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ABSTRACT

The electromagnetic field grids in fine resolution 2d or medium

resolution 3d plasma simulation are very large. We propose a method

whereby only a fraction of the grid need be in fast core at any given

time. The basic idea is to do several consecutive field solutions

with coarse grids displaced relative to one another. The separate

solutions may pertain to different time steps ("jiggling") or the

same time step ("interlacing"). The combination of these separate

solutions can provide some aspects of the accuracy improvement ob

tainable with the fine grid which is the superposition of the sep

arate grids. These techniques may be useful when one is strongly

limited by the size of random-access memory, but can afford to place

greater demands on serial-access memory and processor speed. Their

effect is to reduce "aliasing" errors, in which plasma perturbations

are unphysically coupled when their wavenumbers differ by wavevec-

tors characteristic of the grid. Resolution may then be improved

by methods described elsewhere. In order to evaluate these methods

quantitatively, dispersion relations for plasma oscillations are

examined. Aliasing effects, such as grid-induced instability, can

be greatly reduced. However, depending on the smoothness of the

velocity distribution, "jiggling" can introduce new troublesome modes

with frequencies ~ At" ; "interlacing" has no known ill side-effects.

Simulation results are in agreement with theory. In two and three

dimensions there is also a decrease in computation time compared to

using a finer gride with similar reduction in grid effects.
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I. INTRODUCTION

Recently tne existence of nonphysical grid effects was both

predicted for and observed in computer plasma simulations.

These grid effects are introduced because the field quantities

(e.g., electric field, potential and charge density in a normal

electrostatic code), are known only at the grid points> producing

an artificial periodicity. Consequently, in addition to the plasma

waves one has the nonphysical grid alias waves.[1-3], Another view

point, is that the interparticle force depends not only on the sep

aration, of the particles but also on their, placement relative to
r

the grid.[2] These alias waves not only cause errors in field cal-

culaftions{6(| but also can alter seriously the stability of the simu

lation"plasmas[1-3]and increase the noise. [3,4]

Generally, the grid effects are stronger for smaller ratio

of Debye length to grid spacing, Xp/Ax; for example, aMaxwellian

plasma (physically stable) with \^ =0.1 Ax and NGP interpolation

is found to be unstable computationally, with a maximum growth rate

of 0.1 wp.[2). This could well discourage simulations of higher di

mensions (2D, 3D). This is because in higher dimensional simulations

one has to live with coarse grids due to the size limit of the ran

dom-access memory, e.g., a 64 x 64 x 64 grid, or a 512 x 512 grid

is an array of length 262, 144 for each electric field component.

Yet, in order to observe collective phenomena the system must be

many X^s across. Therefore, in higher dimensional simulations
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X /Ax will tend to be small (~ 10" ) and the nonphysical grid in

stabilities can seriously distort the desired physics.

Two schemes have been proposed to allow use of coarse grids

and at the same time reduce these nonphysical grid effects. One

is called "grid jiggling"; that is at each time step the grid is

displaced from the preceding grid. The grid can be jiggled either

randomly or orderly. The code is otherwise the usual algorithm,

(e.g., see ref.[7]). The other scheme, "grid interlacing", is

to use several of these displaced grids at the same time step.

Fields are calculated on each grid aud a modified leap-frog particle-

pushing scheme is used. A sketch of these grid moving schemes are

shown in Fig. 1. The basic idea underlying these two schemes is

to eliminate.or, at least, reduce the coherent feedback of the

most troublesome aliases.

In the following sections the two schemes are examined ana

lytically and computationally. Ions are immobile and serve as a

neutralizing background; Electrons have a uniform zero-order charge

density. Theories of grid jiggling and grid interlacing are pre

sented in Sec. II and III, Respectively. Dispersion relations for

certain cases are derived and numerically evaluated. Section IV

presents experimental verifications of the theories. In Section V

is an experiment with randomly jiggled grid, which cannot be ana

lytically treated. In Section VI we present a theoretical study of

two-dimensional simulations with diagonally jiggled or interlaced

grids. The final conclusions and discussions are in Section VII.
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II. THEORY OF SIMULATIONS WITH JIGGLED GRIDS

In this section we derive the linear dispersion rela

tions for simulation with jiggled grids in order to check the

grid effects on the stability of simulation plasmas. First,

we consider a special case of grid jiggling, i.e., the equal-

spacing case. This special case is interesting because (1)

it is easy to implement in actual simulation and (2),the corres

ponding dispersion relation can be readily obtained. The more

involved theory of the general case is presented in an Appendix.

Let us assume that a jiggling cycle consists of N time steps.

Here N > 1 is an integer. With equal-spacing grid jiggling, the

position o£ the jth grid, x., at the-Uh time step then is

;: •i'.• t .")..

XjUAt) =x[CKNH-.s) At ]=(j +s/N) Ax ;

where 0 S-K = integers «••» and s = 0, 1, ...,N-1.

A useful viewpoint is that the grids are moving at a constant veloc

ity, Ax/NAt x . If the grids were fixed as in normal simulation

codes, the linear dispersion relation would be [3]

EoCk'w) =1+vV is(V|2/dvfo^-
K p

(1)

cot(w-k v) —2 > Into >_ 0.
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Here Langdon's notation is followed, a) is the electron plasma
pe

frequency. fQ is the electron initial velocity distribution.

