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ABSTRACT

The Markov Algdrithm is modified to form a tool for the specification
of the syntax and for the parsing of programmingblanguages. The properties
of the Modified Markov Algorithm (MMA) are explored and sufficient conditions

are given under which the order of the MMA's rules can be changed and the

.composition oanlgorithma i8 equivalent to appending. The article also

describes transformations of the MMA to algorithms which are equivalent
to the MMA but are faster and discusses the relations between a special
case of the MMA and the context bounded grammars.

The'above results are used to synthesize parsers from a given des-
cription of the language. The method involves partitioning the language
to sub-languages, providing each with a MMA parser, composing the parsers
to a asingle parser and transforming the result to a single MMA. If pos~
sible the last MMA is then transformed into an equivalent algorithm to
increase parsing speed. The article illustrate the method by constructing
a syntax parser for a subset of Algol 60 where syntax is 1nterpre£ed in
a wide sense-iﬁcluding scope of variables, etc.

Our main conclusion is that the use of the MMA for specifying the
syntax and parser are quite straightforward. Moreover, the rules of
the resulting MMA are quite readable in the sense that they closely cor-
respond to the way that a programmer interprets a program. This is at-
tributed to the use of an algorithm to specify the language, the use of
context and environment dependent rules by the MMA and.the ﬂelp of the

theoretical results mentioned above.
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Section I: Introduction

Several warks have recently used algorithms derived from the Markov
Algorithm (MA) [1, 2, 3] as language parser and as a method for defining
the syntax of computer languages. Caracciolo [4] uses an extension of
the MA for defining string processing languages. De Bakker [5] uses a
computation scheme which is quite similar to the MA to formally define
the syntéx and the semantics of Algol 60. The works of Bell [6] and
Milgrom [7] are concérned with extensible languages. In these works
algorithms derived from the MA are used as a parsers which can be modi-
fied and extended dynamically to handle new syntactic constructs.

Markov Algorithms have several interesting properties which make
their use attractive for such applications. First, the MA is a general
computing scheme; it can do whatever‘other computing schemes can do, and
is equivalent, for example, to the Turing Machine. This means that the
MA can be used to specify the syntax (and semantics) of any language which
cﬁn be defined by an algorithm on a finite set of symbols. Second, the
Markov Algorithm uses a list of rewriting rules associated with a list
of priorities. The rules look quite similar to BNF and their qrder is
close to our intuiqive'idea of priorities between operators and operations
of a programﬁing language. However, contrarily to BNF rules, the MA
rules and theilr priorities always define the parser, i.e., they define
a Markov algorithm which tests whether a string belongs to the language
or not.1~ This property is shared with the rules of Production

Language (Ch. 7, [8]).

+The result, however, might be undecidable.



This article presents a modified MA (MMA) and explores its properties
which are related to the specifications of the syntax of programming
languages and the corresponding parsers. By the syntax of a program-
ming language we mean a set of rules which defines which sequences of
symbols constitute a legal program [5]. This definition of syntax
includes requirements on the scope of names and labels, the matching of
types, etc. which are sometimes considered as part of the semantics of
the language.

We consider the following to be our main conclusion: We have
used the MMA to specify the syntax and the parser for Algol 60 and
for a language for the manipulation of graphs. We have found that the
writing of such definitions is reésonably simple and in many cases |
straightforward; moreover we found that the resulting rules are quite
readable in the sense that a user can look at the rules and can quite
easily determine the effect of each rule and the interrelation between
the rules.

We believe that the above properties are of spectal imﬁortance in
the area of problem-oriented languages. Here as a result of the specific
orientation and the relatively small number of users the languages have
to be designed by the application oriented people rather than by the language
specialists. The simplicity of the synthesis procedure which leads to the
parser and the readability of the rules are of great value in this case.

On the other hand, the questions of simplicity and users convenience
are related to 'human engineering' and they are somewhat subjective. In
such cases the question is whether this simplicity is a result of the
familiarity of the authors with the MMA or whether there is a more funda-

mental reason for it. Although we cannot completely rule out the first
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possibility, we claim that the relative simplicity énd convenience in

the use of the MMA are linked to the propertieslof the MMA, Some of these
properties are mentioned above as properties of the MA. Other properties
are the following: the use of context-sensitive rules and the number

of non-terminal symbols; to a large extent the form of the rules is simi-
lar to the way a programmer thinks aboﬁt’a program wheﬁ he reads it;

in the examples we worked out, we found a large subset of rules whose
order did not matter; the order of those rules could be changed without
éffecting the nature of the language.

Other results included in the work are sufficient conditions for
the interchangability of the order of rules in the MMA (and the MA); the
relation between MMA grammars which satisfy these conditions and (m,n)
bounded-context grammars, and the transformation of theAMMA to an
equivalent form which cor;espbnds to a faster parser.

The next section contains the definition of the MMA, a formal
definition of languages using the MMA, the syntax tree, etc. Section
IIT contains several theorems related to the sufficient conditions for
changing the order of the rules and for the compoéition of MMA's. Sec-
tion IV is concerned with the Algol 60 examplé and discusses the method
- which is used to construct the example; the rules themselves appear

in the appendix. Section V contains a summary and conclusions.



Section II: The Markov Algorithm and the Language Definition

2,1 The Algorithm

Let us first define the Markov Algorithm as it is conventionally
defined.

We assume the existence of a non-empty finite set of symbols called
the alphabet. A word or a string is any finite sequence of symbols of
the alphabet. The empty sequence of symbols is called the empty word,

or empty string, and is denoted by A. Symbols are denoted by upper case

characters and strings by lower case characters; p q denotes the con-
catenation of the strings p and q. We say that the string t occurs in
the string q if there exist strings u and v, possibly empty, such that
q = utv.
A rule is an expression of the form
iR 4
or P *. g
the arrow and the dot are not part of the alphabet. The expression
p () 4
denotes either p>q or p>.q. p is called the input-pattern or
antecedent of the rule and q is called the output-pattern or consequent
of the rule.
A grammar is a finite ordered list of rules

By +(-). 9 where 1=1, 2, ..., L.

We say that a rule i has a higher priority than a rule j if i < j.
Given any string s (called the input string), a grammar defines the

following algorithm:



Step 1: Set 1 = 1.

Step 2: Consider the i—;h rule in the grémmar and find the
leftmost occurrence.of.p_i in s; if no such occur-
rence is found, then go to step 4; otherwise pro-
ceed.

Step 3: An occurrence has been found. Replace it by (P
if the i-th rule contaihs a dot, terminate; other-
wise, go to step 1. |

Step 4: Set i = i+l, If i > I, then terminate; otherwise

go to step 2.

We depart from the above definition by adding several features which
do not limit the generality of the algorithm but make it more convenient
for writing parsers. Some of these features are derived from Bell's

PBNF [6]. ' The result is called the Modified Markov Algorithm (MMA) .

The rules have the form

Ry N B () gy e lpy

where Ri is the name of the ruie,

Ni is an integer called the priority level of the rule,

R, and‘g.i are strings, the input- and output-patterns of the rule.

Ci is a predicate, and |

Pi is a program.
We can have sevéral rules with the same priority level. However, among
rules with the same priority level there should not exist two rules whose

input—patterhs are of the form x and ux, u may be empty, and whose predicates

can be both true at the same time (see definition of the algorithm below).



Strictly speaking, the predicates and the programs do not increase
the capability of the MA. Their function is to simplify the writing of
the parser and to make the rules more readable. To explain the operation of

the predicate Ci and the program Pi we define a concept which we call an

environment which we denote by’ég. The environment is a collection of

variables and associated data-structures, etc. The predicate Ci is a
Boolean function which tests the wvalues of these variables and data

structures. The program P, operates on the environment, modifies the -

i

values of the variables etc. The predicate C, can depend also on the

i
value of string variables which appears in the input-pattern By- In the

following example x is a given string while § is a string variable:

R, N, & ~» y |predicate: if £ = '+' or '- +'

then true else false.

Note that we do not give a formal definition for the ;ﬁvironment
or for the language in which'the programs and predicates are expressed.
Such definitions ﬁan be given by postulating a convenient processor as
in [7] or extensions to the MA as in [5].

With the introduction of the environment, our concept of a grammar
includes both the rules and the environment. Note, however, that to

define a MMA both the grammar and the initial values of all the variables

in the environment has to be given. We shall refer to these values as

the initial environment. o
| ';ﬁ;'};;;£;“;%“;'g£ring B_is defined as the number of symbols in P-

The position of a substring x in a string uxv 1is defined as the length of

ux. Gilven a set of substrings of a string s, ]ef {pi} be the corresponding

set of positions; let Py be the smallest number in {pt}' The leftmost strings

in the set are defined to be the substring whose position is Po-



Given any string s and an initial value the environmentégorthe
Modified Markov Algorithm with I priority levels is defined as follows:
Step 1: Set i = 1; ; o
Step 2: Consider the i-th priority level.
| Let Rj’ =L, ooy jo be the set of rules
having this priority levelr‘ Over all j between
1 and o> find the leftmost occurrence of 2

in 8 such the C, is TRUE; if no such occurrence

k|
has been found, then go to step 4; otherwise

proceed.
Step 3: An occurrence has been found; let this occurrence

correspond to the rule Rj' Replace it by gj and

j° If Rj contains a dot

then terminate; otherwise go to step 1.

execute the program P

Step 4: Set i = i+l., If i > I, then terminate;

otherwise go to step 2.

Remark: In step 2 the leftmost occurrence of Py is uniquely defined
since among rules with the same priority level there should not exist two
rules whose input patterns are of the form x and ux, and whose predicates

can be true at the same time.

2.2 The Language

In the following we follow the notations and the terms used in
[7] ch. 3. The purpose of this section is the presentation of the
differences between the conventional definitions and the definitions
based on the MMA.

Given a grammar G, an initial environment Egb’ a string v, v=xyz and



a string w, w=xsz. The string w is directly derived from v, if in the

process of applying to v the MMA with grammar G and an environmentgo,
the first rule which uses Step 3 reduces y to s and transforms v to w.
This is denoted by

¥, W

A derivation of v by G is a sequence of direct derivations effected

by the MMA on v.

A string w is derived from v (by G) if there exists a derivation

of the formv = uy 7 4, 7 ... 7 w. This is written as v = + w.

We write v ®* w if either v = w or v = + w.

We write v =. w if the MMA derives w from v (by G) and terminates.

Let the alphabet V be partitioned to two disjoint sets: \_IT,

%
the terminal symbols and EN’ the nonterminal symbols. Let yT denote

the set of all strings over V... Let S be a symbol in

I Iy

The language corresponding to the grammar G, the initial environ-

ment 8.0, the sets of symbols V, and the root S is defined as:

ne, Ep ¥ v, 9 = {xlx

—-_—

V*
E Y X 5
%*

Given a string x such that x ¢ KT the question whether x is a
member of a given L might be undecidable since for some G, some 80,

and some x the MMA might not terminate.

