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1. Introduction

The purpose of this paper is to trace the development of optimal

control algorithms during the last twenty five years. This twenty five

year period has produced an immense literature on optimal control: well

in excess of 1000 papers and 100 books. Clearly, one can discuss

only a small fraction of these within the scope of a survey paper.

Consequently, rather than attempting the impossible in trying to pay

tribute to all the major contributors to the literature, we have

chosen the easier task of tracing, through the work of a small number

of contributors, the development of a number of algorithms, from their

humble beginnings as idealized methods for solving finite dimensional

problems, to their current, highly sophisticated status.

In this survey, we restrict ourselves to algorithms for solving

optimal control problems whose dynamics are described by ordinary differ

ential equations. Although discrete time optimal control problems are

not mentioned explicitly, it is hoped that the reader will recognize that

these are solvable by the finite dimensional versions of the algorithms

described in this paper. The reader who needs more details on this, will

find them in [1.3] and in [1.12]. Problems with partial differential

equations or difference-differential equations dynamics are so different
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in structure from ordinary optimal control problems that it was found

inconvenient to include algorithms for their solution in this survey.

The paper is organized into sections, each dealing with a

specific class of algorithms. Each of the algorithms treated is described

in detail. However, in dealing with each algorithm, we have presented

only the most general results available, and we have given these a broad

brush treatment. Despite of this, we have made an effort to establish

the origins of the various optimal control algorithms included and to

exhibit their relationships with nonlinear programming algorithms. The

references are organized into groups, paralleling the sections, each

dealing with a specific class of algorithms, with the exception of the

first group which consists of books that can be used for general reference

work. Unfortunately, it was not feasible to compile a comprehensive

bibliography. The papers cited are simply those with which the author

is most familiar and which appear to be mentioned frequently.

We have used standard notation, e.g. Lm [tn, tf] denotes the space

of equivalence classes of measureable functions from [t0, tf] into (R ,

with the essential sup norm, L« [t~, tf] denotes the space of equivalence

classes of square integrable functions from [t0, t_] into DR. , C [tQ, t-]

denotes the space of continuous functions from [tn, tf] into (R , etc.

We use the symbols B»fl <• , •> for the norm and scalar product in

Euclidean space, and 0. II _, <• , .> in a Banach space B, and

for u, v£Lm [tQ, tf], Ug if £ "uOOH2 dt, <u, v>£ =
C0

<u(t), v(t)> dt.

fc0
r
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2. Gradient Methods

Gradient methods are used for solving unconstrained optimization

problems of the form

2.1. min {f(u)|u 6 B}.

In (2.1), B is a Banach space, on which there is defined a scalar product

<•,• >_ (B need not be a Hilbert space). The function f: B -»• R is
B

Frechet differentiable and it has the property that there exists a func

tion Vf: B •+ B such that

|f(u + h) - f(u) - <Vf(u),h > |
2.2. lim = 0

HhlL+ 0 HhlL
b o

In addition, it is usual to assume, (i) that f(•) has a global minimum,

and (ii) that f(u + Xh) has a (finite) minimizer X for any u, h e B. In

a gradient method, the successive iterates are defined by a relation of

of the following form. Assuming that uQ is given,

2.3 u±+1 = u± - Xj[ Vf(u±), i = 0,1,2,

where X. is a suitably chosen step size.

The first description of a gradient method of the form (2.3) is

attributed to Cauchy [2.6], in 1847. In 1944, Curry [2.9] showed that

when B= Rn and X. is chosen so as to minimize f(u± + XVf(^)) over

X > 0, the method is convergent, in the sense that any accumulation

point of the sequence {u.}" must satisfy Vf(u±) = 0. This particular

version of the method (2.3) is usually referred to as steepest descent.
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Basically, the steepest descent step length rule

2.4 X. = arg min f(u - XVf(u ))
1 X>0

must be regarded as non-implementable whenever f is not convex, and

highly expensive when f is convex. In the same paper, Curry observed

that (2.4) can be relaxed to the extent that the method remains convergent

(in the above indicated sense) when X. is chosen to be the first local
i

minimum of f(u. - XVf(u.)), i.e.
l i

2.5 X4 = min {X > 0 I<Vf(u.),Vf(u. - XVf(u.) >_ = 0}
i — • ii i B

The first practical and efficient step length rule is due to Goldstein

[2.12] who, in 1962, showed that X. may be chosen according to the "two-

line" rule:

2.6 - X.(l-a) <Vf(ui),Vf(u.) >fi < f(u± - X.Vf^)) - f^)

<- X±a <Vf(u±),Vf(ui) >B

where a G (0, •=• ). The importance of Goldstein's invention lies in the

fact that a X. satisfying (2.5) can be calculated in a finite number of

iterations of a step length subprocedure, such as (2.1.33) in Polak [1.12],

whereas X. as given by (2.4) or (2.5) cannot. A still simpler step length

rule was justified by Armijo [2.1] in 1966. Armijo defined X. by a "one-

line rule" which sets X = XQ3 ,where XQ > 0, 3 e (0,1) are arbitrary,

but fixed, and k is the smallest integer such that
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2.7 f(u± -X03kVf(u.)) -f(u±) <-XQ3k <Vf(u±) ,Vf(u±) >g

The step length rules (2.5) - (2.7) are all "closed loop" in the

sense that they involve a test which verifies that there has been an

adequate decrease in cost. In 1963 Polyak [2.16] published a set of "open

loop" step length rules which are simpler than any of the "closed loop"

rules. Unfortunately, to define such a rule one needs information about

f which is generally not available. Specifically, Polyak assumed that

B is a Hilbert space, and considered the more general iterative process,

which, for u_ given, defines

2.8 u±+1 = u± - Xjh^i^), i = 0,1,2,... .

He assumed that there were constants K- > 0, K_ > 0 and M > 0 such that

2.9 Oh4(u)0 < KJVf(u)ll_ v u e B, i = 0,1,2,...
i B — 1 B

2.10 <Vf(u1)fh±(u) >B >.K2llVf(u)llg, Vu€ B, i = 0,1,2,

2.11 «Vf(u) - Vf(v)IL <_MDu - vll , V u, v € B

and showed that if X. is chosen so that
i

2K

2.12 0 < e1± X. <— - e2. ^ > 0, ^ > 0

then f(u±+1) < f(u±), i, = 0,1,2,..., and vf(u±) +0asi + «. In (2.12)

e., e9 are arbitrary. In spirit, Polyak*s result has much more in common

-5-



with the classical approach to the solution of systems of nonlinear

equations than with optimization theory. Since K-, K- and M are

usually not available, even when they exist, the main merit of (2.12)

is to justify the common practice of using a fixed, heuristically

determined, X. in solving problems where function evaluations are pro

hibitively expensive.

Now consider the fixed time optimal control problem

2.13 min J h°(x(t),u(t),t)dt +L(x(t ))
fc0

subject to

2.14 IFx(t) = h(x(0.u(t)ft), x(tQ) = xQ,

where h: Rn x Rm x R1 => IRn, h°: Rn x Rm x R1 + R1, and

L: !Rn -> R are continuous in all arguments and their partial deriva

tives ~ ~ 9h -^— and ~ are also continuous in all arguments. The
v s' 3x' 3u* 9x ' 3u 3x

problem (2.13), (2.14) can be rewritten as

2.15 min {f(u)|u6 L™ [tQ,tf]},

with

2.16 f(u) = (J>(u,x(u))

where <j>: L™ [tQ,tf] xC-> R is defined by
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2.17 *(u,x) = I h0(x(t,u),u(t),t)dt

and x(t,u) denotes the solution of (2.14) for the given u. Thus, (2.15)

is actually a problem of the form

2.18 min {<{>(x,u) |r(x,u) = 0, xe C[tQ,tf], u€E Ljt^,^]}

and r is such that for every u, x(u) is the unique solution of r(x,u) = 0.

