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THE PRIMITIVE RECURSIVE PERMUTATIONS GENERATE THE

GROUP OF RECURSIVE PERMUTATIONS

ABSTRACT

Ion Stefan Filotti

The title is proved. More precisely, it is shown that any

recursive permutation can be obtained by composing not more than

six permutations in o (Grzegorczyk's second class) or their

inverses. The recursive permutations cannot be obtained by com

posing less than six permutations in £• or their inverses.

Finally, the group generated by the permutations in £, is strictly

contained in the group of recursive permutations.

These results completely solve a problem posed by Dr. Julia

Robinson and show that, in a sense, primitive recursive permu

tations have not only very powerful inverses but also very

"flexible ones."

The thesis contains a number of additional results concer

ning the primitive recursive functions and the Grzegorczyk

hierarchy.

The main result has also been obtained simultaneously and

independently by V. V. Koz'minikh from Novosibirsk.
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1. INTRODUCTION NOTATIONS

As can be guessed from its title, this thesis is devoted to

the solution of the following problem posed by Dr. Julia Robinson:

Do the primitive recursive permutations generate the group of

recursive permutations?. We answer this question in the affirm

ative by showing, moreover, that any recursive permutation can

L c -1 -1 -1 -1 -1 -1be written in the form tt. it,, ir, tt~ tt^ it- or tt6 tt_ it, tt_ tt^ tt,

for some primitive recursive permutations it. (i <_ 6). This result

is the best possible in the sense that there exist recursive perm

utations that can not be obtained by composing less than six

primitive recursive permutations or their inverses (This result

is due to Professor Manuel Blum). Thus the result bears much

similarity to certain normal form theorems for recursive functions

[11] and shows that, in a sense, primitive recursive permutations

have not only very powerful inverses, but also very "flexible"

ones.

The solution to Dr. Robinson's problem was obtained by us in

May 1971 and was communicated to her and to Professor Blum on

June 5, 1971. We showed at that time a slightly weaker form of

the present results, namely that any recursive permutation can be

obtained by composing not more than thirty two primitive recursive

permutations or their inverses. It was immediately pointed out by

Richard Epstein, who had closely observed our work during that

period, that exactly the same proofs worked for permutations in

-1-



Grzegorczyk1s class £ instead of primitive recursive ones.

In December 1971 Dr. Julia Robinson informed us that V. V.

Koz'minikh from Novosibirsk had independently solved the same

problem, proving moreover that six permutations in the class o

of Grzegorczyk are enough to generate any recursive permutation.

He announced further that the permutations of £ do not generate

the group of recursive permutations. We are not familiar with

his proofs as his paper is just an abstract. The proofs appearing

in this thesis are our own, although we suspect that they can not

be essentially different from Koz'minikh's.

The techniques we use are totally elementary. It has been

known for a long time that the primitive recursive permutations

do not form a group [6] and Dr. Robinson herself had the result

of Professor Blum mentioned above. We present here the proofs of

Koz'minikh's improved version instead of our original one. Not

only is the result a better one, but we also avoid the use of a

result due to Kent (Lemma 2.5 of [4]), rendering the proofs more

self-contained.

The main results of the thesis appear in Section 7 and Section

8where we prove that the permutations of £ generate the group

of recursive permutations and that the permutations of o do not.

Section 2 and Section 3 review basic facts about the Grzegorczyk

hierarchy. Section 4 contains technical results about the graphs

of recursive functions and Section 5 is devoted mainly to the

proof of a "representation" theorem (Theorem 5.3) which we find

interesting in its own right. Section 6 contains results about

sets enumerated by one-one by primitive recursive functions, results

-2-
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later used in Section 7 and Section 8.

Notation is mostly standard. (Jvl will denote the set of non-

negative integers. Capital letters will usually denote sets of

natrual numbers and small Roman or Greek letters will denote

functions from o\) to o'vl (an exception is made in Section 3 where

we conform to the use of denoting specific functions by capital

letters). A permutation is a function from c_A) to (Jvl which is

one-one and onto.

If X = {xA,x. ,...,x ,...} and x. < x.,- for i ev_A), then Iv
0 1 n i l+l X

will denote the increasing enumeration of X, i.e. the unique

function I :cAl -*- c_A) such that I(n) = x . If XC J(and x €<_,\J"
n

then v (x) will denote the number of elements y £ X such that

y < x. In general, if Q(z) is a one-place predicate, vzQ(z) will

denote the cardinality of the set {z : Q(z)} and uzQ(z) will denote

the least z such that Q(z). For any X£(_A)» cx will denote the

representing function of X, i.e. the function c such that c(x) = 0

if xGX and c(x) = 1 if x f X.

Pairs of natural numbers will be encoded by a standard pair

ing function discussed in Section 3. (x,y ) will denote the enco

ding of the ordered pair (x,y) and the left and right projections

will be denoted by r and 1 respectively. Thus <l(u),r(u) ) = u,

K<x,y >) = x and r(<x,y >) = y.

For any function f, Cj- will denote the graph of f, i.e. the

set {(x,y > : y = f(x)}.
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2. DEFINITION AND MAIN PROPERTIES OF THE PRIMITIVE

RECURSIVE FUNCTIONS AND OF THE GRZEGORCZYK HIERARCHY

The primitive recursive functions were originally intro

duced, although not under this name, by Godel. It was later ^

recognized that not all computable functions were primitive

recursive and this led to the definition of the general and of

the partial recursive functions. However, all computable func

tions actually met in practice were primitive recursive. Later

Kalmar isolated a class of functions which he called "elementary"

and even this much more restricted class of functions seemed to

meet most practical needs. On the other hand, to obtain com

putable functions which are not primitive recursive one has to

resort to diagonal arguments. Ackermann constructed a function

which is larger than any given primitive recursive function on

all but a finite number of its arguments (see [7][12]).

Thus, at this stage, one possesses a formal definition of

the intuitive concept of recursion and a way of constructing

functions of larger growth than any of the functions defined

using the primitive recursive mechanism. Combining these two

ideas, Grzegorczyk [3] was able to exhibit a very natural hierar

chy of the primitive recursive functions. Roughly, Grzegorczyk's

idea is the following. Instead of allowing the functions defined

by the primitive recursive procedure to grow unboundedly, we will

impose the restriction of defining only functions bounded by some
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previously defined function. Then, applying Ackermann1s procedure,

a new function, dominating all the previously defined ones is

obtained. Now the process can be repeated using this new function

as an initial function as well. A new class of functions, strictly

containing the original one is thus produced. Repeating this

process denumerably many times produces a denumerable chain of

classes of functions, the union of which is the class of all prim

itive recursive functions. Grzegorczyk then showed that Kalmar's

elementary functions are precisely the functions of £ » the third

class of the hierarchy.

The relations of a Grzegorczyk class have many of the proper

ties of the primitive recursive relations. In particular they are

closed under bounded quantification and Boolean operations. Also,

Kleene's T-predicate can be shown to be in £ and, after exercising

some care, even in £ . As a result of this, in Kleene's normal

form for partial recursive functions, f(x) = lu (x(x,y) = 0) one

can choose t to be in £ for any i. Also it can be shown that

any r.e. set is enumerable by a function in £. .

Let us note "en passant" that these ideas have been more

recently extended into the transfinite (see, for example [9]).

We now proceed to briefly review these definitions and the

main properties of the Grzegorczyk hierarchy.

Definition 2.1. Let C be a class of functions from o\l to

JVL C is closed under substitutions if it is closed under the

following three operations:

(i) Composition of functions. If f(x. ,... >xu i,xic,xk+i*''' ,xr?

and g(y1,...,y ) are functions in (. then so is their composition
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f (xx,... »xk_1tg(y1> •••»yn) '^i* •••»xn)

(ii) Identification of variables. If f(x-,... ,x.,... ,x, ,...,x ). 2.9 3 k n

is a function in C, then so is f(x-,...,y,...,y,...,x ), i.e.

the function obtained by substituting y for both x. and x, simul

taneously. Here y is a variable different from all the x.'s.

(iii) Substitution of a constant. If f(x-,... ,x, ,... ,x ) is a

function in C then so is f(x-,...,0,...,x ) obtained by sub

stituting the constant 0 for x, .

Definition 2.2. Let f(x..,...,x ,i) be a function of n + 1

variables. The functions g and h defined by

g(x1,...,xn,y) =^P f(x1,...,xn,i) (2.1)
i<y

h(x1,...,xn,y) =[If(x1,...,xn,i) (2.2)
i<y

are said to be defined by bounded summation and bounded multipli

cation? respectively* from f. A class C Is closed under bounded

summation (multiplication) if it contains g(h) defined by (2.1)

(2.2) every time it contains f.