Given G and V, a string w is called a sentential form of G if

A
%

w =295, if w is an element of V

Yo it is called a sentence.

Given a grammar G and a sentential form v. y is a phrase of
v if there exist strings s, t, u, x, z (possible empty) such that
v = xyz =% gyt = gut ls a derfvation of v by G. The leftmost phrase

of a sentential form v is called the handle of v.



2.3 The Syntax Tree

The syntax tree if s device which aids one to understand the
syntax of sentences. We can define a similar concept here. However,

since output patterns of the rules may contain more than one symbol

we get a syntax graph rather than a syntax tree. The two terms are

used interchangingly in the sequel. The concept is illustrated in

Figure 1.

A syntax-~graph consists of two kinds of nodes: symbol-nodes and

replacement nodes. Each symbol node represents a symbol in a rather

self-explanatory way. A'replacement node represents a replacement
performed by the algorithm on the input string (for example, nodes (a)
and (b) in figure-l). Oriented branches connect each replacement-node
with all the symbol-nodes which participate in the reduction. If a
symbol is in the input-pattern of the replacement rule the branch is
oriented from the symbol to the replacement node. If a symbol is in the
output-pattern of the replacement rule the branch is oriented from the

replacement node to the symbol.

Consider node (a) of Figure 1. All branches which enter this node

are connected to symbol nodes which are incident to one branch only.

Replacement nodes with this property are called leaves. The removal
of a leaf is the removal of the corresponding node, all branches incident
to it and all symbol-node which as a result of theiabove operation do
not have any branch incident to them. Since each replacement-node
correspond to a rule, we can speak about the priority, input-pattern,

etc., of the node, meaning actually the priority, etc. of the rule which

is associated with the node.



Section III: Some Properties of the Parser

This section inciudes several properties of the MMA, Some of
these properties are included for completeness and for insight (terﬁination,
handle, relation with fm,n) bounded context languages). Other proéerties
were found useful in the synthesis of grammars and in particular in the
example of next section (the interchanging of the order of the rules and
comiposition of MMA's) or in reducing the computer time requirements (the

markers, the transformation to two stack algorithm).

3.1 Termination

We are interested in conditions imposed on the rules of the grammar
which guarantee the termination of the MMA for any input string. Some simple
sufficient conditions are giﬁen in [9 ]. These conditions require that
for all rules 2(21) 3_2(31) , and that a certain oriented graph derived
from the grammar has no (oriented) loops; %(q) denotes the number of symbols
in the string q. The graph is constructed in the following way:

1. A nodé is associated with each rule for which
2(py) = 2(gy) -
2. A directed branch is put between nodes i and j

if gi contains symbols which also appear in Ej'

3.2 The Handle

Since the definition of a handle in the MMA sense is so similar
to the definiﬁion of a handle in the conventional semnse ([8] ch. 3)
one is tempted to reduce the input string by first finding the handle,
reducing it, finding the handle of the resulting string, etc. Figure 2
illustrates that this strategy does not necessarily produces the correct

result for all grammars and all input strings.



On the other hand one can interpret theorems Ia and Ib of section 3.3 as
giving sufficient conditions on the rules of the grammar under which the
handle‘after'handle strategy produces the correct results for any

sentential form.

3.3 Changing Priority Levels of the MMA Grammar Rules

Theorems Ia, Ib and IIa are special cases of theorem IIb. We have
chosen this rather lengthy methodAof presentation since we found that the
direct presentation of the mass of conditions of theorem IIb tends to
obscurevrather than clarify the main issues and techniques.

Let 1 be a positive integer and a be a étring of % symbols. headi(g)
(taili(g)) is defined to be a string of the leftmost (rightmost) i symbols
in a. headi(g) and taili(g) ére not defined for 1 > 2.

Two (non-empty) strings a and b overlap if one or more of the
following holds: |

(1) There exists an i, 1>0, such that taili(g) = headi(h);

(b);

(2) there exists a j, j>0, such that head (a) = tail

, A
(3) one of the strings is a substring of the other.

3

The concept of overlap between rules has to be defined with respect
to the value taken by the environment é}, and the values of the variables

which appear in the input-patterns of the rules.

Let R, and R, be tw
1 5 e two rules with input patterns Ri(Ei) and Ej(Ej)
where gi and Ej denote the variables appearing in 2 and Ej‘ The two
rules overlap if there exist (at least) two values, E; and ES and an
environment égsuch that;gi(gi) and Ej(Es) overlap and both the predicates

01(21(2;), £) and Cj(pj(fs), £ are txue.

-11-



It is clear that if the input-patterns of R, and Rj contain no

i
variables and the predicates are independent of 23 (the predicate is
always true), then the above definition of overlap between two rule

reduces to overlap between Ry and Ej'

Theorem Ia

Let G, be a grammer such that each of its rules satisfies the

1
following conditions:

(1) The patterns do not.cogtain variaBles;

(2) the predicate does not depend on the environment;

(3) the rule is not "dotted";

(4) the root symbol appears in one rule only and only in the

output pattern.

Let G2 be a grammer derived from G1 by changing the priority levels

of rules of G,. '

1

If the rules of G, do not overlap each other and themselves, then

1
any sentential form of G1 (GZ) is also a sentential form of G2 (Gl).

Proof

Let s be a sentential form of G1 and let T be the syntax-tree

which corresponds to the reduction of s by Gl'
| A match of the string s and a rule Ri is any substring of s
which is equal to B; (Note that the conditions of theorem Ia exclude
any role of the environment).
From the construction of the tree follows two important properties:
(property a.I)T specifies s completely; one can comstruct s by collecting

all symbol nodes of T which have only one branch incident to them and

the branch is oriented out of the node. Consider any leaf of t and the

-12-
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associate rule‘Ri. The symbols of the symbol nodes whose branches
enter the replacement node of the leaf form the string By This string
is a substring of s and as a result of condition (2) of theorem Ia

the string is‘a match of s and Ri' We say that this match correspgnds
to the leaf. Thus, the second property is: (property b.I) To any
leaf of T'theré corresponds a match in s.

Notice that (b.I) holds.only under the assumptions of the theorem
as'a result of the independence of the rules from 23, while (a.I) holds
for any tree of a sentential form.

Given s, T and an integer n, n > O, fhe following algorithm

transforms s and 7 into s and T _:
: = =n n

Algorithm AT -

Step 1: Set i « 0; if 1 equals n terminate.

Step 2: If T does not contain lea;es then terminate, otherwise
choose one leaf of v, remove the leaf and reduce the
corresponding match in s using the rule which corresponds
to the chosen leaf.

Step 3: Set 1« i+l; if 1 equals n terminaﬁe, otherwise go to
step 2.

The algorithm requires some discussion. Let us apply AI to s

and f. If T has leaves then step 2 chooses a leaf and transforms T into

another tree which is denoted by Tt (the index is the value of i

1
after step 3). . The leaf has a corresponding match (property b.I) and
s is transforméd into 8- If Tt has leaves (and n ;'2) step 2 chooses
a leaf of 7 and transforms ™y into Tye Does a leaf of Tlvhave a
corresponding match? The answer 1s positive and the same argument
that leads to property b.l results in: (property c.T) to any leaf

of i there corresponds a match. Thus, we conclude that AI is defined

-13-




for all n and that the following lemma holds:

Lemma 1.I Given a sufficiently large n, ‘AI reduces s to the root symbol.

Lemma‘Z.I Let n be an integer, n > 0, and let s and.'cn be defined as
above. (a) To any leaf of Tn there corresponds a match inlgﬁ and N
“(b) To every match in ER there corresponds a leaf in T

| The first part of the lemma is property c.I. The second part
requires a proof. Assume there exists a match to a rule Ri to which
does not correspond a leaf. 8 can be reduced to the root symbol using
AI. In this process all symbols of the match are removed from the
string. Any rule wﬁich removes these symbols overlaps Ri’ unless the
rule is Ri itself and the match is removed as a whole. The first case
implies a contradiction with the non-overlapping requirement and the
second with the assumption that there is no leaf in r# which corresponds
to the match. Thus, to each match in 8, there corresponds a leaf in
in which completes the probf. QED lemma 2.1

The proof ﬁf the theorem follows directly from the.lemma. Apply

62 to s and consider t. At each step a match ig found and is replaced.
At each such step we remove the corresponding leaf. The process cannot
terminate before all leaves are removed since each leaf implies a match.
To prove that, consider the following argument: After ilsteps G2 trans-
forms s and T into 8 and 1, which are the same string and tree which

_i
result from thé application of AI to s and 1 where in each step Al

"

chooses the leaf which corresponds to the match that G2 finds (lemma 2.I).
Thus, from lemma 2.I, each leaf of Ty implies a match and termination
occurs only when the root symbol S is reached, which makes s a sentential
form of G2. QED 1Ia.
Corollary: Let §1 be the string derived from s by removing one leaf

of 1. s, is a sentential form of G;

1
~-14-



Theorem Ila
" Let the alphabet consist of three disjoint sets wl, wz and ws.
Let G1 be a grammar which consists of two sets of rules, a and B8, and
which satisfies the fbllowing conditions:
o rules: 1) .The input-patterns consist of symbols of wi and
| | wz only; output-patterns consist of symbols of wz
only;
2) the a - rules do not overlap any rule of B;
3) the a - rules do not contain a 'dot} nor do they
contain the root symbol; .‘
4) the predicates of a - rules depend on the environment
only and not on string variables.
B rules: 1) The input-patterns consist of symbols of wz and ws
| only; output-patterns consit of symbols of w3 only;
2) the B-rules satisfy all the requirements imposed on the
rules in theorem Iaj; |
3) the B-rules do not change the environment;
4) the output patterns of the B rules are non-empty.
Let G2 be a grammar derived from Gl by changing»fhe priority
levels of the B rules. Any sentential form of G1 (GZ)’ 2}0, is a

sentential form of G, (G,), 80,

Remark: Observe that rules of a can overlap and can depend on the

environment.

Proof:

Let s be a sentential form of Gl when the initial environment is

~15-



Ego and let t be the corresponding syntax tree.

Let a leaf which corresponds to a B(a) - rule be called a
8(a) - leaf and a match which corresponds to a 8(a)-rule be called

8(a) - match.

. —

Let us apply 6,5 80 tos. G, 80 uses the rules in the following
sequence

R - . .

