Copyright © 1972, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



REDUCTION OF THE GRID EFFECTS IN SIMULATION PLASMAS

* ‘ ‘
Liu Chen, A. Bruce Langdon+ and C. K. Birdsall

Department of Electrical Engineering
and Computer Sciences

and

_ Electronics Research Laboratory
University of California, Berkeley, California
94720

* Present address: Bell Laboratories, Murray Hill, New Jersey 07974
+ Permanent address: Lawrence Livermore Laboratory, Livermore, California
Research supported by Atomic Energy Commission Grant ATO04 334 PA 128.



ABSTRACT

The eleétromagnetic field grids in fine resolution 2d or medium
resolution 3d plasma simulation are very large. We propose a method
whereby only a fraction of the grid need be in fast core at any given
time. The basic idea is to do several consecutive field solutions
with coarse grids displaced'relative to one another. The separate
solutions may pertain to different time steps ("jiggling") or the
same timelstep ("interlacing"). The combination of these separate
solutiops can provide some aspects of the accuracy improvement ob-
tainabie with the fiﬁe grid which is the superposition of the sep-
arate grids. These techniques may be useful when one is strongly
limiﬁed by the size of random-access memory, but can afford to place
greater demands on serial-access memory and proceséor speed. Their
effect is to reduce "aliasing" errors, in which plasma perturbations
are unph&sically coupled when their wavenumbers differ by wavevec-
tors characteristic of the grid. Resolution may then be improved
by methods described elsewhere. In order to evaluate these methods
quantitatively, dispersion relations for plasma oscillations are
examined. Aliasing effects, such as grid-induced instability, can
be greatly reduced. However, depending on the smoothness of the
velocity distribution, "jiggling" can introduce new troublesome modes
with fréquencies ~ At-l; "interlacing" has no known 1ll side-effects.
Simulation results are in agreement with theory. In two and three -
dimensions there is also a decrease in computation time compared to

using a finer gride with similar reduction in grid effects.



I. INTRODUCTION

Recently tne existence of nonphysical grid effects was both
predicted for and oﬁserved in computer plasma simulationsgl-s)
These grid effects are introduced because the field quantities
(e.g;, electric field, potential and charge density in a normal
electrostatic code), are known only at the grid pbints,producing
an artificial periodicity. Consequently, in addition to the plasma
waves‘oﬁe~hasvthe nonphysical grid alias waves.[1-3], Another view-
pboint:.is that the interparticle force depends not only on the sep-
aration of: the particles but also on their:.placement relative to
the grid.iﬁ].fThgse alias waves not only cause errors in field cal-
bulaaionst6d but also can alter seriously the stability of the simu-
latién;plasmas[1—3]and increase the noise. [3,4]

Generally, the grid effects are stronger for smaller ratio
of Debye length to grid spacdng, AD/Ax; for example, a Maxwellian
plasma (physically stable) with XD = 0.1 Ax and NGP interpolation
is found to be unstable computationally, with a maximum growth rate
of 0.1 wp.[?]. This could well discourage simulations of higher di-
mensions (2D, 3D). This is because in higher dimensional simulations
one has to live with coarse grids due to the size limit of the ran-
dom-access mémory, €.8., a 64 x 64 x 64 grid, or a 512 x 512 grid
is an array of length 262, 144 for each electric field component.

Yet,'in order to observe collective phenomena the system must be

'many 153 across, Therefore, in higher dimensional simulations
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AD/Ax will tend to be small (~ 10-1) and the nonphysical grid in-
stabilities can seriously distort the desired physics.

Two schemes have béen proposed to allow use of coarse grids
and at the same time reduce these nonphysical grid effects. One
is called "grid jiggling"; that is at each time step the grid is
displaced from the pfeceding grid; The grid can be jiggled either
randomly or orderly. The code is otherwise the usual algorithm,
(e.g., see ref.[7]), The other scheme, "grid interlacing", is
to use several of these displaced grids at the same time step.’
Fields are calculated on each grid and a modified leap~-frog particle-
pushing: scheme -is-‘'used. A sketch of these grid moving schemes are
shown in Fig. 1. The basic idea underlying these two schemes is
to eliminate .or, at least, reduce the coherent feedback of the
most troublesome aliases.

In the following sections the two schemes are examined éna-
lytically and computationally. Ions are immobile and serve as a
,ﬁéut§hlizing background. Electrons have 4 uniform zero-order charge
density. Theories of grid jiggling and grid interlacing are pre-
sented in Sec. II and III, Respectively. Dispersion relations for
certain cases are derived and numeriéally ev#luated. Section IV
presents experimental verifications of the theories. 1In Section V
is an experiment with randomly jiggled grid, which cannot be ana-
lytically treated. In Section VI we present a theoretical study of
two-dimensional simulations with diagonally jiggled or interlaced

grids. The final conclusions and discussions are in Section VII.
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II. THEORY OF SIMULATIONS WITH JIGGLED GRIDS

In this section we derive the linear dispersion rela-
tions for simulation with jiggled grids in order to check the
grid effects on the stability of simulation plasmas. First,
we consider a special case of grid jiggling, i.e., the equal-
spacing c‘ase. This special case is interesting because (1)
it is easy to implement in actual simuiation and (2),the corres-
ponding dispersion relation can be readily obtained. The more
involved theory of the general case is presented in an Appendix.

:Let us assume that a jiggling cycle consists of N time steps.