A(k,Q)) is the spatial-Fourier and time-Laplace transform of

A(x,t). k = k-pk and k = 27r/Ax. S is the effective shape
P g 8 i

factor. For NGP, S(k) =s^kAx . For CIC with cell-size
1 2

s in olcAx 2
clouds S(k)" (—r—-—) . For the normal three-point Poisson's equation

^•kAx

K(k) Ax
""9— a "irAir " • With the grids moving, the aliases
KZ(k) 2tar^§X- f

(p9*0) experience additional doppler shifts. The amount of doppler

shift for the t>PtW: alias in this case is pk Ax/NAt * 2TTp/NAt. Thus,
8

replacing U) in (1) by w - 2TTp/NAt, we obtain the dispersion relation

for the N-time-step equal-spacing jiggling case; which is

^M =i+̂ ^i|s(kp) 12Jdvf•A|.^[_ ££
• . (2)

+ (oj-k v) —-] = 0, Itnw > 0.
p 2 * •• —

We will examine the properties of (2) corresponding to N = 2 and 3,

since they are most likely to be used in simulations.

For N » 2, (2) can be written as

e (k,o>) - 1+ (o2 £- {r
z pe 2

K p=even

S(kp)|2Jdvf'^.cot(u-kpV) At

(3)

p-oddlS(kp>l J dv*fi T • tan(U-kpv)^| }=0, ]|m >0.

-4-



Por'kw-k v) -rl« 1, (3) approximates as
P ^

e20c.») •1+£ *j £ |SCk >12 Jdvf' ^
* F K p=even * J p (4)

-(-*§—) ^ Z IS(k )|2k £0, Imo) 10.
Kz p=odd v v

(4) indicates that odd aliases will affect the dispersion to

2
order (u) At) only. Most important of all is that they have no

dependence on 0) and -therterms are'real;"thus they contribute only

to thearealtpart of.w. That is to say, instabilities or damping due

to odd aliases will be suppressed if one jiggles the grids fast

enough such that|(u)-k v) -7r|<< 1- the condition (w-k v) —r- « 1
1 P Z' p 2

can be violated by higher p terms and higher U)'s. The presence

of JstkM| , however, significantly reduces the influence of higher

p terms. Higher w's must be considered. Since

e«(k, 0) + Tr) = Eo^k*60)* only frequencies around -r— (the jiggling

frequency) need to be investigated. Let U) = U)f + -r— . Then

CoCk,w» +TT> - 1+coi. ~ {I |s(k )|2 fdvf'̂ f •cot(w,-k v)&L
o=nHH P J P 22V' At' pe 2 .,

r K p=odd

" Z I
p=even

S(kp)|2/dvf^ ^| .tan(a)f-k v) ^f}=0> Ifl,wi0'

-5-
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For|(to1-k v) ~T"|<< 1 the dispersion relation approxi-

mates as

«<*.»> a1+«2 ^ z |s(k )|2/dvf•̂
K p=odd P /£\

<o At 2
- <-*?-> ^ Z |8(k >l\ = 0, La,' > 0.2? ' P PK p=even r r

7f

Thus, for frequencies around Ti~"» tne roles of even and odd aliases

are interchanged, i.e., the odd aliases contribute much more signi

ficantly than the even aliases.

For the case of a cold drifting electron beam with v, .f .=

0.120) Ax and kAx = -r , numerical evaluation for the fixed grids

CIC case indicates a nonphysical instability with a maximum growth

rate (0. = 0.04(0 at w = .8(0 . In the jiggling case(4) gives
i pe r pe

maximum growth rate, (0. = .02(0 at (o =1.4(0 . (6), however,
i pe r pe

gives a maximum growth rate, (0. = .05(0 at (0 = -r- + .65(0
l pe r At pe

Thus in this case jiggling the grids has two effects; one is that

for|o)At|« 1 it reduces the nonphysical instabilities; the other

is that it creates new unstable modes with a) - -r-^ •
r At

This.has been checked in computer simulations to be discussed

in Section IV. The cold drifting case is pathologically unstable

and is discussed as a check on the theory.

The effects of grid jiggling on the snore interesting Maxwellian

plasmas have also been investigated numerically through (4) and
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(6). In the case of (6) Nyquist diagrams were drawn to check the

stability. For X = 0.1 Ax, the high frequency (a>r - ir/At) mode

has been found to be stable over the range of kAx investigated;

kAx = jr to"?" • Thus, only even aliases contribute the grid in

stabilities at low frequencies and, expectedly, the growth rates

are greatly reduced. For example, with kAx - -r the growth rate

-3 -5
is reduced from 1.2 x 10 (0 of fixed grids to 3 x 10 u) for

pe • ° pe

jiggled grids. A more complete comparison of growth rates is

shown in Fig. 2.