B ,RQ,R‘,...’R R’_...

b R ’
0,1 Bo,cr %10 PBr,a . B2 %2
and after each application of a rule it creates the following nodes,

inputs strings and environment values,

N ’ L ] . .’ N ’ N ’ N , . . ., N , N , . . - ;
80,1 Bo,k1 %1 Bi,1 Bi,k2 %2
s s o « o3 8 , 8 , 8 s -+« es S s B s o« . :
0,1 o1 ™1 1,1 Bk %

& € B C 88

If at each reduction we remove the corresponding node from T we get a

sequence of trees

e o o3 T T T
’ * g * 'a.? B

« o .’T FY T 9 s o o
0,k1 %1 B

Bo,1 1,1
From conditions o-1 and B-1 of the theoreﬁ follows the following

property: (property a.II) For any a-node Na of T, branches entering

Na come from symbols in s or from symbol-nodes such that the brgnches

which enter them come from an a-nodes. (We say that an o-node depends on

s and on a-nodes only; this is the definition of the dependency of one

node on other nodes and on s which is used in the sequel).

Let m be the number of a-nodes in 1. From the definition of the MMA

follows the following property: (property b.II) For any i, i +1 & m,

~16-



N corresponds to the leftmost highest priority a-match in any of the
*i+1 :
strings gﬁ , §$ s s o e 33

i i1l i,ki

Let 8y be any string which contains both o~ and B-matches. S

is derived from M by reducing one of the B-matches. From conditions

a-1, B-1, and B-4 follows that the reduction cannot introduce to Set1

any new o-match which does not appear in ENE From condition B-3 (en-

vironment) and (a-2) follows that the operation cannot remove an c-match

from~§k. Therefqre, (property c.II) EN has the same a-matches as 841,
Given an integer n, n > 0 the following algorithm transforms s

and T into s_ and T :
=n n

Algorithm AII

Step 1: set 1« 0 ; § « 1; if 1 equals n then terminate.
Step 2: Choose either a B-leaf or the N =~ leaf. If such leaves
3

are unavailable then terminate. Remove this leaf and

reduce the corresponding match in s using the corresponding

B-rule (for a B-leaf) or R. for N .,

aj aj
Step 3: sget 1«1+ 1; 1If Na has been chosen set j « j + 1;
]

if 1 equal n then terminate; otherwise go to step 2.

As in the discussion of AI we want to consider step 2 of AII and
to show that this step can be executed for any n. For this it is enough
to show that as long as the tree has leaves, to each B-leaf and to the
Na leaf there exist corresponding matches in the input string.

3 From the construction of the tree and condition B-2 of ﬁhe theorem it

is clear that to each f-leaf there corresponds a match. Consider the

process at the beginning of step 2 with the indices i and j; 1let what

13

is left of T be denoted by 45 and let g,. and égij be the input string and

-17-



the environment at this point. Does §ij contain a match to N_ ?
: a
o i
.. Since alI' N , i < j, have been removed,
j ij a,
all branches entering Na are from symbols in-Eij (property a.II). In

“ﬁ;”'is-present in 1

other words, Nu is a leaf and the input pattern of Ra appears in Eij'
3 .
Since only a-rules change the environment and all rules of Na , 1 <13,
1
have been applied and in the same order as in the application by Gl’

E} = 53:. ., which is exactly the same environment in which Na was
created b;laéplying Gl' In other words, Eij contains a match io Ra.'
The following lemma follows immediately from the above discusiion.
Lemma 1.II Given a sufficiently large n, AII reduces s to the root
symbol.
Lemma 2.I1

a) To any B~leaf of Tij there corresponds.a B-match in_gij and

to any B-match in s,. there corresponds a B-leaf in Tiie

—1j
b) Consider all a-leaves of Tij that have predicates which are
true for £? . If this set 1s not empty then among these leaves con-

1]
sider thoée with the highest'priority level and let the leftmost leaf
of the set be A.

§ij contains a match which correspond to A.

Consider all matches of Eij by a-rules when the environment is
2?ij' If thts set is not empty then among these matches consider those
matches with the highest priority level and let the leftmost match of
the set be M.

Tij contains a leaf which corresponds to ﬁ and this leaf is A.
Proof of lemma 2.II1

a) In discussion ALI we proved that to any B-leaf there corresponds
a match. The fact that to every B-match corresponds a leaf follows from

an argument similar to the one used in Ia. Assume the existence of a

-18-
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B-match with nohleaf. We can reduce Eij to the root symbol using AII
(lemma 1.II). This implies that all symbols of the match are reduced
and that the rule which corresponds to the match overlaps other rules
in the grammar; which contradicts conditions a-2 and B-2 of .the theorem.

b) Ffom property a.Il follows that Ty and T“j-l have the same
a-leaves. Since Naj is the leftmost highest priority a-leaf of Tu.-l
(property b.II) A is nothing else but N, - In discussing AII we ﬁioved
ﬁhat 8. ..contains a match which corre;pogds to Na which means that A

1]

has a corresponding match in §ij' Let us denote this match by MA.

g.. and s (and s to s )
B S S T R
have the same set of a-matches. This proof concludes the proof of part

We shall prove now that

b since, by construction, MA is the leftmost highest priority match of

8, and M, by definition, has the same property with respect to Eij;
j=1
"in other words M and M, are the same match.

A
Let AII obtain 3, by reducing the nodes (leaves) of T in the
j-1
following sequence:
N ,N ,N , ..., N , N s «ees N s, N s eeey N ;
4 % 93 %1 Bo,1 Bo,x17 B1,0 Bi-1,kj

where all a-nodes appear at the head of the sequence. The above sequence
is a feasible reduction scheme for AII since: the a-nodes are reduced
in the original order and to each, in its turn, corresponds a match; nodes

NB to NB may depend on s only, nodes NB to NB onsand N,
0,1 0,kl 1,1 1,k2 *1
etc. and therefore, when the turn of each B-nodes comes, the node is a

leaf.

Let §abe the input string immediately after Na is reduced. From
. j-1
property a.ll follows thatlgaand 8 have the same a-matches. 1In the
j-1 v
same way it can be shown that 8, has the same a-matches as Eij’ which
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implies that M and MA are the same. QED lemma 2.II
The proof of theorem IIa is similar to the proof of theorem Ia.
Consider now the application of Gz, E%) to s. At each step we

reduce either a B-match or the leftmost highest priority g-match. At each

such reduction we remove the corresponding leaf from 1t (lemma 2.II).

ihe process cannot terminate as long as leaves are available since to

each leaf there corresponds a match (lemma 2.II). Thus, on termination

we are left with the root symbol only. QED IIa.

Corollary: Let 8, be a string derived from 8 by removing one B-leaf
of t© or the leftmost highest priority a-leaf and reducing
corresponding match. In the former case s; is a sentential

form of.Gl, é}o,in the second case s7 is a sentential form

of Gl’ 8“ .
1

At this point we would like to extend the results of theorems Ila

and IIa to include rules of the form

RN —1—-151 "“i—i—il i(a » By 8) | e,
ri.e. the patterns of the rules may contain string variables.

The main change is in the definition of the syntax-tree. The
difficulty is illustrated in figure 3. Assume that g of figure 3 ié a
sentential form of some grammar G which contains the rules Ri and R.j and
it.is also a sentential form of any grammar derived from G by changing
the priority levels of the rules. Observe that in figure 3(a) and (b)
one of the matches is not a leaf and thus the lemmas on which the proofs
of theorems Ia and IIA are based are not useful. We change the definition

of the tree as illustrated in figure 3(c). Only U and_g,:L appear as

the 'bottom' and 'top' parts of a leaf.

e

20~
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Let El and 62 be subsets of the alphabet.

Consider a rule of the form

Ry Ny amB, v a8 1 8,8 |

Ci is said to be sensitive to gl for‘gi and to €2 for §i if C ( B ) 1s

true only for some o, and Bi which satisfy the following conditions.

1) Either all symbols of oy

is any symbol not in &, ., 611 Cigl, and all other symbols

are elements of gl, or, headl(gi)

are elements of El.
2) Either‘all symbols of;ﬁi are elements of gz, or, taill(gi)
is any symbol not in 521’ sy c £,, and all other symbols
are elements of &1.
Note that Ci(g) B) = true implies that o and B satisfy the conditions;

but o and B which satisfy the conditions do not imply that Ci(a, B) is

true.

Example: Let g, =8, = {*, +} = {*} ;

f11 7

= l*' Tt
R, Ni alaZ"ibi 1aznibl if a, .and ay #

and by # '*' then true else false.

We would like to adapt a vider deﬁinition for the concept of
overlap between two rules. The new definition does not change the
proof of theorems Ib and IIb but extends the domain of grammars for
which these theorems are valid.

Consider the following example: The rules of the grammar G3 are

R, O X8, ~ YB, | 1f By = '"*' then true else false;

Ry 0 az~ ng | 1f ap = "*' then true else false;

R3 0 Y # Y > S H
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R1 and R2 overlap. The string X*Z is a sentential form of G, which

3
includes a Rl match and R2 match. Apply G3 to X*Z and construct the syn-

tax tree (new definition). The two matches have COrresbonding leaves.

Now consider the probf of theorem Ia. The proof of Ia uses the over-

lap condition to prove that to each match there corresponds a leaf. N
Considering the example and the proof of Ia and Ib it seems that if

the overlapping of the input patterns of two rules involves the e, éi

strings only then such an overlap can be permitted and with some additional
conditions the theorems remain valid.

Consider rules of the form

RN amg vop8 | Cop,8,8) |
which are sensitive to El and 52.

To simplify the definition we define the funcitons Ma and M8~:

1f headl(gﬂ) is any element of Elj then Ma(gj) = true else

M (¢,) = false. (The bar denotes the complement of a set).

3

) = true else

If taill(gj)’is any element of gzj then MB(Bj

MB = false.

Ri and Rj are said to overlap (type 1) if there exist g?O’ el Ei’

o7 6* such that
=’ =

D ¢ (efs 87, ©) = ¢y, 85, &) = true;

2) there exists a number m such that either

(2.1) tail (m,87) = headm(gggj)

where m :_mo and m, is given by the following table: »
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M (a]) = true M, (a3 = false
M(8;) = true | min(2(8) + 1, 2 + 1) | miaCa(8), 1)) + 1)
Ma(B7) = true | win(2(8)) +1, z(gj') min(2(8;), 2(9_:.3))
of,

(2.2) same as (2.1) with j and i interchanged.

Example of overlap (type 1):

Grammar G includes the following rules

1)

whose predicates are sensitive to gl = 9y and £, = {Zl, Zys Z3}
in éi
R, 0 aAB > aC | 1f o) = 'Z,' then true else false;
R, . 0 CB'S8" - Dg'g" | If (8" = 'z)') and (B" # 'Z,") then
true elge false
For al=zl B'=Z1 there is overlap (type 1) in the following way:
: ‘ | =
-
R2: Czlt_B.: (B':Zl,6'!=z
| re
L B #2,)
- " "
R2 : : !B (B" = A, B #.Zz).
Two rules R

if there exist two values Ei and £7

3

such that (1) 21(5;) overlaps Bj(gg) and both Ci(gi(si), 23) and

Cj(gj(ii), E;) are true; and (2) the overlap of Ri and R

type 1.

