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1. Introduction

In this paper we continue the development of a theory of martingales

and stochastic integrals for processes with a two-dimensional parameter

which was initiated in [1], With little loss of generality we shall take

2
as parameter space the unit square T = [0,1] and define a partial ordering

for the points in T by

a <b * a <_ b , i « 1,2.

Let (ft, ^,(p) be a fixed probability space. A family of a-subfields

{j£ ,z G T} is said to be increasing if z>• z* => jf 3 ^ ,. Given an

increasing family { ¥ ,z e T}, we say a process {X ,z e T} is a martingale
2 Z

with respect to it, (or {X ,^f ,z £ T} is a martingale) if
z z

zVzf=*E X -X, almost surely
z z.

A Gaussian random function {W ,z £ T} is said to be a Wiener process

if it satisfies the conditions.

EW =0, z e T
z

EW/ \w/ t i\ B min(x,xf) min(y,yf)(x,y) (x1 ,yf) v;,;

Let {W ,z G T} be a Wiener process and denote by'*2</ the a-field generated

by W , c *^z. Then {W ,2^/>z € T} is a martingale. The martingale property
£> Z Z

of a Wiener process is obvious if we view W as the integral over the rec-
z

tangle ? < z of a Gaussian white noise [1]. More generally, we shall

say the pair {W ,^ ,z € T} is a Wiener process if it is a martingale and
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W is a Wiener process. Clearly, we must have ¥ 3 U.
z z

In this paper our objective is to study functionals of a Wiener

process and 6t/-martingales by means of a pair of stochastic integrals

/ ♦„ W(dz)
T Z

j]i/;(z1,z2)W(dz1)W(dz2)
TxT

where <J> and ty are random functions satisfying appropriate measurability and

integrability conditions. Integrals of the first type and a special case

of the second type were introduced in [1]. Our main result in this paper

is that if X is a functional of Wiener process {W ,z e T} and if E|x| < «
z

then X admits a representation of the form

X=J<f>zW(dz) +[J]if»(z1,z2)W(dz1)W(dz2)

It then follows from a martingale property of the stochastic integrals

that every *2J -martingale is of the form
z

M = Lw(dc) +[I] tyr _W(dd)W(dC9)
Z C^z C ?±<z C1,C2 1 2

i=l,2

Ito [2] introduced the concept of a multiple Wiener integral (more

appropriately named multiple Ito-Wiener integral)

1h(z1,z2,---,z )W(dz.) W(dz )
Tn
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where h is non-random, and showed that every functional of a Wiener process

can be represented in a series of multiple Ito-Wiener integrals. Clearly,

there is relationship between the two integrals that we introduce in this

paper and the multiple Ito-Wiener integrals. This relationship will be

explored in some detail.

2. Martingales on Increassing Paths.

2
We define a path in T = [0,1] as a continuous function e = [0,1] •+ T.

We shall say a path is increasing if a > 3 =* 6(a) > 6(3), and smooth if 9

has a continuous derivative on (0,1). Let {M ,J ,z € T} be a martingale
z z

and 6(0 an increasing path. Clearly, {Me(t) ,^e(t),t€E [0,1]} is aone-
parameter martingale. Therefore, a two-parameter martingale defines a

one-parameter martingale on every increasing path. Conversely, a two-

parameter process which is a one-parameter martingale on every increasing

path is a martingale. This is because if z> zf then we can take the path

8(t) - z' + (z-z')t and find

The characterization of two-parameter martingales as one-parameter martin

gales on increasing paths allows one to make use of results in one-parameter

martingale theory.

Let {Mz, #z,z € T} be amartingale such that almost all sample functions

are continuous. Then for every increasing path 6, {Mn/ ,*£~ ,0 < t < 1}
8(t) —^(t) — —

is a sample continuous martingale. As such, it is necessarily locally square

integrable, and then exists a unique continuous increasing function A such

that
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M9(t) " \

is an ^e/tN - local martingale [3]. We shall say ^Mz»y2» z^ T} is

path-independent if for every increasing path 0, A- depends only on the end-

points 6(0) and 6(1) and not on the points in between. For a path-independent

martingale M we can define a function <M,M > , z £ T as the increasing func-
z

tion A. for all paths connecting the points 6(0) = (0,0) and 8(1) = z. It

2 2
will then follow that {M - <M,M > , S , z € T} is a martingale if EM < «»

z z z z

and otherwise a local martingale. Here, we define a two-parameter local

martingale as a process which is a local martingale on every increasing path.

