\\) =Y3fw(-,y), W = \C[\) . The elements of W are

y y J vvy y

denoted (Y ,X ,11). An element w(«) of£|^/ is called a y-possible

allocation.

Proposition 2 is elementary, whereas Proposition 3 is immediate
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from the "measurable choice theorem" oF \7].

Proposition 2. W(*,y) is a measurable correspondence.

Proposition 3. If w(-) GQA| then the functions £f(«), Yf('), MO,

x^(0> ^(O corresponding to w'(0 in Definition 3 can be chosen to be

measurable.

is convex.

Nm

Proposition 4. W = IC[^J ±,

Proof. Since Qi, 6 , and x, are bounded, and since ir, is bounded by

Assumptions HI (i), L and (6), it follows from Definition 3 that the

correspondence W(«,y) is bounded from below. The result now follows

from [5, Theorem 3].

N N
Lemma 3. Suppose W = (Y ,X ,H) G W with II > 0. Then there exists

W' = (Y,N,x'N,n') Gw with y'N =YN, and IT -n>0.

Proof. Let w(.) =(yN(0 ,xN(.) ,tt(.))gQAI be such that W=fw. Let (€f(«),
Vf^^,eh^^' ^^'^ \^'^ correspond tow(-). By hypothesis, Uh(s,c,(s))

> y. , s G s, . By Assumption HI (iv), there exist (8'(-),x' (.)) and

0 < en(-) < 1 such that Uh(s,c^(s)) > U (s,c,(s)), s G S , and such that

x^ (s) <eh(s) x^(s). Let w'(.) correspond to (£f(•),y^(•),6^(0,x^L(.),
tt^.)) where tt^(s) =^-^y ir^s). Then Zy£(s) +Zx^L(s) ir^s) t

li f h

Zy^(s) +Zx£(s) 7ih(s) <xL(s) so that w'(.) eQAl • Also nn - nh =
f h

I ( —7—v- - 1) tt, > 0 since [ir, = IL > 0.J eh(s) h J h h

Definition 6. Let w(0 ^C[\) ,and let (Y ,X ,11) = |w. w(*) is said to

be a y-feasible allocation if Y - X J 0 and II = fi. LetC[\] be the set
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of y-feasible allocations and let W ={|w|w eQjt( }.

Definition 7. Let Qi= {y G ERf\M $ <}>}. Q| is the set of feasible

utility allocations, y £ Qj is said to be dominated if there exists

V* GQi such that yf > y. y G QJ is said to be Pareto-efficient if it

is not dominated.

Lemma_4. Let w(-) GC^ and let (AAn) =fw. Suppose that YN -XN >0,
Then y is dominated.

Proof. Let (£f,yf»8i,'xh,irh^ corresPond to tne y-feasible allocation w.

Let 6 > 0. Then using Assumption HI it is easy to see that there exist

e>0 and ameasurable 6^ with |e'(s) - e,(s)| <_ 6 for all s such that the

allocation wf(.) corresponding to (£f,y£^.xj^) is inQALel • Then
H

IW = tf.x'",ii)

*N Nand X ^ x + ^IflM where D >0 in a constant independent of 6. Since

* - X > 0 it follows that if we choose 6 > 0 sufficiently small then

w1 €<^A/+ -, so that y is dominated.
H

Lemma 5. Let y be a Pareto-efficient utility allocation. Then

{(YN-xN,n)|(YN,xN,n) gWy}n{(z,ii)|z >0} =*, (12)

and there exist pGe ,AG eH, with (p,A) _> 0, such that

<p,YN - XN > - <A,fi - n> f 0 for (YN,XN,II) GW, (13)

<P,YN -XN> =0 for (YN,XN,il) GWy. (14)
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Furthermore if (p,A) >_ 0 satisfies (13), (14) then p _> 0, A 1 0.

Proof. (12) is an immediate consequence of Lemma 4. Since W is
y

convex by Proposition 4, it follows that the first set in (12) is

convex and so by the Separation Theorem for convex sets there exists a

NM+H
non-zero vector (p,A) G E such that

<p,yn - xN> +<A,n > <<P,z> +<A,n> for (YN,xN,n) e w, z >o.

(15)

Since Z > 0 can be chosen arbitrarily (15) implies that p = 0 and then

of course (14) follows from (13).

Now it is clear that if (YN,XN,n) G w then certainly (YN,XN,II) G w
y J * ' y

for 0 < n < n, so that (15) can hold only if A t 0.