[ T

Here N > 1 18 an integer. With equal-spacing grid jigglivng,‘ the

position of the jth grid, Xy at the.fth time step then is

hs

x,(288) = x, [ (RN-+:s) At ] = (§ +s/N) Ax

[

y{hgrr:g 0 Sk integers <® and s = 0, 1, ..., N - 1.
A useful viewpoint is that the grids are moving at a constant veloc-
ity, Ax/NAt % . If the grids were fixed as in normal simulation
codes, the linear dispersion relation would be [3]
= 2 x_ 2 At
eo(k,w) =1+uw > z | S(kp)] fdvfo 5 .

pe
K
P (1)

cot(m-kpv) —A%:- » Imw > O,



Here Langdon's notation is followed. wpe is the electron plasma
frequency. f0 is the electron initial velocity distribution.
A(k,w) is the sp'atialjFourier and time-Laplace transform of

A(x,t). kp = k-pkg and kg = 2n/Ax. S is the effective shape

1
factor. For NGP, S(k) = -S—,i—;:—z;l:i‘-’f- + For CIC with cell-size
1|! 2
clouds -S(k)"(é-i-’-?i—A;—)z. For the normal three-point Poisson's equation
2
-%L = _Afm_ . © . With the grids moving, the aliases
K (k) 2ta ) i

(p#0) experience additional doppler shifts. The amount of doppler
shift for the pPth!: alias in this case is pkgAx/NAt = 2mp/NAt. Thus,
replacing w in (1) by w - 2wp/NAt, we obtain the dispersion relation
for the N-time-step equal-spacing jiggling case; which is
2 , At

K 2
pe —2 z l S(kp)l deo 2 'COt[- 2T

eN(k,w) =1+ N
K p

_ (2)
At
+ (w-kpv) —f] = 0,' Ig_aw > 0.

We will examine the properties of (2) corresponding to N = 2 and 3,
since they are most likely to be used in simulationms.

For N = 2, (2) can be written as

| 2 k- | 2
e, (k,w) =1+ o° X (5 stk ) fdvf- L1 - At
2 pe K2 p=even[ P l 0 7 ‘cot(w kpv) 3

(3
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For"(w-'ka) %I« 1, (3) approximates as.

- 2 k 2 ' 1
e.(k,w) =1 +w =—-L | sk )| J'de P
2" Pe g2 pseven P 0 wokpv (4)
- =z | sk)|k =0, Imw> 0.
2 2
r° p=odd

(4) indicates that odd aliases will affect the dispersion to

order (wpeAt)2 only. Most important of all is that they have no
dependence on w and-therterms are'real;“thus they contribute only

to theasrealtpart of.w. .That is to-say, instabilities or damping due
to odd aliases will be suppressed if one jiggles the grids fast
enough such thatl(wwk V) 2|<< 1. the condition (w-kpv) é§-<< 1
can be violated by higher p terms anq higher w's. The presence

of lS(k;)Iz, however, significantly reduces the influence of higher
p terms. Higher w's must be considered. Since

ez(k, w+ 21 ez(k,w), only frequencies aroundx1 (the jiggling

&)~
frequency) need to be investigated.. Let w = W' +-ZE . Then

2 2
€ (k,m'+_".'.) =]+ -—-(Z |s(k)l fdvf:___ «cot (u'-k v)
2 - Ae P€ 12 p=odd 2
(5)
-z | stk )l dvf! -7 +tan(u'-k V) §}=o, Ime20.

p=even



Forl(w'—kpv) %§|<< 1 the dispersion relation approxi-

mates aé
z 2 K r 1
gple) 21+, 2 _Odd| S(k)l e
P= P )
w eAt 2 2
- K o ' .
(—L—2 ) £ L |s(kp)] kp 0, Imuw' >0

K° p=even

Thus, for frequencies around K%—, the roles of even and odd aliases
are interchanged, i.e., the odd aliases contribute much more signi-

ficantly than the even aliases.
For the case of a cold drifting electron beam with Varife =
O.Ipre Ax and kix =-% , numerical evaluation for the fixed grids’

CIC case indicates a nonphysical instability with a maximum growth
rate w; = 0.04(.0pe at w_ = .8wpe . In the jiggling case (4) gives

maximum growth rate, w; = .02wpe at w, = l.4m . (6), however,

gives a maximum growth rate, W

i At pe

Thus in this case jiggling the grids has two effects; one is that

pe

forlmAt|<< 1 it reduces the nonphysical instabilities; the other
is that it creates new unstable modes with w, = K? .

This .has been checked in computer simulations to be discussed
in 8ection IV. The cold drifting case is pathologically unstable

and is diecusaed as a check on the theory.

The effects of grid jiggling on the more interesting Maxwellian

plasmas have also been investigated numerically through (4) and



(6). In the case of (6) Nyquist diagrams were drawn to check the
stability. For )‘D = 0.1 Ax, the . high frequencyv (wr = 1/At) mode
has been found to bé stable over the fange of kAx investligated;
kAx = %tolzf. . Thus, only even aliases contribute the grid in-
stabilities at low frequencies and, expectedly, the growth rates

are greatly reduced. For example, with kAx = % the growth rate

is reduced from 1.2 x 1072 W of fixed grids to 3 x 107 @, for
jiggled grids. A more complete comparison of growth rates is
shown in Fig. 2.
For N = 3, (2) reduces to
2 « 2 At At
k =1+ —_— ' - —_
€q ( ,m) e E“ | S(kp)l dviy =5 cot(w kpv) 5
K2 p=3q :
2
+ w pe 22 IS(k)l dvf'-—-z—cot[ —-—+(wkv) ——]
K™ p=3q+l :
' 2
= +wpe-'<—2—£ ,S(k)l2 f(')-%-cot[ +(wkv)—]~0
K° p=3q+2 P
q = integers, Imw > O. 7
- At
Assumingl(m—kpv) -—2|<< 1, one has
~ 2 « 1
€, (kyw) =1+ -1 Is(k)l dvf}
3 ’ - pe w-k -
2
- (—P—""') _f r | S(kp)lzkp = 0; q = integers, Imw > O,