We can call <M,M > the increasing process of M, since z ^ zf =* <M,M > >_

<M,M > ,. Conversely, a sample continuous martingale M is necessarily path-
z

2
independent if we can find an increasing process <M,M > such that M - <M,M >

is a local martingale. It is easy to verify that a Wiener process is a path-

independent martingale with

(2.1) <W,W > = Area(c<z).

3. Stochastic Integrals.

Let {W ,% ,z e T} be a Wiener process. Integrals of the form
z z

:XW =J<Kz)W(dz)
T

have been defined in [1], and will be referred to as stochastic integrals

of the first type. The definition and some properties of these integrals

are summarized below.

Let <{>(u),z) satisfy the following conditions:
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H. : 4>(o),z) is a bimeasurable function of (u>,z) with respect to J(x) &

where $ denotes the o-algebra of Borel sets in T.

H«: For each z € T, <j> is J? -measurable,
z z z

H: JE^ <
J T Z

For the case where b is simple (i.e. $ is of the form <f> = 4 , z € A ,
Tz c— z z v v

v = 1, 2, •••., k and zero elsewhere, where A = [a1,b-)x[a2,b2) are disjoint

rectangles), I, (<J>) is defined as

Il<*> =I>vV
v=l

where

AvW -W(bJ,b^) +W(aj.aj) -W<bJ,a*) -W(a^,b^)

The definition of I,(<|>) is then extended to <J> satisfying H. - H. by a

standard completion argument. The main properties of I. ((f>) are:

(a) linearity: I (a$+0*) = al (4>) + 01^)

x T

(c) martingale: Edjft) |^) « J<Ke)W(de) •

(b) inner product: EIn (4>) -In (ip) « U ty dz
T z z

-6-
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We consider now what we will call the stochastic integral of the

second type and will denote it by:



[jMz1,z2)W(dz1)W(dz2)
TxT

The motivation for introducing the stochastic integral of the second type

is as follows. Let <\>(z) be a square integrable nonrandom function of z

and consider

Jx •= J <Ke)w(dz;)
z c<z

which can be interpreted as either a Wiener integral [2] or a stochastic

2
integral of the first type. Consider now X . By partitioning the rectangle

Z

[0,x] x [0,y] we have, roughly,

where

Xz S 53 *(iA,jA)AijW.((.(kA,ilA)AkfiW
i,j,k,Jt

A±.W = W((i+l)A,(j+l)A) + W(iA,jA) - W((i+l)A,jA) - W(iA, (j+l)A) .

(namely A..W is the white noise integral of the A*A square starting at

(iA,jA)). The summation in the above expression are of three types:

(a) i=k,j=&, by known properties of the quadratic variation of

Brownian motion in one dimensional time we expect that the terms of this

type sum up to II <j> (x,y)dxdy.

(b) terms where (iA,jA) > (kA,JlA) or (iA,jA) < (kA,AA); namely, ordered

points. By the definition of the stochastic integral of the first type we

expect these terms to add up to 2J<J>(s) I<K?)W(dc)W(ds)
s^?z c^s
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(c) terms for which (iA,jA) and (kA,£A) are a pair of unordered points

The stochastic integral of the second type will be defined so as to collect

such terms, and as will be seen in section 5 the two types of stochastic

integrals suffice to represent all functionals and martingales of the two

dimensional Wiener process W .

We turn, now, to the definition of the stochastic integral. For two

points in A z-, z« which are unordered we will use z-Vz- to denote the

smallest z satisfying z> z, z> z2« In other words if z- = (x-.y-) and

z2 = (x2,y2) are unordered then z-Yz2 = (max(x_,x2), max(y1,y2)). Let

GC T xt be such that (z^z^ 6 6 if z. and z2 are unordered, let hG(z.,z2)

be the indicator function of this set. Let ty(u),z ,z2) be a random function

on T x T satisfying

H^: ^(w,z1,z2) is jointly measurable with respect to jT (*) *> © £

H^: for each unordered pair z^9 z~ the function iKw,z-,z2) is measur

able with respect to j- ^
ZlVz2

H^: Ej>2(z1,z2)dz1dz2 <

Let i/;(z1,z2) be a simple function of z-, z2 6 T i.e. ty is of the form

4>(z19z2) = ct, zx e Ax, z2 € A2

ip(z.,z2) = 0 elsewhere

where A^ = [a1,b1) x [a2»b2), v = 1, 2 are a pair of non overlapping rec-
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tangles. Assume first that A1 and A- are such that for any z- e a,

Z2 e A2 the pair zl» z2 are unordered« In this case we define

*2W =[J] *<*1f*2*W(dzl)W*dz2* "«AXWA2W
J.X j.

where AvW =W(b^,b^) +W(a^,a^) -W^.b*) -W(a^bJ).