Finally, suppose p = 0 in contradiction of the assertion. Then

A ^ 0 and (13) simplifies to

<x,n -n> >o for (YN,xN,n) gw . (16)

By Lemma 3 there exists (Y N,X N,n') G w such that IT1 > n, so that

since A _> 0 we get

<A,n - IT > < o

which contradicts (16). Hence p ^ 0 and the lemma is proved.

Theorem 1. Suppose y = (y , .., v ) is a Pareto-efficient allocation.

Then there exist (i) (market prices) p= (p1, .., pM) G e*™, p >_ 0,

(ii) (money incomes) A=(A]_, .., AR) GEH, \ >0, and (iii) (rents)
measurable function r : S •+ E , r (s) t 0, with the following property:
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for every measurable to = (£f,yf•̂ •Xj^u) such that the corresponding
A ~N ~N A
w = (y ,x ,tt) is a y-feasible allocation we must have

(I) (firms maximize profits) for each f, (£f,yf) maximizes profit

Pfaf,y^> =[ fll <pm, T>)y*(s)-T™(s)y^<s)> -<rL(s) ,yL(s) >
•^o L m
sf

over the set of all possible production plans,

(II) (households minimize expenditures) for each h,

\ = 2-» <P ^(sjxj^s) -T_(s)xhQ(s) > +<r (s^x^s) > for

almost all s £ S, for which Ms) > 0,

m j, , Nm, . j. . Nmxh 1 E <P ^(s):^..^) -T_(s)xhQ(s) > +<r (s),x£(s) > for
m

Nm < -Nalmost all sG Sh and for all (9h>x£) for which Z x! ^ xT(s) and
m

, NO , „ Nm LN <- „ ,
Ch= (xho + Z"hi'V GCh(s»V'

m

and finally

(III) (social budget is balanced)

£*tA =E
h h

E°hf P^f^f) +E 3hk \ <rL(s),xL(s) > d<
f k -l

-19-
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Proof. By Lemma 5 there exist p = (p1, .., pM) >0 and A= (X. , .., A)
J. H

= 0 such that

<A,n> = | [<P>ywa> - x1N(s) ) +<A,^(s) >]ds,
'S

>K >= j [<P, ~N/V^ -N
(17)

<A,n >=Max/ f[<p,yN(s) - xN(s) >+U,-,r(s) >]ds (yN,xN,7r) eC[\A

(18)

By [6, Appendix: Theorem C], the right-hand side of (18) is equal to

I [sup«p,yN - xN > + <A,7T >|(yN,xN,7r) GW(s,y)}]ds,

so that for almost all s £ S

-N, N -N<P,y (s) - x1N(s) > +<A,;(s)> = Sup{<p,yN -xN>

+ <A,tt >|(yN,xN,rr) GW(s,y)}. (19)

Therefore, for almost all s G s to(s) is an optimum solution of the

programming problem (20)-(24).

Maxf £ Z <pm,T!(s)y^ -T™(s)y^ >-£ fe <".^W-
^ f m h \m

subject to

—in, x Nm \ , \

T-(s)xho> -Ah\

-20-
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, Nl NM Nl NM Lx c r-i , x , x
(yfo' •••» yfo» yfi> •••» yfi' yf} GCf(s)» (2D

, NO NM Nl NM Lx c /~v , , v
(xho» ••» *w ^> ••» x.,, x.) G (|Y (S,yj, (22)'ho' ••» "ho' ~hi' "' "hi' "V ^V°,Mh

iTh(s) >0 if sG sh, TTh =0 if sG Sh, (23)

Eyf+ E *h%^*L(s).rf + L. xh ^h = X (S)* (24)
f h

By Lemmas 1 and 2, there exists a measurable (rent) function r : S •> E

such that for almost all s G s u>(s) is an optimum solution for the

following equivalent problem.

m-(e (E'p'.As),*-^ >-<rL(s),y^>

E/ V / m m*11/ \ Nm mtn/NNmv,/L,N Lv ,\ "^

hVm + hl -(S)Xho> +<r (8),Xh> " Xh Ĵ h }

+ <r (s),x (s)> (25)

subject to (21)-(23).