Definition 2.3. Let f(u,x) be a function of n + 1 arguments

(here u stands for u.,...,u ). The function

g(u,y) = yx < y(f(u,x) =0 (2.3)

defined as follows

r the smallest x <. y such that f(u,x) = 0

yx £ y(f(u,x) = 0) = <

when such x exist

0 otherwise
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is said to be defined by bounded minimization from f. A class

C of functions is closed under bounded minimization if it con

tains the function g defined by (2.3) every time it contains f.

Definition 2.4. Let g,h,j be given functions and let f be

defined from them by the following equations:

f(u,0) = g(u) (2.5)

f(u,x + 1) = h(u,x,f(u,x)) (2.6)

f(li,x) < j(x) (2.7)

Then f is said to be defined by bounded primitive recursion from

the functions g,h and j. If f is defined from g and h by equations

(2.5) and (2.6) only, then f is said to be defined by primitive

recursion from g and h.

To define Grzegorczyk1s hierarchy we first introduce the

following functions:

fQ(x,y) = x + 1 (2.8)

f^x.y) = x + y (2.9)

f2(x,y) = (x + l).(y + 1) (2.10)

and for n > 2, f ,- defined as follows:
— n+1

fn+1(0,y) = fn(y + 1, y + 1) (2.11)

Wx + x»y> - WX'Wx>y)) (2-12)

Definition 2.5. The class £ , the n-th class in Grzegorczyk'j
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hierarchy, is the smallest class of functions C such that

(i) the functions Xx(x + 1), U-(x,y) = x, U«(x,y) = y

and f (x,y) are in {^,

(ii) Lv is closed under substitutions and bounded primitive

recursion.

Definition 2.6. The class "~P of the primitive recursive

functions is the smallest class of functions U such that

(i) the functions Xx(x + 1), U (x,y) = x, U„(x,y) = y

are in U.

(ii) C is closed under substitutions and primitive recursion.

Among the classes £ the class c is of particular impor

tance as is shown by the following characterization theorem.

Theorem 2.7. (Grzegorczyk) The following classes of functions

are the same:

(i) The class £ .

(ii) The smallest class of functions containing Xx(x + 1),

Xxy(x - y), Xxy(xy) and closed under substitutions and bounded

minimization.

(iii) The smallest class of functions containing Xx(x + 1),

Xxy(xy) and closed under substitutions and bounded primitive

recursion.

(iv) The smallest class of functions containing Xx(x + 1),

Xxy(x - y), Xxy(x • y), Xxy(xy) and closed under substitutions

and bounded summation.

(v) The smallest class of functions containing Xx(x + 1),

Xxy(x + y), Xxy(x - y) and closed under substitutions, bounded

summation and bounded multiplication (Kalmar's elementary functions).
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Theorem 2.8. (Grzegorczyk). Ug"^ and £n+1 2 £".
n>0

To any class of total functions we associate relations.

Definition 2.9. An n-ary relation R(x-,...,x ) is in the

class C of functions if there exists a function f in L such

that

R(x-,...,x ) o f(x-,...,x ) « 0 for all x-,...,xn.

We will identify sets and relations in the usual manner.

Definition 2.10. Let R(u,x) be an n + 1-ary relation. The

relation S defined by

S(u,y) *• (3x < y) R(u,x) (2.13)

is said to be defined from R by bounded existential quantification.

Similarly, the relation t defined by

T(u,y) o (V x < y) R(u,x) (2.14)

is said to be defined from R by bounded universal quantification.

Theorem 2.11. (Grzegorczyk). The relations of £n(n>0) are

closed under bounded quantification and under Boolean operations.

As mentioned at the beginning of this section, there exists

a function which grows faster than any of the functions of £ .

Theorem 2.12. (Grzegorczyk). The function f +_(x,x) increases

faster than any of the functions of £ (n>0).
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3. GRZEGORCZYK'S CLASS £°

We stated in the Introduction the reasons for our interest

in £ . This section contains mainly technical results.

Theorem 3.1. Let f be a function of one variable in £ .

There exists a constant k such that f(x) < x + k for all x.

Proof. The proof is by induction on the definition of the

functions of £ . The theorem trivially holds for the initial

functions and once the function is defined from functions for

which the theorem holds it also holds for that function.

Q.E.D.

Proposition 3.2 (Grzegorczyk). The following functions are

m£°.

(i) Xxy(y + 1), for any y.

(ii) 0 = Xx(0).

(iii) U1(x,y,z) = x, for any y and z

(iv) U«(x,y,z) = y, for any x and z.

(v) U,,(x,y,z) = z, for any x and y.

(vi) fo if x = 0
P(x) = x - 1=\

Lx - 1 if x > 0

(vii) Xx(x - y), for any y.

(viii) a(x,y) = x.0y = x(l - y).

(ix) T(x,y) = x + 0y.

(x) r(x,y) = the remainder of the division of x by y.
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(xi:

(xii;

(xiii]

(xiv]

(xv)

(xvi]

Proof,

a:

(ii]

(iii;

dv:

(v;

(vi;

(vii:

(viii]

(ix]

(x:

(xi:

(xii]

— = the integral part of the quotient of x and y.

Wx\ = the integral part of the square root of x.

Q(x) =[x ±[v£]2] .
Xxn Q (x).

W(x,y) = vs < x(Q(s) = y).

R(x) = vs < x(Q(s) » x).

y + 1 = U2(x,y + 1).

0(x) = U2(x,0).

U^x.y.z) » U1(x,U1(y,z)).

U2(x,y,z) = U^U^x.y^z).

U3(x,y,z) « U2(x,U2(y,z)).

P(0) * 0(0), P(x + 1) = U1(x,P(x)), P(x) < U^x).

x ^ 0 = U^x.x), x - (y + 1) = U3(x,y,P(x - y)),

x - y <_ U^x.y).

a(x,0) - U1(x,x), o(x,y + 1) = 0(U3(x,y,a(x,y))),

a(x,y) £ U^x.y).

x(x,0) = x+ 1, x(x,y + 1) = U1(x,y,a(x,y)),

T(x,y) < U^x.y) + 1.

r(0,y) = 0(y), r(x + l,y) = U2(x,a(r(x,y) - 1,

1 - (y - (r(x,y) + 1)))), r(x,y) < U2(x,y)

[J] -0W.[^]-([f].rC +l.T)). [*]<«»,(..,.

[/o] =0,
[^m] =x([^r], ([^r] +1) ^r K+1

•fx. <_ U.(x,x).

kx] + i.
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(xiii) Q(0) = 0,

Q(x +1) =a(Q(x) +1, 1-r(x +1, [/x +1J )),
Q(x) ^.U^x).

(xiv) Q°(x) =x, Qn+1(x) =Q(Q"(x)), Q"(x) <U^x.x).
(xv) W(0,y) - 0(y),

W(x + l,y) = x(W(x,y), 2 - t(1 - (y - Q(x)),Q(x) - y)),

W(x,y) <.U1(x,y).

(xvi) R(x) = W(x,Q(x)).

Q.E.D.

We are now in a position to define a pairing function whose

projections are in £ . Let J be defined as follows: J(2x,y)

= (x + y)2 + x, J(2x + l,y) = (x + 1+ y)2 + x. It is easy to

see that J maps ^Al xeAf one-one onto ^\) and that, by the previous
o

Proposition, the two projections Q(z) = z - [vz ] and R(z)

= vu < z(Q(u) = Q(z)) are both in £ . From now on we will

always use Q as our first (or left) projection 1 and R as our

second (or right) projection r. Note that the pairing function

J itself is not in £ but in £ . A few values of this pairing

function are tabulated below.

R z

,n vn

36 50 51 67 68

25 37 38 52 53

16 26 27 39 40

9 17 18 28 29

4 10 11 19 20

1 5 6 12 13

0 2 3 7 8

1 2 3 4 5 Qz
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The following property of this pairing function is immediate:

Proposition 3.3. Let g be a non-decreasing function. The

increasing enumeration of the graph of g will produce the points

of the graph in the order of increasing arguments of g.

This property will be extremely useful later.

To encode n-tuples of natural numbers we proceed in the

usual manner by defining:

J(x0,x1,...,xn) =J(J(x0,...,xn_1),xn)

for every n. The projections are given by

xn = RJ(xQ,...,xn),

xn_l =RQJ(x0>*'«>xn)»

xn-k =RQkj(x0---Xn>' (0<k<n)

xn =Q^V-'V

By Proposition 3.2 all these projections are functions in £ .

We also need a device for encoding all

finite sequences of integers. We do this by associating to the

sequence (xQ,x1,...,xn) the code number J(n + 1, J(xQ,x1,...,xn)).