Without the assumption that for any z. e A-, z„ G A. the pair z., z9 are

unordered, we define I20|0 as follows. Let us define an e lattice on T.

Let [z] denote the lattice point nearest to z from below and to the left

of z. The lattice on T defines a lattice on T x T. Let ie, je denote

points of the lattice on T x T. We define, now,

IjW - £ *U .J )h6(ie,je)-A £W-A £W
i ,j

where the summation is over all lattice points or, what is the same because

of hG, over all unordered lattice pairs. »f> is still a simple function.

Let z be a subpartition of e. then

2

dz.

2 9

[h1 ' h2] -E*2 •fifvsd^i]"1.!^1) "hG([z1]ei,[z2]e2)] d2l
r ei e2iIt follows from the result of the appendix that E t- -I, -*- 0 as e_,

Therefore I«(^) converges in quadratic mean. We define

I9(*) = lim q.m. I9(t|>)
L e-K) L

-9-
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It is easily verified that this definition is consistent with the definition

given earlier for the case where for any z t A and z c A?, are z1 and z?

unordered. We now extend the definition of I <^) for functions which are

the L2 closure of linear combinations of simple functions in the usual way.

It follows that I2(i|>) is defined for all random functions satisfying H' - H'

and inherits from I2 the following properties

1) I2(a1*1 + a2*2) =ajl^) + a2I2(*2)

2) I2(*) = I2(hG*)

3) B^C^IjC^) =J JhG(Zl,z2)1|,1(z1,Z2)<l2(z1,z2)dz1
T T

4) EI^)!^) = 0

5) E(I2W|^z) =[J ]iK^Wd^)w(dc2)

dz,

These properties are easily verified for I9(i/0 and extended to l!;(i/;) by
*• 2

standard arguments.

Both Ix and I2 can be extended to integrands <f> and \\> which do not

satisfy H3 and H^, but instead the conditions

Uj<p dz < » almost surelyT z

J J* (Zl,z2)dzx

-10-
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The extension is by approximating <j> (resp. i/0 by a sequence of bounded

function <^n^n) converging almost surely to <j> (resp. ty) at every point z

(resp. every pair (z^z^). I± and I£ can then be defined as

IT($) = lim in prob. I-(4 )
•*• v „ ± n

n -*• »

I0W = lim in prob. I0(il/ )
z Z n

n •*• »

So defined, 1^ and I2 retain most of the properties, except they need not

be square integrable and need not have the martingale property.

4. Relation between stochastic integrals and multiple Wiener integrals.

In this section we consider the n-th order Wiener integral [2]

(4.1)
n _

T T

n(g) =J---J g(t1,---,tn)w(dt1)...w(dtn)

where g(t) is a non-random function and t2 is a non-random function and

ti is a two dimensional parameter. The following theorem and corollary

will be proved.

Theorem 4.1 Every Wiener integral can be represented as the sum of two

stochastic integrals:

(4.2)J (g) -J<Kt)W(dt) +' [J] ^(t1,t.)W(dt1)W(dt9)
T TxT

It follows from this theorem that:

Corollary. Every square integrable functional of the two dimensional
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Brownian motion can be represented as

(4.3)F(J\ .K(F(wL) +J(J)(t)W(dt) + [J] «J/(t ,t )W(dt )W(dt2)
0 T TxT

and every square integrable *Zc/-martingale has the representation
z

(4.4)mz =mQ + J*<C)W(dO + [I ]KC-^Wd^Md^)

Two proofs of these results will be given. The first proof is based on

section 3 and the appendix. The second proof is based on a differentiation

formula and will be given in section 5. The second proof also clarifies

the relation between stochastic integrals and the Hermite polynomial

representation of Wiener integrals.

First Proof: From the way multiple Wiener integrals are defined in [2],

it follows immediately that it is sufficient to prove the theorem for the

case where g(t .•••,t ) - g(t) is a simple function and t±eT where T is

the unit rectangle. Let Ay = U^,b^) * [a2,b2), v=1, ••• ,nbe aset
of non-overlapping rectangles and let g(t) be the indicator function of

this set. Let g(t) denote the symmetrized version of g(t) [2].