1 and Rj with input patterns Ri(si) and Rj(gj) overlap

and a value of the environment

is not of

3

The above definition of overlap is the one used in the sequel.
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Theorem Ib

Let Gl be a grammar and let El and 52 be subsets of the alphabet.

Let the rules of G be of the form

Ry My oymy8y > 250,8; | Cyleys B

and satisfy the following conditions: For all rules Ri

(1) the predicates are sensitive to 51 for oy and to 52 for Ei

only;
(2) the symbois of El and EZ do not appear in [P
(3) tail (m,) § & and head (x) ¢ £,
(4) the predicates do not depend on the environment;

(5 Ri is not 'dotted' ;

(6) the root symbol appears in one rule only and only in the
output pattern of that rule;

(7) the strings [ and are not empty.

Ty
Let G2 be a grammar derived from G

of the rules.

1 by changing the priority levels

If the rules of G, do not overlap each other nor themselves, then

1
any sentential form of G1 (GZ)’ 230, is a sentential form of G, (Gl), égb'
Proof
The proof has the same structure as the proof of theorem Ia. We

use algorithm AI and leﬁmas 1.1 and 2.1 as stated in the proof of theorem
Ia but with the terms 'tree' and 'leaf' having their modified definitions
which admit string variables and which are discussed above.

" Consider AL and let s, 8» T and Ty be defined as in the proof of
theorem Ia (bearing in mind the differences in the definiticns mentioned
above). Our first step is to.consider step 2 of AI and sho& that it can

be executed for any n. This is equivalent to proving that to any leaf

of T4 there corresponds a match in 8y

24—



Let us introduce a small modification in AI and let the resulting
algorithm be cailed AI*. Let the leaf chosen in step 2 corresponds to

and let the corresponding rule be

the replacement node Ni

Ry My 9,18 > o408y

In AT we reduce in s, the match which corresponds to the leaf. In AI%*

i

we replace the string PP which in R

£y The point, of course, is that AI* is not dependent on having a

corresponds to Ni’ by the string

match corresponding to anylleaf. Therefore, (1) the transformations

of T and s intolrﬁ and s, are well défined for any n and (2) given a
large enough n, AI* transforms s into the root symbol. We are going

to show thét under thg conditions of the theorem any reduction of AI%*
corresponds fo a reduction of a match (which implies that AI and AI%

are the same). |

Consider any replacement node Nj of 1. Let the corresponding rule

be R, N, a.7 > 240 (For simplicity we assuem B, to be empty, since

TR Rt et 3

the proof with both and B, non empty is essentially the same as the

__j
is applied to the input string the actual

2y

one gi@eu below). When G

1
reduction which corresponds to Nj is Ezlzzgj 221222j where Zl, 22 € gl
and E'é 513 (again the same proof can be extendéd to any non-zero
number of symbols in gjj.

Consider any series of reductions of s and T to the root symbol

using AI*. Let our node N, be the j~th replacement node to be removed.

k|
We claim that (a.l) for any series of reduction and for any i < j, 2

and 22 appear in EN in the form ...aZlZZ... where a is some symbol such

that a ¢ glj; (a.2) If N, is a leaf of Ti, i< j, then Zl and 22 appear

3

in the form ...alezﬂi...
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Consider the following properties of s and of strings ER derived

from s by AI*. (Again, for simplicity, Z1 and Z2 are used instead of

any two symbols of gl or gz. In the following, Zl in N and Z1 in §j -

are the same occurrences of the same symbol; and the same remark holds

for 22).

1) 1f Zl and Z2

is a result of condition (2) of the theorem Ib.

appear in 8y then they also appear in s. This

= - * =
2) 1If 8y = ce2yZ,... then AI* cannot transform it to 8 2+ 02102, ..

where o is not empty (conditions (2) and (7), L is not empty).

3) If s A g?

eee * ‘ ra m i
8 122, then AI* cannot ; nsform it to

8 = veelylpens o Since Zy and Z, cannot appear in a m,

without disappearing, then for any i, the reduction of S

to §j implies the reduction of a to the empty string which

contraddcts condition (7).

4) 1If 8, = ...232122..., where Z3 € Elj

84 to §j = ...2122... (23 is reduced and removed from the string).

then AI* cannot reduce

Conceivably, this reduction might be done in one of two ways:

8 =k "'Z3"'leZ"' =>k "'leZ"' which contradicts condition
(7); N =% ...2122... which contradicts condition (3), and which

proves the assertion.

5) At the creation of Nj by G1 the input string was ...Eilzzgﬁ...

From (1) (3) (4) and (5) follows that s-= "’AZIZZ"' where A & Elj' From

this result and from (2) and (3) follows that any £ which contains both
Z1 and 22 is of the fqrm Ei = "'BZIZZ"' where B & glj.

It remains to show that as soon as N, becomes a leaf the input string

R
is 8 = "'lezzl.ﬂj"‘ with y empty. Let the symbol node of 22 (Zl) be

~connected by one branch to the replacement node sz (NZl) where NZl and
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N,, may be the same node. Since at the creation of N, by G, the

72 j 1

input string is ...221221 .. it follows from condition (3) of the

theorem that sz depends on N, (a directed path exists from N, to

A 3

sz) and NZl (if different from sz) depends on NZZ'

Now assume that for some k, . ..Blezl 13 .. with Yy non-

_8—1(2
empty. Consider the reduction of Sy to the root symbol using AI%,

In this reduction NZ is reduced after Nj' Since both NZ and N

2 3

was created) y has to

2

do not depend on y (y was not there when N,,

be reduced to the empty string before N,, is reduced which contra-

22
dicts condition (7) of the theorem.

This completes the proof of (a.l) and (a.2). There is only one
more case to be considered: N

3
and at the'application of G1 to the input string the actual

ith R 7, + a,7,|C.(a,)
is associate with a rule 5 Ej—j | —j—jl 3%y

reduction which corresponds to Nj is Eiﬁ > Eéj where Z ¢ Elj' It has

to be proved that if Nj is a leaf of some'gk, 5 cannot be ...Zgj...

where Zt—:F,l:l and ﬂj is the string which corresponds to Nj'
*
Assume that there exists Sy ...Zgj... . Since AI* reduces §k to

the root symbol, it follows from condition (3) that the replacement
node NZ (the replacement node to which the symbol node of Z is connected

by one branch) depends either on N, or on nodes which do not depend on

k|
Nj but which depend on symbols to the right of Ej' The second possi-

bility implies that Ej can be reduced to the empty string which contra-
dicts condition (7) of theorem Ib. The first possibility implies that in

‘the application of AI* Nz is reduced after N, and both Z and w, are

3 3

present in the input string when Nj is created by G Let s,

1 -1 be the.
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input string at that point, §j_1‘= ...ngj... where taill(x) = Z. From
the format of 8y follows that NZ does not depend on y directly (no
connection of y and NZ is done by one branch only). No node which depends

on Ej can depend on y since such a node has to be reduced after N

]
which implies a non-empty string between Z ard Ej in Sp- Thus, in the
reduction of s to the root symbol y has to be reduced to the empty

£5-1

string which contradicts condition (7) of the theorem and rules out the

first possibility.

From the above discussion follows that to every leaf of T there

i

definition of algorithm AI and prove lemmas 1.I and 2.I in the same way

corresponds a match in g,. Therefore we can return to the original

as in the proof of theorem Ia. Next, the proof of theorem Ib follows

from AI and lemma 2.I in the same way as the proof of theorem Ia. QED Ib.

Corollary: Let 8 be the string derived from 8 by removing one leaf

of t. 51 is a sentential form of Gl'

Before presenting theorem IIb we have to define the sensitivity of
Pi’ the program part of a rule Ri’ to El and 52. For simplicity assume

52 is empty. If the predicate of R, is sensitive, say, to El, C, is true

i i

= 7 7 C . W
for some gi ZZl...Zn where Z is any element not in gli, Eli 51 e

allow the wvalue of Pi to depend on the environment, on T, and on o and

Ei but the dependency on @ and Ei has to be such that Pi is independent

of the actual value of Z. If these conditions are satisfied with respect

' ai d .
to o and §i we say the Ei is sensitive to El an 52
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Theorem IIb
Let ¥, ¥, w3, 51 and £y be subsets of the alphabet where wl, ¥y
and ¢3 are disjoint.

Let G, be a grammar consisting of two sets of rules o and B where

1
the rules have the following form

RN, 4mB> e8| Gy, 8,8 | By

and which satisfy the following conditions:
For all rules Ri
1) the predicates and programs of all rules are sensitive to
.Ei fot_gi gnd to gz for Ei;
2) symbols of £, and £, do not appear inp;
' tail .
3) _l(ﬂi) ¢ &y and headl(wi) ¢ £y

4) the rules are not 'dotted';

5) the stringsgi and p, are not empty;

o rules: 1) The input-patterns consist of symbols of wl and wz

only; output-patterns consist of symbols of wz only;
2) The a~-rules do not overlap any rule of B;
- 3) The a-rules do not contain the root symbol.

B rules: 1) The input-patterns consist of symbols of ¥y and ¢3
only; the output—-patterns consist of symbols of ¢3
only;

2) ThevB-rules satisfy all requirements imposed on the
rules in theorem Ibj
3) The B-rules do not change the environment.
Let G2 be a grammar derived from Gl by changing the priority levels

of the B-rules. Any sentential form of Gl(Gz)’ 530’ is a sentential form

of 6,(6,), &,
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Proot:

The ér&of of theorem IIb closely follows the pattern established
by theorems Ia, IIa, and Ib.

We first note that the conditions on which properties a.II, b.II,
and c.IT of the proof theorem IIa are based are included in theorem IIb
and there are not additional conditions which limits these conditions'
scope. Therefore, properties a.II, b.II, and c.II remain valid.

 Next we define algorithm AIT* in a way which is similar to the
definition of AI* in the proof of theorem Ib. Conditions (1), (2),
and (3), and (7) of Ib are included in IIb énd areisatisfied by both
o- and B-rules. Therefore, as soon as a replacement node becomes a
leaf, the appropriate gi and §1 appears adjacent to the left and right
of I For e,m.B, to be a match, however, the environment has to have
the correct vélue. Note now the AII* reduced the a-nodes in the same order
as G1 and that from condition (1) of IIb (programs) and the above dis-
cussion it follows that to every B-leaf and to Na of Tij there corres-
ponds a match, This implies that we can use AII iather than AII* and that
lemma 1.II is valid.in the case of theorem IIb as well.