2sin-§ K® p#3q
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Fig. 2 Plots-of the growth rates for the cold electron beam and
a Maxwellian plasma with kAx from m/8 to m/2. F, J and
I denote fixed; two-time-step equal-spacing jiggled and
two equal-spacing interlaced grids, respectively. CIC
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Therefore, only aliases with their alias numbers, p, equal
to multiplés of three contribute significantly to 83(k,w). Fur-
thermore, other aliases only affeét the real part of w to
order of (wpeAt)2 and, hence, will not cause any nonphysical in-
stability or damping. As in the two-time-step jiggling case, high

frequency modes may be introduced. It is obvious from (7) that

for w, = 3%%— aliases with p = 3q+1 will play the dominant role.
Similarly ﬁotau%s=732: a¥iases with p = 3q+2 are dominant.

In summary, the results presented in this section indicate
that grid jiggling shifts certain aliases (e.g., odd aliases in
Ehe two~time-step jiggling equal-sp cing case, to frequencies
comparable to the jiggling frequency. These shifted aliases some-
times ‘can still create strong nonphysical grid. instabilities.
One, therefore, would like to have those notorious aliases com-
pletely eliminated. In the next section an algorithm, grid inter-
lacing, is proposed to achieve this purpose, and the correspond-

ing theoretical analyées indicate that it indeed does.



III.. THEORY OF SIMULATIONS WITH INTERLACED GRIDS

The one dimensional, two-interlaced-grids case is analyzed
here to illustrate the approaches to more general cases. Grid
system 2 is displaced from grid system 1 by adx, O 2 o S 1.,

That is the positi@h of the jth grid, xi', is at jAx in grid
system 1l -and (j + a)Ax in grid system 2. Fig. 1(b) is a sketch
of the two interlaced grid.systems. Subscripts 1 and 2 are
used te denote-quantities associated with these two grid
systems: '

A suggested algorithm is that given particle demsity at t,
n(xt), grid charge density and electric field are first calculated

on system 1. This electric field, weighted. to-produce the forece,

is used to move v to an intermediate velocity, v' , without

¢ At

2

changing the X . The same n(xt) is then used with the same

charge-sharing scheme to obtain grid charge density and electric
field on system 2. Force on the particle is calculated from this
electric field using the same field weighting scheme. This force

is then used to calculate v from the intermediate v' . With

1

t‘l-i- At
\'A At obtained, x, are moved to L The scheme works in the
.t-l—i'

following way:



First: ‘on(xt) > pl,t(xj) > El,t(xj) +-Fl(xt)

v,-—v +f'—]-'-é.§.o
At m 2°
ke

- 2 At 9)
vt+é£ vor— =
2
Xeat = Fg T OBV lAt »
t 4l

or written in an equivalent form,

Py,6(%g) > By o (X5) > Ty ()

il
.

= At '
Ve TV ae T LR ®"
. 2 2
Xoant S X YAV Ay -
t'l"E

Thus,vone has an effective force (F1 + FZ)/Z and the corresponding

dispersion relation is

i2mpa
2 2 1+
er(low) =1+ —5 %3 s )| (——ze—-)f

K

dvf0

A% cot l(w - kpv) A% =0, Im w 20 . (10)
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Generally, the result is rather involved and only special

cases, a = 0, 1 and'% , will be considered here.

(a) o =0, 1(no interlacing). The dispersion relation
for fixed grids, (1), is recovered as it should be.

() o= 13 (10) becomes
2

2 K 2 v At
€, (kyw) = 1 + 0" — I IS(k)lfdvf——-cot
2,1 pe K2 peeven P 0o 2
[(w-kv)-—- = 0
U0, Im w2 0. (11)

It is obvious from (11) that interlacing the grids completely
eliminates the odd aliases. Thus the growth rates of the nor-

physical grid instabilities can be reduced without introducing new modes.

4

For example, in the cold drifting electron beam case with
Virift = 0.12 prx and kAx =-% » the growth rate is reduced from
4.5 x 102 mp to 2. x 1072 w, - For a thermal Maxwellian plasma
with Vep = 0.1 prx and kAx = é% » the growth rate is reduced
from 5.3 x 10-3 wp to 1.1 x 10-4 wp . Fig. 2 shows the growth
rates corresponding to the three ways of moving the grids. Since

the jiggling modes are stable in the Maxwellian plasma considered

-11-.



here, so far as instability is concerned, there is no difference

between grid jiggling and grid interlacing.