(4-5) '«<« "ST E'V'i,•-•'!•>^^ 1 z n
IT

where the summation is over all permutations of 1, •••, n. Let F denote

the set in Tn for which t > t±, i= 1, •••, n-1 and let hF(t) denote the

indicator function of this set. Consider now the multiple Wiener integral

-12-



J-J(4.6)J (h^g) = J'-Jh (t)|(t)W(dt1)...W(dt ).

Let m be an integer and consider the lattice on T defined by the lattice

points (im ,jm ) i, j = 1, 2, •••, m. For each t = (x,y) e T we define
r 1^
ItJ as the lattice point nearest to t from the left and below t. [t]m =

([tjm, ... [t ]").
± n

By the properties of the multiple Wiener integral [2] and the results

of the appendix to this paper we can approximate J (gh_) arbitrarily closely
n F

2
in the L sense by

(4.7)J(m)(hg) =J--JhF([t]m)g([t]m)W(dt1)... W(dt )
rn m •*• J. m

for sufficiently large m. Note that the integrand is simple and

(A.8)J(m)(h g) =Ehp(i?,---,08(i?.---,im)A W----A W
r r j. n x n .m .m

i.. l
1 n

where i = (a ,$ ) denote the lattice points on T,

(4.9) Am=W(am-ha"1,3m-hn"1) +W(am,$m)

- W(am-hn-1,3m) -W(am,3m+m"1)

and the summation is over all the lattice points in T induced by the

lattice on T.

Consider now the type I stochastic integral

(4.10)ll(hFg) -J^ £....^ jfthF(t1,....,tn)g(t1,....,tn)W(dt1)...W(dtn.1)]

-13-
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where the integrand in the integration with respect to W(dt ) is a Wiener

integral of order (n-1). Let

"(hpft) =J\ J m'~ J mh([t]m)g([t]m)W(dt1)...W(dt ,)lw(dt )1 F Tk *[t"] t ^[tm] " X n-lj n
x n n—x n

(4.11)1

For the Wiener integral we have [2]

(4.12)E(Jn(g1) -Jn(82»2 -J-'-Jltxit) "g2(t))2dt1---dtn

By this result, the result of the appendix to this paper and the properties

of the stochastic integral of the first type, we have

EU^hpg) -Im(hpg))2 •* 0

as m -*• «. on tne other hand we have by the definition of the Wiener in

tegral of order (n-1) (the integrand of the expression for I?(lu.g) )

(4•13) •/„•••' J m h([t]m)g([t]m)W(dt1)---W(dt _:

hF(im,...,im)g(im,...,im)AmW....V W
i~ n-1

where the notation and summation is as in (4.8). By the definition

of the stochastic integral of the first type it follows that Im(h_,g) is
1 F

the same as J^(hpg). Therefore, by standard completion arguments,

for any non-random square integrable g(t), the Wiener integral J (hg) can

be expressed as a stochastic integral of the first type.

-14-



Consider now the set G in Tn for which t , and t are unordered and
n-1 n

Si-l^Si^ t±* i~ 1,"**» n~2, Let hQ^ denote the indicator function of
this set. Consider the multiple Wiener integral

(4.14) J(hJ) =J'--Jh (t)g(t)W(dtJ...W(dt )

and the stochastic integral of the second type

(4.15)1 (h g) =[J] \ J ...J h (t)g(t)W(dtl)---W(dt 9)1
TxTLti<tYt n t XtYt , 6 ~ 1 n"2J

1 n n-1 n-2 n n-1

W(dt JW(dt )
n—l n

where the integrand is a (n-2) order multiple Wiener integral with t ,

t as parameters. It follows by the same arguments as before that I0(h_g) =
2 G

Jn(nGI) and, therefore, by the standard completion argument the same equality

holds for any square integrable g(t) .

Now, let F± denote the subset of Tn for which t > t,j= 1, •••, n,

and let G denote the set in T such that t , t. are unordered and t Yt. > t ,

I = 1, •••, n. Obviously G^ =G.±. Given any point t-, ..., t if one of the

t± say t± is ordered with respect to all others and t > t ,j = 1 ••• n

then (t_, •••, t ) € F . if there is no such t then consider the components
0 *0

t.j = (x. ,y.) let x. be largest number among x., •••, x and let y, be theJ0 1' n 'kg
largest among y , ..., y then obviously t, Vt, > t. and (t.,'»»,t ) e G, , .