Hence for almost all s G S

<P,yN(s) - xN(s) > + <x,-;<s) >

- E Sup[E<pm,T!(s)y^-T>)y^> -(^(3)^)1(^)6^(3)]
f ^ m J

(26)
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-EMin^( E<p^<.>£ -T>)xhN: >+(rL(s),x^ >-A^

(eh^} G®h(s'V» \ =° if sGsh> *h-o if S^ShJ
+ <rL(s),xL(s) > .

(27)

The conclusions (I) and (II) follow from (27) and (26) respectively,

whereas integrating both sides with respect to s and using (14) gives

<A,n >=£ P(|f ,y^) +o+J<rL(s),xL(s) >ds
f Js

which is the same as (III). The theorem is proved.

Note that if A ^ 0, and the ownership shares are chosen such that

Ah
ahf = ^hk = ~ for a11 f» k» tnen in fact a11 the individual

E A, n,
. h h
h

household budgets would be balanced.

4. Existence of Equilibrium

4.1. Preliminary results

[W(s,y)] need not be closed. However the following result still

holds.

N N N fN
Proposition 5. If (y ,x ,tt) G c£[W(s,y)] then there exists (y ,x ,ir) G

[W(s,y)] with x'N 5 xN. Also (yN,xN,7r) G [W(s,y)] if tt > 0.

Proof. Let (yN,xN,Tr) -lin^ (yN(k) ,xN(k) ,ir(k)) where w(k) =(yN(k) ,xN(k),
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ir(k)) G [W(s,y)] for every k. By Proposition 1 there exist (£f(k),y (k))

e [Sf(s)]L, (6h(k),xJ;(k)) G[(g)h(s,yh)]L such that

and

yNm(k) =£ (Tm(s)y^(k) -T^(s)y^(k)), (28)

xNm(k) = £ (T™(s)x™(k) -As)x£(k))ir (k), (29)
h

xL(s) > £ yf<k> + E x^(k)ir(k). (30)

Since [^ f(s)] is compact we can assume, taking subsequences if neces

sary, that (Sf(k),yf(k)) converges to (£f,y£) €[£f(s)]L. Therefore

Nm x-"* /J®, s Nm m, v Nm*
y = E (T-(s>yfo -Vs)yfi)-

f

»T

Next let h be fixed. If tt. = 0, we set (e'.x^ ) =0. On the other
n n r

hand if Trh >0, then Trh(k) >efor some e>0, and large k. Since 0=x?Jm(k)
~*N Nm

t. x for all k, it follows from (29) that the set of vectors xf?(k),
n hi

x^Q(k) is bounded. Similarly from (30) we conclude that the vectors

xh(k) lie in abounded set. Hence the collection (6 (k),x^(k)) is

bounded. But by Proposition 1[(3)h(s,y )] is closed so that, taking

subsequences if needed, we can assume that (9,(k),x, (k)) converges to

(eh'xhL)G t®h(s>V]L-
Evidently
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and

*Nm 2 e «>KT - ^*K>>

xL<s> =E yf +E xnL *.
f h

The assertion is proved.

Notation. We will be dealing with subsets of the space L of all

integrable functions Y:S+E°. By the strong topology on L± we mean
the usual Banach space topology on L±. By the weak topology on L we

mean the topology on L± induced by the continuous linear functionals

Loo* The notions of strong and weak convergence and closure are derived

from these two topologies.

Definition 8. Let^ =Y#cA[W(. ,y)]).Let^ be the set of all
wG<q^ such that if fw =(YN,XN,n) then YN -XN >0and n=S.

Proposition 6. C[\) is a convex weakly compact subset of L .

Proof. It is clear thatQ^ is convex. It is also strongly closed

because if wfc is asequence ±nC\\j^ converging strongly to w in L then

there is a subsequence (taken to be wR itself) such that almost surely

for s G s

limk Wk^ = w(s)»

and so w(s) G c£[W(s,y)]. Hence w G^U/. Also

limk jwk "lirak(Yk><»nk> =j» =(AxN,n)
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and since Yfc -Xk >0, n =nfor all k, therefore YN -XN 10and n=if,
Thus weQ^J .