(We denote x(»,u) by x(u) here) .

A highly nontrivial difficulty in applying a gradient method to

(2.15) was encountered in the need for obtaining formulas for the

gradient of f(«) in (2.15). In particular, the fact that the classical

calculus of variations was always formulated in terms of first and sec

ond variations (weak and strong), rather than in terms of derivatives,

proved to be a substantial conceptual obstacle in this work. It appears

that this difficulty was resolved in classified projects some time before

any results were published. In the open literature we find in, 1959, a

description by Breakwell [2.4] of the following approach based on the use

of multiplier functions. Proceeding formally in the framework of (2,18),

and reasoning as if the problem were defined on R , he set

defined on Rn, he set

2.19 H(x,u,p) = <{>(x,u) +<p,r(x,u) >

and observed that if Vf(u) for (2.15) exists, then it is given by

2.20 Vf(u) = VuH(x(u),u,p)
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with p determined by

2.21 V H(x(u),u,p) = 0.
x

In terms of the problem (2.13), (2.14), he concluded that (2.19) - (2.21)

must assume the form

2.22 H(x,u,p,t) =tAx^t)- <p,h(x,u,t) >

2.23 vf(u)(t) =[|^h°(x(t,u),u(t),t)]T -[|u-h(x(t,u),u(t),t)]Tp(t)

and

2.24 IFp(t)= [̂ H(x(t»u)'u(t)'t)]T

=-[|-h(x(t,u),u(t),t)]Tp(t) +[|rh°(x(t,u),u(t),t)]

2.24a P(tf) =-[|x-L(x<tf'u))] '

Whereas the validity of (2.23), (2.24), for ue Lm [tQ,tf] and under the

assumptions stated earlier, is generally recognized, it is difficult to

find a text or a paper where these are explicitly established. Theorem

(10.7.3) in Dieudonne" [2.10] seems to come closest to filling this need.

The first use of the formulas (2.23) - (2.24) in a gradient method,

is generally attributed to Bryson and Denham [2.5] (1962). Also in 1962,

Shatrovskii [2.17] and Kelley [2.14] published their_versions of.a gradient

method for solving the problem (2.13) and (2.14). None of this work
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contained a proof of convergence. It was deemed sufficient to show that

the cost will decrease at each iteration. Inspite of its lack of mathe

matical sophistication, this early work was of very great practical

significance, because it resulted in the solution of a number of important

aeronautical problems and demonstrated beyond a doubt that an optimal

control approach can yield valuable results. In conjunction with the

Pontryagin Maximum Principle [1.13], this work eventually provided the

impetus to a veritable flood of papers on optimal control.

It is interesting to note that due to a lack of communications,

the adoption of demonstrably convergent step size rules such as (2.6)

and (2.7) has been slow in the optimal control algorithm user community.

It is only in 1971 (see Sec. 2.5 in [1.12]) that we find these step size

rules explicitly associated with optimal control algorithms.
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3. Newton-Raphson Method.

Newton's method (which is also refered to as the Newton-Raphson

method) was originally proposed as a method for solving equations of

the form g(u) = 0, with g: R -*• R continuously differentiable. It

constructed iterates according to

3 -13.1 u±+1 = u± - [-gjj- g(u±)] g(u±), i = 0,1,2,...

3 —1
which obviously requires that [ •=— g(u )] exist. The method has an

obvious generalization to the case where g: IK -»• IK , i.e. (3.1) re

mains the iteration formula. Eq. (3.1) can be justified heuristically

as resulting from the solution of g(u + 6u) = 0 to first order terms.

In the 1930's, extensions of the Newton-Raphson method to the case where

g: B ->- B, with B a Banach space, were considered by such well known

numerical analysts as Ostrowski and Kantorovich. The most famous early

result was published by Kantorovich [3.14] in 1949. He showed, under the

3 -1
assumption that the operator [ t— g(u)] is well defined for all u £ B,

du

and that it satisfies a Lipstitz condition, that there exist constants

K- > 0, K« > 0 such that if u satisfies g(u) = 0, and IIuQ - uO is suf

ficiently small, then the sequence defined by (3.1) converges to u and

satisfies

3.2 Hu. -S| <Kx £ 62 ,i=0, 1, 2,
k=i

with

3.3 6 =K2 lux - u0»B

Thus,if uQ is such that 6<1, then u± -»• usuperlinearly, i.e. IIu± -uil fi -* 0
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faster than K01, for any K >0 and any 9e (0,1). In fact, it can be

deduced from (3.3), that for some K^ > 0,

3.4 0ui+1 -ull £K3 Hu± -Gil2, i=0,1,2,..

Relation (3.4) gave rise to the definition of "quadratic convergence".

Kantorovich^ result has been sharpened and refined over the years in

various ways. However, we shall not dwell on this work.

As far as the problem (2.1) is concerned, if we set g(u) = Vf(u),

then, since an optimal u for (2.1) satisfies Vf(u) =0, we can hope to

compute such a u as the limit point of a sequence {u^-q generated

by the Newton-Raphson formula

32 -13.5 u.,- = u. - [-^ f(u.)] X Vf(u ), i = 0,1,2,...
1_KL x 3u

3 32(since |^- Vf(u) =-^ f(u)).
3u

The iteration formula (3.5) can also be justified by reasoning that

given a u., we calculate u.,- by minimizing the quadrate approximation
i i+1

3.6 f±(u) = f(Ul) +<Vf(Ul),u - u± >fi

+I<u-Ui'72f(ui)(u-Ui)>B
3u

to f(u). As far as the problem (2.1) is concerned, the first major

breakthrough in the application of Newton's method is due to Goldstein

13.10] (1965). He assumed (for B= Rn) that there exist constants
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0 < m <_ M such that

2

3.7 mllvll2 <<v, -^r f(u)v >_ <Mllvll2 Vu, v e B.
o — z a — a

3u

Then for, u_ arbitrary, he defined the iteration process

32 -13.8 u±+1 =u. - X± [ *-£ f(u.)] XVf(u±), i=0,1,2,
3u

32 -13.9 -Xi(l-a) <Vf(u.), [2— f(u )] ^n(u±) y^
3u

32 -1
- £(ui+l) " £(ul) -" Af <Vf(ui>' ["H f(ui)] Vf(ui) 'b

3u

i = 0,1,2

Under the above assumption, Goldstein showed that a sequence {u.}

constructed according to (3.9) always satisfies (i) f(u.,n) < f(u.)
1"T*J. 1

for i = 0,1,2..., (ii) u. ->- u as i •*• °°, where u is the minimizer of

f(«)» and (iii) X. = 1 for all i >_ N for some N. It is not difficult

to see that these conclusions remain valid whenever f has a finite

number of local minima, provided (3.2) holds for u in neighborhood of

every local minimizer, except that u will be a local minimizer.

Thus, he showed that, by using a "feedback" type step size rule,

one can considerably extend the range of convergence of the Newton-Raphson

method, without sacrificing rate of convergence. Previous attempts to

achieve the same, usually,crossbred the Newton-Raphson method with a

constant step size gradient method. These attempts were not anywhere

near as successful as Goldstein's invention. Incidentally, it is not
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difficult to see that the somewhat cumbersome "two-line" rule (3.9) can

be replaced by the Armijo "one-line rule" (2.7) , suitably modified,

where it is necessary to set a £ (0, "j) •(see [1.12] Section 6.2).