± K Jo ko 1 -1 n j0 0
Therefore

n

U F^ + U g, . = Tn

i=l i<j

-15-



Note that I,(h_ g) is independent of i since g is symmetric in t1, •••, t
x Jb. x n

and similarly I0(h_ g) is independent of (i,j). By the definition of the

2 Gu
multiple Wiener integral we can set g(t) = 0 whenever t. = t,, i ^ j, without

changing the value of I (g). Under this assumption F. n F = <f> for i # j

and F n G , = <J>. The sets G = G are not disjoint since, for example

tx »(-j, 1) ,t2 =(-, 1) »t3 » (1, ~) belong to both G± and G2 y How

ever, by an argument similar to the one given in the appendix it follows

immediately that

JvJ|h (t) -h (t)| dt., •.., dt -0
T T :Lj ~ \e ~ x n

whenever G, f G. 0. Therefore
ij k£

V» • IX<hF I) + £ Jn(hG g)
i i i<i xi

nJ„(hFg) +SiSEli. Jn(hGg)

which proves the theorem. In order to prove the corollary we use the

result that any zero mean L0 functional C of W is expressible as:
z z

n

Therefore, by the theorem just proved

5

'i t
=23J 0±(z)W(dz)

+£[J] ^i(z1,z2)W(dz1)W(dz2)
l TxT
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By the orthogonality property of Wiener integrals of different order, the

orthogonality between type I and type II stochastic integrals and since

it was assumed that E£ <«, ^^(z) and V* i|> (z-.zj converge in quadratic
mean (to, say, <f>(z) and ^(z-jO respectively) and

then

5 - E£ =J<Kz)W(dz) + [J] iKz1,z9)W(dz1)W(dz9)

Furthermore if m is a square integrable 1a)-martingale, set m,- .. = ?

mt =E( >(z)W(dz)|^t) +e([J] ^(Zl,z2) W(dZl)W(dz2) Î. )
T YTxT

-J <i>(z)W(dz) + [/] ip(z1,z2)W(dz1)W(dz2)
z<t zi»z2<t:

which completes the proof of the corollary.

5. Differentiation Formula and Hermite Functionals.

For path-independent martingales a differentiation formula can be

established almost immediately by using the differentiation rule for one-

parameter martingales on increasing paths.

Let M = (M- ,M0 ,•••,M ) be a set of sample-continuous path-indepen-
z xz zz nz

dent martingales with respect to a fixed increasing family of a-fields

{jr ,z e T}. Since both M. + M. and M. — M. are path-independent sample-
z xzjz izjzrr

continuous martingales we can define an inner product process

(5.1) <M. ,M. > = y- [<M.-*M. ,M.+M. > - <M.-M.,M.-M, > ]
i J z 4 i j i j z i j' i j zJ

-17-



Let f(u,z), u€R , z e T, be a real or complex valued function, having

continuous mixed second partials with respect to the components of u and

a continuous gradient with respect to z. We adopt the notation

**•/ \ 9f(u,z)f(u,z) ---^

1 ^U,z; au^u

Vf(u,z) » grad f(u,z)
z

Let e(t) ,0 <_ t <_ 1, be an increasing path. Since M±Q, , ,0 <_ t <_ 1, are

one-parameter continuous martingales the familiar differentiation formula

of Ito and Kunita-Watanabe [3] yields

t

+

t

(5.2) f(M9(t),e(t)) -f(M9(0),e(0)) =i:/'fi(Me(s)'9(s»dMie(s)4
ItIZ ^ («.*>« VMj >z +W(u,z)]z=e(s) -dOW
° ^ ' -M6(s)

Equation (5.2) can be expressed in a simpler and more suggestive way as

(5.3) grad f(M ,z) - Vf^M z)
z JL^ z,

m
z

+tV fij(M z)V<M.,M. > + Vf(M z)
^ 4-# z, i j z z,

i,j
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the precise meaning of which is given by (5.2).