It is straightforward to extend the particle moving scheme
as well as the theory to simulations with N equal-spacing inter-

laced grids. The corresponding diaperaioﬁ relation then is

| 2 12 v At . At _
ey, g0 = 1+ w2 _2|_<).‘.=JN|S(kp)| fdvfo £ rcotw -k 55 = 0;
K P
J = integersy Imw > 0 . (12)
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IV. EXPERIMENTAL VERIFICATIONS

The Eold drifting electron beam case is used fo verify the
theories. Three computer experiments are done with the grids
fixed, jiggled and interlaced, respectively. The simulation model
is one. dimensional, electrostatic and periodic. Ions are immobile
aﬁd~thenCIChmethod'is used. The experimental parameters are
e e )

System length, L = 16Ax; wpeAt = 0.157;

Drift;ng velocity, v, = 0.12 wpeAx,

Number of electrons, N = 3200.

Excited wave number, k Ax=3 T/8.

All electrons with v = v6 are uniformly spaced between

0 and L. The initial excitation is v(ix, t =0) = vo(l + 0.002
cos ko X). Since comparison with the linear theory is the main
concern, only ko is kept in the simulations. This technique
suppresses the higher spatial modes which tend to occur in the
nonlinear stage.

) '(a) Fixed Gfids. Numerical evaluation- of the corres-
ponding dispersion relation indicate that the simulation plasma
is'nonphysically unstable and the most unstable mode has

wip
normalized to the initial kinetic energy. The growth rate meas-

= 0,14 wbe' Fig. 3 shows the plots of the various energies

ured from the field-energy plot is in good agreement with the
theoretical value. Since the instability is of traveling wave -

-13-
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nature, the oscillation frequency, wr, cannot be obtained from
the field-energy plot. To measure W, the plot of the square
of the cosine component of the electric field (hereafter called
cosine-square plot) is shown in Fig. 3 (d). In this plot both
W, and w, are measured. The results agree with the theory.
Okuda [5] and Langdqn [9] also did some experiments with cold

drifting electron beam and had similar results.

(b) Jiggled Grids. In this experiment the position of the
jth érid is jAx at even time steps and (j + %) Ax at odd time
steps. The rest of the simulation scheme is the same as that
with the grids fixed. Numerical evaluations of the correspond-
ing dispersion relation indicate that the most unstable mode is
produced by the odd aliases and has w =-T_0.6w and

r At pe
w; = 0.09 mpe . If such an instability does exist, then some

il

careis. needed: to imeasuparit.... Since mrAt £ 7T such a mode has

opposite signs between two neighboring time steps, and due to

the presence of other excited modes, all the physical quantities

are expected to show odd-even "jumping."

Soon after the initiation of the experiment odd-even jumpings
were observed, indicating the existence of a w. = Z%-mode. Fig. 4
shows the normalized energies and the cosine square in the later
stage (t 2 12.5 Tpe) where the nonphysical instability is clearly
demonstrated. Fig. 4 (e) is the plot of the sine compon;ant (not
squared) of the electric field versus time. It is then obvious

~ m ™
that the instability has w. = To measure wy and W, = xE >

“14-



e Trar o St T

L : g >~ -3 e
Sl R T o 10 =
N, = ] I
585 s
S o -
i o
8< 101 1 | I I I 1
- 12.5 14 16 I8 20
10004 (a) Time (Tpe)
9O >
=D
B3
N [
S ©0002—
c O
S= L
P = =
g = Ty
& 10000~ == ] : | I | : I
125 14 6 _ 18 20
< 1002+ (b) Time (1pe)
_ >
=3 =0
s e
< 1001
S s R
-:Z;: E) ~ . _,
&= S ot
1.000 : Py : : | |
125 14
_ 1073
z i |
>\ "7 ...‘."":_...-.l.
5 ! o
i‘é - %
-]
' < 10 1 T l I I I ]
12.5 14 6 I8 20
(d) Time (tpe)
1.2
€S 06—
5 0.0 — s ten e M“WNM hmm#ﬁmmﬂ ]u|”d
5 06 “ '['l
< I
12— T = l I |
2.5 14 I8 20

(e) ° Time (Tpe)
Fig. 4 Experlment of cold drifting beam with vg=0. 120.) oLx and

two-time-step equql_spaclng grid- jiggling. Plots of (a.) electrlc
field energy,. (b) kinetic energy, (c) total energy, (d) square of
the cosine component of the electric field and (e) the sine com-

ponent of the electric field vs. time.




the nuisance of odd-even jumping can be avoided by making
measurements only at either even or odd time steps. The growth
rate measured from the field-energy plot agrees with the

T
. theoretical value, 0.09 wpe . Both w, = At and w; are measured

from the cosine-square plot and are in good agreement with

the theory.

(c) Interlaced Grids. Two interlaced grid systems were

used in this experiment. One has its jth grid at jAx, the other
at (j + %)Ax. The simulation scheme is described in Section III.
According to the theory only even aliases contribute to.the non-
physical properties of the simulation plasma and numerical evalu-

ations find that the most unstable mode has wr = <1.4 wpe and

: w, = 0.03 wbe . |
3 d;»did two experiments on this case with different schemes
of initial excitation. 1In the first experiment we used the usual
initial velocity modulation. Since the growth rate is small,
thé.instability took a long time to emerge. Only after t = 25 Tpe
*did it became the dominant mode and the measurement of the growth
rate is not very satisfactory. We then did another experiment
using initial charge modulation Pl sin kox to excite the plasma.
Here Py is determined by requiring that At later P1 sin“kox will
produce the usual velocity modulation v, (1 + 0.002 cos kox),

i.e. py = =0.002 vomEok/th. Since aliases come in through grid.

quantities it is hoped that such an excitation will create stronger

alias modes and, hence, the instability will show up earlier.