The latest significant extension of the Newton-Raphson method was

developed in 1970-71, independently be Pshenichnyi [3.23] and by

Robinson [3.24], [3.25]. Robinson considered a system of equations and

inequalities

3.10 gl(u) = 0, g2(u) < 0

where g = (g1,g2) is a differentiable map from a Banach space B into

X C B. Given ufi, he defines the successive iterates as solutions of

3.11 min {llullB |gl(u.) +|^ g^)(u-u±) =0,

82(ui> +fs*2(u±>(u"ui) =0K

We see that when g2 = 0 and g.: B -*- B, (3.10) reduces to the ordinary

3 —1Newton method, provided [— g1(u)] exists. Robinson showed that a

sequence {u.} constructed according to (3.11) satisfies the Kantowich

bound (3.2). The importance of this result to optimal control lies in

the fact that it opens up the possibility of obtaining a superlinearly

convergent algorithm for solving the boundary value problems, with in

equality side conditions, which are a consequence of the Pontryagin

maximum principle [1.13] for optimal control problems with inequality con

straints on the initial and terminal state.

In applying the Newton-Raphson method to the optimal control problem
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(2.13) - (2.14), there was the question as to how one calculates the

operators needed in (3.5). Although formulas for calculating the second

variation in terms of multiplier functions had been known and used in

one manner or another in optimal control algorithms since the early

sixties by Breakwell et al. [3.7], McReinolds and Bryson [3.21], Kelley

et al. [3.17], and others, it was not until 1966 that Mitter [3.22]

stated correctly that to apply the Newton-Raphson method to the problem

(2.13) - (2.14) by minimizing the approximation (3.6), we need to solve the

problem below for 6u (•), <Sxi(«)

U 2
3.12 min { I ([ |- H. (t)]6u(t) +\ <«u(t) ,[—

2 a+^<6x(t),[^THi(t)]6x(t) >+<6x(t),[9u^Hi(t)] 6u(t) >) dt |

dt" 6x(t) =[̂ h(x(t'ui>ui(t>»t)]6x(t) +[|5h<x<t»ui>'ui(t),t)1
Su(t),

te [tQ,tf], 6x(tQ) = 0.}

where

3.13 H±(t) =h°(x(t,ui),ui(t),t) "<pi(t),h(x(t,ui),ui(t),t) >,

and p (•) is determined by (2.24) for u= u±. Once 6u± is computed,

one sets ui+1 =u± +6u±, calculates x(t,ui+1) and,replacing iby i+1,

one returns to 3.12.

Since the Newton-Raphson method is basically a method used for solving

equations, it can obviously be used for solving the Pontryagin optimality condi-
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tions for the optimal control problem defined by the cost (2.13), the

dynamics (2.14), with added boundary conditions gQ(x(t )) = 0, gf(x(tf)) = 0,

where g= (gQ,gf) maps R into R and has a nonsingular Jacobian every

where. We recall that according to the Pontryagin Maximum principle, if

u(*) is optimal for this problem, then there exists a multiplier function

p(«) satisfying the adjoint differential equation (2.24) for u = u, but

with boundary condition p(tf) =-[|j L(x(tf,u))]T +[Jj gf(x(tf,u)]T $
P^q) = f"ax" 80(x(u)(t0)] \1>Q, for some vectors *f>4»0 and, in addition,

3.14 ~H(x(t,a),G(t),p(t),t)) =0 a.e.

where H is defined as in (3.13), with u, p replacing u,, p .

In the case when (3.14) can be used to eliminate u(t) in terms of x(t,u)

and p(t), we are left with a boundary value problem of the form

3.15 f^x(t> =h(x(t),u(x,p)(t),t)

3.16 ^ p(t) =-|j [h(x(t),u(x,p)(t),t)]TP(t) -[Jj h°(x(t),u(x,p)(t),t)]T,

3.17 g0(x(tQ)) =0, gf(x(tf)) =0, G0(x(t0))p(t()) =*0, Gf(x(tf))p(tf) =^

There are currently two different ways of applying the Newton-Raphson

method to the solution of systems such as (3.15) - (3.17), and it appears

that these two variations of the Newton-Raphson method were known for some

time prior to their publication in the open literature. Consequently, it

is difficult to establish precedents. However, the following is clear,

in 1956, Goodman and Lance [3.12] showed that the Newton-Raphson method
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can be used to solve boundary value problems of the form

3.18 iL z(t) =k(z(t),t) tE[t(),tf]

3.18a So^O^ = °> Sf^^f)) =°

with g = (gQ,gf) mapping Rn into lf?n, by solving the equation

3.19 q(£) = 0

where ES [Rn and q(£) = (gQ(£) ,gf (z(tf ,£))) .
In this approach the successive iterates £ are initial values and

are constructed by solving the linear system

3.20a [%- o(p )](£ - £ ) = - o (f )
1 3z 80v^i'J^i+l *±' g0ui;

3.20b [|j g^z^,^))] ^.(tf)ai+1 -5±) =-gf(z(tf,£.)),

where ^±(tf) is the nxn matrix solution at t = t of

3.21 ^ *<t) =[~k(z(t,£iU)] *<t), HtQ) =I.

An alternative approach, named by Bellman quasilinearization, was

described by McGill and Kenneth [3.20] and Isaev and Sonin [3.13] in 1963

and by Bellman and Kalaba [3.6] in 1965. It iterates on the entire

trajectory z(t), rather than on the initial boundary value, and is de

fined, by analogy with (3.1), as follows. Given z0(*)> calculate z1+1(#)
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from z.(.) by solving the linear boundary value problem

3,22 IE ('i+iW^W) "Ih k<zi<t>>t>K<zi+1(t)-zi(t))

=-(^"^(t) "k^CtO.t))

3-23 [Ii «o(«i<to)1<"i+i(V-i<to)) =- 80(zi(t0):)

3-24 Ii «f<«±<tf»(wv-^tj» =- 8f(.±<t£))

Obviously, (3.22) - (3.24) simplify out to a linear boundary value prob

lem in z. .(t).

Incidentally, even when (3.14) cannot be used to eliminate u(«) from

the optimality conditions, the quasilinearization approach can still be

used for solving the system consisting of (3.14) - (3,17) where in (3.15),

(3.16) u must be considered as independent of x and p, see [1.12], [3.18].

This is not true of the Goodman-Lance version. It is also interesting to

note that, for some unknown reason the Goldstein or Armijo step size rules

are generally not used by the optimal control users community. The solution

of (3.20a), (3.20b) or of (3.22)-(3.26) may be quite difficult because of

ill conditioning. A clever method for improving the conditioning of these

systems was proposed by Abramov [3.2] in 1961, see also [1.12], This method

seems to be virtually unknown in the U.S.. Instead, following Kalman's

[3.13a], 1960 work on the linear-quadratic regulator, the approach in this

country has been to set x±(t) = K.(t)p (t) + q.(t), in (3.22) (recall,

z±(t) = (x±(t) .p^t)) for the optimal control problem), where K (t) and
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q.(t) are computed as solutions to matrix differential equations of the

Riccati type. This approach also gets around the ill conditioning of

(3.22) - (3.24. It involves less numerical work than the Abramov

method, and it may do a better job of reducing ill conditioning, but

it suffers from the disadvantage that the Riccati equation defining K±(f)

may not have a solution, which leads to numerical difficulties. For a

detailed exposition of these methods see [1.12].
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4. Conjugate Gradient Methods.

A conjugate gradient method was first proposed by Hestenes and

Stiefel [4.6] in 1952 as an algorithm for solving large systems of linear

equations in a finite number of variables. The method was then extended

in 1962 by Antosiewicz and Reinboldt [4.1] to operator equations in linear

spaces. In 1964, Fletcher and Reeves [4.5] observed, formally, that the

Hestenes-Stiefel method could be adopted for the solution of problems of

the form min {f(u) |u € R } with f: IR -* R continuously differentiable.