Therefore to prove weak compactness it is enough to show thatCUi

is bounded in L^ First of all from Assumptions L and HI (i), and from

(6) we see that there exists ir, such that
h

0 = \(s) = irh (31)

for all (y ,x ,tt) e^U/. From the boundedness of Qj and (7) we can
N -Nconclude that there exists y_ , y such that

-N > N, . > N , v
y i y (s) I v_ (32)

N Nfor all (y ,x ,tt) GC\^I Finally from (31), (8) and the restrict
n < Nm < -N , , , N0 = xho < xh we conclude that there exists x such that

x = x (s) (33)

for all (yN,xN,Tr) SC\^.
Now let w = (y ,x ,ir) G^U/» so that

fN > f N
r -r

From (32) we get

ion

(34)

f\y*\i J|yN| +J|yN|. (35)
From (33) we get
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<J|xN| +IfyN "xN| from (34)

i2JVl +JVl +|lzN| from (35).
Hence

|(|yN| +|xN| +Ul)<2J(|xN| +|yN| +|/|) +|B|

so thatQ^i is indeed a bounded subset of L and the assertion is

proved.

Proposition 7. Let y be a sequence of feasible utility allocations

converging to y. Then

lim sup

x-l + llxN-xNl

Proof. Let wfc G(_[y(jk be such that W, - jw, converges to some vector W.

Let £ G E be such that \± = \i for all k. Then certainly w, ^^\\J for

all k and so by Proposition 6 we can assume, taking a subsequence if

needed, that w, converges weakly to some w ^^\\] . It remains to show

that w GC^J. By [9, V.3.14] there is a sequence of convex combinations,

call it {y }, of the elements w, which converges strongly to w. Hence

there is a subsequence of {y }, denoted again {y }, such that for

almost all s
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lim Y„(s) = w(s).
n n

Since y is a convex combination of the elements w, it follows that for
n k

almost all s

w(s) = lim y (s) e T(s)
n n

where F(s) is the closure of the limit points of convex combinations of the

sequence {w, (s)}. Since w, (s) G c£[W(s,y )] we conclude that for almost

all s

w(s) G lim sup, c£[W(s,y )].

But from Definition 3 it follows that

klin^ W(s,y ) = W(s,y),

and therefore, for almost all s

w(s) G c£[W(s,y)].

Since w, converges weakly to w, W = Iw. The proof is completed.

Lemma 6. The set Q{ C E of feasible utility allocations is closed.

Proof. Let y be a sequence in Q\ converging to yG E . By Proposition
N N r\ 11

7 there exists w = (y ,x ,/t) &-\}J • Hence

JyN-JxN>o, r,-5.
N fN ^- '—rBy Proposition 5, there exists a function wf = (y ,x ,tt) G r^-([W(«,y)])

r 'n <. c n
such that Ix = Ix . But then by [5, Theorem 3] there exists
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w= (y ,x ,tt) ^Qyljj such that Jw = |w\ It follows that

J> -Ji» -J> - jV» >J> -J> >0>

J; -J* -n.

Hence wGQAj, i.e., yis afeasible utility allocation.

Corollary 1. For every yG EH the set {y' Gqj|y' >y} is compact.

Pro£i- It: is trivial that there exists yG eH such that y' < y" for all

y' S U. Hence {y1 GQ||y» >y} is bounded, and this set is closed by

and

Lemma 6.

4*2. Existence of equilibrium.

LetQI be the set of all Pareto-efficient utility allocations.
NM+HLet ]P= {(p,A) GE™ P + U = 1}.

Definition 9. For yGQJ' let ^(y) be the set of all (p,A,r ) such

that (p,A) ^.^j, r :S-> E+ is ameasurable function and such that

(p,A,r ) has the property described in Theorem 1.

Proposition 8. There exists a number R < «> such that if (p,A,rL) G

<?>(y) then j"|rL| <R.
Proo£. Since |x| < 1, from condition (III) of Theorem 1 we can deduce

that

|ff| I <A,n >>J<rL(s),xL(s) )ds.
S
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Using Assumption L we get <r (s),x (s) > = 6|r (s) |. Hence |ji| = 61 |r |

and the result follows. Thus

^(y) Ĉ x<Q =̂ x {rL :S-E^| f|rL| <R}

Proposition 9. £p(y) is a convex, weakly compact subset of / x L-.

Proof. We first prove convexity. Let w = (£_,yf, 9, ,x, ,7r, ) be such that

the corresponding w = (y ,x ,ir) G^U/- Let (p.»AX,r.) G ^p(y), i = 1, 2

Define vectors n-(s), <k(s) so that

E<n*(s),ef> - E«^(s),eh> "Xh)lTh =
f h

Eo / m _m, N Nm _m/NNmv v-» / v~» / m mm, N NmE<Pi»T_(s)yfQ - T+(s)yfl >- ^ E <P±»Vs)xhi
f m . h \m

Then we know that for almost all s G S, and for each i = 1, 2, to(s) is

an optimal solution for the programming problem (37)-(39).