For N « 3, (2) reduces to

e. (k,w) »1+(o2 £- S |S(k )|2 fdvf•—cot(o)-k v) ^
3 peR2 P=3q P J ° 2 p 2

+Wpe ?{-W' S(kP) |2/dvfo T" cot[" I+(a,-kPv) ^

+V ^ L*J S(V |2/dVf0 T C°t[ I+(w-kpV> ^] =°;2 JL- j f""- nI2!, „. At __r ir . , , v At.
K2 p=3q+2

q = integers, Ltjw >_ 0. (7)

Assuming |(w-k v) —571« 1» one has
P 2

e3 Ck,-) =l-+.;e^I ISV'^OST
K p-Sq . P

to At 2

pv (8)

" ( ?e J ^T z I S(k )|2k - 0; q - integers, Tsnt* >_ 0,
2sin | K2 P*3q P P
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Fig. 2 Plots of the growth rates for the cold electron beam and

a Maxwellian plasma with kAx from tt/8 to tt/2. F, J and

I denote fixed; two-time-step equal-spacing jiggled and

two equal-spacing interlaced grids, respectively. CIC

is assumed.



Therefore, only aliases with their alias numbers, p, equal

to multiples of three contribute significantly to e^(k,(o). Fur

thermore, other aliases only affect the real part of (0 to

2
order of ((o At) and, hence, will not cause any nonphysical in

stability or damping. As in the two-time-step jiggling case, high

frequency modes may be introduced. It is obvious from (7) that

2irfor u>r = o, aliases with p = 3q+l will play the dominant role.
4ir

Similarly fioraaec^./rr-—- aiiases with p - 3q+2 are dominant.

In summary, the results presented in this section indicate

that grid jiggling shifts certain aliases (e.g., odd aliases in
«

the two-^time-step. jiggling equal-sp cing case, to frequencies

comparable to the jiggling frequency. These shifted aliases some

times can still create strong nonphysical grid instabilities.

One, therefore, would like to have those notorious aliases com

pletely eliminated. In the next section an algorithm, grid inter

lacing, is proposed to achieve this purpose, and the correspond

ing theoretical analyses indicate that it indeed does.
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III.. THEORY OF SIMULATIONS WITH INTERLACED GRIDS

The one dimensional, two-interlaced-grids case is analyzed

here to illustrate the approaches to more general cases. Grid

system 2 is displaced from grid system 1 by aAx, 0 - a - 1 .

That is the position of the jth grid, x, , is at jAx in grid

system 1 and (j + a)Ax in grid system 2. Fig. 1(b) is a sketch

of the two interlaced grid systems. Subscripts 1 and 2 are

used to denote quantities associated with these two grid

systems'.'

A suggested algorithm is' that given particle density at t,

n(x ), grid charge density and electric field are first calculated

on system 1. This electric field, weighted to produce the force,

is used to move v . to an intermediate velocity, v1 , without

changing the x . The same n(x ) is then used with the same

charge-sharing scheme to obtain grid charge density and electric

field on system 2. Force on the particle is calculated from this

electric field using the same field weighting scheme. This force

is then used to calculate v - from the intermediate v* . With
t+| At

v1 A_ obtained, x„ are moved to x. . Afc . The scheme works in the
At t t+At

•tl 2
following way:
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First: n̂(xt) -Qlt^) - \^) -K*i<*t)

' xFl At
V =V+ At ^T ;

then, using grid system 2,

n(xt)-vP2,t(x;))"E2,t(xJ)*F2(xt)

'j. ?2 At (9)

Xt+At -Xt +At •v+ At •

or written in an equivalent formt

-+f>i)t(xj)"Eist(xj)*Vxt)
n(xt),

+ p2,t(V"E2,t(xj)*F2(xt)

At

Vt+4t =T+ A* +* (F1 +P2} (9,)
* 2 *~ 2

Xt+At = *t + At v At •

Thus, one has an effective force (F., + F2)/2 and the corresponding

dispersion relation is

CjOt..) =1+BJ. -% T, |S(kp)|2 (k+fJZLyf

dvfo' ^2 COt f(a) " kv) ^f1=°9 lm ^" ° * (10)
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Generally, the result is rather involved and only special

cases, a = 0, 1 and — , will be considered here.

(a) a = 0, l(no interlacing). The dispersion relation

for fixed grids, (1), is recovered as it should be.

(b) a = Y* (10) becomes

e <k,o» =1+J -f £ |s(k )|2/dv f0 4| cot
c K p=even r *

[(. - kpv)^|] =0

t o, Im w - 0. (11)

It is obvious from (11) that interlacing the grids completely

eliminates the odd aliases. Thus the growth rates of the non-

physical grid instabilities can be reduced without introducing new modes
4

For example, in the cold drifting electron beam case with

Vdrift " °'12 WpAx and kAx =4 »the 8rowth rate is reduced from
-2 -24.5 x 10 (0p to 2. x 10 (0 . For a thermal Maxwellian plasma

with vth = 0.1 (0 Ax and kAx ="g »the growth rate is reduced

from 5.3 x 10 (0 to 1.1 x 10 w . Fig. 2 shows the growth

rates corresponding to the three ways of moving the grids. Since

the jiggling modes are stable in the Maxwellian plasma considered

-11-



here, so far as instability is concerned, there is no difference

between grid jiggling and grid interlacing.

It is straightforward to extend the particle moving scheme

as well as the theory to simulations with N equal-spacing inter

laced gride. The corresponding dispersion relation then is

eN t<k»w> =x+V -J5 E ls<V I2 fdvf0 H 'cot(u) -k v) % =0;
*L P€ __2 p=JN P J U Z P 2

K.