They showed that their method minimizes a quadrate function on R in no

more than n iterations, but gave no proofs for more general functions.

This method became quite popular because empirically it was found to have

a much faster rate of convergence than gradient methods.

It later turned out that Zoutendijk (1968) had an unpublished proof

of convergence for this method. This proof is sketched out in [1.12].

In 1969, a slightly different adaptation of the Hestenes-Stiefel

method was published, independently, by Polak and Ribiere [4.11], Polyak

[4.12], and Sorenson [4.14]. The first two of these papers contained proofs

of convergence for convex functions. Finally, in 1970, Cohen [4.2], using

some results of Daniel [4.3], showed that when all these methods are re

started every n-iterations, they converge n-step quadratically (i.e.,

they achieve in n steps a reduction of error comparable to the reduction

obtained by Newton's method in one iteration). An extension of the Fletcher-

Reeves method to optimal control problems of the form (2.13) - (2.14) was

described by Lasdon, Mitter and Warren [4.9] in 1967, and their experi

ments indicated that the Fletcher-Reeves conjugate gradient method
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converges considerably faster than steepest descent on optimal control

problems, as well. A more recent study by O'Kane [4.10], 1972, corroborated

the Lasdon-Mitter-Warren observations and, in addition, it showed that a

straightforward adaptation of the Klessig-Polak [4.8] (1971) implementa

tion of the Polak-Ribiere [4.11] method performed considerably better

than the usual adaptation of the Fletcher-Reeves method, on all the optimal

control problems which he tested.

To solve problem (2.15) by conjugate gradient methods one sets B =

L^ [tQ,t_], <«,. >B to be the L2 scalar product, and one computes gradients

according to (2.23) - (2.24). Then, given uQ, one sets hQ = - Vf(uQ) and,

for i = 0,1,2, ...

4.1 u.,- = u. + X.h.
l+l i i i

4.2 X. = arg min f(u_, + Xh.)
i i i

A>0

4.3 hi+1 = - Vf(u1+1) + Yih±

<Vf(ui+1), V£(u.+1)>B
4.4a Yj =i <Vf(u±), Vf(u±) >B

<Vf(u1+1) -vf(u,), Vf(ui+1)>B
* Yi <Vf(u±), Vf(u±) >fi

where (4.4a) is the Fletcher-Reeves formula for y. and (4.4b) is the

Polak-Ribiere-Polyak-Sorenson formula for y . The major difficulty in
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using these methods, as stated, lies in the need to calculate a good

approximation to X±, The Fletcher-Reeves method, in particular, is

known to be quite sensitive to an accumulation of errors due to poor

approximations to X . In the finite dimensional case, one gets rid of

the accumulated errors by restarting the process (4.1) - (4-4) every

n iterations. As we have already stated, according to Cohen [4.2], the

restarted algorithms are superlinearly convergent. However, for the

control problem, n is effectively infinite and hence the restart strategy

is not obvious. In 1971, Klessig and Polak [4.8] showed that the algorithm

using (4.4b) remains superlinearly convergent when a finite operations

type step size rule is substituted for (4.2). The robustness with re

spect to step size approximations of the algorithm using (4.4b) most

probably accounts for why O'Kane [4.10] found that the adaptation of this

algorithm performs considerably better than the adaptation of the Fletcher

Reeves method. Furthermore, he found that the secant procedure used in

the step size rule in [4.8] is considerably less costly in optimal

control problem applications than cubic interpellation type procedures

for approximating (4.2).

A heuristic extension of Cohen's results would lead one to suspect

that the rate of convergence of conjugate gradient methods for optimal

control is probably only linear, but with an exponential bound

K9 , i = 0, 1, 2..., where 9 £ [0,1] is much smaller than for any grad

ient method. The available empirical data is too scant to conclude much

more than that.
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5. Methods of Feasible Directions, Centers and Gradient Projection.

Feasible directions algorithms are best known in the context of

finite dimensional nonlinear programming problems. The earliest method

in this class was proposed in 1956 by Frank and Wolfe [5.11]. Its range

of application is limited to problems with affine constraints. Zoutendijk

[5.31] developed several general methods of feasible directions, some of

which are clearly related to the Frank-Wolfe method. In retrospect, his

work constitutes one of the principal contributions to the theory of

nonlinear programming. Other methods of feasible directions were described

by Zukhovitskii-Polyak-Primak [5.32] (1963), Huard [5.6], [5.12] (1966) (who

called his methods "methods of centers"), Topkis and Veinott [5.28] (1967).

Polak [5.23] (1969) [1.12] (1971), and Pironneau-Polak [5.20] (1971). Al

though in their final form Huard1s methods of centers are quite similar

to some of Zoutendijk*s methods of feasible directions, they were derived

in an entirely different manner, hence their name. The rate of convergence

of methods of centers was studied by Tremolieres [5.29] (1968) Lootsma

[5.18] (1970), Mifflin [5.19] (1971), and that of methods of centers and

of feasible directions by Pironneau-Polak [5.21], [5.22] (1972). Of all

the above mentioned nonlinear programming algorithms, only the Frank-

Wolfe and the Pironneau-Polak methods are readily adaptable to the solu

tion of certain optimal control problems.

The original Frank-Wolfe method solves problems of the form

5.1 min {f°(u)|u e a}

with f : (Rn -> R , strictly convex and continuously differentiable, and
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ft C Rn convex and compact. Given uQ e ft, the successive iterates are

given by

5.2 Ui+1 =u± + Xi^i~ui^J i=°» 1> 2---»

where u, is any solution of the problem

5.3 min {< Vf0^) ,u-u± > |u eft}

and

5.4 X. = arg min {f°(u, + X(u -u.))|X e [0,1]}.
i i ii'

In the period 1964-1965, Demyanov and Rubinov [1.6] published a

number of applications of their extension of the Frank-Wolfe method,

which they renamed as the conditional gradient method. In particular,

they showed that the Frank-Wolfe algorithm remains well defined and con

vergent when ft is a convex, weakly compact subset of a Banach space B,

and f°: B -> R is continuously Frechet differentiable.

Obviously, the direction finding subproblem (5.3) can only be solved

for special cases of ft. For example, following Demyanov and Rubinov [1.6],

consider the optimal control problem,

5.5 min {f°(u)|u e ft Ci£ LtQ,tf]

where

t
f

5.6a f°(u) = J h°(x(t,u),u(t),t)dt
fc0
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with x(t,u) defined as the solution of

5.6b |L x(t) =A(t)x(t) +B(t)u(t), x(tQ) =xQ, tE[tQ,tf],

and

5.7 ft ={u| |uj(t)| 11, j=1,2,..,m, te[tQ,tf]}.

In (5.5) , (5.6) , h : R x R x IR -* R is continuously differentiable,

and the matrices A(«), B(») are both continuous. Referring to (2.23),

(2.24), we see that for this case, (5.3) becomes

5.8 min {J([|^-h°(x(t,ui) ,UjL(t) ,t)](u(t) -u±(t) )
fc0

-<B(t)Tp1(t),u(t)-u1(t) »dt ||uj(t)| 11,

t€E [tQ,tf]}

where p (t) is determined by

5.9 IFPi(t) ="A<t)Tp±(t) +[|^h°(x(t,ui),ui(t),t)]T, te[tQ,tf],

P±(tf) = 0.

