
 

 

 

 

 

 

 

 

 

Copyright © 1972, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ON MINIMAL TRIANGULATION OF A GRAPH

by

T. Ohtsuki, L. K. Cheung, T. Fijisawa

Memorandum No. ERL-M351

1 June 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ON MINIMAL TRIANGULATION OF A GRAPH

by

T. Ohtsuki1", L. K. Cheung1'1", T. Fijisawa+++

ABSTRACT

In this paper we study the problem of optimal ordering of Gaussian

elimination of a structurally symmetric matrix using the concept of

triangulations of a graph. Results on minimal triangulations and an

efficient algorithm for finding such triangulations are presented. The

algorithm is illustrated with an example.
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I. INTRODUCTION

In solving Ax =b,in which Ais alarge sparse matrix, using
Gaussian elimination, it is advantageous to have an order of elimination

such that the number of nonzeros (fill-ins) produced is minimized [1].
In most network problems, Ais structurally symmetric and positive definite

12], [3], [4]. For this class of matrices, symmetric Gaussian elimination
is used to simplify the programming. The problem of finding an order of

elimination which creates the minimum number of fill-ins is still not

completely solved for this class of matrices.

Ogbuobiri et. al. [3] propose an algorithm for decomposing a graph

into clusters which are then optimally ordered by some simple schemes.

This algorithm provides a partial solution to the minimum fill-in problem.

Rose [4], [5] studies the same problem using the concept of tri

angulated graph. It is shown there that Gaussian elimination on amatrix,

which is equivalent to vertex-elimination [3] of the graph associated with
2

the matrix, can be viewed as a process of finding a triangulation3 for

the graph. This allows us to speak of Gaussian elimination on a matrix

and triangulation of a graph interchangeably. The number of fill-ins is

directly related to the size of the triangulation. In [4], Rose gives an

algorithm for finding a minimal subset of a given triangulation such that

this minimal set is also a triangulation. Rose's algorithm has several

drawbacks. It is an indirect algorithm for getting a minimal triangulation4

because we have to find a triangulation by some scheme before applying the

algorithm. Besides, the algorithm is inefficient in that successive "pass"

of the algorithm has to be executed if the triangulation is not m-tn-fma1

after a "pass". Above all, the algorithm is incomplete in that it may never
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terminate in some cases.

Though minimal triangulation may not give the minimum fill-ins in

the Gaussian elimination, it does give fairly good results if incorporated

into some practical schemes like those listed in [3]. The importance of

minimal triangulation is not difficult to see as it provides a step-stone

to the problem of minimum triangulation. Besides this, minimal triangu

lation guarantees us that we can derive an ordering for the Gaussian

elimination process, which is our ultimate aim. There is clear indication

that a minimum triangulation algorithm, if one can be found, is going to

be fairly involved and hence is not so practical as the existing heuristic

schemes [3], [6]. However, sound theoretical insight into this may help

us find out new ways of attacking the problem. Besides, the algorithm can

be used as abasis for testing the relative performance of the existing

practical schemes.

In this paper, we study the problem of minimal triangulation for an

undirected graph in depth. Section III shows that sometimes we may not be

able to derive an elimination order from a triangulation if the triangu

lation is not minimal. This important fact is not clearly indicated in

Rose's work [4], [5]. The complexity of aminimal triangulation algorithm

is indicated in Section IV, where it is shown that "local information" of

a graph is insufficient for the success of a Rose-type algorithm. In

Section V, we present results on minimal triangulation, which are used to

derive an efficient algorithm for finding a minimal triangulation.

II- DEFINITIONS AND NOTATIONS

A graph is a pair, G « (X, E), where X is a finite set of vertices

and E is a set of edges» each of which connects two distinct vertices of X,
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and no more than one edge connecting the same pair of vertices. G is

assumed to be connected in this paper. Given xC X, AdJ[ (x^ 1b the set

of all vertices of X adjacent to x. For distinct vertices, x, ye x,

a chain from x to y (of length £) is an ordered set of distinct vertices

u= [pr p2, ..., p£+1] ;?1 =x, p£+1 =y

such that p±+1 E Adj (p±) , 1=1,...,*,. For any xe X and any two

distinct vertices y, z e Adj (x), an x - external chain from y to z is a

chain from y to z which does not go through any vertices of x U Adj (x).