In the remaining of this paper we denote J(xQ,x1,...,xn) by

<x(),x1,...,xn >and J(n +1, JUq^, ... ,xn)) by << x0,xr ... ,xn >>
To this encoding we associate the following decoding functions
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which give the length and the n-th term of the sequence

respectively:

^RR(z) if m = n

t(n,m,z) = /
RRQk(z) if m =n-k andl <k <n

RQn(z) if m = 0

0 if m > n

lgth(z) = Q(z)

Q(n,z) = Qn(z) can be defined by the following equations:

Q(0,z) = Q°(z) = 0

Q(l,z) = QX(z) = Q(z)

Q(n + l,z) = Q(Q(n,z))

Q(n,z) £ z

Hence Q(n,z) as a function of two arguments is in £ and,

consequently, t(n,m,z) (as a function of three arguments) and

lgth(z) are in £ as well.

Proposition 3.4. Let H be a set in P.1(respectively M*)

(i < 0). The function v„(x) = the number of elements y < x such

that y £ H, is a function in £ (~P).

Proof. Let c„ be the representing function of H, i.e. the
H

function taking value 0 and H and value 1 outside H. vfl satisfies

the following equations:

vH(0) = 0
^vH(x) ifxM

v„(x + 1) =<
H ^vu(x) + 1 if x e H

£1

Hence v„ can be defined by:
n

-14-



vH(0) - 0

VH(X + 1) = T(VH(x),CH(x))

vH(x) < U^x.x)

where t is the function from Proposition 2.14.

-15-
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4. RECURSIVE FUNCTIONS AND THEIR GRAPHS. HONEST FUNCTIONS.

As usual in recursion theory the graph of a function f is

the set yf = {<x,f(x) > :x£v_A)}, where <x,y > denotes the

encoding of the pair (x,y) by our standard pairing function J.

A recursive function has always a recursive graph but sometimes

the graph of a recursive function may be primitive recursive or

even in £1. Such functions have been extensively studied, for

example in [8,9], and are sometimes called "honest" functions.

Honest functions are functions with easy to compute step-counting
<

functions. The following theorem characterizes honest functions.

Proposition 4.1. Let f be a partial recursive function,

(i) The predicate f(x) = y as a predicate of the two variables

x and y is in fi1^) (i >. 0) if and only if there exists a

function of two arguments in £16P) such that for all arguments

x, f(x) = uy(x(x,y) = 0).

(ii) The graph Qf of fis in G^dV) (i >. 2) if and only if
there exists a function t of two arguments in £ C*r) such that

for all arguments x, f(x) - uy(x(x,y) = 0).

Proof. Suppose f(x) = yy(x(x,y) = 0) for some function

T € ^CTV Then

f(x) = y <* x(x,y) = 0 A (V z < y)(T(x,z) ^ 0)

<x,y >€ Q o T(x,y) =0A (Vz <y)(x(x,z> *. 0)
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Since £ and ^P are closed under bounded quantification and

Boolean operations, and since the projection functions are in

£ , the righthand side of these equivalences is a predicate in

Conversely, if f(x) »yor 9f are in £ fP) then
f(x) = uy(f (x) •y) and respectively f(x) = vy(<x,y >€ Uf)

= vyten (<x,y >) = 0). Here again c/j is the representing

function of y_. This gives the desired representation for f and

proves the proposition.

Q.E.D.

Remark 4.2. If Qf €^(i <2) then fis not necessarily
representable in the above form since the pairing function <x,y >

is not a function in £ . Therefore only half of (ii) holds in

this case.

Proposition 4.1 was first proved by Skolem in the primitive

recursive case. We shall say that a function is representable

in Skolem normal form if f(x) = uy(x(x,y) = 0) for some x £ £

or x £ ^P. Contrasting with Skolem*s is Kleene's normal form

(see [7,12]) f(x) = ruy(x(x,y) = 0). Every partial recursive

function is representable in Kleene's normal form, but not nec

essarily in Skolem's normal form.

Proposition 4.3. There exists a function g which is recursive

but not primitive recursive and whose graph y is in o .

Proof. Let f be a recursive but not primitive recursive

function. Represent f in Grzegorczyk's normal form (see[3]):

f(x) - ruy(x(x,y) = 0)

-17-



where t is a function of two variables in £ . Let g(x)

= vy(x(x,y) =0). By Proposition 4.1 and the remark following

it M £ £ . However, if g were primitive recursive so would
S

f = rg be, contradicting the hypothesis.

Q.E.D.

The previous Proposition can be improved to

Proposition 4.4. There exists a strictly increasing

recursive function which is not primitive recursive and whose

graph is in £°.

Proof. Let ge be the function of Proposition 4.3. Then

y is in £ . Define h as follows:
g

h<0) = J(l,g(0))

h(n) = J(n + 1, J(g(0), g(l),...,g(n))) (n > 0)

where J is the standard pairing function. From this, g can be,

expressed as a function of h:

g(0) = Rh(0)

g(n) = RRh(n) (n > 0)

Hence h is not primitive recursive since otherwise g would be

contradicting our initial choice. We can easily convince

ourselves, using the properties of the standard pairing function

and of the projection functions, that h is strictly increasing.

It remains to check that y. G £. .

First notice that, by the properties of the pairing function,

if z€ (l and z=<x,y > then for all i<x, <i,g(i) >£ h(x) <_ z
h ~"
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Hence the following equivalence holds:

zG 9 o [Qz =0AQRz a1A (3t <z)(te8 A Qt

= 0 A RRy o Rt)]V

[Qz >0A QRz =Qz +1A (V i<. Qz)(31 <z) (t e C( A Qt »i

A(i =x =» Rt a RQRz) A (i ^ x =" Rt = Q^^QRz))]

All the quantifiers on the right-hand side are bounded and all

the predicates are in £ by hypothesis or by virtue of Proposition

3.2. Therefore y. is a set in £ .

Q.E.D.

Proposition 4.5. Let A C (Jvl be a set.

(i) If AG £i(<^P)(i >. 0) then the graph of the increasing

enumeration I. of A is in £ (^P).

(ii) For i >. 2 and ^ the converse of (i) holds as well, i.e. if

9T egitf)) thenAGS1^.
A

Proof, (i) Let AG &lfP)(± > 0). Then for all n,

IA(n) o uy(y G AA (vz < y) (z G A) = n).

All the predicates within brackets are in £ (fP) and thus I. is

representable in Grzegorczyk normal form. By Proposition 4.1 and

Remark 4.2 it follows that 9T G (^(fP).

(ii) If i >, 2 then the pairing function J is in £ and hence

yGAo flx <y)«x,y >G 9 )
A

since I. is an increasing function. Hence A G £-. Of )•

Q.E.D.
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It is known that all recursively enumerable sets can be

enumerated by primitive recursive functions. More than that,

given any recursive function f there exists a primitive recursive

function g which enumerates the same range and in the same order

as f, although possibly with repetitions. We prove next a similar

result for functions in £ instead of primitive recursive

functions.

A point <x + 1, g(x + 1) > of y is called a change of

value point if g(x) $ g(x + 1). The function g which we construct

in the next Proposition satisfies the additional requirement that

if <x + 1, g(x + 1) > and <y + 1, g(y + 1) > are two points in

which g changes value and ifx+l<y + l then also <<x + 1,

g(x + 1) > < <y + 1, g(y + 1) > . If g satisfies this require

ment, an enumeration in increasing order of the points of y in

which g changes value will produce these points in the order of

increasing arguments of g.

Proposition 4.6. Let f be a recursive function. There

exists a function g G o such that:

(i) g assumes exactly the values of f in the same order as f,

but possibly with repetitions,

(ii) u<v A g(u + 1) ^ g(u) A g(v + 1) t g(v) =><u + 1, g(u + 1) >

< <v + 1, g(v + 1) >

(iii) The set A = {<u + 1, g(u + 1) > : g(u) i g(u + 1)} of

where g changes value is in o .
©

Proof. Assuming the function g in £ has been constructed,

the set A of (iii) is in £ since
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<u + l,v >GA<><u + l,v >G 9 A v^ g(u).
8

To prove (i) and (ii) first notice that the graph y. of f

is recursively enumerable. Let m be a function in o enumerating

y... Then m& is a function in £ assuming infinitely often

each value assumed by m. Let n be defined by primitive recursion

as follows: n(0) = <0,f(0) >

r mJl(u + 1) if HmA(u + 1) = Jln(u) + 1
A v = max{w<u : rn(w) £ rn(w +1)}
=> (3t < u + l)[*(t) = v + 1

n(u + 1) « { A r(t) « rn(v + 1)]

n(u) otherwise

All the predicates in the above definition are in £ . To show

that n is in £ it is therefore enough to place a bound in £

on n. Since m G £ there exists, by Proposition 3.1, a constant

k- such that for all x, m(x)<x + k-. Let k = max((0,f(0) >, k-).