J « integers^ Im (0 > 0 . (12)
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IV. EXPERIMENTAL VERIFICATIONS

The cold drifting electron beam case is used to verify the

theories. Three computer experiments are done with the grids

fixed, jiggled and interlaced, respectively. The simulation model

is one dimensional, electrostatic and periodic. Ions are immobile

and the"CIC-method1is used. The experimental parameters are

111*. ;,! I

System length, L = 16Ax; u At = 0.157:
pe

Drifting velocity, v = 0.12 (o Ax,
o pe '

Number of electrons, N = 3200.

Excited wave number, k Ax=3 tt/8.

All electrons with v = vq are uniformly spaced between

0 and L. The initial excitation is v(x, t = 0) = v (1 + 0.002

cos kQ x). Since comparison with the linear theory is the main

concern, only kQ is kept in the simulations. This technique

suppresses the higher spatial modes which tend to occur in the

nonlinear stage.

(a) Fixed Grids. Numerical evaluation of the corres

ponding dispersion relation indicate that the simulation plasma

is nonphysically unstable and the most unstable mode has

wie ° °*14 ^pe* Fl8# 3 shows the plots of the various energies

normalized to the initial kinetic energy. The growth rate meas

ured from the field-energy plot is in good agreement with the

theoretical value. Since the instability is of traveling' wave •

-13-
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nature, the oscillation frequency, (0 , cannot be obtained from

the field-energy plot. To measure (0 , the plot of the square

of the cosine component of the electric field (hereafter called

cosine-square plot) is shown in Fig.3 (d). In this plot both

(0 and (0. are measured. The results agree with the theory.

Okuda [5] and Langdon [9] also did some experiments with cold

drifting electron beam and had similar results.

(b) Jiggled Grids. In this experiment the position of the

jth grid is jAx at even time steps and (j + -r-) Ax at odd time

steps. The rest of the simulation scheme is the same as that

with the grids fixed. Numerical evaluations of the correspond

ing dispersion relation indicate that the most unstable mode is

produced by the odd aliases and has (0 = -r— - 0.6 (o and

03, = 0.09 w . If such an instability does exist, then some
i pe J '

care'is needed* tk>Lmeaeuasefit..... Since oj At = tt such a mode has

opposite signs between two neighboring time steps, and due to

the presence of other excited modes, all the physical quantities

are expected to show odd-even "jumping."

Soon after the initiation of the experiment odd-even jumpings

IT
were observed, indicating the existence of a id s t- mode. Fig. 4

shows the normalized energies and the cosine square in the later

stage (t _ 12.5 t .) where the nonphysical instability is clearly
pe

demonstrated. Fig. 4 (e) is the plot of the sine component (not

squared) of the electric field versus time. It is then obvious

- TT TT
that the instability has w " TT" • To measure u>. and (o -t-,
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the nuisance of odd-even jumping can be avoided by making

measurements only at either even or odd time steps. The growth

rate measured from the field-energy plot agrees with the

theoretical value, 0.09 to . Both (0 - -rr and (0. are measured
pe r At i

from the cosine-square plot and are in good agreement with

the theory.

(c) Interlaced Grids. Two interlaced grid systems were

used in this experiment. One has its jth grid at jAx, the other

at (j + j)Ax. The simulation scheme is described in Section III.

According to the theory only even aliases contribute to the non-

physical properties of the simulation plasma and numerical evalu

ations find that the most unstable mode has (0 » -1.4 w and
r pe

0). - 0.03 (0 .
l pe

We did two experiments on this case with different schemes

of initial excitation. In the first experiment we used the usual

initial velocity modulation. Since the growth rate is small,

the instability took a long time to emerge. Only after t - 25 x
pe

'did it became the dominant mode and the measurement of the growth

rate is not very satisfactory. We then did another experiment

using initial charge modulation p- sin k x to excite the plasma.
x o r

Here p. is determined by requiring that At later p, sin k x will
x 1 o

produce the usual velocity modulation v (1 + 0.002 cos k x) ,
o o

i.e. px = -0.002 vomEQk/qAt. Since aliases come in through grid

quantities it is hoped that such an excitation will create stronger

alias modes and, hence, the instability will show up earlier.

-15-



The results indicate that such an excitation does help ob

serving the grid instability. The instability became the domi

nant mode at t « 20 T instead of 25 x in the first experiment.
pe pe

Figure 5 shows the field-energy and cosine-square plots between

t-» 20 and 27.5 x . The values of both <o and u>. agree with the
pe r i

theoreticalrones.

As far as verifying the theory,for-a Maxwellian plasma

is concerned, we face the practical (economic) limit on the

simulations. Since in a Maxwellian plasma the grid instabili

ties arise due to the scatterings' between particles and alias

waves, the loaded velocity distribution should be fine enough

so that we have the required velocity spacing, Av ~ w./|k | in

order that smooth distribution Vlasov theory may apply [9]. As

stated in the theories, only even aliases contribute to the grid

instabilities in a Maxwellian simulation plasma with two-time-

step jiggled or interlaced grids. Hence the smallest appropriate

|k | is |k„| = |k - 4ttAx |. Since generally k Ax< 1, we have

|k0| ~ 4ttAx . Thus, Av - (o.Ax/4tt. For v.. b 0.1 u Ax
'2' ' max i th pe

-3 -3
andV j (0. ~ 10 (0 , we have Av - 10 v.. . Thus, a very

i pe ' max th ' J

fine velocity representation is needed. Furthermore, to be a

Vlasov plasma we also require tuK^ » 1» Tne number of particles

needed to satisfy both conditions as well as the computation time

needed to observe these instabilities with small growth rates

become rather impracticable for us. So far we are content with

the verifications given by the cold beam case.
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V. EXPERIMENT WITH RANDOMLY JIGGLED GRIDS.