A cycle (of length I) is an ordered set of SL distinct vertices

ys [vx> P2» • ••Vz> PjJ

such that pi+1 = Adj(Pl); i= 1, ....i-landp^ Adj (p^).

For graph G = (X, E) and subset A C X, the section graph G(A) is

the subgraph

G(A) = (A, E(A)); E(A) = {{x, y} € E : x, y € A} .

A separator of a graph G = (X, E) is a subset S C x such that the section

graph G(X - S) consists of two or more connected components, say C. = (X., E.)

The section graphs G(S U X ) are the leaves of G with respect to S.

A minimal separator is a separator no subset of which is also a separator.

Given a, b £ X with a £ Adj (b) an a, b separator is a separator such that

a and b are in distinct components, say C and C, , respectively. A clique
a d

of a graph is a subset of vertices which are pairwise adjacent, and a

separation clique is a separator which is also a clique.

Let G = (X, E) be a graph with |x| = n. An ordering of X is a

bijective map

a : {1, 2, . . ., n} •«-*• X .
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If X is ordered by a, then G «= (X, E, a) is an ordered graph associated

with ct. The deficiency D(x) of a vertex x (^ X, is the set of all pairs

of Adj (x) which are not themselves adjacent; i.e.,

D(x) = {{y, z} : y, z e Adj (x) { y £ Adj(z)}.

In case of ambiguity, we use [D(x)]G to denote D(x) in graph G. Similarly

for [Adj(x)]G.

Given a vertex x of a graph G, the graph G obtained from G by

(i) deleting x and its incident edges and

(ii) adding edges such that all vertices in the set Adj (x) are adjacent

is the x - elimination graph of G. (i) and (ii) constitute a vertex -

elimination step. Thus

Gx = (X - (x), E(X - {x}) U D(x)).

For an ordered graph G^ = (X, E, a) the order sequence of elimination

graphs Gx» G2, . . ., G x is defined recursively by G = G and
1 xl

Gi "(Gi-l)xi ; i=2, ...n-1.

The elimination process on a graph G = (X, E) with ordering a is the

ordered set

P(G; a) = [g = GQ, G1 Gn-1^* The ellmination process

is perfect if

i

UGj, = G(X - U {Xj}).

The ordered graph Ga » (X, E, a) is monotone transitive iff P(G; a) is

a perfect elimination process.

If the ordered graph G^ = (X, E, a) is not monotone transitive, we
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define the monotone transitive extension G as
MTEa

n-1

GMTEa = (X» U V
i=0

where E± is the set of edges in the elimination graph G . We define

n-1

T(a) = U e - E as the triangulation induced by ordering a on X.
i=0 x *-—

If G = (X, E) is non-triangulated and T is a triangulation for G,

then the triangulated extension G of G by T is

GT A (X, E U T).

A minimal order o is an order such that no other order a gives T^a)

which is a proper subset of T(ot).

Finally, we define an optimal set X* for graph G as

X* A {x £ X : ^ a minimal order a such that a" (x) = 1}.

III. MINIMAL TRIANGULATION AND TRANSITIVE ORDERING

Rose has shown [4], [5] that with respect to any ordering a on X

of a graph G, the set of edges T(a) is a triangulation for G. Now suppose

we have found a triangulation T for G = (X, E), we want to know if we can

find an ordering a on X such that

GMTEa s GT*

If such an ordering can be found, then corresponding to the triangulation

T, we have an ordering for the Gaussian elimination [4], [5]. The

following lemma gives a sufficient condition for the existence of a.

[Lemma 1]

Let G = (X, E) be non-triangulated and T be a minimal triangulation.
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Then there exists an ordering a on X such that G _ = G .
MTEa T

Proof

Since GT is a triangulated graph, by Theorem 1 of [5], there exists

an ordering a on X such that (GT)a « (X, EUr, a) is monotone transitive.

Let a(i) = x±; i = 1, 2, . . n, |x| = n.

First show that T(a) C t. Since G is a subgraph of G , then

[Adj(x1)]G C [Adj(Xl)]G implies [DfrjHg CEUr. Therefore, the set of

edges added in Gx is a subset of T. Hence G is a subgraph of (G_)
1 xl T x^

which is still monotone transitive with monotone transitive ordering

a(i) = x± ;i o 2, 3, . . ., n.