Suppose <Mi ,M > are nonrandom functions, which we shall denote by

V (z). For example, this is the case if

"J.vM. = / MOW(dC)
12 0-fc<z

where <j> are nonrandom functions, in which event V.. are given by

V (z) = J <f> (0<f> (OdC
0<?<z

If <M^,M. > = V.. are nonrandom and if f is a function satisfying

(5#4) 1 Z) ^^'^^ijW +vf(",z) -0
i,j

then (5.2) yields the result

(5.5) f(M ,z) - f(lf
z z

t

0'zo) =L/fi(Me(s)'e(s»dMie(s)
U I'D

where 9 is any increasing path such that 6(0) = zn and 6(t) = z. Since

the right hand side is a local martingale for any increasing path 0, we

have proved that f(M ,z) is a local martingale provided that f satisfies

(5.4). Theorem 5.1 shows that (5.4) has many solutions.

Theorem 5.1. For every m = (m. ,m„,..., m ), m. being integers, there is a

polynomial in u

(5.6) fm(u,z) =£ •ak(«)u11«22-«n11
Mm
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which satisfies (5.4) with a (z) = 1. (We have used k <m to denote
mm —

{k. £ m. for every i}, and k < m will stand for {k < m and k < m. for

at least one i}.).

Proof: We first observe that for any real values a,, cu, •••, a , the

function

(5.7) f(u,z;a) =expU^o^u.. +| £) ac^V k<*)}
j j.k

is always a solution of (5.4). Therefore, we can take

f (u,z)
m

m-+m«+» • »+m
12 n

= (-D

r m-+m0+* •*ma 1 2 n
m. m„ m

3a113a0Z---9a n
_ 1 2 n

f(n,z;a)

j=l,2,*--,n

which is of the form (5.6) and satisfies (5.4). «

Equation (5.7) allows us to generate solutions to (5.4) almost at

will. By itself, it also allows us to prove the following important re

sult.

Theorem 5.2. Let {X ,z 6 T} be a path-independent sample continuous mar-

tingale with increasing process

V(z) = area (C •< z)

Then X is a Wiener process.

Proof: Take a set of points an, a0, •••, a in T and define
x z n
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iz a^z

Then we have

<M±,Mj >z =V^AnAz)

and M are sample-continuous path-independent martingales. Therefore,

(5.7) and (5.5) yield the result

Eexpu2>jMjz +i E aAV«» •x
j j»k

Putting z = (1,1) yields;

Eexpd^a X }- e
i J

j.k ^ %*

which proves the theorem. n

Let W , z € T, be a Wiener process, and let {<J> (z),z e T} be a complete
Z V

orthonormal system of real-valued nonrandom functions. For each v and each

z e T,

M = J<j> I
vz „•£ Tv

(5.8) M_ = I ♦.-.(OWCdC)
C<z

is well defined both as a Wiener integral and as a type-I stochastic in

tegral. {M ,z e T} is a collection of sample-continuous martingales with
VZ

f
(5.9) <M ,M > «V (z) = J(j> (C)<t> (C)dC

C^z
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A celebrated result of Cameron and Martin [4] states that every square-

integrable functional of the Wiener process {W ,z £ T} can be represented

in a series of Hermite functionals, a Hermite functional being a product

of the form

n h (1
i=l pv T

♦n (C)W(d5))

where H are Hermite polynomials.
" n

For each p = (p,^,***,? ), t* H (u ) is a polynomial in u = (ui»u2»* *' »Un^
Vs31 v

of degree p. Theorem 5.1 implies that we can write

(5.10) n h (U )=£ Vfk(u,(1,1))
v=1 v k4

when f, satisfy (5.4). It follows that there is a function

(5.11) f(u,z) =V3pkfk(u,z)
k^p

such that f(M ,z), z € T, is a martingale and

SH (J ♦ 1(5.12) n H ( I <f> (C)W(dc)) = f(M ,z)
v=l Pv T V Z z«(l,l)

1

i "0

where 0 is any increasing path connecting (0,0) and (1,1).
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Theorem 5.3. Let {W ,^ ,z G T} be a Wiener process and define
z z

(5.13) M±z = 7«J)i(c)W(dC)
C<z

where <f> are nonrandom functions. Let f(u,z) be a function satisfying

(5.4) with continuous partials with respect to the components of u up

through the third order. Then

(5.14) f(M ,z) =f(0,0) + J 5ZfiCMr,c)«.(OW(dC)

+1[j j] £ fij(\vc..cvcl)<i>i(c)(i>j(c,)w(dc)w(dc?)
CCXz i,j

Remark: Unlike (5.2), (5.14) is truly a differentiation formula of two-

parameter stochastic calculus since it involves stochastic integrals of

both types.