This experiment has the same parameters as those in other

experiments. At each time step the grids are placed randomly

by a random number generator. Furthermore, in this experiment

we had the run long enough to observe the saturation of the non-

physical grid instability. The plasma was initially excited by

the usual velocity modulation. Normalized-energy plots, cosine-

square plot and sine plot are shown in Fig. 6 . From the field-

en'ergy plot one can see that the instability began to show up

around t = 7 T . The measured growth rate is about 0.10 (0
pe & pe

which is smaller than that with fixed grids but greater than

that with twortime-rstep equal-spacing jiggled grids. The in

stability saturated about t = 16 T . During this period, the

normalized field energy grew from 0(10 ) to 0(10 ). Again,

there were odd-even jumpings, indicating the existence of a mode

with (0 s ir/At. That this high-frequency jiggled mode is the

unstable mode can be clearly seen from the sine plot. Total and

kinetic energy began to increase appreciably when the field energy

-3
reached 0(10 ) around t = 12 x . Around the saturation time

pe

both energies increased by 0(10 ). Fig. 7) shows the phase-

space plots taken at four different time steps. As the insta

bility grew the initial velocity modulation became appreciable

around t = 12 T . There appeared to be higher spatial modes.

This became obvious at t = 14 and 15 T . The dominant higher
pe

harmonic is the 13th mode which corresponds to the p = -1 alias
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mode. As demonstrated by the phase-space plot at t = 18 x ,

the phase-space turbulence kept growing even after the insta

bility had saturated.

Thus, random jiggling does not prove itself to be better

than other ways of jiggling the grids.

-18-



6 (b) 4 * * «16Time (rMJ

Fig, 6 Bxperiment of cold drifting beam with v =0.12 w &c and ran-
o pe

dom grid jiggling. Plots of (a) electric field energy, (b) kinetic

energy, (c) total energy, (d) square of the cosine component of the

.electric field and (e) the sine component of the electric field vs.

time.
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VI. THEORY OF TWO-DIMENSIONAL SIMULATIONS WITH TWO

DIAGONALLY JIGGLED OR INTERLACED•GRIDS.

As we have pointed out in Section I, nonphysical grid prop

erties may occur in 2- or 3 - dimensional simulations due to

the limit in the size of the random-access memory and, hence, the

number of the grid points available. Therefore, it is important

to *rwltt» the properties of higher dimensional simulation plasmas

with jiggled or interlaced grids in order to check the possible

benefits of grid jiggling or interlacing. No attempt is made here

to-develop a formal general theory. However, we have studied a

simple but useful case, i.e., the grids are either diagonally ji

ggled or interlaced, and the qualitative results are presented in

this Section.

For the two-tiae-step diagonal grid jiggling case, the posi-

tion of the jth grid, x., is in.two dimensions (see Fig. 8).

I(jAx, jAy) at even time steps,

J 11
(jAx + -r Ax, jAy + -r Ay) at odd time steps.

An equivalent point of view is that the grids are moving at a

constant velocity in diagonal direction, v ., = (Ax/2At,

Ay/2At). Similar to the 1-D case, the aliases with alias number

P - (P » P ) feel. a doppler shift (p • k )*v ... Here in two

dimensions

-19-
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Thus, .by replacing w in the dispersion relation for fixed grids [2,3]

by t»)-ir(p +p ) 9 we obtain the dispersion relation for two-
x y

time-step diagonally jiggled grids

e,. '. (£,w)= 1+-^ k-{ Z |s(k-o|2 /dv fl At. cotOo-k+.vX&Ldiag.j. R2 * I p i J 0 2 p 2
p +p =even
rx ry

- I S(k+) 2/dv flAt tan((jo-k-»--v)At} =0, Imo) ^0.
•?' p 7 °~ p ~

p +p =odd UJ'
*x *y

Here £ = (k ,k ) , it-*- = it - p • k = (k - 2irp /Ax, k -2irp /Ay)
xyp gx a j j

and for CIC wi; I •. i •:•. -• •

S(k) =
3inikAx\2 /sinlk Ay\22* \ (—LJL1.]
ikAx / VikAy /

From previous experiences with the one-dimensional case, one

can see from (13) that at low-frequency (|wAt| « 1 only aliases

with p .+ p = even numbers, e.g., (1, -1), (-1, 1), (1,1) and
x y

(0,2), contribute to the nonphysical grid effects. Those aliases

with p + p = odd numbers, e.g., (1, 0), (0, 1), (-1, 0) and (0, -1),
x y

are shifted to frequencies near the jiggling frequency, w-ir/At.

