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ABSTRACT

The Hackenbush number system is a method of representing numbers by

expressing the integer part in unary and the fractional part in binary.

The representation absorbs the sign bit and binary point into the string

of binary digits which represents the number. Conversion between the

Hackenbush representation and the more conventional fixed and floating

point representations requires approximately the same small amount of

computation as is required to convert between the fixed and floating

representations. II the numbers to he represented are selected from a

known bounded distribution which has tails that fall off exponentially

or faster, the m-bit Hackenbush representation is typically more accurate

than any floating point representation. For example, if the numbers are

selected from the normal Gaussian distribution, the mean-square error of

the m-bit Hackenbush representation is less than the mean-square error

or any (arbitrarily complex) (m-l)-bit representation, and it is comparable

to the mean square quantization error of the (nri-n)-bit normalized float

ing point representation which has 1 bit of sign, n+1 bits of exponent,

and (m-2) bits of characteristic.
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1. INTRODUCTION

There are numerous occasions in which large arrays of numbers must

be transmitted between the computer's core memory and some larger and

slower storage device such as a disk or tape. For computational ease,

each of the numbers- usually occupies a full word of core memory, even

though the data from which it originated may be of more limited accuracy.

When the transfer of the array to the secondary storage device is a time-

consuming process, there are strong incentives to pack several array

numbers into a single computer word before these words are transferred to

secondary storage. This packing achieves a faster transfer time at the

expense of additional central processing work (conversion and packing).

The most commonly used compressed number formats are the fixed and

floating point representations. For example, the numbers in the original

array might be converted to an ad hoc 15-bit floating point representation,

using 1 bit of sign, 4 bits of exponent, and 10 bits of characteristic in

order to pack four of them into a 60-bit computer word. When the numbers

to be compressed have a known distribution, then the fixed and floating

point formats are all rather inefficient. For some distributions, there

are systems of representing the numbers which allow one to attain more

accuracy with 12 bits than any fixed or floating point representation

that uses 15 bits.

The theoretical question of how many bits are required to represent

numbers from a given distribution with a given accuracy has been studied

by many authors. Shannon (1948, 1959) derived the fundamental limits.

Elias (1970) introduced a new distortion measure which led to a number of

further theoretical results. His paper also includes an extensive review

of the work in this area. Algazi (1966), Goblick-Holsinger (1967) and
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others have investigated various "practical" quantization schemes. While

several of these schemes attain accuracy which is close to the Shannon

limit, they all require too much processing for the application described

above. The conversion of a full-word (i.e., real) number to a shorter

compressed (i.e., quantized) number in each of these schemes requires

access to a rather large table or a modest amount of computation, at

least comparable to the amount of computation required to evaluate an

elementary function like exp or log. The speed ratio between the central

processor and the input-output channel may not be large enough to make

this much processing economical. On the other hand, the conversion be

tween a standard full-word floating point number and its Hackenbush re

presentation can be accomplished on some computers with only a very small

amount of computation, roughly comparable to the amount of time required

to fix a floating point number.

2. THE HACKENBUSH NUMBER SYSTEM

Hackenbush numbers are represented by finite or semi-infinite

sequences of two letters: L and R.

Let X denote such a string and let |x| denote the real number which

X represents. Let X be the complement of X, obtained by replacing each

L by R and vice versa. Let "X rounded up", denoted by txt, be the number

obtained by converting each L to 1, each R to 0, and then placing a binary

point at the left and a terminal "rounding" one at the far right. For

example, tLLRLRRt = .1101001; tRRLt = .0011.