Proof: It is clear that we only need to prove (5.14) for the case z = (1,1),

since the general case follows from the martingale property of both sides.

Now, let the unit square T be partitioned by a sequence of square subdivisions.

It is convenient to take the squares to be of the same size (say 6, ) in each

partition and we assume

6k —'K k + oo

We can order the lattice points of each partition in some arbitrary way and

denote them by
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zkv " (xkv,ykv)

We can now write

f(M(l,l),(l,l)) - f(M(l,0),(l,0)) - f(M(0,l),(0,l)) + f(M(0,0),(0,0))

=£{f(M(xkv+6k,ykv+6n) .(»itv-«k.ykv-«k»
v

+ f(M(xkv,ykv),(Xkv,ykv))}

Since f satisfies (5.4), we can use (5.5) for the bracketed terms and write

f(M(l,l),(l,l)) - f(M(l,0),(l,0)) - f(M(0,l),(0,D) + f(M(0,0),(0,0))

1

=L£ / «Hv+V^V•^v'VWVJ
v i 0

• Mi(xkv+Vykv+6kds)

Av^k

LZ / {fi[M(xkv+sk>y>'<\v+6k'y)1Mi(xkv+4vdy)
v * ykv

-/[KC^ .y),^ ,y)]M (^ ,dy)>

-24-



Because of the forward-difference nature of one-parameter stochastic

integrals, we can write

f(M(l,l),(l,l)) - f(M(l,0),(l,0)) - f(M(0,l),(0,l)) + f(M(0,0),(0,0))

v i

f±[M(xkv"kv* '(\v>ykv>] tMi(xkv•>& " Mi(xkv"kv>]}

where x. = x. +6. and y* = y. + 6, .
kv lev k 'kv 'kv k

Rearranging terms and using (5.5) for the difference

£l IM(xkv »ykv) •(4 »ykv)] -f' f^v *kv> •(\v >ykv>]

we find

x. +6
/lev

23«13W(x.ykv).(«,ykw)]llJ(dx.ykw)
*kv ^

f[M(l,l),(l,l)] - f[M(l,0),(l,0)] - f[M(0,l),(0,l)] + f[M(0,0),(0,0)]

v i

+£ ^ fiJ[M(xkv,ykv),(xkv,ykv)].(6^Mi)(62vM.)}
v i,j

where we have adopted the notations
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AkvMi • V»k>kv> - Mi<»kv^kv> - V^v^W+ Mi(\vykv>

5kvMi = V'W'W - Mi(xkv'ykv>

SkvMi = Mi(xkv'ykv) - V'WkV*

From (5.13) we have

ikvMi-*i(xkVykv)ikvW

Therefore,

lim in prob. £ f1 [M(x^ ,y ),(x^,y )]^ M

u

k -*» »
v

fi(M.C)<|).(C)W(dc)
rp h •*•

Now, we observe that for any function g

L £ 8(xkv^ky»ykv^ky)AkvMiAkuMj
v y

v^y

1 „ ^2 w , „2W .1

^(^^[iVbVWbV

Since f±:i « f^1, we have

lie in prob. £ E^'^vW'KvWK^iXiV
it3 v
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= j lim in prob. Y^ 5Z ^Wz. Vz, ),z. Vz. ]A, M4A. M^
k •* » *"^ ^^ v kv ky" kv kyJ kv i ky j

i,j V9«y

TxT

2t7 JfJ<Mcvc,,cvc,)*1(o*j<c,)w<dc)w<dc-,>

The proof of theorem 5.3 is now complete. «

We now observe that as a corollary of theorem 5.3 we have the following:

Corollary: (c.f. corollary of theorem 4.1) Let X be a square integrable

functional of {Wz,z e t}. Then X has a representation of the form

83 J<J> W(dC) +[J;(5.15) X = J <J> W(dC) + [ /]* rtW(dC)W(dCf) + EX

Proof: First, we observe that from (5.12) every Hermite functional has a

representation

n

(J ^(C)W(dC)) =constant +JJj(5.16) n h (J* (C)W(dC)) =constant +J lL f±(K r>*4<C)W(dC)
v=l v x A i