Repeating the process of vertex-elimination, we see that T(a) C t.

Suppose T(a) C t (strict inclusion), then T(a) is a triangulation

which is a proper subset of a minimal triangulation. This is a contra-

dition. Hence T(a) = T, that is Gv = G m
MTEa T L-J

Thus if T is a minimal triangulation, then any montone transitive

order of GT will be an ordering for Gaussian elimination with number of

fill-ins directly related to |t|. In Fig. 1, we give an example for the

nonexistence of ordering a such that G^ =Gr Note that Tis not

minimal because either {a} or {b} is also a triangulation.

From lemma 1, we can derive

[Lemma 2]

Let G = (X, E) be non-triangulated and a be a minimal order. Then

T(a) is a minimal triangulation.

Proof

If T(a) is not minimal, there exists a proper subset of T, denoted
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by T', that is aminimal triangulation. From Lemma 1, there exists an

order a< such that V=T(a') CT(«), This contradicts the minimality
of order a.

D

From the above two lemmas, the following theorem is immediate

[Theorem 1]

Let G = (X, E) be non-triangulated. A triangulation T is minimal

(minimum) iff there exists a minimal (minimum) order ct such that

T = T(a).

Theorem 1 indicates to us away of testing whether a given triangu

lation is minimal (minimum). However it does not give us an algorithm

for constructing a minimal triangulation.

IV- INSUFFICIENCY OF LOCAL INFORMATION FOR MINIMAL TRIANGULATION

Let G = (X, E) and T be a triangulation for G. The Rose-algorithm

[4], p. 4.24, is supposed to derive a minimal triangulation T from T.

The transformation from T to T is actuated by a process of vertex-elimi

nation. The algorithm produces an ordering a(i) = x. such that

G « (X, E U t (a)) is triangulated, T is minimal and T C t.

Step 1. Set i = 0; GQ = (X, EU T);

XQ = X; T = T.

Step 2. Set G± = (X±, E(X±) U T)

In G±, Find S± = {y^ y2 1} with D(y ) = <j>.

Step 3. Find a j ^ {l, 2, . . ., 1} such that y has some T edges

incident with it i.e.

T = ^=(y.,z) |ze Adj (y )} n t ^ *

If T = 4, go to Step 5.
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Step 4. Set T « T - T

T - T - T

Go to Step 2.

Step 5. Set i = i + 1;

If i > n, go to Step 6; else

Set x± = ylS

Set T=T-{(u, v) |u, veAdj^)};

Xi = Xi-1 ~ xi
Go to Step 2.

Step 6. End of algorithm.

From the algorithm, it can be seen that at Step 5 of the process,

the choice of avertex, say y^ to be eliminated next is based on the
following "local" information:

(i) D(yx)

(ii) Adj(y;L)

(iii) Whether there is any member of T incident with y.

Thus we may fail to eliminate a suitable vertex when we come to the

situation of having more than one vertex carrying the same information.

This is illustrated in Fig. 2. In this example, vertices 1, 2, 3carry

the same information listed above. If vertex 1 is eliminated first, then

T will contain a. Hence in this case the Rose-algorithm would not reduce

T- {a, b, c} to aminimal triangulation T, which in this example is
T » {b, c}.

In fact, failure in producing a minimum triangulation is common in

most existing practical schemes [3], [6] which depend on local information
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V. MINIMAL TRIANGULATION

In this section, we shall present useful results which will lead to

the construction of a minimal triangulation algorithm. We make use of

Theorem 2 of [5] which is stated below.

[Lemma 3]
A

Let G = (X, F) be triangulated with subgraph G = (X, E); E C f.

Then G is triangulated iff for each (x, y) £F - E, there exists an x - y

separation clique of G. •

This lemma leads us to the following theorem.

[Theorem 2]

A triangulation T of G = (X, E) is minimal iff for each (x, y) G t,

every x - y separator C of G is not a clique of the triangulated extension

GT = (X, E U T).

Proof

"if part" We assume there exists a triangulated subgraph

G.J, = (X, E U t1); T' C t of G . From Lemma 3, there should exist, for

each (x, y) £ T - Tf, an x - y separation clique C of G*. Since C is an

x - y separator of G and also a clique of G , it is a contradiction.