Then n(0) < 0 + k = k. Assuming by induction that n(u) < u + k

we have, by the above definition of n(u + 1), either n(u + 1)

= ma(u + 1) < A(u + 1) + k < u + 1 + k or n(u + 1) = n(u)

<u + k<u + l + k. Thus Xu(u + k) is a bound on n and n is irf

So
•

We now claim that rn is the function g we need. First,

g G £ since we just showed that n G £ . Suppose now that for

some u, n(u) = <s,f(s) ) G y Let v = max{w < u : rn(w) ^ rn(w + 1)}.

Then v is the largest point preceding u + 1 at which rn changes

value, i.e. rn(v + 1) = rn(u) = f(s). Hence n(v + 1) = (s,f(s) ).

If n is to change value at u + 1 two conditions must be satisfied:

(i) Jta(u) + 1 = s + 1 = £m£(u + 1), that is m£(u + 1)

= <s + l,f(s + 1) > = n(u + 1).
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(ii) u + l>t=<v + l, rn(v + 1) > = <v + 1, f(s) >.

Hence <u + 1, rn(u + 1) > = <u + 1, f(s + 1) > > u + 1<<v + l,f(s) >.

It follows that if u + 1 is a change of value point for g - rn

and,if v + 1 is the largest change of value point preceding it, then

<u + 1, g(u + 1) ><v + 1, g(v + 1) >. An immediate induction

argument proves (ii). It is also clear from the preceding discus

sion that whenever g changes values it assumes a new value of f

and this in the same order in which f enumerates these values.

Furthermore, since mi enumerates each value of yf infinitely

often a u satisfying (ii) above is always found and as a conse

quence g enumerates each value of f at least once. This terminates

the proof.

Q.E.D.

Sets enumerable by one-one honest functions admit the

following useful characterization.

Proposition 4.7. A recursive set X is enumerable by a one-

one primitive recursive function if and only if there exists an

infinite primitive recursive set G such that G G X.

Proof. Suppose X 2 G, where G is a primitive recursive set.

Let A be a primitive recursive set such that r(A) = X - G and r

is one-one on A and define f as follows:

rr(n) if n G A

f(n) =<

^_IG v^(n) if nG A

f is obviously one-one and enumerates X. I_ is honest by

Proposition 4.5. Since
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<u,v >G 3 ++ (u GA v=r(u)) V (u GAAv=h v-(u))

f is honest.

Conversely, let f be a one-one honest function and let X

be the range of f. Since f is one-one there exist infinitely

many elements x such that f(x) >_ x. Let A = {x : f(x) >^ x} and

let G = f(A). G is primitive recursive since

y£G-H-^ x <_ y(f (x) = y).

Q.E.D.

-23-



5. SOME RESULTS ON RECURSIVE SETS

We use this section mainly as a garbage collector.

Theorem 5.3 was an important tool in earlier proofs of the results

of Section 8. Although we now possess simpler proofs of those

results, Theorem 5.3 is of interest by itself.

Proposition 5.1. Let f be a function in £ (£P)(i >. 0)

and A a set in Q^fPx.t > 0). Then f (A) is also a set in

SVP><i>o).

Proof. Evident.

The converse of Proposition 5.1 is false. In fact

Proposition 5.2. Given any recursive set X there exists

a set G in Q^(fp)(± >. 0) such that r(G) = X and r is strictly

increasing on G,(r is the standard right projection; a similar

result holds for the left projection.)

Proof. Since X is recursive its increasing enumeration Ix

is also recursive. By Proposition 4.6 there exists a function

g in S1(^p) (i >. 0) such that g enumerates X nondecreasingly

although with repetitions and that the set G = {< u + 1, g(u + 1) >:

g(u) # g(u + 1)} of points of y where g changes value is in

£ (^P)(i >. 0). Moreover, Proposition 4.6 ensures that r(IG(n))

= I (n). The set G is our required set.
A.

Q.E.D.

The previous result has an obvious generalization. Instead

of asking r to be increasing on G, we can ask that r(Ig(n)) = f(n),
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where f is some arbitrary one-one function enumerating the

recursive set X. This could easily be proved by an appropriate

use of Proposition 4.6 in the previous proof. In a sense the

set G is a primitive recursive mirror of the recursive set X

and one can pass in a primitive recursive fashion from G to X

by using the projection r. Our next goal is to prove a further

refinement of this result. Let X be a given recursive set. We

shall show that we can find a primitive recursive set H and a

primitive recursive subset G and H such that r(H) = ^M and r(G)

= X and that r increases on both G and H - G. If H = {xQ < x^

< x« ...} then G will consist the elements xx ,Q* , x_ ,-v,....
A A

Thus not only is G a primitive recursive mirror of X, but its

elements are positioned with respect to the elements of H in

exactly the same way in which the elements of X are positioned

with respect to the elements ofo\f. This time we state the

theorem in its most general form by showing that H and G can

even be chosen in £ and that instead of r we can choose a

function in £ which maps I~(n) onto fy(n) and I„ _ G(n) onto

f=(n) where fy and f- are two arbitrary one - one enumerations

of X and X respectively.

Theorem 5.3. Let X and Y be two recursive sets such that

X = Y. Let fy»fY be two recursive one - one enumerations of X

and Y respectively. Then there exist sets G and H in £ C^P)

(i >. 0) and a function tG £ (Cp) (i >. 0) such that

(i) G £ H.

(ii) H,H,G and H - G are infinite.
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(iii) G = {x G H : vR(x) G x}.

(iv) t is one - one on H and t(G) = X, t(H) =v_Al

(v) xG G => t(x) = fx(vG(x))

xG H - G =• t(x) = fY(vR _ G(x)).

Proof. Let I' f'lA,f' be the functions given by Proposition

4.6 which enumerate the same range as ^^x^yfy respectively.

Let A,B,C,D be the corresponding sets given by Propositions 4.6 i.e.

A=«0,1^(0) >}U {<u+l,I^(u+l) > :I^(u+1) * I^(u)}

B= {<0,f^.(0) >}U{<u+l,f^(u+l) > :f^(u+l) t f^(u)}

C= «0,I^(0) >}U{<u+l,I^(u+l) > :I^(u+1) t I^(u)}

D={<0,f^(0) >}U{<u+l,f^(u+l) > :f^(u+l) t f^(u)}

By Proposition 4.5 and 4.6 A,B,C and D are sets in £ fP)

(i >. 0) and their increasing enumerations IA IB»IC>ID have SraPhs

in &±(V)i± >0). Also IA(n) =<u,Ix(n) >,Ifi(n) =<v,fx(n) >,
Ic(n) =<w,Iv(n) >,ID(n) =<y,fv(n) > for some u,v,w,y. Let h

be an increasing function whose graph H is in £ (fp) (i >. 0) and

dominates IA.I-.I-.I-,. The following facts are immediate:

IR(n) =<n,h(n) >, IQ (n) =<n,IA(n) >, IQ (n)
Tk B

=<n,Ifi(n) >, IQ (n) =<n,Ic(n) >, Iq (n) =<n,ID(n) >

h(n) > IA(n), h(n) > I-(n), h(n) > I (n), h(n) > ID(n)

h*o>lQ n-iQ^-tQt™-^

rIA(n) = IY(n), rIR(n) = fy(n), rl (n) = I (n), rID(n)

= fY(n)
Y -26-



Let G-{x SH:(^y <x) (y €Q A v(x) =rr(y))}.
XA H

Since H is in £ (V) (i >. 0) and G is defined by bounded quan

tifiers and propositional connectives from predicates in £ 6P)

it follows that GG Q^fP).

Claim: G = {x G H :vR(x) G x}.

Proof of the claim. xGg^xGhA Vfl(x) = rr(y) for some

y G y ,y < x. But by the previous facts if y G y then
XA A

y = <n,I.(n) > for some n. Hence r(y) = ^(n). By an earlier

remark, I*(n) = <u,I (n) >,for some u and therefore rr(y) * ^fa)

Conversely, let x G H such that v„(x) = n G x. Since h dominates
n

•I. and since h is an increasing function, we must have

x = IA(n) =<n,h(n) >> <n,IA(n) >= If} (n)
9x

rr(lg (n)) =r(IA(n)) =Ix(n).

Hence if x G H and v„(x) G x then x G G. It follows that
ri

H - G = {x G H : v„(x) G y}. Since both X and Y = X are infinite
H

by hypothesis so must G and H - G be. We define t as follows:

B 9l

t(x) = \

r rr(y) if xG G and y = uz < x[z 6 [j- ^ v^) (z)
'B

= vG(x)]

rr(y) if xG h-G and y=yz <x[z G Cj A v^j (z)
d yi„

• VH-G(X)]

^ 0 if x ? H
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We claim that t is well defined and in £1(fP)(i >. 0).

First notice that t is defined by bounded quantifiers and logical

connectives from predicates in £ O^P)• Secondly, assuming t

well defined, we must have t(x) £ x, i.e. t is bounded by the

identity.

