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ABSTRACT

Given an edge-weighted and node-weighted directed graph G with n

nodes, we can define for every 1 _< m _< n a subset of m nodes called a

1 2
p-median ' of G. (If we interpret edge-weights as distances and node-

weights as masses, the case m=l corresponds roughly to the "center of

mass" in G). We show that every p-median induces a partition of the nodes

set into p subsets, exhibiting a certain optimality (theorem 1).

An algorithm for finding all 2-medians of a graph is also presented.

As a side benefit, the solution method also yields all 1-medians.
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Preliminary Definitions

IK is the set of strictly positive real numbers.

|s| is the cardinality of the set S.

An edge-weighted node-weighted directed graph is a 4-tuple G =

(N,,^A »d,w) where

N is a finite set; |n| = n. Elements of N are called nodes.

,^4;C NxN Elements of o"4 are called arcs.

d: j( -> IR+ U{0} If (x,y)e J(t we call d(x,y) the distance
from x to y.

w: N •*• R If x e N, then w(x) is the weight of node x.

If x and y are nodes, a path from x to y is a set of edges {(x,x..),

(x1,x2), (x2,x3),...,(x^,y)}. The length of a path P is the sum of all

edge-weights in P. The shortest distance from x to y, denoted d(x,y),

is the length of a shortest path from x to y.

Definition The shortest distance from a subset of nodes S to a node x,

denoted d(S,x), is defined by

d(S,x) A min d(y,x).
yeS

In the following, p is an integer satisfying 1 <_ p <_ m.

1 2
Definition ' A subset of nodes S is a p-median for G if

(i) |S | = p

(ii) /J w(x)d(S,x)^ \* w(x)d(T,x) for every TCn
xeN xeN

with |T| = p.

Partition induced by a p-median.

Let S C N be a p-median of G.

-2-



Let {x-,x«,..., x } be an enumeration of S.
12 p

We can define subsets X. ,X«,..., X of N in the following way,
1 Z p

(i) xkeXk and x^ if j#c.

(ii) For each x e N-S, compute the sequence

d(x1,x), d(x2,x), , d(x ,x).

The minimum element in this sequence may occur more

than once. We let x e X, if d(x_ ,x) is the first

minimum in the sequence.

It is seen that each xeN belongs to precisely one X, . Hence we

have that

P

and X.H x. = <J> if i 4 j.

Definition The set {X }p constructed by (i) and (ii) above is called
k k=l

the partition of N induced by S (with respect to the given enumeration

of S).

Definition A p-partition of N is a partition of N into p subsets.

Definition If {Y }p is a p-partition of N, we can find a 1-median for
i=l

each of the p subgraphs created by the partition. Let y. be a 1-median

of the subgraph corresponding to Y.. The value of the partition {Y }p
1 i i=l

denoted V({Y.}), is defined by

P

V({Y±})A^ ^ w(y)d(yi>y)
i=l yeY.
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The following result shows why p-medians can be useful in various

applications.

Theorem 1 Let {X }p be a p-partition of N induced by a p-median.
1 i=l

Let {Y }p be any other p-partition of N.
i=l

Then

V({X±}) < V({Y±>).

Proof Let {X }be induced by the p-median S = {x- ,x0 x }.
1 1 2. p

Let T = {y1,y2,...,y } be the set of 1-medians of the subgraphs

corresponding to Y.,Y2,...,Y respectively.

We have

Now

V({Y±}) A^ ^ w(y)d(yi,y)
i-1 yeYi

d(y ,y) > min d(y ,y) A d(T,y).
1 ,T ^T Jyj£T

Hence V({Y±}) > J^ w(y)d(T,y) (1)
yeN

But \ ^w(y)d(T,y) >_ N ^w(x)d(S,x) since S is a p-median.
yeN xeN

Also V\00;i(s»x) Ay^w(x) min d(y,x)
xeN xeN yeS

P

i«l xeX±

since {X.} is induced by S.
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Let x. be the 1-median of X for each i.

By definition of 1-median we must have for each i that

xeX.

Thus, summing (4) over all i, we have

P

V* w(x)d(Xi,x) >_V* w(x)d(x*,x) (4)
xeX. xeX±

y^ 5Z w(x)5(xi»x) -J2 5^ w(x)d(x*,x) (5)
i=l xeXi i=l xeX,

But by definition of V({X±}) we have

y^ y^ w(X)d(x*,x) aV({xi»
i=l xeX

Putting (1),(2),(3),(5),(6) together, we get the desired inequality. a

An algorithm to find all the 2-medians of G.

Notice that if {u,v} is a 2-median for G, then condition (ii) in the

definition of p-median above reduces to

P

y^ w(x) min {d(u,x),d(v,x)> <Y^w(x) min {d(u',x) ,d(vf ,x)} (*)
xeN xeN

for every u',vfeN with u'^v'

Thus, if we compute the right-hand side of (*) for every pair

(u',vf), the pair that yields a smallest value will be a 2-median. The

method we present below is such an exhaustive scheme, but is computationally

efficient and conceptually simple.

Given two nxn matrices A,B with real entries, let us define a binary
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matrix operation * by

C=A*B <==> C is nxn and c.. = > min {a.. ,b. .}
ij 2-^ ik k3

Given the graph G, order the node set in some fashion, say

N = {x1,x2, xn>.

[3 4]A very efficient algorithm ' can be used to compute the matrix of

shortest distances D whose entries are

5±j - a<vV

Defining w A w(x ), we can form the matrix

w.

W A

w,

w. o

o
w

n

The computation of the right-hand side of (*) for all pairs (u^v1) then

reduces to the computation of the matrix

(DW)*(DW)T (t)

Since (t) is symmetric, every minimum element a., above the diagonal

in (t) corresponds to a 2-median {x.,x }. Further, all 2-medians can be

found this way.
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Remark 1 Since every undirected graph G can be considered as a directed

graph with a symmetric distance matrix, the above method works for un

directed graphs as well.

Remark 2 Putting u=v and uf=v' in (*), we have a necessary and sufficient

condition for {u} to be a 1-median. Thus each 1-median corresponds to a

diagonal in (t) which is minium among all diagonal elements.

Example Let G be the undirected graph below (figure 1). The number in

side each node is its weight; the number beside each arc is its length.

-7-



x,

D =

x„

X,

W =

DW =

X X X

J

0 2 3 12 20 48

1 0 6 16 15 42

1 4 0 12 20 48

3 8 9 0 20 36

4 6 12 16 0 23

8 14 24 24 20 0
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(DW)*(DW)T =

85 72 82 61 41 (37

80 70 58 47 38

85 61 41 (37)

76 42 40

(£2' 38

I 90

symmetric

The minimum above-diagonal element is 37, corresponding to the two

2-medians

{x-pX^} and {x^,Xg}

The minimum entry on the diagonal is 62, corresponding to the single

1-median {x,-}.
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Figure 1: A node-veiehted edge-weighted undirected graph.
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