"only if part" We assume that there exists an x - y separator C of

G, which is also a clique of G . Let T <- T be the set of (u, v) £ T

such that C is also a u - v separator. Then C is a u - v separation clique

of GTC = (X, E U T - T ), which, by Lemma 3, is still triangulated. Hence

T is not minimal. *—'

Now we give a more algorithmic characterization of minimal triangu

lation.

[Theorem 3]

Let G = (X, E) and X* be the optimal set for G. x G X* iff, for each
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(u, v) e d(x), S = {x} U Adj (x) - {u, v} is not a u - v separator.

(Note that if D(x) = <f>, obviously x € X*).

Proof

"if part" Let 3 be a minimal ordering of X - {x} with respect to

the x - elimination graph G^ = (X - {x}, EU d(x) - E(x)), where E(x)

is the set of edges incident at x and T (3) be a triangulation of G
x x

produced by 3. Now considering the ordering a of X produced by

a(l) = x, a(2) = 3(1), . . ., a(n) = 3(n-l).

Obviously, T(a) = D(x) U Tx(3) is a triangulation of G. It suffices to

show that T(a) is minimal. We assume T(a) is not minimal, then as shown

in Theorem 2, for at least one (y, z) e T(a) there should exist a y -z

separator C of G such that C is a clique of G , = (X, E U T(a)). We
1 \CL)

have two cases.

(Case 1): (y, z) e d(x)

From the definition of the theorem, C should contain x and at least

one vertex, say w, in X - {x} - Adj (x). But from the definition of

a, (x, u>) £ T(a), which contradicts the fact that C is a clique of G ,,.
n T(a)

(Case 2): (y, z) e T (3)

From Lemma 1, T (3) is a minimal triangulation of G . And there
•*• x

exists no vertex pair (u, v) € D(x) such that C is also au -v separator

of G, since otherwise it causes the same contradiction as in Case 1.

Therefore, C- {x} is ay -z separator of G and is also a clique of

Gx = (X -{x}, EUD(x) -E(x) UTx(3)). Thus from Theorem 2, T (3)

cannot be aminimal triangulation of Gx, which is acontradiction,

"only if part" We assume there exists a (u, v) G D(x) such that

S= {x} U Adj (x) - {u, v} is au-vseparator of G. Since any ordering

a such that a(l) = n has the property that D(x) £ T(a) ,S is a clique of
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GT(a) = <x» E U T(°0) for any a such that a(l) = x. Theorem 2 shows

that any T(a) with a(l) = x is not minimal. Hence x <£ X*. •

Hence if for each elimination graph G ; i = 1, . . ., n -1 with

GQ « G, we eliminate a vertex x. € X* ,where X* - is the optimal set
n-11 1"1 1"±

of vertices for G , then ( U E.) - E is a minimal triangulation for
i=0 X

G. Theorem 3 can be stated in terms of external chains as follows.

[Corollary 1]

Let G = (X, E) and X* be the optimal set for G. x G X* iff there

exists an x - external chain between any pair of vertices in Adj (x).

Proof

It is obvious that for (u, v) G d(x), S = {x} U Adj (x) - {u, v}

is not a u - v separator iff we have an x - external chain from u to v.

For (u, v) £ D(x), we have an edge between u and v which is a trivial

external chain. LJ

Theorem 3 or Corollary 1 can be used to find the optimal set X* at

each stage of vertex-elimination. However, it is not necessary to test

all vertices in order to find X* if we know X* -. The following lemmas

allow us to simplify the testing procedure.

[Lemma 3]

Let y be such that G. = (6. -) ; i = 1, 2, . . ., n - 1.

Then (x G X*_± => xG x*) if in GjL_1,y $ Adj (x).

Proof Consider G. ,. Let x £ X* - and u, v € Adj (x). Suppose in G. -,

the x - external chain from u to v passes through y. Then in G. = (G. ,) ,

these exists an x - external chain from u to v through the deficiency

edge of y.

Suppose, in G. ., the x - external chain between u, v does not go
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through y. This chain remains unchanged in G . In both cases,
*

Dex'

Parallel to Lemma 3, we have

[Lemma 4]

Let y be such that G± = (G.^) ,i= 1, 2, .. ., n - 1.