The problem (5.8) is obviously easy to solve. Among the various sets ft

for which the problem (5.3) remains solvable when f is defined by (5.6a),

(5.6b), Demyanov and Rubinov considered the cases ft = {u | flu(t)D <_ 1,
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fcf
te[t ,t ]} and ft ={u |J llu(t)fl2 dt <_ 1}. For an extensive treatment
see their book [1.6]. 0

In their paper, Frank and Wolfe showed that any sequence {u±} constructed

according to (5.2) converged to a u, which is optimal for (5.1). Further

more, they showed that II u, - ull <K/i, for some K > 0. This bound on the

speed of convergence is considerably slower than that on the previously discussed

gradient methods which converge linearly (i.e. IIu± - u» <_ K6 ,with 0e (0,1)).

It was shown in 1970 by Canon and Cullum [5.7] that the bound K/i cannot

be improved upon. To get around this difficulty, at least for optimal

control problems, also in 1970, Barnes [5.2], [5.3] added a quadratic term

in u(t) (based on a second order expansion to the integrand in (5.8).

This made no difference to the ease with which the "direction finding"

subproblem ((5.8) modified) could be solved, but, under certain reasonable

assumptions, produced linear convergence for the resulting method.

In 1969 Jacobson and Mayne [1.7a,5.13-15] proposed a series of closely related

algorithms which can, in no way, be viewed as an extension of an algorithm

for finite dimensional problems. In spite of this, they do bear an in

teresting similarity to the Frank-Wolfe method. To illustrate, in the

simplest of these algorithms, when applied to the problem (5.5) - (5.7),

they calculate u (t) by minimizing the Hamiltonian at u^O, i.e.

5.10 u (t) =arg min {h° (x(t,ui) ,v,t) - <p±(t) ,B(t)v >|

1^1 <1, j=1,2...,m}, te ft0,tf],

where p.(t) is given by (5.9). Then they set
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5.11 "i+i/') ~(uj(t) '<!<.'< t.ru^t; t0<t<t.

where t. £ (tQ,t ) is computed^so as to minimize the cost. There is an

obvious relationship between the direction finding subproblems (5.10) and

(5.8), but there is no relationship between the step length rules (5.4)

and (5.11). While they have not been able to produce a proof of conver

gence, Jacobson and Mayne have shown that their algorithms decrease the

cost at each iteration and that they have a number of computationally

attractive features. Also, these algorithms are qualitatively consistent

with existing general convergence theorems, such as those given in

Section 1.3 of [1.12]. Experimental results show that these algorithms are

very well behaved.

In 1971 Pironneau and Polak [5.20], [5.21] described a family of dual

methods of feasible directions for solving the problem

min {f°(z)|f:i(z) <_ 0, j= l,2...,m}

where fJ : B -»• R are continuously, Frechet differentiable functions.

They showed that their methods were convergent and that under the usual

assumptions they converged linearly. The reason for inventing a "dual"

type method was that when existing "primal" type algorithms are extended

to Banach spaces, they contain direction finding subproblems which are

as difficult to solve as the original problem.

For B = R , the simplest version of the Pironneau-Polak algorithm

proceeds as follows: given u., calculate multipliers vr(u.), j = 0,l,2...,m,
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by solving the finite dimensional quadratic programming problem,

mm m

5.12 max {£ yjfj(z±) -\ 0£ ujVfj (z±)ll2 |u>0, £ uj =1}
y i=l j=0 j=0

Then, set

m

5.13 h(z±) ="]^ ^(z^Vf^z^,
j=0

and, finally, set

zi+i = zi + xih<*i)•

k
where X = 3 X , with 3 e (0,1), X > 0 and k defined as the smallest

integer and that f? (z.+1) £0, j=1,2..., m and an obvious modifi

cation of the Armijo rule (2.7) is satisfied. This algorithm can be

used for solving optimal control problems of the form

4-

"f

5.14 min j h°(x(t),u(t),t)dt

subject to

5.15 fc*^ " h(x(t),u(t),t)

5.16a qj*(£) <0, j=1,2..., mQ, x(tQ) =5,
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5.16b q^(x(tf)) £0, j=1,2..., mf

where all the functions are continuously differentiable. The control u(')

is assumed to be in L* [tQ,tf], the initial state £<= Rn, and the variable

z is taken to be (5,u). The functions fJ are defined by relations of the

form: f°(z) =j h°(x(t,£,u) ,u(t) ,t)dt, fj (z) =qjjtt), j=1,2,..., mQ,
f^OO -qjf(x(tf,C,u)), j=1,2...,mf. The required gradients
are calculated by solving adjoint equations, essentially as in the gradient

methods, and the norm 11.11 in (5.12) is replaced by ll.il2 + II »U2 where

II* II2 denotes the L norm. With this, the subproblem (5.12) remains finite

dimensional and the algorithm convergent.

More sophisticated versions of this algorithm use only "e-active"

constraint functions f\ j e {l,2,...,m}, in the direction finding sub-

problem (5.12) (i.e. only those f^ for which f^(z ) >_ -eare used). This

makes (5.12) easier to solve, but, what is more important in the optimal

control case, it reduces substantially the number of adjoint equations

that need to be integrated so as to compute the coefficients for (5.12).

The values of e to be used at each iteration are determined by a test,

similar to the one first used by Zoutendijk [5.31] in I960.

The first gradient projection algorithm is attributed to Rosen [5.26],

1960. This method is particularly well suited for solving problems of

the form min {f°(z)|f^z) ,j=1,2. ..,m}, where f°: Rn -* R1, is con

tinuously differentiable and the f̂ : Rn -»• R ,j = l,2...,m, are affine.

The efficiency of Rosen's algorithm depends greatly on a clever utiliza

tion of the affinity of the constraint functions. There was some question
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as to the convergence of Rosen's original method, which led Rosen to

publishing an extension on [5.27]. Another modification of Rosen's original

method was published by Polak [5.23] in 1969. None of these methods have

seen direct application to continuous optimal control problems.

As far as optimal control problems are concerned, we find that in

1962 Bryson and Denham [2.5] published a heuristic gradient projection

method for problems with equality terminal state constraints. At about

the same time, Kelley [2.14] proposed his version of a heuristically justi

fied gradient projection method for the same class of problems.

In 1965 Demyanov [1.6] described a gradient projection method which

is not particularly attractive for nonlinear programming problems, but

which is easy to use for certain optimal control problems. The conver

gence and rate of convergence of this algorithm, for a class of step

length rules, was established by Polyak[5.25] in 1966. A related, Newton

direction projection method was shown to converge superlinearly by Levitin

and Polyak in their well known 1966 survey paper [5.17]. The original

Demyanov algorithm was designed for solving problems of the form

5.17 min {f°(u) lu e ft}

where ft is a weakly compact, convex subset of a Banach space B and

f : B -»• R is continuously Frechet differentiable, with gradient

Vf (•), as already explained for the gradient methods. Given u. € ft,

Demyanov proposed to construct u . £ ft according to

5.18 u.,, = u. + w.. , 1=0,1,2....
l+l i iX
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where for X ^ 0, u)., ^ Q ±a defined by

5.19 !U - XVf°(u.) - w, JL =min {llu. - XVf°(u.) - Jl |u€ ft}
i 1 iX B l i B

and, in the simplest case, X is chosen so that

5.20 f°(u. + a)., )=min f°(u. + u>.,)
1 lXi X>0 x lX

Levitin and Polyak [5.17] showed that when f°(-) is twice continuously
differentiable and strictly convex, the algorithm (5.18) remains con

vergent when X is taken to be any value in a certain interval, [a,b],

with 0 < a < b depending on bounds on the second derivative of f (•)•

As an application to optimal control, consider again the problem

(5.5) - (5.7). for this case, given u., Vf (u.) is as in (5.8), i.e.,

5.21 Vf°(u.)(t) =[f-h° (x(t,u ),u.(t),t)]T +
i dx ii

-[|^h(x(t,u±), ui(t),t)]T P±(t), te [tQ,tf]

and w.,(t), the projection of u - XVf (u.) on ft = {u(«)| |uJ(t)| <_ 1, j =
IX i i

l,2...,m}, is obviously given by

5.22 ^(t) =sat (u|(t) -XVfV^t)), t<= [tQ,tf], j=1,2,... ,m,

where sat x = x for |x| <_ 1 and sat x = x/|x| for |x| > 1. For further

examples, see the book by Demyanov and Rubinov [1.6].
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6. Feedback Solutions.