=15~
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The results indicate that such an excitation does help ob-
serving the grid instability. The instability became the domi-
nant mode att = 20 Tpe instead of 25 Tpe in the first experiment.
Figure 5 shows the field-energy and cosine-square plots between
t.= 20 and 27.5 Tpe" The values of both w, and w; agree with the
theoretiead:ones.

As far as verifying the theory.for.a Maxwelliﬁn plasma
is concerned, we face the practical (economic) limit on the
simulations. Since in a Méxwellian plasma the grid instabili-
ties arise due to the scatterings between particles and alias
waves, the loaded velocity distribution should be fine enough
lo_thit ﬁe have the réquired voloc;ty spacing, Av ~ wi/|kp| in

order that smooth distribution Vlasov theory may apply [9]. As

stated in the theories, only even aliases contribute to the grid

instabilities in a Maxwellian simulation plasma with two-time-

step jiggled or interlaced grids. Hence the smallest appropriate

lkpl is |k2| = |ko - 4nAx-1|. Since generally k Ax< 1, we have
-1 . .

|k2| ~ 4mAx". Thus, Avma ~ miAx/4ﬂ, For v

x
3 w__ , we have Av ~ 10_3 v
e max

th = 0.1 wpeAx

ani_ wi~10 tho

fine velocity representation is needed. Furthermore, to be a

Thus, a very

Vlasov plasma we also require anDe>> 1. The number of particles

needed to satisfy both conditions as well as the computation time
needed to observe these instabiltfies with small growth rates
become rather impracticable for us. So far we are content with

the verifications given by the cold beam case.

-16-
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V. EXPERIMENT WITH RANDOMLY JIGGLED GRIDS.

This experiment has the same parameters as those in other
experiments. At each time step the grids are placed randomly
by a random number generator. Furthermore, in this experiment
we had the run long enough to observe the saturation of tﬁe non-
physical grid instability. The plasma was initially excited by
the usual velocity modulation. Normalized-energy plots, cosine-
square plot and sine plot are shown in Fig. 6.. From the field-
energy plot one can see that the instability began to show up
around t = 7 Tpe' The measured growth rate is about 0.10 wpe
which is smaller than that with fixed grids but greater than
that with twortimerstep equal-spacing' jiggled grids. The in-
?tability saturated about t = 16 fpe' During this period, the
normalized field energy grew from 0(10-6) to 0(10-1). Again,
there were odd-even jumpings, indicating the existence of a mode
vith w_ 2 m/At. That this high-frequency jiggled mode is the
unstable mode can be clearly seen from the sine plot. Total and
kinetic energy began to increase appreciably when the field energy
reached 0(10-3) around t = 12 Tpe . Around the saturation time
both energies increased by 0(10-1). Fig. 7# shows the phase-
space plots taken at four different time steps. | As the insta-
bility grew fhé initial velocity modulation became appreciable
around t = 12 Tpe ; There appeared to be highef spatial modes.
This became obvious at t = 14 and 15 The * The dominant higher

harmonic is the 13th mode which corresponds to the p = -1 alias
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mode. As demonstrated by the phase-space plot at t = 18 Tpe

the phase-space turbulence kept growing even after the insta-

’

bility had saturated.

Thus, random jiggling does not prove itself to be better

than other ways ofAjiggling the grids.-

- =18-
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VI. THEORY OF TWO-DIMENSIONAL SIMULATIONS WITH TWO

DIAGONALLY JIGGLED OR INTERLACED' GRIDS.

As we have pointed out in Section I, nonphysical grid prop-
erties may occur in 2- or 3 - dimensional simulations due to
the 1limit in the size of the random-access memory and, hence, the
number of the grid points available, Therefore, it is important
.to examine the proﬁerties of higher dimensional simulation plasmas
with jiggled or interlaced grids in order to check the possible
benefits ;f grid jiggling or interlacing. No attempt is madec here
to -develop a formal general theory. However, we have studied a
simple but useful case, i.e., the grics are either diagenally ji-
ggled or interlaced, and the qualitative results are presented in
this Section. i

for the two-time-step diagoﬁal grid jiggling case, the posi-

tion of the jth grid, x,, is in.two dimensions (see Fig. 8))
(jAx, jAy) at even time steps,

1 1
(jax +-§ Ax, jAy + E-Ay) at odd time steps.

An equivalent point of view is that the grids are moving at a

constant velocity in diagonal directionm, $gri

Ay/2At). Similar to the 1-D case, the aliases with alias number

q°= (8x/2A¢t,

. ' *
; = (px, py) feel a doppler shift (; . kg)-;g Here in two

rid®
dimensions '

. Al o

=Y,

=2r -
g \o by 1

e »
NS e

-19~
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Thus, by geplacing w in the dispersion relation for fixed grids [2,3]
by w-T(p +p ) » we obtain the dispersion relation for two-
time-step diagonally %iggled grids
diag;j.(k ,w)= 1+L k{ g Is(k+)l fiv £ At cot(w—k—r;-v)A_g_
P +py"even
IS(k+)|J/&v £ At tan(m—k+ v)At} =0, Imw 20.