The rules for converting Hackenbush numbers to real numbers are as

follows:

l. IrxI = - IlxI
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2. |llx| » i + |lx|

3. |lrx| » txt

4. empty string « 0

As an example, we convert all Hackenbush strings of length 4 to

diadic rationals (i.e., rational numbers whose denominators are powers

of 2):

LLLL = 4

LLLR = 2 1/2

LLRL = 13/4

LLRR = 1 1/4

LRLL = 7/8

LRLR = 5/8

LRRL = 3/8

LRRR = 1/8

RLLL = -1/8

RLLR = -3/8

RLRL = -5/8

RLRR m -7/8

RRLL = -1 1/4

RRLR = -1 3/4

RRRL = -2 1/2

RRRR = -4

Every finite Hackenbush string represents a diadic rational, and

every diadic rational may be uniquely represented as a finite Hackenbush

string. The semi-infinite Hackenbush strings represent all real numbers

as well as the transfinite numbers w = LLLLL..., -a>. = RRRR..., and the
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infinitesimals 1/u) = LRRRR..., -l/w = RLLLL... Every real number which

is not a diadic rational has a unique representation as an infinite

Hackenbush string, while any diadic rational, y, is arbitrarily close to

the two InfLnlte Hackenbush strings that represent y + 1/w and y - l/o).

Thus 3/2 = LLR, 3/2 + 1/w = LLRLRRRRRRRR..., 3/2 - 1/w = LLRRLLLLLL...

On the other hand, the only Hackenbush string infinitesimally close to 1/3

is 1/3 = LRRLRLRLRLRL... Every real number is infinitesimally close to

at least one Hackenbush string.

An m-bit Hackenbush representation of a real number, x, is defined

as the first m bits of an infinite string which is infinitesimally close

to x. Referring to the above list of 4-bit Hackenbush numbers, we see

that the 4-bit representation of 1/3 = LRRLRLRL is LRRL = 3/8, which

happens also to be the nearest 4-blt Hackenbush number. However, II = LLLL

RRRLRRLR... has the 4-bit representation of LLLL = 4, even though LLLR

= 5/2 is closer. The 4-bit Hackenbush representation of 1 + 1/w is

LLRR, while the 4-bit Hackenbush representation of 1-1/u) is LRLL. Either

of these two expressions may be taken as a 4-bit Hackenbush representation

of 1.

Although the m-bit Hackenbush representation of y does not always

yield the m-bit Hackenbush number closest to y, it has the advantages of

flexibility and computational ease. One simply converts y to a very pre

cise Hackenbush representation and then picks off the leftmost m bits.

In a subsequent section we shall show that if y is a real number chosen

from a known distribution (c.f., the normal distribution), then the

accuracy of the m-bit Hackenbush representation is significantly better

than a normallized floating point representation with (m-3) bits of

characteristic, and only slightly worse than a floating point representation
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with (m-2) bits of characteristic, even though the floating point repre

sentations are allowed an arbitrarily large number of mantissa bits.

The mantissa bits give the floating point numbers greater accuracy in

representing very large or very small x, but these bits are usually

wasted when x is taken from a known reasonable distribution.

3. THE GAME OF HACKENBUSH

Despite its usefullness in compressing numberical data, the Hacken

bush number system was not invented for this purpose; it was discovered

in the process of solving a certain two-person perfect-information game

called Hackenbush. This game is played on a grounded graph. At each

turn, a player removes a branch of the graph, and all branches and nodes

which are no longer connected to the ground disappear. The game continues

until some player is no longer able to make a legal move, at which point

the game ends and the player unable to move loses. The name might be

related to the fact that the graph often looks like a bush at which the

players hack away.

In the original version of Hackenbush, which was invented by J. H.

Conway and was first publicized in M. Gardner's column on mathematical

games in the January 1972 issue of Scientific American, either player may

take any branch of the graph. This version is called neutral Hackenbush.

The number system to which this paper is devoted arises from a more com

plicated variation of the game, called left-right Hackenbush. In this

version, branches of the original graph are colored. Some are colored

Red, and some are colored Lavender. Each player is permitted to remove

only his own color. The player called L (for left) can take only lavender

branches, and the player called R (for right) can take only red branches.
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The Hackenbush number system proves very useful for solving this game,

especially when the graph is a tree. The role of this number system is

most clearly visible in the case when the graph is merely a sum of strings,

such as the graph of Fig. 1. Jn such a case, it can be proved that the

game may be solved in the following manner. Each string is assigned the

corresponding numerical value, and these numbers are added. If the re

sulting sum is positive, left can win no matter who moves first. If the

resulting sum is negative, right can win no matter who moves first. If

the resulting sum is zero, the game is so close that whoever moves second

can win. The following calculation thus reveals the game of Fig. 1 to

be a win for the second player.