Furthermore, it is interesting1 to note that for |k Ax|,|k Ayl ~ 1
x y

and p , p j 0 we have
x y

S(&0 «-'(k Ax)2(k Ay)2/(4ir2p p)2 =0(Ax2Ay2) .
p • x y x y

-20-



If, however, either p or p is zero, we then have
x y

S(k)-(kxAx/2Trpx)2 or (k Ay/2irp )2 =0(Ax2 or Ay2) .

Therefore, for|wAt|«l and|k AxMk Ay|~ 1 the most trouble-
x y

some aliases are (0,2), (2,0), (0,-2) and (-2,0). The nonphys

ical effects of aliases, (-1, 1), 1, -1), d, 1) and (-1, -1)
»

have been greatly reduced, to fourth order in Ax, Ay, by the

effective shaping factor S, That is, at low frequencies the

grid effects are effectively reduced to those of a four times

finer grid, with only twice as much computing, which is rather

encouraging. As in one-dimensional case, we then expect the

growth rate of the grid instability to be greatly reduced at low

frequencies. Also, we expect that, depending on the velocity

distribution, those shifted aliases (p + p = odd numbers) mya
x y

or may not give rise to grid instabilities.

With two diagonally interlaced grids, as might be expected,

aliases with (p + p ) = odd numbers are completely eliminated and
x y

only aliases with (p + p ) = even numbers contribute to the non-
x y

physical grid properties of the simulation plasmas. As in the

jiggling case, the effective shaping factor further reduces the

effects of aliases with p , p ^ 0 and, therefore, great reduction
x y

in the grid effects is expected.

-21-



VII. CONCLUSIONS AND DISCUSSION

In the previous sections we have thoretically analyzed and

tried in simulations the ideas of reducing the nonphysical grid

effects by jiggling or interlacing the grids. General dispersion

relations are derived and evaluated numerically for some specific

cases. It is shown that grid jiggling shifts certain groups of

aliases to high frequencies of order At . For example,

in the three-time-step equal-spacing

jiggling case aliases with alias number p ^ 3K (K an integer) are

2ir 4ttshifted to frequencies -j^ or -^ . For a Maxwellian plasma and

over the ranges of the parameters investigated, these high-fre

quency modes are stable and, therefore, grid instabilities are

caused by only even aliases at low frequencies. The growth rates

are greatly reduced. Numerical evaluations of the two-time-step

equal-spacing dispersion relation indicate that for a cold drifting

electron beam these high-frequency modes are unstable. The high-

frequency modes can be completely eliminated by interlacing the

grids at each time step. With two equal-spacing interlaced grids,

the odd aliases are eliminated and only even aliases contribute,

which greatly reduces nonphysical grid effects. Simulations have
<

been done and the results are in excellent agreement with the

theories. Experimental results with randomly jiggled grids sug

gest that random jiggling may not be better than other grid jig

gling methods.
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We also have studied theoretically the case of two-dimensional

simulations with diagonally jiggled or interlaced grids. The quali

tative pictures are similar to those in one dimension, and within

2 2
0(Ax Ay ) one reduces the grid effects to those of a grid with

four times as many grid points by doing only twice as much com

puting

It, thus, appears that while grid jiggling (with no increase

in computation time) may or may not reduce the nonphysical grid

effrects due to coarse grids, grid interlacing is rather promising.

The price one pays for this improvement is that the particles have

to be processed more than once.
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Appendix;

General Theory of Grid Jiggling. Theories of the two-

and three-time-step grid jigglings are analyzed here to illus

trate the approaches to more general cases. In the case of the

two-time-step jiggling the position of the jth grid, x., assumes

two different values for odd and even time steps. That is, re

ferring to Fig. 1 (a),

Xj =
J

jAx at even time steps,

(j + a)Ax, 0 - a - 1 at odd time steps.

All physical quantities are then separated into two parts. One

-24-



is defined only at even time steps and the other only at odd

time steps. Subscripts, e and o, are used to denote these

two parts. For example:

first order particle density: n(x, t) = n (x, t) + n (x, t),

grid charge density: p(x, t) = p (x, t) + p (x, t);

where, e.g., n (x, t) = I n(x, t) 6(t - 2&At),
e £

nQ(x, t) =Zn(x, t) 6[t -(2Jt+l)At|.

As done in actual simulations, a relation between p and n

can be obtained, which is

pe(k,w) =q22 S(kp>ne(kp>w) f Im w>. 0; (A.l)
p=—co

P0(k,u>) aq̂ S(kp)e ip27rano(kp,a)), Im «>0. (A.2)
k--«>

One sees immediately from (A*2')! that jiggling grids causes phase

shifts in the aliases.

To obtain a linear dispersion relation, the simulation plasma

is assumed to be Vlasov and particles are assumed to have deviated

-25-



little from their unperturbed orbits. Particle density then

is related to the initial velocity distribution, zero-order

position and first-order position in the following way:

ne, ^r'V =""OJ dV f0(v }"~0 Xr(v ''r* ' (A*3>

Superscripts denote orders of quantities, t = rAt and that

the subscript is e or o depends on r is even or odd. In normal

simulation codes

2 r_I
1 At V> „ .._ ,.0 >
Xr=—2^ (r"r )F (Wr'> ' CA.4)

rf=0

Here F is the force on the particle and is evaluated along

its unperturbed orbit. In simulations, force and grid charge

are related through Poisson's equation, force sharing and particle

size; i.e.,

e* €o K2(k) e'(k»u) . U,5)
o o

Combining (A.3)-(A.5) one obtains after some algeb

Xk)

ra

n^q /, v

ne(k>a)) =m~TS (~k) 2" [*2(k»w)pe(k'(fl) + *1(k>«)Po(k,oi)].