Then (x£X±_1 => x£X±) if in G^, y£Adj (x). •

Thus at each stage of vertex elimination, all we have to do is to

test vertices adjacent to the one just eliminated and update the optimal
*

set X accordingly.

The schematic for obtaining a minimal ordering a is shown by a flow

chart in Fig. 3. It should be noted that no matter which x is chosen
*

from X±-1; i«l, 2, ...n, we always get some minimal ordering aand the

corresponding minimal triangulation T(a) for G. It is obvious that some

minimal orderings a are also minimum ones. In the steps marked with an

asterisk, we have some flexibility in picking x Gx*,,i = l. 2 n

If some additional criterion is imposed on the choice of x±, like choosing

= min A
x^ such that [D(x±)]G

i-1

Xi G Xi-1
[D(Xi)]G

i-1

then we get a smaller family of minimal orderings. Whether this additional

criterion would lead to atriangulation with asmaller cardinality is

still an open problem. We illustrate the minimal triangulation algorithm
with the following example.

Example

In Fig. 4(a), we have a graph [4] consisting of 11 vertices.

Fig. 4(b) shows that vertex aGX* of GQ because (b, g) GD(a) and
{b, h, g} is an a-external chain going between band g. Similarly
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for (c, g) G D(a), we have an a-external chain from c to g.

The algorithm successively gives the following optimal sets for

the elimination graphs. In each optimal set, we pick the vertex which

introduces the minimum number of edges.

*

X0 = *a» b» c» d» e, f}; pick x = a
*^ « {b, c, d, e, f}; x = D

*X2 - {c, d, e, f}; x = c
*

X3 = {d, e, f, h}; x^ mh
*

x4 = {<*> e, f, k}; x5 sk
X5 - {d, e, f, i, j, g}; x6 = g

X* - {d, f, i, j}; x7 =i
X* = {d, f, j, e>; x8 =d
Xg = (f, j, e>; x9 =f

x9 °'<j, e>5 x1Q= j

X-q = {e}; xll= e •

Thus a{l, 2 11} = {a, b, c, h, k, g, i, d, f, j, e}

with T(a) = {(b, g), (c, g), (h, c), (g, i), (e, i), (e, j), (d, j)}.

In Fig. 4(c), we show the triangulated extension G ( ..

VI. CONCLUSION

The concept of triangulation of a graph is used to find an optimal

ordering for the symmetric Gaussian elimination of a structurally symmetric

matrix. It is shown that when the triangulation is minimal, it is always

possible to derive from the triangulation an elimination ordering. Results

on minimal triangulation and an efficient direct algorithm for constructing

it are presented. It is hoped that these results may help us solve the

minimum triangulation problem.
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FOOTNOTES

1. A graph G is triangulated if for every cycle yof length I > 3, there

is an edge of G joining two nonconsecutive vertices of u; such edges

are called chords of the cycle [5].

2. When we say the graph associated with a structurally (i.e. zero-

non-zero) symmetric matrix we mean an undirected graph constructed

in the way shown in [3] or [4].

3. Triangulation T for a graph G = (X, E) is a set of edges such that

the new graph with vertices X and edges E U t is triangulated.

4. A minimal triangulation for a graph G is a triangulation such that no

proper subset of it is also a triangulation. A minimum triangulation
A A

T is a triangulation such that |t| <_ |t|, where T is any triangulation

for G; |t| denotes the cardinality of set T.

5. This will be clarified in Section IV.
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Fig. 1. Example showing nonexistence of ordering

a which is such that G.— = G_.

G = ({1,2,3,4}, {c,d,e,f}), T = {a,b}.



Fig. 2. Example showing failure of Rose's Algorithm.

Graph G is represented by solid lines.

T = {a,b,c}.



Pick x, from
x

i x

a(l)=x,

I
K=[Adj(x,)]

6h

Find JcK such
that each vertex in J
belongs to X*.,

Pick x, € X*,

a(i)=x;

i
K

L J(3i-i

6lr(Gi-l'xi

Fig. 3. Flow chart for finding ordering a.



Fig. 4. Illustration for the minimal triangulation algorithm,

(a) Graph G. (b) Two a-external chains. (c) The

triangulated extension G^. ., T(a) is represented by

dashed lines.
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