Max £ «n*(s),5f >-(r^s)^)) -£ «^(s),8h>
f h

+<rj(s),x^> -A>h (37)

subject to

<€f.yb eOf(s), (e,,xh G ®,(s,y,), (38)•f»Jf ,_.f^" ^h* hy ^hv°'Mh
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\ =° if sG V \ =° if se Sh (39)

Let 0 <y < 1. Since the maximand in (37) is a linear function of n*,
L i i

r±» 4>h» A , and since the constraints (38), (39) do not depend on i,

it follows that o)(s) is also an optimal solution for the programming

problem (37)-(39) when n*, r£, <j>*, A1 are replaced respectively by ynj +
(1-Y)nf, yr1 +(I-y)^, Y^ +(1-y)^, yA1 +(1-Y)A2. The convexity of
LP(v) now follows immediately.

By Proposition 8^(y) is a bounded subset of E x L , Hence to

prove weak compactness it is enough to show that ^P(y) is strongly

closed in^x Lr To this end let (p1,Xi,rJ) i=1, 2, .... be a
sequence in Cp(u), and let (p,A,rL) be such that |p -p| + 0, |A1 -A|+

0, and J|ri -r|+0 as i-> «. Taking subsequences if necessary we

can suppose that Ir^s) -rL(s)|•+ 0for almost all s. Now for almost
all s w(s) is an optimal solution of (37)-(39) for each i = 1, 2,

It is then trivial that ai(s) is an optimal solution when in the maximand

in (37) we have nf = lim n*, etc. It then follows that (p,A,rL) GCp(y) .

The assertion is proved.

Proposition 10. The point-to-set mapping y -* <p(y) defined onqj6 is

upper semi-continuous i.e., if the sequence y1 in q(e converges to y in

C\[ and if the sequence (p^A1,^) GCp(pi) converges weakly to (p,A,rL),
then (p,A,rL) G q)(y).

Proof. By Lemma 5, for every i

<p.,YN -XN > -<A\n -n> <0 for (YN,XN,n) GW . (40)
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N N
Now let (Y ,X ,n) G w . From Assumption HI it follows readily that

for every 6 > 0 there exists e > 0 such that (Y ,X N,n) G w for
y+elH

'N i 'N Ni i
some X with |X - X | <_ 6. Since y converges to y it follows that

y _ y + elH, and hence W Cwit for all i sufficiently large, say
H

i > 1(e). Therefore from Lemma 5 we conclude that

<Pi,YN -XN>-(A1,!! -II ><0 for all i>1(e).

Tacing limits as i -»• » in the above yields

<p,YN -X?N > -<A,JI - n> <0.

I 'N Ni
Since |X - X | can be taken arbitrarily small, we have proved that

<p,YN -XN > -<A,H -n> <0 for all (YN,XN,II) G W . (41)

Next, by Lemma 1, for almost all s

rj(s) GRL(s,4>i,n1,Ai), i=1, 2, ... (42)

where the vectors (J)1, n are such that (36) holds. By hypothesis r
i

converges weakly to r , so that if we follow the same argument as in

the proof of Proposition 7 we will conclude that for almost all s

rL(s) Glim supi RL(s,<J)1,ni, A1). (43)

By Lemma A-l of the Appendix, (43) implies that

r (s) G R (s,<fr,n,A), (4A)

where <j>, r\ correspond to p. But now it is easy to see, using (41) and

-31-



(44), that (p,A,r )G ^p(y) and the assertion is proved.

Definition 9. For (p,A,r )G / j x^Q define the profit function Pf and

money-savings function M by

Pf(p>A,r ) = Max*(f f V / m mm/ \ Nm, N mm Nm, x v
L(p >T_>)yfo<s> - T+ yfi(s) >

>]
, L. . L. . > , . Nl NM Nl NM L,<r (s),yf(s) > ds|(yfo> ... yfo> yfi, ... yfl> yf)

is a production plan for f), (45)

and

Mh(p,A,rL) =£ «hf Pf(p,A,rL) + E ^hk j <rL(s),xL(s) >-Ah-
sk

i i T % ^
Proposition 11. Let (p ,A ,r.), i=l, 2, ... be a sequence in/ x^Q

converging weakly to (p,A,r ). Then

lim P£(pi,Xi,rJ) =Pf(p,A,rL), (46)
i

lim M^p1^1,^) =Mh(p,A,rL). (47)
i

Proof. Since (47) follows immediately from (46) it is necessary only

to prove (46). But (46) follows from the fact that the set of all pro

duction plans is a bounded subset of L since C[l *s bounded and the

fact that the maximand in (45) is linear in (p,A,r ).