To show that t is well defined, suppose that x G g and

vG(x) = n. Since IQ(n) > IR(n) > IQ (n), Iq (n), it follows

that for each x € G there exists a unique y G y such that
B

VD (y) = vr.(x) and> moreover, such a y is smaller than x.

Similarly, if x G H - G and vu _(x) = n it follows that there
rl—b

exists a unique zG (j such that v/7 (y) = v (x). Thus we have

shown that t is well defined.

Also, if xG G and v_(x) •= n then the unique y G y such

that vp (y) =n is such that rr(y) = fx(n). Therefore if xG G

then t(x) = f„(v_(x)). One shows similarly that if x G H - G
X ur

then t(x) = f„(vu „(x)). This completely proves the theorem.

Q.E.D.
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6. ENUMERATION OF RECURSIVE SETS

We collect under this heading a number of results concern

ing recursive sets enumerated by one - to - one primitive

recursive functions or by one - to - one functions in one of the

Grzegorczyk classes.

Proposition 6.1. Let fG fi^^PXi > 0) be such that

f(x) >x for all x. Then Rg(f) G fi1^.

Proof. y G Rg(f) o 3 x <_ y(y = f(x)). The predicate within

brackets is in g1^).

Q.E.D.

Corollary 6.2. If fG g1 (Cp) (i >_ 0) is increasing then

Rg(f)G£i(^).

Proof. Any increasing function is such that f(x) ,> x for

all x.

Q.E.D.

The converse of this Corollary is not true.

Proposition 6.3. There exists a set A G £ whose increasing

enumeration is not in £ and which in fact is not even primitive

recursive.

Proof. Let g be a function as in Proposition 4.4 and let

A = y . By hypothesis g is not primitive recursive and A G e .
©

Since g is strictly increasing IA(n) =(n,g(n) ), and by

Proposition 3.3 rIA(n) = g(n). Hence IA cannot be primitive

recursive for if it were g would also be primitive recursive.

Contradiction. -29-
Q.E.D.



Proposition 6.4. A set AG g <fp) (i :> 0) is enumerated

by a one - one function in £ ((~P) if and only if I. G g (~p).

Proof. The "if" part is trivia.

Suppose on the other hand that I. G gX<f-P) but that

fe £ (<r) is a one - one function such that Rg(f) = A. Let

g(x) =max f(i). We claim that gG g <£p). For let h be defined
i<x

as follows:

h(x) = ut < x(V s < x)(f(s) £ f(t)).

Then h G g (Cp) t being defined by bounded minimization and

bounded quantification from predicates in £ H ) and being

bounded by the identity. Hence g(x) = f(h(x)) also belongs to

£1(£p). g takes values in A and,since f is one - one by hypoth

esis,the set {0,1,...,g(x)} contains at least x + 1 elements of

A. Now set

k(0) = uy < g(0)(cA(y) - 0)

k(x + 1) = uy < g(x + 1)(cA(y) = 0A y > k(x))

k(x) < g(x)

where c. is the representing function of A. k is defined by

bounded primitive recursion from functions and predicates in

gX<?-P) and belongs therefore to g1^). By the above remark

k is well defined and increasingly enumerates A contradicting

our assumption.

Q.E.D.

Corollary 6.5. There exist sets in g1C-P)(i >. 0) which
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are not enumerated by any one - one function in r .

That there exist recursive sets such as this was already

known (see [7],p.140,Problem 9, where it is shown that the range

of the Ackermann exponential is such a set).

We now characterize the recursive sets that can be enumerated

by a one - one primitive recursive function. In view of

Proposition 6.4 the following definition is useful.

Definition 6.6. A set is called strongly primitive recursive

if its increasing enumeration IA is primitive recursive. Similarly

Ais strongly in g^i >0) if I^g1.
Proposition 6.7. A set A is enumerated by a one - one func

tion in g (P) (i >. 0) if and only if A2 B where B is strongly

in £ (strongly primitive recursive).

Proof. Necessity. Let fG g (fp) be a one - one function

and Rg(f) = A. We construct a strictly increasing function h

such that Rg(h) = B C A. Let g(x) = max f(y). By the same
y<x

argument as in Proposition 6.4, gG g (fp). Define first a

function k as follows:

k(0) = uy < g(0)(v*z < g(0))(f(z) > f(y))

k(n + 1) = uy < g(n + 1) [f(y) > f(k(n)) A (V z < g(n + l))(f(z)

> f(k(n)) =>f(z) > f(y))]

k(n) <. g(n)

k is defined by primitive recursion and is therefore in £ 0*P) •

Set now h = fk. Then hG g1^). Rg(h) C Rg(f) = A. It remains
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to show that h is indeed increasing. The argument that follows

is typical of a class of counting arguments which will be

repeatedly used. We proceed by induction.

n = 0. Since f is one - one {f(0),f(1),...,f(g(0))} contains

at least one element >_ f(0) = g(0). Two cases may occur:

Case 1. max{f(0),f(l),...,f(g(0))} «= min{f(0) ,f(1) ,... ,f(g(0))}.

Then f(0),f(1),...,f(g(0)) has just one element, i.e. f(0)

= f(g(0)). This is possible only if g(0) =0 and hence f(0) = 0.

In this case f(l) > f(0) and hence among f(0) ,f(1) ,..., f(g(D)

there must be at least one element > f(0). This ensures that

f(k(l)) > f(k(0)).

Case 2. {f(0),f(1),...,f(g(0))} has at least two elements. f(k(0))

is the smallest of them and there exists an element z > f(k(0))

among f(0),f(1),...,f(g(l)).

n £ 1. We assume the induction hypothesis that k(0) <_ g(0),

k(l) < g(l),...,k(n) <.g(n),f(k(0) < f(k(l)) < ... < f(k(n)).

Again two cases may occur:

Case 1. {f(0),f(l),...,f(g(n))} has just n + 1 elements. This

can only happen when g(n) = n and hence, since f is one - one,

f(n + 1) > f(n). Since n + 1 < g(n + 1), f(n + 1) G {f(0),

...,f(g(n + 1))} and thus k(n+l) can be found which satisfies our claim.

Case 2. {f(0),f(1),...,f(g(n))} has has > n + 1 elements. Suppose for

reductio ad absurdum that there is no x <. g(n + 1) such that

f(x) > f(k(n)). But k(0),k(l),...,k(n) G {0,1,...,g(n)}. By

definition of k(n) and k(n - 1) it follows that x ^ k(0)A x ± k(l)

A ... A x * k(n) A x < g(n) => f(x) < f(k(n - 1)) A x > g(n - 1).

Therefore {0,1,...,g(n)} = {k(0),k(l),...,k(n)} U {x : x f k(n)

A g(n - 1) < x <. g(n)}. Also k(n) > g(n - 1), for if k(n) <_ g(n - 1)
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then g(n) > x > g(n - 1) =* f(x) > f(k(n)) contradicting our

hypothesis. Therefore {0,1,...,g(n - 1)} = {k(0),k(l),...,k(n - 1)}

and hence g(n - 1) = n - 1. As before we can now distinguish two

subcases:

Subcase 2.1. g(n) = n. Then f(n + 1) = n > f(n - 1) and k(n + 1)

can be found satisfying our requirements. Contradiction.

Subcase 2.2. g(n) > n. Then k(n) is such that f(k(n)) is the

smallest z among f(0),f(1),...,f(g(n)) such that z > f(k(n - 1))

and there is at least another candidate for k(n + 1) among these

elements. Contradiction.

Sufficiency. Let A2Band Ifi Gg1^). By Proposition 5.2
there exists a set GG g1^) such that r(G) = A - B is where r

is our standard first projection. We can assume that r one - one

on G. Define f by

^r(n) if n G G

f(n) =<

-VW if n*G

f is clearly in g (p). It is immediate that f is one - one

and enumerates A.

Q.E.D.

The intuitive content of the previous Proposition is that

sets enumerated by one - one functions in £ cannot be very

sparse. More precisely, the increasing enumeration IA of such

a set A does not dominate all primitive recursive functions since

if A 3 B and In G g1 then I.(n) < I_(n) for infinitely many n.

There exist recursive sets A which are not primitive
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recursive and such that both A and A are enumerated by one - one

functions in g1. An instance of such a set is A = 2X U (4^AI + 1)

and A = 2X U (4o\f+ 3), where X is some recursive and not prim

itive recursive set. By the criterion offered by Proposition 6.7

both A and A are enumerated by one - one functions in c •

Intuitively, a set can be considered very sparse if its

increasing enumeration dominates every primitive recursive func

tion. For example the range of the Ackermann exponential is in

this sense very sparse. The next Proposition shows that if a set

is primitive recursive then either the set or its complement are

not very sparse and, even more, one of them can be enumerated by

a one - one primitive recursive function.

Proposition 6.8. Let GG g1^)^ > 3) be a set. Suppose

that In dominates all functions in g1^). Then Ghas aone -
G

one enumeration in o Q~P).