2
= (13)
. px+py odd

&> - -+ -+ 3
Here k = (kx,ky), k; =k-p - kg = (kx - Zﬂpx/Ax, ky-Zﬂpy/Ay)
and for CIC witl, .-ty o

: 2 2
) 1
s@) = <sin.2. l}c{Ax) (sin2kyAy) .
1 1
EkxAx ?kyAy

From previous experiences with the one-dimensional case, one

can see from (13) thét at low-frequency (Iuﬂt|<<41 only aliases
with px.+ py = even numbers, e.g., (1, -1), (-1, 1), (1,1) and
(O,ZL‘contribute to the nonphysical grid effects. Those aliases
with P+ Py = odd numbers, e.g., (1, 0), (0, 1),€¢1, 0) and (0, -1),
are shifted to frequencies near the jiggling frequency, w=m/At.
Furthermore, it is interesting to note that for‘lkxAx|,|kyAy| S

and Py> py # 0 we have

s('xi-l;).z "(kxAx)z (kyAy)Z/(éwszpy)Z = O(szAyz) .

=20~



If, however, either P, or py is zero, we then have
S(k)l(kxAx/ZTrpx)2 or (kyAy/Zn‘py)2 = 0(Ax2 or Ayz) .

Therefore, for |wAt|<<1 and|kxAxL|kyAy|5 1 the most trouble-
some aliases are 0,2), (2,0), (0,~-2) and (-2,0). The nonphys-
ical effects of aliases, (-1, 1), 1, -1), (1, 1) and (-1, -1)
h;ve been greatly reduced, to fourth order in Ax, Ay, by the
effective shaping factor S, That is, at low frequencies the
grid effects are effectively reduced to those of. a four times
finer grid, with only twice as much computing, which is rather
encouraging. As in one-dimensional case, we then expect the
growth rate of the grid instability to be greatly reduced at low
frequencies. Also, we expect that, depending on the velocity
distribution, those shifted aliases (px + py = odd numbers) mya
or may not give riseAto grid instabilities.

With two diagonally interlaced grids, as might be expected,
aliases with (px + py) = odd numbers are complete;y eliminated and
only aliases with (px + py) = even numbers contribute to the non-
physical grid properties of the simulation plasmas. As in the
jiggling case, the effective ghaping factor further reduces the
effects of aliases with Py» p; # 0 and, therefore, great reduction

in the grid effects is expected.

-21-~



VIL. CONCLUSIONS AND DISCUSSION

In the previous sections we.have thoretically analyzed and
tried in simulations the ideas of reducing the nonphysical grid
effects by jiggling or interlacihg the grids. General dispersion
relations are derived and evaluated numerically for some specific

cases. It is shown that grid jiggling shifts certain groups of

aliases to high frequencies of order‘At-l. For example,

in the three-time-step equal-spacing

jiggling case aliases with alias number p # 3K (K an integer) are
shifted to frequencies 3%% or 3%% . For a Maxwellian plasma and
over the ranges of the parameters investigated, these high-fre-
quency modes are stable and, therefore, grid instabilitiés are
caused by only even aliases at low frequencies. The growth rates
are greatly reduced. Numerical evaluations of the two-time-step
equal~spacing dispersion‘relation indicate that for a cold drifting
electron beam these high-frequency modes are unstable. The high-
frequency modes can be completely eliminated by interlacing the
grids at each time step. With two equal-spacing interlaced grids,
the odd aliases are eliminated and only even aliases contribute,
which greatly reduces nonphysical grid effects. Simulations have
been done and the results are in excellent agreement with the

théorigs. Experimental results with randomly jiggled grids sug-

gest that random jiggling may not be better than other grid jig-

gling methods.

—22-



We also have studied theoretically the case of two-dimensional
simulations with diagonally jiggled or interlaced grids. The quali-
tative pictures are similar to those in one dimension, and within

2Ayz) one reduces the grid effects to those of a grid with

0(ax
four times.as many grid points by doing only twice as much com-
puting
It, thus, appears that while grid jiggling (with no increase
in computation time) may or may not reduce the nonphysical grid
effects due to coarse grids, grid interlacing is rather promising.

. The price one pays for this improvement is that the particles have

to be processed more than once.
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Appendix:

General Theory of Grid Jiggling. Theories of the two-

and three-time-step grid jigglings ére analyzed here to illus-
trate the approaches to more general cases. In the case of the
two-time-step jiggling the position of the jth grid, xj, assumes
two different values for odd and even time steps. That is, re-
ferring to Fig. 1 (a),

j jbx - at even time steps,

X, =
J l(j + a)hx, 0 £ a S 1 at odd time steps.

All physical quantities are then separated into two parts. One

24—



is defined only at even time steps and the other'only at odd
time steps. Subscripts, e and o, are used to denote these

two parts. For example:

]

first order particle density: n(x, t) ne(x, t) + no(x, t),

grid charge density: p(x, t) =p (x, t) +p (x, t);
e o

Z n(x, t) §(t - 22At),
L

where, e.g., ne(x, t)

L n(x, t) G[t - (22+1)A£].

n (x, t) .

As done in actual simulations, a relation between P and n

can be obtained, which is

pells) = a D, 5GcIn G ), Tmu > 0; (A1)

p=—ﬂ

‘ip2
Do(k,w) =q Z S(kp)e P "ano(kp:w)) Im w 2 0. (a.2)

. . k:-...m

One sees immediately from (A:2) that jiggling grids causes phase
shifts in the aliases.