Lemma 2.II follows from lemma 1.IT and properties a.lI, b.II, and
c.II in the same way as in the proof of IIa. Once again the proof of the
theorem IIb follows from the lemmas in a way similar to the proof of Ia,

Ib, and IIb. QED IIb

3.4 Appending and Composition of MMA's

The appending and the composition of MA's are defined in Chapter 1
of Galler and Perlis [3] and as far as possible their notations are

followed here.

-30-
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Given two MA's, MAl and MA,, which operate on the same alphabet, the

2

appending of MAz,to MAl results in the MA MA3 which contains the rules of

MAl and the rules of MA2 ordered in the following way: first come all

the rules of MAl‘in the same order as ;hey appear in MAl

the rules of MAZ in the same order as they appear in MAZ. The notation

used for the result of appending MA2 to MAl'is MAl; MAZ'
The composition of MAl and MA2 is defined to be the following

procedure: Apply MAl to the input string; On termination of MAl apply

MA2 to the string which resulted from the application of MAl to the ipput

string. The composition of MA1 and MA2 is denoted by MAZQMAl.

We need a éoncept related to composition which is best illystrated

; next come all

with referenée to Figure 4. MAl (MAl box) is first applied to a string.
On termination MA2 is applied to the result (control is passed to box

'MAzj. On terminatién of MA2 box 3 is activated. The operation of box 3
is the folloﬁing: On the first visit to the box it transfers control to
the MAl box. From the second visit onwards control is transferred to the MA1
box only if a reduction has been made between the current the previous
‘visits to the box; 1f no such reduction has been made box 3 terminates
the process. We name this composition feedback composition and denote.it
by [MA2°MA1].
It is clear that the above definitions can be exFended to several

MA's. The extension to MMA is straightforward-the only addition required

is that both MMA1 and MMA2 (or all algorithms concerned) have the same
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environment. With obvious meaning we can speak about the appending and
the composition of grammars which have the same symbol as a root and
which have the same environment 8 .

We are concerned with the following problem: given two MMA's,
Gl’ 8 and G2, 8 » construct a MMA which is equivalent tc; Gzocl, 8 R
(or to [6,°6,1, & ).

A standard procedure for finding an equivalent to MAéoMAl, where
MAl and MA2 are MA's, is given in Chapter 1 of [3]. Essentially this pro-
cedure increases the alphabet, £, by adding a set of symbols £' such that
to every symbol in £ corresponds one and only one symbol in &' and viée

2

versa. MAé is formed by changing each symbol in the rules of MA, to the
corresponding symbol in £'. MA1 is changed to MA; by introducihg some new

rules and eliminating the 'dots'. The effect of the changes is that MAi
terminates on strings on which MA1 terminates; however, before termination
all symbols of { are changed to the corresponding symbols in &'. MA3

consists of the appending of MAé to MAi.
It turns out that under the conditions which are essentially those

imposed on the rules is theorems I and II [MMA2°MMA13 is equivalent to .

MMAl;MMAlg where equivalence here means that any sentential form of one

is a sentential form of the other and vice versa. The proof of this fact

is our next objective.

In the following, all MMA's are defined over the same alphabet and
one symbol is designated as a root symbol so that the term 'sentential
form' is meaningful.

The following lemma is useful although 1itg proof is trivial.

Lemma 3:

g},and G
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and an environment such that s does not contain any matches to the rules

of G1 and contains at least one match to a rule of Gz.

If for any g aader satisfying the above requirement no reduction

by any rule of Gﬁ”canﬁﬁntroduce a match to a rule of G, then

(1) any sentential form of G2°G1 is a sentential form of Gl;G1

and vice versa.

(2) [G2°Gl] = G2°G1 =7G1;G2 where the equality means equivalence

between the algorithms.

Theorem IIla

Let G , Gy, +.., G_be MMA's all defined on the same . 1t

1°
Gl; Gz; e} Gn satisfies the conditions imposed on the rules of the grammar

in theorem Ib, then
(a) any sentential form of [Gn°"'°G2°G1]’ 53, is a sentential

form of G Gz;...;G . E;, and
n

1;
(b) any sentential form of [Gno...oGZOGi], E;, is a sentential

form of G Gz;...;Gn, g;.

1’
Proof

For simplicity we consider the composition and appending of two
MMA's_only. First note that under the conditions of theorem Ib the
environment does not play any role in the reduction process and there-
fore it can be ignored.

Part (a): Let s and T be the sentential form and syntax tree

which corresponds to [G2°G1] (or, in the proof of part (b), to G ).

1362
Let algorithm AI* operate on 8 and 1 and let the result be s, and T
In exactly the same way as in the proof of Ib we extablish that to any

leaf of Th there corresponds a match in s, and thus prove lemma 1.I,
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which, in turn is used to prove lemma 2.I,
- Applying Gi;GZ [G2°G1] for part (b) to s the termination with the
root symbol follows directly from lemmas 1.I and 2.1, in the same way

as in the proof of theorem Ib. QED

Theorem IIIb

Let Gl’ cens Gn be MMA's all defined on the same environment E},
If Gl;’Gz; G3 eees} Gn satisfy the conditions on theorem IIb with

the rules of G1 the. a~rules and 62 o Gn the f-rules, then

(a) any sen;ential form of'[Gn°Gn_1° cee °GZ°G1]’ é} , is a
sentential form of Gl; Gz; oo Gn,ég, and
(b) any sentential form of Gl; GZ; ool Gn, E}, is a sentential

0...0G1], ég.

form of [Gn°Gn—1

Proof:
The first‘thing to note is that the conditions on the a-rules are

such that after G is applied and terminates no application of the B-rules

1

can introduce a-matches to the string. Thus we can consider [Ghocn_1°

cee oGzlccl rather than [Gn° ees oG Using theorem IIIa we get that

1]'

the former is equivalent (from a sentential form point of view) to

Gz; G3; ...;Gn composed with G1 and from lemma 3 follows the equivalence
with GI; G2; ces s Gn'

QED.

3.5 Computigg,Time and Transformation to Equiva1ent Algorithms

The MMA in its original form éeems to be (a) slow, énd (b) to
require the presence of the whole string in memory at the same time. This
section 18 a short summary of efforts to reduce the computer time require-

ments by transforming the MMA to forms which are equivalent to the MMA
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from the point of view of computation results but requires less computer
time. A complete discuésion of the subject will be given elsewhere.
Markers are used to reduce computation time. It was proved [9]

that, under the termination conditions given in 3.1 the number of.operations
performed by an MA which uses markeré (without the predicate and the
program part) is linearly bounded by the initial length of the input
string.

The idea is rather simple and can be easily explained by an example.
Figure 5 shows a string in which, say, the third rule has just made a
replacement. We put two markers, a left 3rd marker and a right 3rd marker,
at both éﬁ&gwgénéﬁ;>;;;w;45;tring. Formaliy, our né#f step should be to
start scanning with the first rule from the beginning of the string. The
marker enables us to start with the lst rule not from the beginning, but
as indicated at figure. If no match if found, scanning by the lst rule
isvfinished not at the end, but at the second marker (See [9] for further

details) .

The MMA (with or without markers) can be transformed to a two
stack algorithm, a fgct which 1is not surpriéing in view of the equivalence
between the MA and the Turing Machine. In the simplest version of the two stack
algorithm stack A is initially empty and the input string is in stack B
with the left most symbol on top of the stack followed by the second
symbol, etc. A symbol is read from B to A and the rules of the grammar are
compared with the top of stack A. If a match to a rule Ri is found and
some addition conditions (which are the essence of the transformation of

the MMA to a two stack algorithm) are met, p, is removed from the top of
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stack A and gi_is put on top of stack B. If z(gi) = l,g‘,1 can be put into

stack A. Similar simplification occurs with rules of the type gi£i§i+'gigi§i
The main advantage of the two stack algorithm seems to be in the

search procedure. The table of rules does not change during the parsing

process and can be coded efficiently in order to decrease the search for a match.

Thevinput string changes continuously and it is not clear how to code it.

Thus it is faster to compare the symbols on top of the stack with all rules

than to compare one rule with the whole-input string.

The markers and the two stack algorithm are general transformations
to £ equivalent forms. It is clear that advantége can be also taken of
special properties of some grammarsl Examples are the following:

If all the rules of the graﬁmar have thé same priority and the rules
do not overlap (of if equivalencevform the point of view of sentential form is
sought and conditions of theorem Ib are satisfied) then any match to the
symbols on top of stack A can be reduced (no additionél conditions are

needed).

Wheh applicable, (conditions of theorem IIb) computer time can be
reduced by a change in the order of the rules. This aspect is discussed
in section 4.5 in relation with the Algol example of section IV. It also
turns out that a single stack and a queue are sufficient fox the parsing
of that example.

Advantage can be taken of the special cases to reduce the memory

requirements; see section 4.6 for an example.
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3.6 Relation with Bounded Context Grammars.

We are concerned with the relation between (m,n) bounded context
grammars as defined by Floyd [13] (see also chapter 6 in [8]) and the
MMA grammars in particular those which satisfy the conditions of theorem
Ib.

In our notations an (m,n) bounded context grammar is a set of rules

of the form

-

tuy, > LUy

where Ui is a single symbol and where additional conditions are imposed
on the rules such that for any i and for any sentential form whenever the
substring 519131 appears in the input string it can be replacgd by Eiuizi
with the result being a sentential form. The conditions are given in [13]
page 63. The values m and n are given by m = max Q(Ei) and n = max 2(2&);
They play no rule in the discussion és long as they are finite. ’
From the above it is clear that a sentential form of any bounded

context grammar is also a sentential form of an MMA whose rules have the

form

Ry My Hwyy > £ UV

where Ni is arbitrary.

Theorem IV
Let G be a grammar whose rules satisfy all the conditions of
theorem Ib and the additional condition z(pi) = 1 for all i. The rules

of G (ignoring the priority levels) form a bounded context grammar.

Proof:

The above statement of the theorem requires some clarification.
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Note that the concepts of predicate and environment are not qsed in [13].
- The environment concept is not used by the rules of G which satisfy Ib.
The predicate can be considered as a shorthand notation for several rules,
e.g.

am, > geili_fg # '*' then true else false;

is replaced by several rules - a rule for each symbol in the alphabet

which is different from '*'.
The proof consists of showing that conditions (1) (2) (3) of Ib
imply each of the conditions Rll through R44 on page 65 of [13]. Since

the technique of the proof are the same for any we give a detail

R:Lj
proof of Rll— only.

In our notations (see section 2.2) condition R,. is the following:

11
((3 %) (xy =« w) is abbreviated ...y =x w)

Condition Rll:

There does not exist a string ...t u.u,v... and

=12
two rules R N gy_y.-rgUy_,g_-—-gly_z;
X
R, Ny ewuw B > aXB;
such that:
1) ceef WU Ve % oW WUV, where ...t =x W;

2) uwsing rule K.l. ce W Wu,V... = I uyv..