The next definition is borrowed from [4, p. 108].

Definition 10. A set of prices (p,A,r ) G / ^ x ^jj, together with a set
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of production plans (Cf,yp, f = 1, .., F, and a set of consumption

plans (0, ,x,,tt. ), h = .1, ..., H, constitute a compensated equilibrium

if

a) p >_ 0,

and there exists a utility allocation y = (y. , .., y ) such that
J. H

b) w(0 ^qU where w is the allocation corresponding to (£f>yf)>

(9, ,x, ,ttu),
h n h

c) (KciYf) maximizes f's profit, i.e., satisfies condition (I) of

Theorem 1,

d) (8 ,x ) minimizes expenditures of households of type h, i.e.,

satisfies condition (II) of Theorem 1,

e) the household budget is balanced i.e., M (p,A,rJ) ~ 0.

To prove the existence of a compensated equilibrium we need to

assume that there exists at least one utility allocation which can be

attained by households using only their own endowment. In our model the

situation is somewhat complicated because every household needs some

fixed commodities but they do not own these commodities directly. This

leads us to the following, somewhat awkward, assumption.

Assumption Ul. The utility allocation 0 is attainable i.e., for every

h and every r G ~Q there exist measurable functions tt. : S. -> E , c, =
n n a

/~N ~L. _ N+L
(c, ,c, ) : S, •* E, such that

n n n +

i) ITTh > 0J:
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ii) ch(s) G Ch(s,0) for almost all s€ s for which tt > 0,

iii) c, (s) <xf for all sG s^
n - n h

iv) f <rL(s))^(s)>^(s)ds_< (J" ;hV Z 6hk f<rl(8),

x (s) )ds

Assumption U2. The utility allocation 0 is dominated, i.e., 0 ^qt®.

Definition 11. Let^ ={(a^ .., aH)|a. 10, |a| =1}. Let q]Q =
(y|y is feasible, y > 0}. Letq(® =q( nqje.

For aG2-<» let Y(a) =max {ylY =°> ya G^V* since<:U0 is compact
by Corollary 1, y(a) is well-defined, and since 0 is dominated by assump

tion, y(o) > 0 for all a. Let \i(o) = y(o)o. It is easy to see that

\i(o) eq(0 because if it does not, there exists yeqjn» V> M(a). But

then there exists y' Gq{Q such that y'=Y'a and Yf > y(o) thereby

contradicting the definition of y(o).

The proof of the next proposition is identical to that of [4, Lemma

5.3], hence it is omitted.

Proposition 12. The function a -* \i(o) is a continuous mapping of /
. g H

ontoq(0, furthermore, Hh(cj) =0 if and only if o, = 0.

Theorem 2. There exists a compensated equilibrium.

Proof• Consider the convex set Q, =} ^ */, *<"Q endowed with the weak
H

topology so that it is (weakly) compact. Define the point-to-set mapping

x on C by
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x(o,p,A,r )= T;L(p,A,r )x^P(y(a))

where

T1(p,A,rL) =2J n{a|ah =0 if Mh(p,A,rL) <0}. (48)
H

Evidently x maps points of (, into convex, (weakly) compact subsets of

C. From Propositions 10, 11 it follows easily that x is upper semi-

continuous. By K. Fan's extension [10] of Kakutani's fixed point

theorem we can conclude that there exists (cr,p,A,r ) G such that

L -~\(p,A,r ) G C|)(y) where y = v(a)t (49)

Lo G Tl(p,A,r ). (50)