To obtain a linear dispersion relation, the simulation plasma

i8 assumed to be Vlasov and particles are assumed to have deviated

25—



little from their unperturbed orbits. Particle density then
is related to the initial velocity distribution, zero-order

position and first-order position in the following way:-

0 _ 0., 0, 3 1,0
ne’ (xr’tr) = - ngfdv fo(v ) 3;5 xr(v ,tr) . (A.3)
o T

Superscripts denote orders of quantities, tr = rAt and that
the subscript is e or o depenls on r is even or odd. In normal

simulation codes

r-1

2
R D DD LNC AN a.4)
=0 :

Here F is the force on the particle and is evaluated along
its unperturbed orbit. In simulations, force and grid charge
are related through Poisson's equation, force sharing and particle

size; i.e.,

- o ()]
F, (k0) = 1= s(r) 12558

o .
o K (k) e,(k,m) . . (A 5)

o o

Combining (A.3)-(A.5) one obtains after ‘some algebra

IR AT .
elon) = G (o X 1yl ) + 4 (dog ),

(A.6)
-26-



049

0* . K
n,(k,w) =~ : s (=k) 2 [¥ype + ¥y 15 (A.7)

where with-wd= w-kvo
—iwdAt
- 0.,,.0, & — iAt A.8
q;l(k,to)' Idv fo(V ) -ZiwdAt ’ ( )
e - 1
' _ 0.,,0 iAt .
e -

Also, one has

e llps) = po(kuw), o (k ) = &*2TP% () .

(A.10)

Substituting (A.6), (A.7),.and (A.lO} into (A.1l) and (A.2), one

finally arrikes’at:the:followingnrelations;
-0 51| sa)|2, & 0l (kw)
pe 2 P P 24Vp? e’

+ [~ wz 57

2 i2 ‘
pe (7 I | S0 e RN (k) o, (ieyw) = 0,

I
p

(A.11)
-27~



[.wie -;7 g ’| s(kp)|23"2"P“¢1(kp,w)]pe(k,w)

2 K 2 ' _
Il -, ;{-z-ﬁ | S(kp)l ¥y (ks o, (kyw) = 0.

(A.12)

A dispersion relation for any o then can be obtainea from (A.1ll1l)
and (A12) by-lettinghthd 2 % 2edeteiminant vanish. The results
for arbitrary o's can be ratﬁer complicated. However, one can
show with some algebra that for o = 0 and %-the dispersion rela-
tion can be reduced to (1) and (3), respectively.

Theo;& of the three-time-step grid jiggling develops very
similarly to the two-time-step case. The position of the jth

grid, xj, now assumes three different values for three consecu-

tive time steps, that is,

n

jax for t = 3qAt

xj(t) = jax + adx  for t = (3q+1)At, q = integers,

jAx + BAx  for t = (3q+2)At. 0<0,B<1
Physical quantities, then, are divided into three parts
corresponding to the three different positions, e.g., n(x,t) =

nl(x.t) + nz(x.t) + n3<x,t);

I n(x,t)é(t-3qAt),
q

here nl(x,t)

n2(x,t) = I n(x,t)8[t-(3q+1)At],
q-

n Gx,6) = 5 n(x,t)s[t-(3q+2)At ] -
q

-28~



The rest of the procedurgs are just the same as those in
the two-time-step jiggling case. Equations corresponding to

(A.11) and (A.12) are

[1- 2 k_ ) 2 '
W 2 12;’ | S (k)| Gl(kp,w)]ol(k,w)

2
- [ L

2 127pa
“pe 3 I | G]G0 e ™ ™) 0, (c,u)

Kz p
(A.13)

2 x : A '
- [w. == 12 12npB
pe 2 s k17650, we ™81 c,0) = o,

2 x_
2

- [wpe I
K p

2 ' 127pa
| S(kp)l Gyk su)e lpy (k,)
+ [1-0® 5s 1] stk |26, (k_,w) e, Ck,w)
pe KZ p p’! "1Vp’? 20

_r2 K 2 i2wp(B-a) =
lope 7% | s, 76,0k we lp (k,u) =0,

(A.14)
2 2 impB
S
e £ | sa )16, 0y we Ip, (,w)
K° P )
o [l K 2 127p (B~-ct)
lope 2 2 | sy 6,0 ,we 1o, (k,0)

+ 102 5 1| sk %6, (k0o (kow) = 0

pe K2 > P 1Vp’ 3t ’
(A.15)
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and here with w, = w - kv

d
: - , iAt
Gl(k’w) 'jBVfO -31iw At
e - 1 ’ (Aol6)
'-iwdAt
J‘dvf(') iAt e
Gy (k,w) = 3wt ,
e -1 (A.17)
-ZimdAt
J‘dvf(') iAt e
G3(k’m) = -3iwdAt
e -1 (A.18)

Again, a generally rather complicated dispersion relation for
any o and B can be obtained from CA:13), (A.14) and (A.15) by letting
the 3 x 3 determinant vanish. For o = B = 0, however, the dis-
persion reduces to (1) as it should. Also, for o =-% and
B = %3 the dispersion relation can be shown with some algebra
to reduce to (7).
In fact, one can write down the dispersion relation for
the N-time-step case. Assuming that xj at the 2h time step
such thaé £ =KN+ 8 (K= integers; =0, 1, ..., N - 1) is

theithe Xo(RAE) = (3 + @ )dx; 0 3 o <1

3

v lion 1o

then the dispersion relation is

3 2
det |E=A] =0 (A.19)
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> ->

Here f 18 the unit matrix and the elements of K are

= - M = . . » N A.20
Amn iWN-m-m e[p(an_l m-l)] 3 m,n=l, ’ ( )
where with u)dp =@ - kpv
-1 L w, At
a2 K 2 iAt e dp : A.21
wh(kp,w) We =3 |S(kp)| fdv £0 e hc R ( )
. K dp
e -1
W, = Wy o
and  e(x) = 2™ (A.22)