' 3) j_=...ngl...=’*S.

The proof shows that if (1) (2) and (3) hold then from the conditionms

of Ib it follows that Rl and R overlap which contradicts the conditions of

theorem Ib.
Consider the different possibilities under which . b=k WE

(a) If ...t=y then
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e W UV... = Lllt WUV, with R and R1
matching two strings which overlap.

(b) If there exists a number n, n > 1, £(t) > n, such that
g_=_...tailh(£) and w # ...tailn+1(£), then we have the following:
From (1) and (3) of Ib follows that  head, (tail . (©)) ¢ £,» and that

2(t) = ntl. From the above and (7) of Ib follows the 2(w) > ntl.

Therefore both R and R1 match ...w u.u y_ and these matches overlap.

122
"7 (@) If tail (@) # tall (f) then from (1) and (3) of Ib follows
that tail, (t) £, and £(p) = 1 and tail (@) ¢ §;. Since Lw) > 1, it

- follows that both R and Ry match . . . wuwuv... and ghese matches

overlap.

©If t is empty, then the overlap of R, and R follows from (2) .above.

1

Thus R11 cannot hold if the rules of G satisfy the conditions of
- Ib.
QED
In conéluding this section we remark that it seems that the
relation between the Context Bounded Grammars and the‘MMA's requires additional

investigations. Note that condition (3) of R,, was not used in the

11
proof and that we did not say that to every bounded context

grammar corresponds an MMA whose rules satisfy the conditions of Ib.
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Section IV: Discussion of the Algol Example

4.1 General

This section descfibes the methodology used in constructing an
MMA parser for Algol 60. The complete description of the MMA grammar
rules and the environment is given in the Appendix.

We have chosen Algol 60 as the subject of the example because the
language is well known aod well documented and thus it enables the
comporison of the MMA technique with the conventional onos. A problem
oriented 1anguage,.as the graph language mentioned above [7], could have
been chosen. This, however, would require both the description of the
semantics of the néw language and a description of the syntax usiog

BNF (plus English) to facilitate the comparison between the technlques.

In the next subsection the general methodology of"the synthesis
of a parser is discussed. The method involves the partitioning of the
languége into sublanguoges,constructing a parser for each part and
then putting the parts together to form one MMA parser. The subparsers
for expressions and declarations are discussed in 4.3 and 4.4 respectively.
The parts are put together in 4.5. The effect of the reordering of the

rules is discusgsed in 4.6.

4.2 The Synthesis Method

Assume that we have‘in mihd a certain language;'in this example,
the language is Algol 60 but it can be any problem oriented language.

The synthesis of'on MMA grammar for a language involves a basic
problem. Any set of rules we write down defines a parser but does this
parser define the language we have in mind? The answer, of‘course, depends

on the original description of the language. In cases that this
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description is mathematical, then, conceivably, one can define an al-
gorithm that transforms the language description to MMA grammar rules.
In case that the description is partly BNF and partially English, as
Algol 60, or partially BNF,partially vague and partially non-existant,
as in a new problem oriented language, no such algorithm can be defined.
If the language is of any complexity it is impossible to determine by
ingpection that the MMA grammar is indeed defining the same language

as the one we have in mind.

The synthesis procedure suggested here is to divide the language
to se§eral small par;s or sub-languages, e.g. declarations, arithmetic
expression, etc. Each part is then provided with its own MMA parser.
Composition is used”;; form the parsef forrthe whole laﬁé;;;; from the
parsers for the sub-languages. When it is so desired the next step is
to use techniques discussed in section 3.4 to form an equivalent parser

which uses one MMA.

The main advantage in the above procedure jis that each of the parsers
for the sub-languages contains only a few rules aﬁd their 'cbrrectness'
can be easily verifiéd by inspection.

Several additional points can be made with respect to the application
of synthesils procedure to our Algol example:

a) We do not have a formula or an algorithm for partitioning the
language into sub-languages. In Algol the partitioning was done
intuitively more or less the way it is done in an #nformal exposition
of the language (see list in appendix A).

b) The synthesis of parsers for the sub-languages is rather

simple, this is mainly a result of the fact that most of the syntactic
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constructs follow a few patterns. The common patterns are:
(b.1) A list-like pattern:

<first symbol><construct><separator><construct>
<separator>...<last symbol>.
Examples: A list: ( <item>, <item>, <item>)

A block without nesting: begin D, D, S, S, . . . end.
See also the rules for processing decla;ations (Group'D in Appendix A),
for statements (Group F), assignment statement (Group AS).

This pattern is handled by recognizing the first symbbl, substituting
a marker for it and using the marker for collecting the items from left
tolthe right. Example: Consider an (integer) array variable, p is
the marker.

Xarith variable> [ -+ p

< SE > )
p ‘ » TP
{ < E > |
(< SE > )
P 3 ] =  <subscripted arith. variable>
{ < E > ]

(b.2) Expressions: See group E and group BR in the appendix and
the comments on expressions below.

(b.3) Nested structures:

In the list-like patterns nested structures appear when each of the
< constructs > can be a list structure, e.g. blocks. In this
case no special device is required and the techniqué of (b.1l) processes

such constructs automatically. Some care, however, has to be take with
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respect to the scope of variables; this case is discussed below in 4.3.

Another form.of nesting appears in expressions where an expression

can appear between parenthesis. The parentheses can e viewed as iftroducing
a local change in the priority of the operators. This case is discussed

in 4.2 below.

(¢) The following fact greatly simplifies the synthesis of MMA
for the sub-languages: It turns out that for most sub-parsers (all
except expressions and declarations) the order of the rules is unimportant

since the rules satisfy the conditions of theorem Ib.

4,3 Expressions

For éimplicity let us first consider expressions using the
operators 4+, * and + (no brackets) with the usual priority hierarchy
associated with thém. An arithmetic variable is denoted by X and <SE>
denotes a simple (arithmetic) expression.

It is clear that the sublanguage can be defined by the following
grammar :

A.1 4 X > <SE>
A.2 3 <SE>4<SE> =+ <SE>
A.3 2  <SE>3%<SE> + <SE>

A4 1 <SE>+<SE> + <SE>

If parentheses are now introduced a rule of the form (<SE>) -+ <SE>
has to be added. A simple example, (X+X)*X*X*(X+X), shows that
the addition of this rule is not enough and ﬁhat rules A.2 through A.4

have to be modified. in order to obtain a parse which corresponds to the

usual meaning of arithmetic expressions.
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B.1l 5 X = <SE>

B.2 4 (<SE>) + <SE>

B.3 3 <SE>4<SE> - <SE>

B.4 2 a<SE>*<SE>B.-> 0RSE>B | 4if o # 't' and B # '*' then

true else false;

B.5 1 <SE><SE>B » <SE>B | if o # '+' and a # '*' then true else false;

Note that the o on the left of the input-pattern of B.4 takes care of
situation such as KX&X)+X*X. Such a o is not needed in B.5 for

the following reason: when a string is processed by the.giammar

aﬁd a match to B.5 is found, no right parentheses can appear to the
left of it. From the same argument follows that we can avoid the o
iﬁ B.5 if.we make B.l the lowest priority rule. The result is

C.1 5 (<SE>) » <SE>

C.2 & <SE>4<SE> + <SE>

C.3 3 <SE>*<SE>B -+ <SE>B I if B # 't' then true else false;

C.b 2 <SE>+<SE>B + <SE>B | if B # '+' and B # "*' then true else false;

C.5 1 X -» <SE>

Expressions of the above type are an interesting special case as
far as changing the order of fhe rules are concerned. We shall discuss the
case with reference to the above simple example; the result, however, holds
for the more genmeral case of rules of groups E and BR in the appendix.

Let us change the priority of C.1 to 1 and introduce left and right
markers for each priority level. Without loss of generality we can start
scanning with C.5. Note the following: (1) After any replacement the

string (plus markers) is ...LM <SE> RM... where LM and RM are the left
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and right markers, respectively, which are associated with priority
level 1 (C.1 and C.5) (See [9] for exact discussion of handling markers).
(2) Since no <SE> can appear before C.5 has processed the string there is
no reason to.check matches to C.2, €.3 and C.4 in positions which re-
quire <SE> to the right of RM., (Figure 8a). (3) From (1) and (2)
follows that all matches to‘C.Z, C.3 and C.4 are at positions shown in
Figure 8b. Since the input-pattern of C.2, C.3, aﬁd C.4 are different
they all can be taken as having the same priority.

The conciusion is that we can perform the reductions of the above
MMA by using‘a'stack and a queue of length 1. (Compare with Section 3.5).
The stack contains all symbols to the left of RM. The queue contains
the symbol to éhe right of RM. All matches and reductions are done on
top of the stack with the.value of B being the symbol in thé queue. Com-
parisons between top of stack and.the rules can be done in any order:
since only one rule can match the top of stack. If no match is found
the symbol from the queue is transferred to the stack and a symbol from
the input string is moved to the queue.

The result, of course, is not new but it is interesting to see

that it can be readily obtained from the MMA using markers.

4.4 Declarations

If we ignore for a moment the declarations of arrays which may
contain expressions then the structure of the declarations is quite
simple. The declarations of variables may appear at the head of each
block and their format is list-like which can be processed as discussed

in Section 4.la.
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The nesting of blocks and the scope of variables is handled
in the following way: When the beginning of a block is recognized,

a symbol table is opened and made current. The newly declared variables
are put into this table.. The table is closed when the end of the
declaration statements is reached (rule D.12). The following mechanism
insuresvthat each <identifier> is converted to the appropriate variable
(<arith, variable> or <Boolean variable>) according to the correct

scope. All rules of group D have the same priority and thus scanning by
this group of rules is done from left to right. Processing of
<identifiér>'s inside a block starts after the block's declaration has
been processed. Wheﬁ an identifier 1s encountered the search in the
tables is done in the usual method for nested tables (the current table
is searched first, its parent is searched next, etc.). A new table is
opened and made current when the beginning of a nested block is recognized.
When the end of this block is recognized the parent table becomes current
again and any identifiér which appears at the end o0f the block enjoys

the correct scope.

Some minor complications result from the appearance of the expressions
in the declaration of arrays. The expressions have to be processed but
the variables which appear in them are defined in the outside blocks. For
this reason the search in the symbol tables skips the current symbol
table if this table is open (the symbol table is open and made current but it is
'connected' to the main nested symbol table only after it is closed).

Labels and lgbel tables are handled similar to the way symbols and

symbol tables are handled. The differences, however, are the following:
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Since a label may be defined after it is used, the label table is being
closed by the rule which tecognizes the end of the block (D.16). This
implies that a current label table is searched for duplication in def-
initions but the parents table cannot be searched until the whole pro-
gram is processed. The actual search is done by rule B.3 which is the

rule which plants the root symbol into the input string.