LRL » 3/4

LLRRL =1-3/8

RLLL = -1/8

RR = z2

Total = 0

A forthcoming book by E. R. Berlekamp, J. H. Conway, and R. K. Guy

will discuss further aspects of left-right Hackenbush and many other

games, one of the most challenging of which is left-right-neutral Hacken

bush. In this version of Hackenbush, some branches are colored L or R,

but other branches may be taken by either player.

4. COMPARISON OF ACCURACY WITH FLOATING POINT REPRESENTATION

Let x be a random variable which assumes real values in the interval

a < x < b according to the distribution p(x). Let the interval be parti

tioned into N subintervals, each of length 6 = (b-a)/N, and suppose that

a quantizer approximates x by the midpoint of the subinterval within
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which x lies. Then the mean-square quantization error is given by

N *!**
I -V* I (x-(n-l/2)6)2 p(x)dx

n»l f,
a+(n-l)6

For small 6 and smooth p(x), this may be approximated by

— 2 b
I2 ,fr I p(x)dx•fit

The m-bit Hackenbush quantizer partitions the interval [0,1] into 2

subintervals; the interval [1,2], into 2m~ subintervals; the interval

[k,k+l] into 2 subintervals, so that for large m, its total mean-

square error is

•k+1

*;Li* Y! L,o o\ <P(*> + P(-x))dx (1)2Y L-u-9 91 <P<X> +P(-X>>dxHack.
"»^» 17(7 1 f

On the other hand, the quantizer which converts x to a normalized float

ing point number with 1 bit of sign, (m-2) bits of characteristic, and

and infinite number of mantissa bits partitions [1,2] into 2 sub-

internals; [2,4], into 2m~4; [4,8] into 2m"5,... while [1/2,1] is parti-
m—9 m—1

tioned into 2 " , [1/4,1/2], into 2 ~ ,... giving a total mean square

error of

J+l

*Float =^ i9/9»"J-3^ \ <P<X> +P(-X»dx <2>^ 12(2m~j""3)2 J (P(x) +p(-x))dx
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Notice that expressions (I) and (2) give equal weights to the sub-

intervals |1/2,1], I1,21, and |2,'J|, but that expression (2) gives a

~~2
lower weight to the Integrals over all other subregions. Hence I ^_

£pl t, although for many distributions, the difference is not large.

For example, if p(x) is the Gaussian distribution with mean zero and
2/oexp —x / 2.

variance one, then p(x) = —c . Letting the sum in Eq. (2)
JW

run from - « to «» gives e2 _« 2.89570/4m, while Eq. (1), with k
rloat

9 m

running from 0 to » , gives e . = 3.52016/4 . According to the classi

cal information theoretic limit of Shannon, the number of bits, m, which

a quantizer must output in order to approximate the normalized Gaussian

distribution with rms error e is given by m > R(e ), where the rate-

2 1
distortion function R(e ) = 1/2 log -r. Hence, the optimum m-bit quan-

2

tizer can not surpass e = 4~m, and it follows that the m-bit Hacken

bush quantizer is better than any (m-l)-bit quantization for normal

distribution.

While the standard deviation is the natural and most convenient unit

for the Hackenbush quantizer, it turns out not to be theoretically optimum.

If instead of encoding x, one Hackenbush quantizer encodes 1.03 x, the

-4
mean-square error Is reduced by about one part in 1.3 x 10 . Since the

multiplication becomes a significant fraction of the total time for the

Hackenbush encoding algorithm, this refinement merits consideration only

when the original distribution is unnormalized.
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Ground

Fig. 1. A position in the game of left-right
Hackenbush.
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