For U= 0y = ooy = o1 = 05 (4.19)can be reduced to the dispersion

relation for fixed grids, (1). Also, (2) can be obtained from

=-31-



(A.19) by letting a, = s/N for s = 0, 2,..., N-1.
As‘ an example of applications of this otherwise rather
complicated dispersion relation, let us examine a case which

may be of interest to two-dimensional simulations with jiggled

grids. Assuming in two dimensions the jth grid takes on the
following positions (referring to Fig. A.1);(jAx, jAy), (iAx,

jby +-§ dy), (jAx +-§ Ax, jdy +-§ Ay) and (jAx +'% Ax, jAyi; then
for waves propagating only in the % direction, this two-dimensional

¢ase reduces to the one-dimensional case with N = 4, a =0,

. : - ] 1
ayl= 0,- ay = -% and Gg =G .. Substituting the values of N and the
e solimtion (ALLLSY) ,-we: abnain after some.algehra, the, following dis-
persion relation ‘

€(k,w) = ee(k,w) ee(k,w + A—g) - ei (kyw) =0; Im w20 (A.23)

where

2 K 2 v At At

e _(k,w) =1+ w —-—[ pX |s(k )| ﬁv f. = cot (wk v) — -
€ pe K2 p:even P 0 2 P 2

]
i

T |s(k )|2fdv £ _A_g_ tan (w-k v)At] (A.24)
piodd P 0 P
and
2 K 2 v At
e (ky,w) = w _ — I S(k fdv - — sec (w-k _v) At A.25
o™ pe g2 p:oddl ( P)l fo 2 P . (A2

Forl(m-kpv)AtI« 1, (A:23) approximates as
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. Fig. A.l A sketch of jiggled grid positions in two dimensions..



0 - 2 _k 2 ' 1
€l,w) * 1+ w —5 I |S(kp) |f dv £
K p:i:even P
+o] (wpeAt)2]= 0, mw20 . (A.26)

For w = w'+ 7/At such that (w' - kpv) At << 1, we obtain a

1
result similar to - (A.26) except w is replaced by w here. .How-
ever, for w=w * T/2At andl(w" - kpv) At|<< 1 , the results are

different. In this case, (A.23) approximates as

2 K 2 v 1
e(k,w) = e(k,w' T w/2At) =1+ w sk )| fdv £y
pe ¢2  niodd P Wk,v
2 >
+0 [(wpeAt) ] =0, Ipnw0 . (A.27)

Thus, for |wAt|<< 1 and wAt = T , even aliases contribute domin-
antly to nonphysigal properties of the simulation plasmas. There-
fore, if the simulation plasma is nonphysically unstable at low
ffequencies, then in this case it is also unstable at w ~ W/At.

For wAt = w/2, however, thé odd aliases make the dominant con-
tributions and additional nonphysical instabilities can occur.

For examplg, as we have shown earlier that a Maiwellian plasma

is stable against odd aliases but nonphysically unstable if only
the even aliases are present. Thus, it is expected that the plasma
will have reduced grid instabilities at wAt << 1 and wAt = 7 .

With a cold drifting beam, however, strongest grid instabilities

will occur at wAt = m/2. Therefore, so far as waves propagating

-33-



only in the X direction are concerned, this grid jiggling pattern

is less desirable than the (jAx, jdy), (jAx +-% Ax, jby
or (jbx, jAy)(jAx+ %Ax,Ay) jiggling pattern which reduces to

the two-time-step equal-spacing jiggling in one dimension and,

therefore, has reduced grid instabilities only at wAt << 1.
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. &

Sketch to illustrate grid-jiggling and interlacing

(a) two-time-step jiggled grids and (b) two inter-

laced grids. 05aSl1.

Plots of the growth rates for the cold electron beam and
a Maxwellian plasma with kAx from m/8 to /2. F, J and
I denote fixed, two-time-step equal-spacing jiggled,and
two.equal~-spa¢ing interlaced grids, respectively. CIC

is assumed.

Experiment of cold drifting beam with \A = 0.12 Woe Ax
and fixed grids. Plots of (a) electric field energy,
(b) kinetic energy, (c).total energy and (d) square of
the cosine component of the electric field vs. time.
Energies are normalized with respect to initial kinetic
energy. Tpe is the electron plasma period.

Experiment of cold drifting beam with v, = 0.12 wpe Ax
and two-time-step equal-spacing grid jiggling. Plots of
(a) electric field energy, ﬂb) kinetic energy, (c) total
energy, (d) square of the cosine component of the elec-
tric field and (e) the sine component of the electric

field vs. time.



FIGURE CAPTIONS (Contd)

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. A.1

Experiment of cold drifting beam with v, = 0.12 mpeAx

- and two equal-spacing grid interlacing. The plasma

was initially excited by charge modulation. Plots of
(a) electric field energy and (b) square of the

cosine component of the electric field vs. time.

Experiment of cold drifting beam with v, = 0.12 wpeAx
and random grid jiggling. Plots of (a) electric field
energy, (b) kinetic energy, (c) total energy, (d)
square of the cosine component of the electric field
and (e) the sine component of the electric field vs.

time.

Same experiment as in Fig. 6. Plots of the phase space

at four different time steps.

Sketch to illustrate twb-time-step diagonal grid

jiggling in two dimensions.

A sketch of jiggled grid positions in- two dimensions.



	Copyright notice 1972
	ERL-353