4.5 Combining the Sub-Parsers to One Parser

This section has two objectives: The first one is to explain how
the parsers of the sub-languages are put together to form the parser for
the whole language which is described by figure 7. The second objective
is to use the results of 3.4 to obtain one MMA parser from the composition
of figure 7.

To-facilitate the discussion we name the MMA's for the sub-languages
in the following way: E - expressions, BR - Boolean and relational expres—-
sions, D - declarations; AS - assignment statement; F - for clause; S -
statements; L - labels and B - blocks.

It is clear that the first operation Whiéh one has to do upon
entering a block at the first time is to process the declarations. Indeed
one approach to parsing is to process all the declaration of the program
first in what is commonly called a first pass. The processing of decla-
rations requires the parsing of expressions and thus E, BR and D are
appended to form E;BR;D which corresponds to box 1 of figure 7.

The appending of BR to E follows from the priority of the operators.
Declarations have to be processed from left to right in order to insure
the correct scope of variables (see 4.4). To insure this, the rules of

E;BR are given a higher priority than the rules of D.
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The operation of E;BR;D is explained.as follows: As soon as an
<identifier> is reduced to <arith. variable> it is processed by the rules
of E;BR and transformed, say, to <SE>. If this <SE> and symbols to its
left can be further reduced by E;BR then this reduction takes place. Thus,
an expression which appears in a declaration of an array is completely
reduced to <SE> before the rules of D operate on any <identifier> which is
to the left of this expression and which is not a part of it (see the
example of figure 6).

Note that if the input string is a sentential form then after the
termination of EiBR;Q“;he input string does not contain any declarations,
any expressions and any operatbrs which appear in expressions (+, -, etc.).
. In addition <identifier>s have been reducgd to other constructs.

Our next step is to process all assignment statement. This amounts
to composing AS with E;BR;D to form ASe(E;BR;D). We note now that any
sequence of reductions by the rules of AS cannot introduce the symbols

begin,end,integer ,Boolean, +, -, ... etc., into the input string. Thus,

the application of these rules cannot cause the appearance of a match
to any rule in E;BR;D. From lemma 3 it follows that E;BR;D;AS can be
used instead of AS°(E;BR;D).

The <for clause>S8 can be now processed. Using a similar argument
we can append the rules of F to the above resuit aﬁd form E;BR;D;AS;F
which is denoted by‘M in the sequel.

If the initial string s is a sentential form then upon termination
of M the input string may contain statements, blocks and labels (more
precisely the following symbols may appear: <uncond. statement>, if,

then, else, <SE>, <E>, <SB>, <B>, B', end' (for begin and end), go to,
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<label>, FOR', ';', ':' end finish). Let us apply [Le°S] to the input
string. Among other reductibns that [L°S] may do,,itvteduces to
B'S; ...S; end' (or to B'S; ...; S end finish), where S stands for <statement>,
any block which does not have any other block nested in it. If'B is
applied to the result, the nesting level is reduced at least by ome.
Thus, the operation we need is [Bo[L°S]] (see figuré 7).

Now, the rules of L S satisfy the requirement of theorem IIIa and
thus S;L replaces [L°S]. Using theorem IIIa again we get S;L;B for
[Be[LeS]].

Our parser is now (S;L;B)oM. Using lemma 3 we get M;S;L;B which

. is a parser implemented by one MMA.

4.6 Changes in the Order of the Rules

The rules of M;S;L;B satisfy all requirement of theorem IIb with
the rules of E;BR;D the a-rules and AS;F;S;L;B the B-rules. Applying
theorem IIb we get the parser in the form it appears in the appendix which
is E;BR;D preceded by the rules of AS, F, S, Lland B where all the latter
rules having the same priority. |

This arrangement has an interesting property. Parsing proceeds in
the following manner:

Let M1 = AS;F;S;L;B with all rules having the same priority. With-
out loss of generality we can start with the two markers of the D rules
at the left of the input string. The first block is entered and decla-
ration are processed by E;BR;D. Next, the first block statement is entered.
As soon as a match to Ml appears it is being reduced. Thus when the left

D marker leaves a statement it is completely reduced to <statement>; as
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this marker leavesla (internal) block, the block is completely reduced
to a <statement>. kThus generally speaking the parsing proceed from 'left
to right' with every block left completely reduced.

The concept of 'left to right' parsing can be made precise. For this pur-
pose let us put the markers on the left and right of the p (a, ¥+ p; ¥ B,)
rather than on the left and right of the Bi In our example, the subset
of Algol 60, whené;er both the 1eft and right D marker are present there
is only one symbol between them (except for the first step) and these
markers are present at all times. If we measure the progress of the
parsing by the distance of the léft marker from the right end of the
string, then with each reduction this distance becomes smaller or remains
constant.

The above change in the use of markers, and consideration similar

to the ones used in 4.3 can be used to make all rules of this example of

the same priority and use a stack and a queue to parse the input string.

-50-



Section V Summary

The ﬁheoretical part of the article uses the MMA to define the
syntax of computer languages. The theorems present sufficient conditions
for the equivalence (from a sentential form point of view) between two
MMA's, one of which is derived from the other by changing the priority
of the rules, and sufficient conditions under which feedback composition
of MMA's can be obtained by appending of MMA's which satisfy the above
conditions. Some general and some special techniques for the reduction
of the parsing time are presented and the relation between the MMA
(satisfying conditions of theorem IIa) and the (m,n) bounded context
grammar of MMA are discussed.

We believe that the main value of the MMA and of the above theorems
is in the synthesis of the syntax of programming languages. The Algol
eiample given here and the graph language for which we have written an
MMA pérser'indicate that writing of such a parser is relatively simple
as compared with the use of BNF plus English, The simplicity is attri-
buted to the following properties of the MMA and the Algol-like language:

1) The MMA uses a small number of rules and |

2) A smaller number of non-terminal symbols,

3) The reduction in the number of rules and the number of non-

terminal symbols is attributed to the use of the predicate
and the environment.

4) To a large extent, the rules resemble the way that a pro-

grammer thinks about a language.

5) The synthesis of a grammar can be carried out by partitioning

-51-



6)

7)

8)

9)

the language into sub-languages, providing each sub-language with

a pafser and composing these parsers into a single parser.

In the examples which we have encountered, we have found

(6.1) that often the order of the rules is not important; when the
order is important it fits our own intuition of what has to be
done first and what later. In addition (6.2) the composition
of the sub-parsers involved the appending operation only.

The above properties, (6.1) and (6.2), are results of theorems
I through III. It is fairly simple to check whether a gfammar
satisfies the above conditions. For small grammars this can be
done by inspection.

The languageé used in the examples contain a few standard
constructs which appear again and again. In synthesizing a
parser one has to provide a solution for each construct rather
than to each occurrence of the construct in the grammar.

The MMA as it is defined provides a parser which is ﬁsually too
slow to be of practical use. There are several ways in which
improvement can be achieved. These ways can be general
(Markers, twofstack algorithm) or specific, taking advantage of
some particular properties of the grammar (changing order of
rules, a stack and a queue algorithm). It seems quite straight
forward to construct an algorithm which accepts a description
of the MMA, and checks for conditions under which transforma-
tions which reduce compﬁter time can be carried out and if

the conditions are satisfied find the exact transformation.

At this point it is interesting to compare the MMA as a language
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parser to the production language (chapter 7 in [8], [11]) as used as a
parser, in FSL [12]) for example. While the starting point is different
the over all philosophy of the result is amazingly similar. In both

cases a ianguage is defined by the parser, the definition can i&Qolve

and effect an énvironment, the parser can be constructed from parts

which in the production language are put together by transfer instructions.
The production language uses one stack only and if the storage in the
'action' pért is bounded then the MA is a more general computation scheme.
This can be changed by providing the production language with an additional
stack which contains the input (stack B in 3.5) and to which symbols can
be returned from the regular stack. We do not know, however, of a cése

where this lack of generality handicapped the usage of the production

language.
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Appendix A: The MMA Syntax of a Subset of Algol 60

A.1 The Subset

4 The subset was derived from Algol 60 by omitting the following
items: Procedures, functions, switches, designational expressions and
numbers of type rea1.

The use o% a subéet is a result of the desire to keep the example
simple. We believe that the inclusion of the above items is not

complicated and does not require any additional technique.

A.2 Terminal Symbols and the Scanner

For simplicityAwe assume that the MMA operates on a input string
.which has been preyiously processed by a scanner. The input to the
scanner 1is a string of letters, digitals, logicél values and delimiters
(see [10], section 2) minus the items omitted in A.l. The output of

the scanner consists of the symbols:

<number> (numbers or integer),
logical values (true l false),
<identifier> - (any string of digits and letters that does not

fall into the other categories. Each <identifiers>
has a value which is called name and is the string
of digits and letter that the scanner replaces

by the particular <identifier>),

symbols | C+|=-1*]7]+]+]<] f.l =] >]>]4 I
representing =| > or| and | — | go to | if | then!| else |
delimiters -

for | do | , | ¢ | ;| :=| step | until | while |

(!>l 0131 " | begin | end | Boolean |

end.finish | integer| array ).
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The above symbols are the terminal symbols for our MMA grammar.

A.3 Non-terminal Symbois

The non-terminal symbols introduced are:
<statement>, <unconditional statement>, <programs>, <label>
<for statement>, <SE>, <E>, <SB>, <B>, <arithmetic variable>

<Boolean variable>, <subscripted Boolean variable>, <subscripted

arithmetic variable>,

Bo’ ﬂ" B's FOR" <left part>, o, £, B", B"', B“.

The second group of symbols are actually markers <in the sense of 4.2.

A.4 Groups of Rules

The format of the rules is described in section II. The names
given to the rules are derived from the small MMA parsers which are
later put together to form the complete grammar. Thus, the third rule
in the small MMA which processes declaration is called D.3 and its

priority is 4.

The Groups of Rules and their Functions are:

B blocks

L labels and go to statements

S statements

F for statements

AS assignment statements

A Arithmetic Expressions

Bﬁ Boolean and Relational Expressions
D Declarations.
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A.5 ThevEnvironment

The environment consists of two tableé: a symbol table and a
label table. Both taBles are nested.

Each entry in the symbol table cqnéists of two components: The
value of the first component is a name of an identifier énd the value
~of théyséc;hé oﬁé 1;u£ﬁé“iéeatifie; ;;;é~zzgéegef, Boolean‘iﬁteger
array or Boolean érray in this subset). If an entry corresponds to
an array then the entry has components which contain the dimension and
the upper and the lower bounds of the array.

VEach item in the 1abé1 table has two components. The value of
" the first component is the name of a (label) <identifier>. The second
component contains either the string 'defined' or the string 'undefined'
with the obvious meaning.

Both symbol and label tables are nested tables. At any time, in
each ﬁested structure one (sub) table is current.