From (49) we know, using Theorem 1, that there exist production

plans (£f,yp and consumptions plans (9h»xh,^h) such that conditions

a) - d) of Definition 10 are satisfied, and further,

E K (p,A,rL) = 0
h n

Hence it is enough to show that M,(p,A,r ) * 0 for each h. Suppose in

contradiction that M^p.Ajr ) < 0 for some h. From (48) and (50) we

conclude that a, = 0 and so y, = 0 by Proposition 12. Now by Assumption

Ul,

\ <rL(s),c^(s)>Vs)ds</ j i\lZ 3hk f<
h

(51)
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And from condition d) of Definition 10 we know that

j <rL(s),c^(s) >uh(s)ds! xj( ;hj . (52)
h

From (51) and (52) we conclude that

Xh =E 3hk ) <rL(s),xL(s) >ds,

nvp,A,r x

assumption. The theorem is proved.

but then from Definition 9we get Mh(p,X,r) l 0which contradicts the

Various sets of additional assumptions can be made, each of which

guarantees that a compensated equilibrium is in fact a competitive

equilibrium. But since these schemes are well-known we refrain from

presenting them. For example see [4, p. 116-119].
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Appendix

1. Proof of Lemma 1. Suppose that u=&f,y\>V*h'V is an optimum
solution. First of all since the maximand in (9) is linear in all the

variables except it^ it follows from Proposition 1 that i is also an

optimum solution of the programming problem (9)-(ll) with T (s), (S) (s,

yh) replaced respectively by [̂ f(s)]L and [®h(s,yh)]L. In terms of
the variables 9h -*h 6h> x£ «7rh x£ the hypothesis now asserts that
fc A \ /S A \ * /Pi ALX "Uf,yf;, ieh,xh) = fh(9h,xh), Trh is an optimum solution for the following

problem.

Maximize £<nf,Cf > - £ «^,eh> - Ah ^ (A1)
f h

subject to

(?f,y£) e[2 f(*)]L, £- (eh,xj;) €t®h (s,y )]\ , >o (A2)
h n

E ?£ +E \ =xL(S). (A3)

Note that the objective function is linear in all the variables. It can

also be verified that the constraint set defined by (A2), (A3) is convex.

Let V(x) = V(x,<j>,n,A) be the maximum value of the problem above

when x (s) = x, and let ft(x) be the corresponding set of feasible solu

tions defined by (A2), (A3). It is clear that fl(x) t <J> for x > 0. It

can be checked that for (a.,x.) >0, i=1, 2, with c^ +a2 -1, 8(0^ x +

a2 X2^ Dal fi(xi) + a2 ^x2^' and then lt foll°ws that V is a concave
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function in x. Since x (s) > 0 by Assumption L, there exists a super-

gradient r of the function V(-,<j>,n,A) at xL(s) (see [8, Lemma 7, p. 99]),

that is,

V(x,c}>,n,A) = V(xL(s),<J>,n,A) -<r\x -xL(s) > for all x (A4)

and since V(x) > V(x (s)) for x > xL(s) it follows that rL > 0. Let

R = R (s,<J>,n,A) be the set of all r which satisfy (A4) . Since RL is

described by a collection of linear inequalities R is a closed convex

set.

Finally, it can be readily checked using (A4) that every optimum

solution of (A1)-(A3) is also optimum for the following problem, and

the optimum values are equal.

Maximize £ <nffCf >.£ «*h,6h>- Ah) 7rh -<r\ £ y\

+E xh \ " xL(s) }
h

subject to (A2).

The lemma is proved.

2. Proof of Lemma 2. Let V(x,s) = V(x,<j>(s) ,n(s), A(s)) denote the

maximum value used in the proof above, thereby making explicit the

dependence on the parameter s. It is clear that V is a measurable

function. The correspondance R (s) defined by

RL(s) = {rL|v(x,s) i V(xL(s),s) -(rL,x -xL > for all x}
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can be shown to be measurable. But then any measurable selection

r (s) G r (s) suffices to prove the lemma.

3. Lemma A-1. Let n , <j> , A be a sequence of vectors converging to

^K (s,ij> ,n ,A ) be such that r. convergesn, $, A, and for each ilet r^ G RL(s,<J.i,n1,A1) be such that rL

tor G e+. Then rL G RL(s,<f>,n,A) .

Proof,. The maximand in (Al) is linear in the variables n, <f>, A so that

v(x,<J>,n,A) is convex, and hence continuous, in (<j>,n,A). Now let x G eL

be fixed. By hypothesis

V(x,(f>i,ni,Ai) <V(xL(s),^i,ni,Ai) -<r\tx -xL(s) >,

so that taking limits as i -*• » we conclude that

V(x,£,n,A) <V(xL(s),^,n,A) -(rL,x -xL(s) >

and the assertion is proved.
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