During the aarly 1950fs Bellman [6.1,6.2] developed the concept of the

"principle of optimality" into a conceptual method for solving dynamic

optimization problems. This method constitutes the first extension of

the classical calculus of variations to problems with inputs. The Bell

man method is known as dynamic programming, and it can be derived as

follows. Consider a typical optimal control problem: minimize

6.1 J h°(x,u,t)dt +L(x(tf))

subject to

6.2 dtx(t) = h(x(t),u(t),t) te [tQ,tf], x(tQ) = xQ,

6.3 u(t) e U, te [tQ,tf],

with h , h and L continuously differentiable. For any initial state x

and initial time t, Bellman introduced the optimal return function

V°(x,t) = J h°(x(s),u(s),s)ds +L(x(tf)),

where x(') and u(#) are the optimal trajectory and control, respectively,

for this starting point. Assuming that v (•»•) was continuously differen

tiable, he reasoned as follows. Suppose that for the first At seconds we

apply an arbitrary, constant, control u which takes us to the state x + Ax,

followed by the control which is optimal for the initial point (x + Ax,
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t + At). Then, clearly, we must have

6.4 V (x,t) = min {h (x,u,t)At + v (x+Ax,t(+At) }
u

=min {h°(x,u,t)At + V°(x,t) +|~ (x,t)Ax +|^- (x,t)At)}

Letting At -»• 0 and rearranging terms, we then obtain the Hamilton-Jacobi-

Bellman equation

8V° 0 8V°6.5 - j£- (x,t) = min {h (x,u,t) + — (x,t)h(x,u,t) },
u

with the boundary condition

6.6 V°(x(tf),tf) =L(x(tf)),

where in (6.5) we have made use of (6.2).

While (6.5) is not always valid without qualifications (see

Boltyanskii [6.6]), it shows that whenever it does hold, the optimal control

u(t) is a function of the state x(t), i.e. u(t) = u(x(t)). This feedback

form of the control was immediately recognized as being very important

by control engineers, who, in the past, had accumulated years of experience

with non-optimal feedback control and came to appreciate the many advan

tages it offered. Unfortunately, eqn. (6.5) turned out to be impossible

to solve in most cases of interest, due to the "curse of dimensionality".

To overcome this difficulty, in 1968, Larson [6.14], proposed a discretized

version of dynamic programming, which he called "Incremental Dynamic
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Programming". In spite of these attempts to make dynamic programming a

practical algorithm, it cannot be considered to be particularly successful

in this role, at least as far as deterministic problems are concerned.

The main use of dynamic programming has been as a conceptual tool, par

ticularly, before the Pontryagin maximum principle was well understood.

For example, the algorithms proposed by McReynolds [6.22], Mitter [3.22], Jacobson

and Mayne [1.7a] and many others have all been reasoned out in terms of

dynamic programming.

One of the most significant applications of dynamic programming is

due to Kalman [6.13] 1960, who used it to solve the so called Linear-

Quadratic Regulator problem, which is,

6.7 min {\ J[<x(t) ,Q(t)x(t) >+<u(t) ,R(t)u(t) >ldt

+± <x(tf),Sx(tf) >}

subject to

6.8 ~ x(t) = A(t)x(t) + B(t) u(t), x(t0) = xQ»

where A, B, Q and R are continuous matrices, and Q R and S are symmetric

and positive definite. Guessing that the solution of (6.5), (6.6) for

this case must be of the form

6.9 V°(x,t) =j<x,K(t)x >

where K(t) is a symmetric matrix, Kalman obtained from (6.5) that
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6.10 u(t) =-R"1(t)BT(t)K(t)x(t), te [tQ,tf]

Substituting back for u(t) into (6.5) and making use of (6.6), he concluded

(since the resulting equation had to hold for any x) that K(t) must be

given by

6.11 ^K(t) ="K(t)A(t) -AT(t)K(t) +K(t)F(t)K(t)
- Q(t); K(tf) = S,

—1 T
where F = BR B . Consequently, once K(t) is calculated, the optimal

control u is given by (6.10)

In 1967 Bucy [6.3] gave a set of conditions on the matrices in the problem

(6.7) (6.8) for K(t) as defined by the Riccati equation (6.11) to exist

and to be positive definite, as required for (6.10) to hold. Further

elaborations of this work can be found in Brockett [6.7], 1970, and, for

the discrete case, in Polak [1.12], 1971.

Probably, the first modern optimal control problem to be considered

was not the linear-quadratic regulator problem but the minimum time

regulator problem. This problem was motivated by a desire to elimi

nate disturbance effects in a system as quickly as possible and was the

catalyst which eventually brought the Pontryagin team to the now celebrated

maximum principle [1.13]. The minimum time regulator problem and the possi

bility of a relay or bang-bang type solution were considered by McDonald
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[6.21] in 1950, Hopkin [6.11] in 1950 and in 1953-1955, by Lerner [6.19,6.20],

Bogner and Kazda [6.4-6.5], Kalman [6.12], and many others. For an ex

haustive bibliography and discussion of this early work, the reader is

refered to Oldenburger [6.24]. The general structure of the solution to

this problem, for the case of linear dynamics, was studied in 1956 by

Bellman, Glicksberg and Gross [6.3], by Bushaw [6.9] in 1958 and by LaSalle

[6.15-6.16] In 1960. Bushaw1s work was particularly interesting in that

he showed that for scalar, second order systems of the form X + ax + bx = u,

with the constraint |u(t)| <_ 1, where it was necessary to transfer an ini

tial state (x(0),x(0)) at t = 0 to the origin (0,0), in the shortest possible

time, the phase plane could be divided by a single curve into two disjoint

parts, R_, R2, with the property that if (x(t),x(t)) € R^ then the optimal

control u(.) satisfies u(t) = + 1 and if (x(t),£(t)) e R2, then u(t) = -1.

For a detailed exposition of this work, see for example, Athans and Falt>

[1.1]. Thus, Bushaw succeeded in defining a feedback control law for this

class of problems. His work was later extended to nonlinear second order

systems by Lee and Markus [6.17,6.18], (1961) and, in 1961, to sampled

data systems by Desoer and Wing [6.10], Nelson [6.23] and Polak [6.25].

Similarly, it was found that simple minimum fuel or minimal energy regu

lator problems with second order dynamics could also be solved by dividing

the phase space in to control value regions (see [1.1] for a detailed ex

position and bibliography). Following the early success with second order

systems, there was a great deal of rather unsuccessful work'directed to

ward constructing practical computers for implementing the switching

surfaces which defined the "bang-bang" regions of the state space.
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Virtually none of this work seems to have survived the test of time.

Most of this work is listed in Chapter 1 of Oldenburger [6.24].

At the present time to solve free time optimal control problems,

such as the minimum time regulator problem, one uses one of several

possible transformations to convert these.problems into fixed time

problems and then uses one of the methods discussed in sections 2-5.

It is not clear who introduced these transformations first; one of the

earliest uses of them appears in Warga [6.26]. In any event, they form

part of our scientific folklore. For a typical example, see [1.12], p.