Proof. We shall prove the theorem for i = 3. The same proof

will work for all g1 and for (T>. By Proposition 6.7 it is

enough to show that G 3 B and I G £- .

Since In dominates all functions of c it dominates Xn(2n) .
G

Thus there exists an m such that for n > m we have Iq(*0 > 2n.

Hence for n > m, G possesses not more than n elements in {0,1,...,2n>

Suppose now that x G G, v (x) = k and k > m. Thus in the set

{0,1,...,x} there are exactly k + 1 elements of G.

We now claim that the set {0,1,...,x + (x - 2k + 2)} contains

at least one element of G which is > x. For, suppose to the

contrary that among x + 1, x + 2,...,2x - 2k + 2 there is no

element of G which does not already appear in {0,1,...,x}. Then
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the set {0,1,...,2x - 2k + 2} has 2x - 2k + 3- (x + 1) + (k + 1)

« x - k + 3 elements in G. But by our hypothesis there are at

most x -k + 1 such elements. This contradiction proves the

claim.

f(0) = x^

^f(n) +1 if f(n) +1GG

Let now xn GGbe such that vG(xQ) >mand define fas follows:

^0

r

f(n + 1) = /
uy(f(n) <y < 2f(n) - 2k + 2) where k = vQ(f(n)+l)

L if f(n) + 1 G G

f(n) < 2nxQ

fG g.3 and increasingly enumerates the set BC G we need.

Q.E.D.

O0 A 1+The sets enumerated by one - one functions in o- admit a

remarkable characterization.

Proposition 6.9. If fG g° and f is one - one, the

range of f is cofinite.

Proof, By Proposition 3.1 there exists a constant k such

that for all n, f(n) <n+ k. Suppose that Rg(f) is co - infinite

Let xQ,x1,...,xk be the first kelements of JU -Rg(f) and let n
be big enough that {f(0),...,f(n)} contains all elements 1^ of

Rg(f). The {f(0),...,f(n)} must contain all element p>n+ k.

But for i < n we have f(i) <i+k<n+kand hence p < n + k.

Contradiction.

Q.E.D.
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Corollary 6.10. There exists no recursive set such that

both the set and its complement are infinite and are enumerated

by one - one functions in g .
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7. GENERATORS FOR THE GROUP OF RECURSIVE PERMUTATIONS

The recursive permutations form a multiplicative group when

multiplication is interpreted as the composition of functions

and the inverse as the inverse function. We shall denote this

group by IR. Throughout this section we shall restrict our

attention to the case of g . Our results and our proofs remain

unchanged in the case of O (i > 1) or of (-.

Let us denote by P the set of permutations of the form

tt it , n 0...ir« it- when n is even and of the form
n n—l n—z z l

it it -tt 0...tt « TTn when n is odd, where tt. G ^ . Analogously,
n n—± n—z z x i

let us denote by P • the set of permutations of the form

tt it , ir «... tt« it. when n is even and of the form
n n—i n—z z i

tt~ tt . tt~ «... tt« tt7 when n is odd. Thus the permutations of
n n—l n—z z i

O are precisely the permutations of P 1 and their inverses are

the permutations of P '. We shall sometimes say that a perm

utation is of length n if it belongs to P or to IP '.

Proposition 7.1. The permutations of £ do not form a

group.

Proof. P- is closed under composition and hence we have

to show that it is not closed under inverses.

Let G G £ be a set whose increasing enumeration I„

dominates all primitive recursive functions. G can be chosen

infinite and co-infinite (see Proposition 4.5). Now define

tt as follows:



2vG(x) if xG G

TT(x) =

2v-(x) + 1 if x G G

Since G^b we have tt G £ and since G is infinite and co-

infinite tt is a permutation. Now notice that tt~ (2n) = Ir(n).
G

Hence if tt belonged to g so would I contradicting our

hypothesis.

Q.E.D.

Thus the inverse of a permutation in £ can grow extremely

fast on a set whose increasing enumeration is in £ .

The functions of £ are recursively enumerable in the

following sense. If H-K^iM is an acceptable Godel numbering

of all the partial recursive functions [12, Exercise 2-10], there

exists a total recursive function o such that £ = {d> ,.s: i G \l}
Cf(l)

[7,9]. The next result shows that no matter what recursively

enumerable class of total functions we may choose the permutations

of length 5 generated by this class do not exhaust the recursive

permutations.

Theorem 7.2 (Blum). Let C = {<J> ,.^1 iG^;\j} be a recursively

enumerable class of total recursive functions. There exists a

recursive permutation different from all the permutations of

length 5 generated by the class.

Proof. Let x be a total recursive functions enumerating

all quintuples <i_,i«,i3,i,,i5 > of indices i, (1 <. k £ 5)

enumerated by a. Our goal is to construct a recursive permutation

that will differ from all the permutations of the form
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tt.tt. Tf«TT. TT, or ir. tt.tt0 tt^tt- , where the ir *s are permutations
54321 54321' i

in C* We describe the computation of tt in the following informal

procedure for enumerating the graph of tt. The computation will

keep two lists of quintuples as enumerated by x and will proceed

in stages.

Stages n. Using t, append to the bottom of each of the two

lists a quintuple that does not already appear in it. Let x be

the smallest element that has not as yet been placed in the domain

of tt and y the smallest element that has not as yet been placed

in the range of it.

Substage 1(2). Examine in order all the quintuples of the

first (second) list. Find the quintuple closest to the top of

the list for which there exists z ±x (z <_ y) such that ^(z)

= tt..(x) (tt, (z) = Tr5(y)) (For simplicity of notation we denote

<J> by tt if <i.,i2,i3,i,,i5 > is the quintuple under consideration)
k

If there is no quintuple satisfying the above conditions go to

Substage 2(the next stage). When and if such a quintuple is found,

look for the smallest u such that ir, (u) ^ ^o^2) (^o^) ^ ^3(2))

and such that tt_(u) (tt-(u)) has not as yet been placed in the range

(domain) of tt. When such a u is found, place the pair <x,tt (u) >

(<y,Tr-(u) )) in the graph of tt and delete the quintuple from the

first (second) list. If during the search for u it is found that

tt,(tt ) or tt (tt ) take the same value for different arguments

delete the quintuple from the list and proceed again at the begin

ning of the substage.

To prove the theorem, let tt., tt_, tt«, it,, tt be permutations

in (/, and assume that at stage nQ a quintuple of indices for
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these permutations has been placed on the list. Since tt and

tt« are permutations, there exist infinitely many pairs (x,z)

such that tt«(z) = tt_ (x) and z <_ x, for otherwise, as can easily

be seen by induction, tt« tt- would not be onto. Thus during

Substage 1 the search for z has infinitely many opportunities

to succeed.

After our quintuple has appeared on the list there must be

a stage at which it will be the quintuple closest to the top of

the list for which such a z is found. Indeed there are only

finitely many quintuples preceding the one under consideration

and, once a z has been found for a quintuple, that quintuple is

altogether eliminated from the list. Assuming now that the

quintuple is the closest to the top for which z is found, tt.(z)

has a certain value. Since tt, and tt,. are permutations and only

finitely many elements were so far placed in the range of tt, u

must be found such that tt,(u) ^ tt«(z) and such that tt_(u) has

not as yet occurred in the range of tt. The search for this u

is made by successively computing tt,(0), it, (1) ,... ,tt_(0) ,tt (1) ,...

During this search it may be found that tt, or tt_ are not one-one

which also results in their deletion. This possibility must be

taken into consideration as in general C does not consist only

of permutations. As a matter of fact in the cases which interest

us it most certainly will not contain only permutations since it

can be shown that the permutations of £ are not recursively

enumerable. However if tt_,...,tt are permutations then

tt_it, tt_tt_ tt- TT- (x) ^ tt_(u). By our construction, though,

tt(x) = tt,-(u) and hence we have succeeded in making tt ^ ^""a 7T37T> 7V
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It is similarly seen that Substage 2 of our construction will

-1 —1 —1
make tt f£ tt tt.tt. tt tt . It is immediate from the construction

that tt is one-one. Finally, since Substage 1 places all integers

in the domain while Substage 2 does the same for the range it

follows that tt is a permutation.

Q.E.D.

Corollary 7.3. R =V^ and IR i P'.
All attempts to generalize Theorem 7.2 to numbers larger

than 5 have failed. The reason is that, as shown by our next

theorem, 1R = P'. This came as a surprise since even if the

permutations of g generate K it is not a priori clear that

a bound can be placed on the number of permutations needed to

generate an arbitrary recursive one.