There are two variables which can have the value 'open' or the
value 'closed'. Each variable is associated with a table and indicate
whether the current table is open or closed.

An additional variable called T whose value can be a type is used
by the declarations.

Variables which are used to count the dimension of arrays and number
of subséripts of éubscripted variables have to be provided. For
simplicity, however, we do not refer to them in the program part of the
rules.

Initially, at the start of the parsing, the tables are empty and

each consists of one (sub) table only which is closed.
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We assume the following operations which change the environment or
check its value. All these operation have the usual meaning:

Open a symbol (label) table and make it current;

Close a symbol (label) table (its parent becomes the current onme);

Search a (nested) symbol table for a given item;

Create an entry with a given value andlput it in the current table;

Change the value of an entry in a table.

A.6 List of Rules

The following shorthand notations are used in the sequel:

€ denotes the empty string;

<uncond. statement> denotes <unconditional statement>;

<arith. exp> and <E> denotes <arithmetic expressions>;

<8. arith. exp> and <SE> denotes <§imp1e arithmetic expression>;
<Boolean exp> and <B> denotes <Boolean expression>;

<s. Boolean exp> and <SB> denotes <simple Boolean expression>

Group .B: ‘Blocks

B1 <statement> | 0
B.1 50 of V' ; * B
B 3
<statement>
51
B.2 50 0 end' »+ <uncond. statement>
B £
} £
[ 1
B <gstatement>
B.3 50 0 end finish > <program>
B £

I l closed current label table. If all labels in label

table have been defined then true else false.
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Group L:

-] (Compare with rules D.10 to D.13 and note that a
label can be defined in an outside block after the

inside block has been processed). Terminate.

Labels

L.1 50 go to <label> -+ <uncond. statement>

L.2 50 <label> : <for statement> -+ <for statement>
L.3 50 <label> : <uncond. statement> -+ <uncond. statement>
L.4 50 <label> : <statement> -+ <statement>
Group S: Statements
S.1 50 <cond. statement> - <gtatement>
S.2 50 a<uncond. statement> + o<statement> |1f (a # "then')
and (a # ':') then
true else false;
$.3 50 a<for statement> + <statement> |if o # 'then' and
o # ':' then true else false;
S.4 50 if <SB>;then <uncorid. statement>a -+ <cond. statement>o
|i£_(a # 'else')
and (a # '; else') then true else
false;
$.5 50 if <SB> then <for statement> -+ <cond. statement>
| else
S.6 50 if <SB> then <uncond. statement>{ I<statement>
; else
+ <cond. statement> .
S.7 50 FOR' <F> do <statement> + <for statement>
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Group F: For Clause

Denote the following constructs by < F > :
<g, arith exp.>

<s. arith exp.> step <s. arith exp.> until <s. arith exp.>
4 F > .

I

<s, arith exp.> while <SB>
<s. arith exp.> while <B>
~ F.1 50 FOR' <F>, - FOR'

F.2 50 for <arith. variable> := -+ FOR'

Group AS: Assignment Statement

Denote the following constructs by <A> :
<arith, variable> 3
<subscripted arith. variable>

<Boolean variable>

<subscripted Boolean variable>
AS.1 50 <left part> <A>:= < <left part>
<B>

<SB> »
AS.2 50 <left part> B + <uncond. statement>fB
<arith. exp.>

k0
-1

|if @ = ';' then true else false;
<g. arith. exp.2 '

AS.3 50 a<A> := -+ a<left part> | if a # 'for' then true else false;

Group E and BR: Arithmetic, Boolean and Relational Expressions

The following shorthand notation are used by these groups:
<SE>e<simp1e arith. exp.>
<E>é<arith. exp.>
<SB>Q<simple Boolean exp.>

<B>Q<Boolean exp.>
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E.2

E.3

E.4

E.5

E.6

E.7

E.8

E.9

E.10

E.11

E.12

<SE>
40 ] > <SE>
<E>

40 <SE>4<SE> -+ <SE>

o *
36 <SE>! <SE>B - <SE>B IEE_B # '+' then true else false;
/

l-’-l | 'l( ,'
34 a <SE>B -+ a<SE>B Iig_a #

] 4} L}
and B # { * then true else false;
/

+ 1 * ' '
32 <SE>‘ |<SE>B + <SE>B |if B # ‘ * [ then true else false;
- ) /

30 if <SB> then <SE> elge <E> + <E>
28 <arith. variable>a + <SE>a liﬂ (o # ‘:=') and (a # '[")

then true else false;

28 <subscript arith. variable>a + <SE>q .[ig o # ":=' then true
else false;
28 <arith,. variab1e>['+ P |i£ <arith. variable> has been declared

as an array then true else false;

<SE>
28 o > > P
| <E>

<SE>
28 p ] + <subscripted arith. variable>
<E> ‘

28 oa<numbexr>B -+ a<simple arith. exp.>B Iif.(current symbol table

is close) and o = 'go to' or g = ':' then false

else true;



<)

<
- (]

==

S then true else false;

|+~ % >

BR.1 24 <SE>( ?<SE>B + <SB>B |if B #

. >
#)
<B>
BR.2 22 ( ) > <SB>

<SB>

BR.3 20 not <SB> -+ <SB>

BR.4 18 <SB> and <SB> - <SB>

BR.5 16 <SB> or <SB>B~ <SB>f [ig B # 'and' then true else false;

and

BR.6 14 <SB> I <5B>B -+ <SB>B | 1€ 8 #{

| then true else false;
or

and
BR.7 12 <SB> = <SB>B - <SB>B IEE_B # lgz_l then true else false;
D

BR.8 10 if <S3> then <SB> else <B> + <B>

BR.9 8 <Boolean variable>a + <SB>a |if o # ':=' and o # '['

then true else false;

BR.10 8 <subscripted Boolean variable>a - <SB>o tig a # ":=' then

true else false;

BR.11 8 <Boolean. variables>[ -+ £ |3§_<Boolean variable> is declared

<SE>
BR.12 8 & s > &

as an array then true else false;

<Es.

<SE>|"
BR.13 8 ¢ { I] -+ <subscripted Boolean variable>
<E> . .
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true

BR.14 8 + <SB>
false

Group D: Declarations

The foilowing shorthand notations are used:

D.1

.D.2

D.3

D.4
D.5
D.6

D.7

D.8

D.9

4

4

<type>= l

integer ,

Boolean

begin + B' Open a symbol table and a label table and make
them current, (the symbol table is open but is
not attached to main table);

E'<type>a + B''a | 12_& # 'array' then | Set T to the value of

true else false <type> (Next list of

identifiers have type

<type>);
B''<identifier>, + B'' |,| Put <identifier> in symbol table
(check if it does not appear already

in current table, etc.);

B'<identifier>; + B' | | Put <identifier> in symbol table;

B'<type> array - B''' | I Set T to the value-arraz <type>;

B'''<identifier>, + B''' | | Put <identifier> in symbol table;
4

B'''<identifier> [+ B Put <identifier> into symbol table.

Prepare for upper and lower bounds.

4 [<E> {<E> I A '] ,'
B J B+BB if B = then | Put upper and lower
|<SE <SE> _ , -
’ bounds into table.
true else false;
B4, d B4 | I Increase dimension of array by one.
4

D.lO 4 B ’*B"'l

4

D.11 4 B3 > B'
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D.12 4 B'

0

a =+ B if a # <type> then true | close current symbol table,

else false;

connect current symbol table

to main symbol table;

D.13 4 <identifier>a -+ <arith. variable>a ((<identifier> has been

declared and its <type>
is <integer>) and (symbol

table is closed) and (o # ':")

then true else false);

D.14 4 <identifier>a -+ <Boolean variable>a if (<identifier> has been

D.15 4 u'

<identifier>

<number>

IB + a<label>RB

—-65-

declared and its <type>
is <Boolean>) and (symbol
table is closed) and

(a0 # ':') then true else

false;

if (current symbol table is closed)
and ((B = "':') or (e = 'go to'))
and (if 8 #.':' tﬁen true else

<number>
(-i—f{<identifier>> does not

appear in current label table)

then true else false)) then true

else false;

_ \ number>
if (a = 'go to') and ( <identifier;}

has not been declared in current
label table) then enter it in

label table as an undefined label.

if (g = "':') then begin if



{<number>

<identifier> is. in current label

table make it into a defined

<label> else enter it in symbol

table as a defined label. ﬁend;

D.16 4 end % end’ AI } cloée‘cufrent label table; make current the

'parent of the current label table and the

parent of current symbol table;
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LIST OF CAPTIONS

Figure 1: An Example of a Syntax Graph
a) Short-hand notation

b) Full notation

| The Grammar: » input string: ABBBCBA
Rule number - = Priority patterns
1 5 ABC + X
2 4 BBB + BB
3 3 AB > A
4 2 XB + A
5 : 1 AA > 8

Figure 2: An Improper use of the Handle
a) The Syntax Graph generated by the MMA
b) The Syntax Graph generated by the Handle after Handle method.

The Grammar:

Rule number Priority Patterns
1 5 ABC + X
2 4 CB + B
3 | 3 BB +~ B
4 2 AB + A
5 1 AA+ S

Figure 3: The Modified Tree

a) Ri is applied before R3

b) Rj 1s applied before R,

¢) The corresponding modified syntax tree
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Figure 4:
'Figure 5:

Figure 6:

Figure 7:

Figure 8:

o

; 1,8 > o, 8 |if 8 =Ao0rC then true

Q"j + B IEQ""AQLC.then true

J

The Feedback Composition of MA1 and MA2

Markers

An example of the parsing of the declaration of an array:
Reductions are done in the order indicated by the numbers
to the left of the nodes. To the right of each node appears

the name of the rule used in the reduction. <a.v.> is an

abbreviation for <arithmetic variable>.

The Algol Parsers as a Composition of MMA's.
Possible (b) and Impossible Positions of Matches in Parsing

Expressions by Grammar C.
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A B B.BCBA

(a)
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ABB C BA

ABB C BA

(b)

(a)

Figure 2.
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AT

(b)

T
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(c)

Figure 3.

-71-



Start

I MA
I
2| Ma,

1

If no reduction
3 between two
successive visits
— terminate

-

Figure 4.
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»

Left 3rd maker ORight 3rd maker

O
Input——— y ,*
~ string ' r:::x\ /'l::D
One symbol [
Starting position of Ist rule If no match,
' dst rule stops here
Figure 5.
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4

(9

—oTm

AS

If no reduction
made between
two successive
visits to this

box — terminate

Figure 7.

~-75-

Termination



LM RM
. ¥ <SE> ¢ |
1

1

<SE> % <SE>
T

<SE> ;4 <SE>

-

(a)

LM RM
¥<SE>+.

<SE>*<SE>
<SE>+<SE>

(b)

Figure 8.
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