72. Obviously, a solution to a minimum time problem obtained, after

transformation, through the use of the earlier described algorithms, is

not a feedback solution. At present, the only practical way for obtain

ing an optimal feedback solution, seems to lie in the use of high speed

computers in sampled-data mode, i.e. in recomputing the optimal control

every T seconds, with T small.
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7. Iterative Methods for Minimum Time, Minimum Fuel and Minimum Energy

Optimal Control Problems with Linear Dynamics.

Consider problems of the form:

7.1 min j h°(u(t))dt
t
*0

subject to

7.2 j^ x(t) =A(t)x(t) +B(t)u(t)

7.3 x(tQ) =xQ, x(tf) €ft CRn; |uj(t)| <1, j=l,2...,m,
where A and B are continuous matrices, tf is either given or to be

found, ft is a convex, compact subset of R and h is of one of the
m

following three forms: h (u) = 1 (minimum time) ,h (u) = 2 Iu I
0 m 1 2 ^=1(minimum fuel), h (u) = Jj (u ) (minimum energy). There are several

j=l
related algorithms for solving these problems. Some of the first of

these algorithms were introduced by Krassovskii [7.6-7.7] and Kulikowski

[7.8-7.10] in 1959, as an outgrowth of the Krein L-problems of moments.

Krassovskii's algorithm was extended by Neustadt [7.12] (1960). Then,

Neustadt's method was independently rediscovered by Eaton [7.3] (1962).

This was followed by an algorithm, related to the conditional gradient

method, by Barr [7.1] and Barr and Gilbert [7.2], (1966), and finally by

two algorithms due to Polak [7.19] (1969) and Meyer and Polak [7.4] (1970)

All these methods have been proved to be convergent. Basically,

the feature which is common to all these algorithms is that they de-
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compose the original problem (7.1) - (7.3) into a sequence of problems

of the same form as (7.1) - (7.3), except that ft is replaced by a tangent

hyperplane. The following method is the simplest representative of this

class (see p. 219[1.12]). Suppose that tQ = 0, tf is given, that h (u) =
2

Hull ,and that ft = {x|Hxil <_ 1}, with xQ £ ft. Given v± e aft (the boundary

of ft), replace ft by the hyperplane

7.4 p. « {V| <v - v.,v > = 0}

Then, applying the Pontryagin maximum principle, we find that the optimal

co-state p (•), for the i-th iteration, satisfies the differential equa

tion

7.5 ^ P±(t) =-A(t)TPi(t), t6 [0,tf], P±(tf) =\±v±,

where X. is to be determined, and the corresponding optimal control is

given by

7.6 u.(t) = arg max {- Hull + BT(t)p (t)u},

|uJl£l

Thus we find that u.(t) depends on the unknown parameter X. in (7.5).

Substituting from (7.6) into (7.2), we then determine X from the boundary

condition x(tf,u.) £ P.. If x(tf,u ) = £ , it is clear that u is optimal

for the original problem. Otherwise, we set B, . = £. + u (x(t_,u.) - v ),

ftf 2where u. is such that V G 3ft and the corresponding cost, I Hu -(t)0 dt

is minimized, (with u.+1 and p.+1 calculated according to (7.5), (7.6),

with WV = xi+iW-
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Before we leave this class of problems, it may be interesting to

observe that these problems cannot be solved directly by any of the

algorithms described in the preceding sections. To apply the Pironneau-

Polak method [5.20], for example, one must use the substitutions uJ(t) =

cos v-'(t), j = 1,2,... ,m,and consider the vJ(«) as the controls. It

was shown in [5.20] that in conjunction with some small modifications to

the original Pironneau-Polak method, these transformations will not re

sult in jamming at spurious solutions.
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8. Penalty Function Methods.

Penalty function methods are distinguished into two classes:

exterior and interior. Exterior penalty function methods were first

described by Courant [8.6] in 1945, as a tool for solving boundary value

problems. The convergence properties of Courant's method were established

by Butler and Martin [8.2] in 1962. Since then, a large literature grew

up dealing with the use of penalty function methods in nonlinear pro

gramming. A comprehensive survey on this subject can be found in

Lootsma [8.18]. As far as optimal control problems are concerned, in

1962, Chang [8.4] used exterior penalty functions as a device for obtain

ing optimality conditions for problems with state space constraints and,

in the same year, Kelly [8.15] used them as a heuristically justified

computational tool. In 1965, Russel [8.22] showed that, at least for

problems whose dynamics are linear in the control, penalty functions

can be used to remove trajectory constraints, while in 1969 Cullum [8.7]

showed that in the more general case, the use of penalty functions may

lead to a solution of the relaxed optimal control problem, or to no

solution at all, rather than to a solution of the original problem. We

shall now elaborate on the above. For the moment, suppose that f :

lRn -* R1, j = 0,1,...,m and r: Rn -*• RS are continuously differentiable,

and consider the constrained optimization problem

8.1 min {f°(u)|f^(u) <_ 0, j= l,2...,m; r(u) = 0}.

Next, for any e > 0, define
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m

8.2 f°(u) =f°(u) +^ [Hr(u)ll2 +Y, (max {0,fj (u) })2j,
j=l

and consider the family of unconstrained optimization problems

8.3 min {f°(u) |u G Rn}, e>0.

The term-r- [ ] in (8.2) is the penalty function, and it is

strictly positive whenever u does not satisfy the constraints in (8.1).

It is not difficult to show on the basis of Butler and Martin's results

(e.g., see[1.12] for an exposition)that if u(e) is a solution of (8.3),

and, if for eI 0,u(e) •* u, then f°(u(c)) t f°(u), fJ (u) <0 for j=

l,2...,m, r(u) = 0, and f (ii) is the minimum value for (8.1), i.e. u

solves (8.1). This result could easily be anticipated, since the pen

alty in (8.3), for not satisfying the constraints of (8.1), goes to

infinity as el 0.

Now consider the optimal control problem

t„

8.3 min {J h°(x(t) ,u(t) ,t)dt
fc0

j£ x(t) = h(x(t),u(t),t),

x(tQ) =xQ; q;L(x(t)) <0, q2(u(t)) <0, t<E [tQ,tf]; r(x(tf)) = 0,

where q±: RD -^ RA, q^: Rr + lRm, r: [Rn ^Rs are all continuously

differentiable. Next, consider the unconstrained family of problems
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sf

8.4 min {j [h°(x(t) ,u(t) ,t) +j^ £ <max' {0,q^(x(t)) })

m

..,_ .^,._ i ii

e w "f'

j=l

t„ J-l

+^ <max <0>qj(u(t))})2] dt +± »r(x)t )

|^x(t) =h(x(t),u(t),t), x(tQ) =xQ}

The obvious conclusion as to what happens when e I 0 in (8.4) turns

out to be false.' The facts are as follows. It was shown by Russel [8.22],

under certain mild assumptions, that when h and h are linear in the

control u, the following holds. If u (•) is a solution of (8.4) and

x (•) the corresponding trajectory, and e 4- 0, as !-*•», a subsequence

of {u } converges weakly to an optimal control u(*) for (8.3) and the
Ei

corresponding subsequence of trajectories {x } converges strongly to
i

the corresponding optimal trajectory x(»). It was then shown by Cullum

[8.7] that when Russel's assumptions are relaxed, none of this may be true.

In fact, the costs of (8.4) may converge to a lower value than the optimal

value for (8.3), while the corresponding trajectories x (•) may converge

to a trajectory x(«) which is not admissible for (8.3), in the sense that

there is no admissible (measurable) control u(«), for (8.3), which results

in.x('). Thus, the situation in the case of optimal control problems is

much more complex than in the case of nonlinear programming problems.