Theorem 7.4. 1R =Pj.
Proof. The inclusion P •C IR is by definition. To show
•—~~~"" b

the converse let tt be an arbitrary recursive permutation. Let

Tr(2c_AI) mXand ir(2o\f+ D =X. Let AG g1 be aset such that
both I and 1^ are in g1 and AnX, Anx, AnX, AOXare
infinite. The graph y of tt is a recursive set. Let G be a

TT

set in g such that r(G) = ^ and that r is increasing on G .
TT

It follows that G is infinite and co-infinite. Such a set G can

be found by Proposition 5.2. To every pair (x,y) of natural

numbers such that y = tt(x) there corresponds exactly one element

z G G such that x = l(r(z)) and y = r(r(z)). Let us set a(z)

= l(r(z)) and v(z) « r(r(z)). The functions a and v are obviously

in £ . Since 1 and r are one-one on \j so are a and v on G.

-41-



The set G is the union of the following four disjoint sets

H = {z G G : a(z) G 2o\l A v(z) G A}

H« = {z G G : a(z) G 2JUA v(z) Ga}

^ ={z Gg : a(z) G2JU+1Av(z) GA}
K2 {z GG: a(z) G2JK+ 1Av(z) GA}

Since both Gand Aare in g so are H^, H2, ^ and K2.

We now define functions ir^l < i < 6) as follows:

tt1(x) =

( a(x) if x GKx UK2

L2VK-U-KT(X) ifxGKlUK2
x z

r 3vR jj K (x) if x GK;L UK2

*2(x) =< 3\(x)+1 if x G K,

3v (x) + 2 if x G K2
VK

m if x G Yi± U H2

VX>= S 3\UH2U K2(X) +1 ifxGHlUH2UK2

TT4(X)

TT5(x)

r

3v (x) + 2 if x G K2

lA(2vHi«) if xGHl
v(x) if x G H« U K,

V^UH^K^^ if x GHx UH2 UK2

r IA(2vH (x)) if xG Hx

IA(2vR (x)) if x G Kx
=

^
^^uT^ if^HluKl
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v(x) if icSHjU^

Vx)
W^Ut™ ifxeHluKl

These definitions are schematically represented in the

following diagram:

*1 *2 *3 *4 *5 ^6
v

l? \ -ia(2JU)-— \ *anX

2oM- Kx UK«—^3AK

a

2JU + l-*—

V

H« •» A n x-« L » A n x

v v

^-^3^+ l^^UHgUi^ ^IA(2A(+ 1>*-KX *A OX

K«—^3cAI+ 2•* K2 •AHX « M *•AnX

It immediately follows from these definitions that

aO^ UH2) =2oW aO^ UK2) =2^A) +1

vC^ UKx) -A v(H2 Uk2) =2J+1

We now proceed to show that the tt .•s are permutations in

g . That tt. G g is immediate from their definitions, for

all sets and functions involved are in c .

tt is certainly onto since a(K- U K«) = 2^_AI + 1 and

2v y (K- U K2) =2jU as ^ U K£ is infinite. Moreover, a

is one-one on K- U K2 and vr—g-=r is one-one on K^ u K2» Hence

tt. is a permutation. For tt«, we have V£—g^ one-one on R. u K^,
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v one-one on Kj, v one-one on K«, and tt«(K1 U K«)

=3o\(, ^2^ =3°^ +1* ^2^2* =3°^ 2* Thus *2 is aperm~
utation. afl^ UH2) =2o\|; hence tt3(H Uh2) =3<Jll and tt« is
one-one on H- U h« since a is. As for tt. we see that "^(H- U K«)

= 3lA) + 1 and tt«(K«) = 3^AI + 2 and that tt« is a permutation.

tt^(H2 U k2) = v(H2 U K2) =A and ir, is one-one on H2 u K2» vR is one-

one on H- and I. is one-one and hence tt,(H-) = IA(2^/\I). Similarly,

tt4 is one-one on HjUh UK2 and ir^G^ U^U k2) =IA(2^\I + 1).

Hence t*(H« u K«) = I.CAl) = A; ir, is also a permutation. For tt

we see as for tt that ^(H- uK-) =IaCM) =A> that *5(H- u1^)

= A and that tt is one-one. Finally, "^(H, u K.) « A and tt is

one-one on H- U K- because v is. irfi maps H- U K- one-one onto A

and this proves that tt is also a permutation.

—1 —1 -1
Let us set tt1 = Tr,Tr_ Tr.Tr« tt«tt- . We claim that tt1 = tt. By

o 5 4 j Z X

our previous remarks, tt tt-tt (2;J\I) = H- U H«, tt tt,(H-)

=H1, iTg^) =AnX, tt4(H2) =v(H2) =AOX, irgir"1^ HX) =AOX.
By the definition of H- and H2 it follows that for each zG H1 U H2

we have Trf(a(z)) = v(z) = Tr(a(z)) and hence tt and tt' agree on

aO^ Uh2) =2JU.

A similar argument convinces us that tt and tt1 agree on

2(_AJ + 1, thereby completely proving the theorem.

Q.E.D.

Our next goal is to show that IR =Pfi. We need the

following

Proposition 7.5. Let tt be a recursive permutation. There

exists an infinite and co-infinite set A G £- and infinite sets

G and H in g1 such that tt(A) 2 g and it (A) 2 H-
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Proof. Let g be the function in g ,given by Proposition

4.6, which enumerates 9 - in the same order as the recursive
* TT-X

function Xx <x,tt~ (x) >. By Proposition 4.6 the set

K«{<u +1, g(u +1) >:g(u) ^g(u +1)} is in g1 and rrIR(n) =n,
lrl^n) «tt"1^). Set v(x) =rr(x) and a(x) = £r(x). Then

vl-.(n) = n and alv(n) = tt (n). To simplify the notation, set

IK(n) = kn.

We define now an infinite set L in g with the property

that aL.(x -) > I„(l ), where, as in the case of K, we denote

I (n) by 1 . L will be the range of the function h defined below.
L ' n

The functions t(n,m,z) and lgth(z) have been defined in Section 3.

h(0) = 0

h(l) = uy[y G KA y ><<h(0) >> A a(y) > IKh(0)

AVu(u > y -*- a(u) > IRh(0))]

h(n + 1) = uy[y G k A y > <<h(0) ,h(l),... ,h(n) >>

Aa(y) > IRh(n) A V u(u >y -*• a(u) > IRh(n))]

To show that L is a set in g notice first that there are

exactly u + 1 elements s in K such that a(s) <_ u. With this

observation the following holds:

y e l -w- (3z < y)(3^ < y)tlgth(z) = n + 1

A(Vm < n)(3u <y)(a(y) >uAuG kA vr(u) = t(n,m,z)

A vs < y(s G K A a(s) <. u) = u + 1) ]

All the quantifiers are bounded and all the functions are

in g . This proves that L^ C .

Let G = {x :xG L A vL(x) is even}

H = {x : x G L A v (x) is odd }
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and denote I~(n) by g and I„(n) by h . G and H are obviously
vx n n n

sets in £ • By the definition of K the following inequalities

hold:

a(k ) > k
0 80

a(k, ) > k

aO^ ) > k
8n

a(k )
sl

a(k )
g2

a(k )
sn+l

>kh
n

Denoting the set {m,m + 1, m + 2,...,n} by [m,n], let

us set

A - [0,k ]U (J [v + l, k ]
s0 i>0 i gi+l

Hence A = vJ [k + 1, k, ]. It is immediate that A is in c •
i^O gi hi

We show by induction that the sets A, G and H we just defined

satisfy our Proposition. gn G tt(A) since tt (gn) = a(k ) £ k
u u g0 g0

and [0,k ]C A. hQ G tt(A) since tt" (hQ) = a(k, )<1^ and-1
r i

>0 v "0 "0

a(lc ) > k and [k + k, k, ]C A. g G tt(A) since tt" (gn.,)\ g0 gQ TiQ - n+1 n+1
= a(k ) < k and a(k ) > k, and [k. + 1, k ] C A.

8n+l 8n+l 8n+l n n 8n+l

h _G tt(A) since tt x(h^.1) = a(h, ) <. k, and a(k, ) > k^n«a.^ = a^
n+1 n+1 n+1 6n+l

and [k + 1, lc ] C A. Hence ir(A) 3 G and tt(A) 2 H-
8n+l n+1

Q.E.D.

Let us briefly remark that the previous Proposition is not
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trivial in the sense that there exist recursive sets X which

do not contain any infinite primitive recursive set. We shall

call such sets internally strange. One can show, by a direct

construction which we omit, that there exist recursive sets X

such that both X and X are internally strange. In fact, if this

were not the case one could simplify the proof of Theorem 7.4

and show that P = Pi. However, as our previous Proposition

showed, a recursive permutation cannot map all primitive recursive

sets only onto internally strange sets.

Theorem 7.6. P «Pg.

Proof. As in Theorem 7.4, the inclusion P& £ IR is by

definition. We prove now K CF^.