(A.6)
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n0q <
K

no(k>u) *rrs (~k) "2 [,"ipe +Vo1; (A-7)
O K

where with w,- oi-kv
d

Also, one has

-iw.At
d

♦l(k..). - Jdv°f'(v0) 6.2 ^At , (A.8)
d -1

iAt*2(k,») =Jdv°f^(v°) -
2̂iwdAt U. 9)

e - 1

PeOt .«) " Pe(H,cu), p (k ,w) = ei2irpotp (k,W) .
c r *- op O

(A.IO)

Substituting (A. 6), (A. 7)-, and (A.IO) into (A.l) and (A.2), one

finally arrdAresVat<the•.following"relations;

II -•£ T" * IS(kD)|i:4'2(kD,W)]pe(k,a,)
P

+ [~ WL h l IS(krt)|2ei27T^»i(k ,w)]Po(k,0)) =0,
Fc k* _ r x p u

P

(A.11)
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[-u>2 JSy EISdcJ^e^Ck W))pe(k,W)
Pe Kz 0 ' P

+[1 -oj2e ^r E|S(kp)|2^2(kp,a))]po(k,aj) «0.
(A.12)

per

A dispersion relation for any a then can be obtained from (A.11)

and (A.)12} by^lettinghehe 2 x 2edeterminant Vanish. The results

for arbitrary a's can be rather complicated. However, one can

show with some algebra that for a = 0 and — the dispersion rela

tion can be reduced to (1) and (3), respectively.

Theory of the three-time-step grid jiggling develops very

similarly to the two-time-step case. The position of the jth

grid, x., now assumes three different values for three consecu

tive time steps, that is,

{jAx for t = 3qAt

jAx + aAx for t = (3q+l)At, q"» integers,

jAx + 6Ax for t = (3q+2)At. 0<a,$<l

Physical quantities, then, are divided into three parts

corresponding to the three different positions, e.g., n(x,t) =

nx(x,t) + n2(x,t) + n3(x,t);

here n.(x,t) = E n(x,t)6(t-3qAt) ,
q

n2(x,t) « E n(x,t)6[t-(3q+l)At},
q

n3(x,t) » E n(x,t)6[t-(3q+2)At] .
q
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The rest of the procedures are just the same as those in

the two-time-step jiggling case. Equations corresponding to

(A.11) and (A.12) are

2
.0)

H^rlsVl\ocp,M)]pl(k)0)

,2 £-t.\ «<y|2G2(kp,u)e12*PaJ(,2
K p

(A.13)

2

1% -T *IS%>\\(\.»)e±2^(K») =0.K P

KL T" E I S(k )|26,(kn,fti)e i27Tp0t]Pl(k,W)
p K p P P

+ [1-mHe I S(k )|2G.(k ,(i))]p (k,w)
P K p PiP 2

" I"L V I S(k ,W)|2G2(k ,a3)ei2^p(e-a)]p,(k,o)) - 0,
p K p P 2 P 3

(A. 14)

jc^E | S(k )|2G2(k ,w)e lirp3]P]L(k,W)
pe 72 p p z p

K

[«Je%£ | S(kp)|2G3(kp,a,)e12^p(e-a)]P2(k,al)
K p

+ El-w2 ~ ZI S(k )|2G.(k ,a))]pq(k,w) » 0 ;
pe yj" _ P •*• P J

-29-
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and here with u», = w - kv

iAtG^k.w) »Jdvf^ —
3iw,At

e - 1 , (A.16)

-iw At

dvfl iAt efdvf6G2(k,W) =J ^
3ia>,At

e - 1

-2iw,At

dvfi. iAt e d
G

fdvfo
3X * ' J -3iw,At

d -I
e - 1

(A.17)

(A. 18)

Again, a generally rather complicated dispersion relation for

any a and 3 can be obtained from ?A.13), (A. 14) and (A. 15) by letting

the 3x3 determinant vanish. For a = $ = 0, however, the dis

persion reduces to (1) as it should. Also, for a = — and

2
$ = —, the dispersion relation can be shown with some algebra

to reduce to (7).

In fact, one can write down the dispersion relation for

the N-time-step case. Assuming that x, at the Jlth time step

such that i = KN + s (K = integers; s = 0, 1, ..., N - 1) is

ika :ho x (£At) - (j + a )Ax; 0 ^ a < 1
j s s

• :l. Will lL-

then the dispersion relation is

det I- A - 0 (A.19)
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Here I is the unit matrix and the elements of A are

Amn = ZWN+n-m e^VfVl)] ; m^^ ' ' '> N (A'20)
P

where with oj, = u) - k v
dp p

-i L u), At

W^i 4 ls(yl2/dv fo %i At dp • (A-21)
*• dp ,e ** - i

WN+L " WL '

, / x _ i2irx . „^v
and e(x) = e (A.22)