Interior penalty functions were introduced by Carrol [8.3] in 1961 for

nonlinear programming problems. His results were subsequently considerably

developed by Fiacco and McCormak [8.10] (1964). An application to an

optimal control problem was described by Lasdon, Warren and Rice [8.17],

in 1967. To illustrate their use, suppose that r = 0 in (8.1), i.e.

it is not there, and consider the family of problems
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8.5 min {f °(u)lu e ft}
e

where ft = int {u|fJ(u) £0, j = l,2...,m} and for e > 0

m

8.6 f °(u) = f°(u) - e
£ ^'

Here the penalty term acts as a barrier for (8.5), keeping its solution

u away from the boundary of ft.

The problems (8.5) are essentially unconstrained, but to solve them

one needs a starting point ii £ ft. The computation of such a ii can be any

thing but trivial. It is this fact that restricts the use of interior

penalty functions in the solution of optimal control problems.

As far as the nonlinear programming problem (8.1) is concerned, with

r = 0, it was shown by Fiacco and McCormack [8.11] that for a general class

of interior penalty functions (the one in (8.6) being one example), the

solutions u have the following property. Suppose e -»• 0 and u -»- u.

Then f (u ) 4- f (ii) , and ii is optimal for (8.1). There seem to be no

parallel results in the literature for general optimal control problems

of the form (8.3).

Finally, it should be pointed out that a combination of interior and

exterior penalty functions can be used in solving problems such as (8.1).

For details, see Fiacco and McCormack [8.11], Lootsma [8.19], or Polak [1.12]

Another interesting application of penalty functions, in conjunction

with Ritz type expansions, has been in the removal of dynamic constraints.

This permits the_ substitution of quadrature for the integration of
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differential equations in the calculation of gradients, and tends to

reduce computing time in solving optimal control problems. The idea

of combining penalty functions with the Ritz method, to remove differential

equation constraints, is attributed to Kononenko (unpublished work prior

to 1968). Lions [8.18] (1968) used it for solving optimization problems

with partial differential equations, Balakrishnan [8.1] (1968) used it

as a convenient way of rederiving the Pontryagin maximum principle.

Since then, largely due to efforts by Balakrishnan, his students and others

[8.9] [8.13], [8,14], this method, which has become known as "the Balakrishnan

e-method", has been gaining acceptance as an important computational_tool.

A number of technical questions regarding its efficiency, convergence

and rate of convergence still remain open. So far, it was shown by

Balakrishnan [8.1] that the optimal values of the penalized problems will

converge to the optimal value of the relaxed problem. (In the relaxation

of problem (8.4) (see [8.23], for example) the original dynamics are re

placed by ~- x(t) e co h(x(t), U,t), where U = {u|q9(u) 4 0} and co de-
dt ^

notes the convex null.) Basically, the conclusion to be drawn from the

Cullum [8.7] and Balakrishnan [8.1] results is that optimal control prob

lems are frequently ill posed, or in a sense, unstable. It appears that

stability can often be regained by slightly relaxing the constraints.

We shall now illustrate the use of the "E-method". Consider the

problem

cJ h (x,u)8.7 min I h (x,u)dt

subject to
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8.8 dt X(t) =h(x(t)'u(t))) x(t0} =V X(tf} =Xf

where h°, h are both continuously differentiable, and assume that

ueL* [tQ,tf], x(t) eRn. Now, set

N
t - tn ^

8.9 xN(t) =xQ +(t _I )(xf "V +IJ ai Sin ±Ut'
f ° i=l

where w= 2TT/(tf-tQ) and a^c^,...,^ are undetermined vactor co

efficients. Next, consider the family of unconstrained optimization

problems, indexed by e > 0, N = 1,2,3,...,

8.10 min {f°>N(u,cO |ueLm [tQ,tf], a€RNn}

where

'f

8.11 fe,N<u'a) = j th°(xN(t),u(t))dt

+U"IF XN(t) -h(xH(t) 'U(t) ,t:) '2]dt-

As e •> 0 and N ->• «>, one may expect that a subsequence of the optimal

solutions xN(.) of (8.10) will converge strongly to an optimal trajectory

of the relaxation of (8.7). However, this has still not been proven.

It may yet turn out that it is necessary to drive e and N to their limits

in a correlated manner.

The obvious difficulty with the e-method is that it is not possible

to solve (8.10) for N large. However, it has been found empirically that

a good approximation to a desired solution can often be obtained for

fairly low values of N.
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9. Discretizations.

The numerical solution of an optimal control problem such as (8.3)

requires some form of discretization, at least to the extent that all

numerical methods for integrating differential equations involve dis

cretization. However, one may introduce discretizations for other

reasons as well, the primary one being that it makes the problem solvable

by some specific technique. Among the earliest discretizations are

those due to Rosen [9.13], [9.14] who, between 1964 and 1967, showed that

various discretizations of optimal control problems can be solved by

linear and nonlinear programming techniques. Rosen's approach was to

discretize the differential equation in the problem. By contrast,

Canon, Cullum and Polak [9.2] (1966) proposed using a standard sampled-

data discretization of the control, which restricts the control to a

class of piecewise constant functions with a fixed number of discontinuities

The intention of this discretization was to make the problem finite dimen

sional and hence solvable by various nonlinear programming algorithms.

The inevitable question to be asked was, what happens as the discretiza

tions are further and further refined? Among the first answers came those

of Cullum [9.3-9.6] who, in the period 1966-1971, showed (a) that

only under reasonably restrictive assumptions can one be sure that the

solutions of discretized problems will converge, in some sense, to the

solutions of the original problem, and (b) that it mattered considerably

how the discretizations were performed. For example, she showed that if

one discretized a free time problem, then one was almost certain that the

solutions of the discretized problem will not approximate a solution of
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the original problem. However, if one transformed the free time problem

into a fixed time problem and then discretized, then, at least in some

cases, one could be sure that the solutions of the discretized problem

would approximate a solution of the original problem. Similarly, she

showed that state space trajectories must be transformed into affine

constraints by the introduction of additional variables in order to make

the problem stable with respect to discretization. In addition she

showed that it may be necessary to relax constraints for the discretized

problem to be well defined. Other interesting results in this area are

due to Kirilloval9.8] (1963), Budak et al. [9.1] (1969) and Daniel [9.7,1.5] (1979)

In particular, Daniel showed that RoBon'fj approximations) wl I1 convurRe In

a Sobolev space under certain assumptions.

An entirely different aspect of discretization was explored by Polak

[9.11], [9.12] and Klessig and Polak [9.10] in the period 1969-1971. Their work

was motivated by a desire to reduce the great amount of time that is used

up in integrating differential equations at each iteration of the various

methods discussed in Sections 2-8 of this paper. In appendix A of [1.12],

we find a theory of adaptive approximations. The gyst of this theory

consists of a demonstration that there are a number of schemes for approxi

mating values of functions which can be used in an optimization algorithm, with

out affecting its convergence properties. The nature of these schemes is

that they use ccarse approximations in the early iterations and refine

the precision only when a test, build into the method, indicates that this

is necessary. Thus, only the last few iterations need to be carried out

with great precision and hence one obtains considerable savings in com

puting time. In [9.10] we find an analysis of such a scheme to be used in

-47-



conjunction with gradient methods, while in [9.12] the Pironneau-Polak

method of feasible directions [5.20] is extended to utilize adaptive

approximations.

Thus we have seen work on discretization evolve through three

stages. The first was the use of discretizations as the only means for

implementing an optimal control algorithm on a digital computer. In

the second stage we find answers as to whether progressively refined

discretization leads to a better and better approximation to the desired

solution. In this stage the successive discretizations are viewed as a

Ritz method. Finally, we encounter the last stage, where discretization

methods are constructed with a view of reducing the total work needed to

obtain a solution of pre-specified precision.
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