Let A, G and Hbe the sets in g given by Proposition 7.5

for which tt(A) 2 g and tt(A) 2 H« We can assume without loss of

generality that tt(A) - G and tt(A) - H are infinite; for if one

of them is finite, say tt(A) - G, we only have to replace G by

{x GG:vg(x) G2uW}.
Let Kbe aset in g1 such that r(K) = \3^ and let a(z) -lr(z)

and v(z) = rr(z). As in Theorem 7.4, if tt(x) = y, there is a unique

zG K such that a(z) = x and v(z) = y. a and v are in £• and

are one-one on K. The set K is the union of following four disjoint

sets:

Hx = {z GK:a(z) GAAv(z) GGUH}

K- = {z G K : a(z) G A A v(z) G G}

H2 = {z GK :a(z) GAA v(z) GGUH}

K2 - {z GK:a(z) GAAv(z) G H}
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Again H., K-, H« and K„ are sets in o • The permutations

tt. (1 j< i <_ 6) are now defined as follows:

2vA(x),

tt1(x) =

2v-(x) + 1

r 2vAa(x)

ir2Cx) =/

2\ U v <x> + 1
^ Hl Kl
r
4v„ (x)

Hl
^3(x) =/ 4vGv(x) + 2

2v \Jv (x) + 1
V. Hl Kl
r

4v„ (x)
Hl

2v-a(x) + 1

if x G A

if x G A

if x G H U H

if x G H U K

if x € H,

if x G K,

if x e Hx U Kx

if x 6 H,

if x G H,

Vx) I
4VIL ULUL(X) + 2 ifxGHlUH2UK2
2v-a(x) + 1

r
3v

G U H
v(x)

Vx) =<3\UH2UK2(X) +1
3vHv(x) + 2

v.

3v
G U H

(x)

TT, (X) = < 3V^(X) + 1

L3vR(x) + 2

if x G K,

if x G R U H2

if x G H1 U H2 U K2

if x G K„

if x G G U H

if x G G

if x G H

The following diagram represents these definitions:
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%**'<—H, >4«T-«—H,
>3JP -« GuW

A^—>2&i*— L, -*z x'ii<— Wz

It is now easily checked, as in the proof of Theorem 7.4,

that tt a tC tt.tt" w tT-V.
6 5 4 3 2 1

Q.E.D.

Theorem 7.7. »« 1i±i5. Pt fP1+1JPJ£Pj+1.
P±* P^.

Proof. Immediate form Corollary 7.3 and Theorem 7.4.

Q.E.D.
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8. THE PEEMUTATIONS g°.

The permutations of g do not generate the group of

recursive permutations. This is ultimately due to the fact that

the functions of g are bounded by Xx(x + k) (see §3). Theorem

8.3 of this section shows that, as a consequence of this, perm

utations generated by permutations in g. always map a set X such

that both X and X are enumerable by one-one primitive recursive

functions onto a set with the same property. Hence the permutations

of £: do not generate the recursive ones. Let us remark that the

proofs of Section 7 do not hold in the case of g since one-one

functions in o can not enumerate both a set and its complement.

This last property-was essential in the proofs we presented there.

We start this section by showing that the permutations of g do

not form a group.

Theorem 8.1. There exist permutations in c whose inverse

is not in o . Hence the permutations of g do not form a group.

Proof. By Proposition 3.1, for any function f in g° there

exists a constant k such that for all x, f(x) < x + k. Our goal

is to construct a permutation f in g such that V £ 3y(f"1(y)

>. y + A), ensuring thereby that f is not in g°.

The following permutation f will satisfy our theorem:

f(0) = 0

x + 1 if x + 2 is not a power of 2

f(x) =^ uy < x(y is a power of 2) - 1 if

x + 2 is a power of 2.
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A few values of f are listed below:

f(0) = 0 f(8) = 9

f(l) « 2 f(9) = 10

f(2) = 1 f(10) o ii

f(3) = 4 f(ll) = 12

f(4) = 5 f(12) = 13

f(5) - 6 f(13) = 14

f(6) - 3 f(14) = 7

f(7) = 8

f can be easily defined in g since, by Corollary 3.7,

the predicate "x is a power of 2" is in g . f is onto since,

if x + 1 is not a power of 2, f(x - 1) = x and, if x + 1 is a

power of 2, f(2x) = x. f is evidently one-one.

To show that f is not in c notice that the sequence

Iqb0, i. =1, L = 3 t =2 - 1, ... has the property

that for all i, Jx(x > f(x) + a.) since 22, = f(2& ) + l .
—' — i n n n

Q.E.D.

Proposition 8.2. Let tt G o be a permutation and Y an

infinite and co-infinite set such that both Y and Y can be

enumerated by one-one primitive recursive functions. Then

x = tt (Y) and X = tt (Y) can be enumerated by one-one primitive

recursive functions.

Proof. Since tt G £-, t there exists a constant k such that

for all x, tt(x) < x + k (Proposition 3.1). By Proposition 6.7

there exist sets G and H with primitive recursive increasing

enumeration such that Y^G and Y 3 H. It follows that both
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G and H are also strongly primitive recursive.

Set G' = tT^G) and H1 = iT^H). We shall show that G*

is strongly primitive recursive. For every n and x, let 3(n,x)

= (I-I_)n(x). It is immediate that $ is a primitive recursive
G G

function. Hence the function y defined by the equation

Y(n) = 6((n + 1) k + n + 1, Ig(n))

is also primitive recursive.

We now claim that for all n, y(n) e G and that there exist

(n+1) k+ n+ 1 elements x of G such that Ig(n) <x < y(n).

For (n+l)k + n+l>0 and hence, by the definition of Y and

3, Y(n) ^ G. Now, if xG G then Iq(x) >. x and in fact, since

IG(x) G G, IG(x) > x. Further, IqIq(x) > Iq(x) and, since

I-I0(x) G G, I^Ip(x) > I„(x). Hence if x G G, x and B(l,x) are
G G (j b w

separated by one element in G. An induction argument shows

immediately that x and $(m,x) are separated by m elements of G.

This proves the claim.

Let us now define a function h as follows:

h(0) = ux <_ y(0) + 1(tt(x) G G)

h(n + 1) = yx £ Y(n + 1) + n + 1 (x > h(n) A tt(x) G g)

Clearly, h is primitive recursive and irh(n) G G, i.e.

h enumerates a subset of Gf.

Let us show that it actually enumerates G1. We show by

induction on n that there are at least n+1 elements x <_ y(h) + n

such that tt(x) G G.
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n = 0. Suppose to the contrary that for all x <_ y(0) + 1

we have tt(x) ^ G. There exists then x <_ y(0) + 1 such that

tt(x) > Is(y(0) + 1). But, by our previous claim, there exist at
~~ G

least k + 1 elements of G preceding y(0) an^ there are also

Y(0) + 2 elements y of G such that y £ I^(y(0) + 2). Hence,

tt(x) > I^(y(0) + 1) > y(0) + k + 2. On the other hand,
—" G -**

tt(x) < x + k <. y(0) + k + 1. Contradiction.

n+1. Let us assume the induction hypothesis that there

exist n+1 elements x such that x <_ Y(n) + n and that tt(x) ^ G.

Suppose, contradicting our claim, that there are not more than

n elements x such that x£Y(n + l) +n+l and tt(x) G g. Hence

among the elements <_Y(n+l)+n+l there are Y(n + l)+n + 2-n

« Y(n + 1) + 2 elements x such that tt(x) G g. There exists,

therefore, an element x£Y(n + l)+n+l such that tt(x)

> I-(y(ii + 1) + 1. Reasoning as for the case n = 0, we find that
"~ G

MY(n + 1) + 1) > Y(n + 1) + 1 + (n + 2) k + n + 2 = Y(n + 1)
G

+ (n + 2) k + n + 3. But tt(x) < x + k < y(n + 1) + n + 1 and this

is a contradiciton.

This concludes the proof that h enumerates G1 increasingly

and hence that G1 is strongly primitive recursive.

A similar agument proves that Hf is strongly primitive

recursive. Since Gf £ X and H1 C X it follows that X and X are

indeed enumerable by one-one primitive recursive functions.

Q.E.D.

Theorem 8.3. The group of permutations generated by the

permutations in g contains only permutations which map a set

X such that both X and X are enumerable by one-one primitive
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recursive functions onto sets Y ,with the same property. Hence,

the permutations of g do not generate the group of recursive

permutations.

Proof. Clearly, if tt G g is a permutation and X and X

are both enumerable by one-one primitive recursive functions,

the same hodls for tt(X) and tt(X). By the previous Proposition

tt (X) and tt (X) are also enumerable by one-one primitive

recursive functions. Hence, by induction on the length of a

permutation generated by permutations of o » the same is true

for such a permutation. Therefore the permutations of c do

not generate all the recursive permutations, since it is easy

to construct a recursive permutation which does not have this

property (e.g. any permutation mapping the even integers and the

odd integers onto internally strange sets).

Q.E.D.
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