+I[J] 2 fij(Mcyc.^Vc,)<()i(c)<J>j(C,)W(dQW(dC,)
i»3

The assertion of the corollary now follows from completeness of

Hermite functionials in the space of square-integrable Wiener functionals

and from q.m. closure of stochastic integrals. Thus, we have provided a

second proof of theorem 4.1. «

Results of this section provide still another link between the stochastic

integrals introduced in section 3 and multiple Ito-Wiener integrals. In

[2] Ito proved the formula
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f (
J" J ^(z )<j> (z,,) ••• (J)(Z ) <|) (Z . ^ ^ _,_,) A (z , )
T {1112 Pi n Pl+P2 +Pn 1+1 n •P1+P2+""p

n U ( -~ U (z)W(dz))
n v /T T v

p^
v-1 ( ^" ) V

where the left hand side is a multiple Ito-Wiener integral, {$-,••• ,<j> }

is an orthonomial system and H are Hermite polynomials. It follows that
r p

if we denote M±z = J <J>i(c)W(dc) then there exists a polynomial in u
S<z

f(u,z) satisfying (5.4) such that

(5.17)
T

J-- J<J>,(z) •-. *(z xW(dzJ ... W(dz . ' _,_ )
T T X n pl+p2+ +Pn) x Pl^ Pn

/e f1(Mr rH,(OW(dc)
fp s >s x

i

+1[J] £ ^V^.tCVt^COMcWdcWdc')
TxT

i,j

+ constant.
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Appendix

In this appendix we state and prove a lemma which is referred to in

sections 3 and 4.

v , Vv P v , vLet Av « [•!•!>]> x U2,b2), v= 1, 2, •••, n be a set of n rectangles

and let gCtjy. ,tn) = g(t) denote the indicator function of this set. Let

T denote the rectangle [0,1] x [0,1], and let F denote the set of points in

T such that tn > t±, i = 1, 2, •••, n-1. Let G be the set of points in Tn

such that tn->1, tn are unordered and tnVtn-1> t±, i=* 1, 2, •••, n-2.

Let hF(t1»,,,,tn) = hp(t) and hQ(t) denote the characteristic functions of

F and G respectively. Let m be an integer and consider the lattice on Tn

defined by the lattice points (inf^jnf1) ,i, j =» 1, 2, •••, m. For each

t= (x,y) e t we define [t]m as the lattice point nearest to t from below

and to the left of t, [t]m -'([t-]0,-" ,[t ]"). dt will denote dt.dt-'dt
1 n - 12 n

(= dx1dy1dx2dy2«'«dx dy ).

Lemma

/.../ 2(gCOHyCt) - 8([t]n)M[t]1B)) dt * 0
T

as n •> 0,

J... J (g(t)hG(t) - g([t]m)hG(]t]m)) dt -»- 0
T T

as n •* 0, where the integrals are n-fold integrals over Tn.

Proof: Since the proof for h^, and h is almost identical we will use h

to denote both hp and hQ. Adding and subtracting h(t)g([t]):
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/...J 2

(g(t)h(t) - g([t]m)h([t]m)) dt <
T

«r• . . . J

2 2
h (t)[g(t) - g([t]m)] dt

U>
<2 f Ag(t) -g([t]m)] dt +2 f Ah(t) -h([t]m)]

+ 2 I lg2([t]m)[h(t) - h([t]m)] dt

2

dt

The first integral obviously tends to zero as m •+ °°. The integrand in

the second integral is either one or zero. Consider now the case h = h .
F

In order that |h (t)-h ([t])| = 1 we must have for some i t >• t and

[t ] > [t.] (t > t. and [t ] >" [t. ] is impossible). Therefore a necessary

condition for |h (t)-h ([t])| = 1 is that for at least one t (i $ n)

should differ from t in one of its coordinates by no more than m ,
n

namely |x. - x | < m or |y. - y | < m~ . We now overbound the lebesgue

measure of the set in A x...x^ for which |y - y | < m~ for some i $ n

by the following argument. Assume that points are placed on [0,1] x [0,1]

at random with a uniform probability distribution. A first random sample

gives x , y » a second and independent shot gives x. ,y- • The probability

that |x1 - x| <_m is upper bounded by 2m" . The probability that

Ix.^ - x |_< m or |y.—y |<_ m for at least one i f n is upper bounded

by 4(n-l)m . Therefore, as m -»• «, the second integral in the last in

equality goes to zero. The case where |h_(t)-h_([t]m) I= 1 follows along
Car ~ ii " '

very similar lines and we ommit the details.

Note: The results of the lemma hold for z(t) continuous on Tn.
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