For a-Q- a2 - ... =a^ = o, (A.19)can be reduced to the dispersion

relation for fixed grids, (1). Also, (2) can be obtained from
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(A.19) by letting a = s/N for s = 0, 2 N-l.
s

As an example of applications of this otherwise rather

complicated dispersion relation, let us examine a case which

may be of interest to two-dimensional simulations with jiggled

grids. Assuming in two dimensions the jth grid takes on the

following positions (referring to Fig. A.l);(jAx, jAy), (jAx,

jAy + j Ay), (jAx + j Ax, jAy + - Ay) and (jAx +j Ax, jAy) ;then

for waves propagating only in the x direction, this two-dimensional

case reduces to the one-dimensional case with N - 4, a =0,
o

<aia=» 0, ou =h and a '* i .. Substituting the values of Nand the

^sDli/ntbi CAliil9i) •*««* ahJjaAn iififcftr isppiAlva^bvra0^he> Allowing dis

persion relation

e(k,a)) = e (k,io) e (k,w +-rj) - e2 (k,to) = 0 ; Im w£ 0 (A.23)
e e iic o

where

e (kfw) =1+u>2 -ft E |s(k )|2 /dv T ^| cot (uHcv) A| -
p K l p: even f %/ U H

and

E |s(k )|2/dv f' ~ tan (w-k v)At| (A.24)
p:odd p J ° L P J

2 /•e (k,u>) =a)2 -| Z |S(k )| / dv \\ -| sec (uHc v) At . (A.25)
IT p:odd P

For|(u>-k v)At|« 1, (Ai23) approximates as
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e-(k.u) -1+<£ -f Z |s(kp)|y" dv f^-jji
v- . r -r 0)-k V
K p:even

+pf(a) eAt)2]- 0,1m to >0 . (A.26)

For a) = to '+ ir/At such that (to '- k v) At « 1, we obtain a

result similar to (A.26) except u) is replaced by w here. How

ever, for to = to" ± Tr/2At and |(to" - k v) At|« 1 , the results are

different. In this case, (A.23) approximates as

e(k,to) =e(k,to" +ir/2At) =1+^—£- E |s(k )|2/dv fAyA-,
peK2 P:odd p ^ °WV

+0 I(to At)2 1* 0, Im to -0 . (A.27)
I ps j ii

Thus, for|toAt|« 1 and toAt - ir , even aliases contribute domin-

antly to nonphysical properties of the simulation plasmas. There

fore, if the simulation plasma is nonphysically unstable at low

frequencies, then in this case it is also unstable at to ~ ir/At.

For toAt - tt/2, however, the odd aliases make the dominant con

tributions and additional nonphysical instabilities can occur.

For example, as we have shown earlier that a Maxwellian plasma

is stable against odd aliases but nonphysically unstable if only

the even aliases are present. Thus, it is expected that the plasma

will have reduced grid instabilities at toAt « 1 and toAt - tt .

With a cold drifting beam, however, strongest grid instabilities

will occur at toAt - - tt/2. Therefore^ so far as waves propagating
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only in the x direction are concerned, this grid jiggling pattern

is less desirable than the (jAx, jAy), (jAx +^ Ax, jAy

or (jAx, jAy),<jAx+iAx,Ay) jiggling pattern which reduces to

the two-time-step equal-spacing jiggling in one dimension and,

therefore, has reduced grid instabilities only at toAt « 1.
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FIGURE CAPTIONS

Fig. 1 Sketch to illustrate grid-jiggling and interlacing

(a) two-time-step jiggled grids and (b) two inter

laced grids. 0-o£l.

Fig. 2 Plots of the growth rates for the cold electron beam and

a Maxwellian plasma with kAx from ir/8 to tt/2. F, J and

I denote fixed^ two-time-step equal-spacing jiggled^and

two equal-spacing interlaced grids, respectively. CIC

is assumed.

Fig. 3 Experiment of cold drifting beam with v =0.12 to Ax

and fixed grids. Plots of (a) electric field energy,

(b) kinetic energy, (c) total energy and (d) square of

the cosine component of the electric field vs. time.

Energies are normalized with respect to initial kinetic

energy. t is the electron plasma period.

Fig. 4 Experiment of cold drifting beam with v = 0.12 to Ax
o pe

and two-time-step equal-spacing grid jiggling. Plots of

(a) electric field energy, (b) kinetic energy, (c) total

energy, (d) square of the cosine component of the elec

tric field and (e) the sine component of the electric

field vs. time.



FIGURE CAPTIONS (Contd)

Fig. 5 Experiment of cold drifting beam with v = 0.12 to Ax

• and two equal-spacing grid interlacing. The plasma

was initially excited by charge modulation. Plots of

(a) electric field energy and (b) square of the

cosine component of the electric field vs. time.

Fig. 6 Experiment of cold drifting beam with v = 0.12 to Ax

and random grid jiggling. Plots of (a) electric field

energy, (b) kinetic energy, (c) total energy, (d)

square of the cosine component of the electric field

and (e) the sine component of the electric field vs.

time.

Fig. 7 Same experiment as in Fig. 6. Plots of the phase space

at four different time steps.

Fig. 8 Sketch to illustrate two-time-step diagonal grid

jiggling in two dimensions.

Fig. A.l A sketch of jiggled grid positions in two dimensions.
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