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1. Introduction

For stochastic processes with a multidimensional parameter, both

theory and application suffer from an underdeveloped theory of Markov

processes and the absence of a martingale theory. Markovian properties

for processes with a multidimensional parameter were introduced by Levy

in connection with his multiparameter Brownian motion, and have been

studied to a limited extent. For processes parameterized by points on a

lattice, Hammersley [7 ] has introduced the concept of "harness" as a

generalization to martingales. However, this concept does not appear to

carry over well to the continuous-parameter use. In this paper we develope

the concept of a martingale as a random function parameterized by subsets

of R . In special cases this reduces to a random function parameterized

by points in R together with a partial ordering on the parameter. For

a specific class of martingales, the Gaussian white noise, we shall define

stochastic integrals, generalizing the Ito integral.

In view of the role that Brownian motion has played in the theory

of Markov processes and martingales with a one-dimensional parameter, a
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reasonable first step would be to generalize the Brownian motion to

multidimensional spaces. There are least two different generalizations

of the Brownian motion that might be considered to be natural, each

emphasizing a different aspect of the Brownian motion in one dimension.

Levy [10] defined a Brownian motion with parameter space R as a Gaussian

process {B , z £ Rn} with E B =0 and
z z

(1.1) EBzBz -|(|z| + |zQ| -|z-z0|)

where |z| denotes the Euclidean norm of z. Levy conjectured [11] and

McKean has proved [12] that for odd dimensional parameters the Brownian

motion so defined had a Markovian character. The covaniance function

in (1.1) is a special case of a general class of positive definite

kernels on homogeneous spaces that Gangolli has studied [5,6]. Results

thus far indicate that it would be interesting to study Brownian motion

and other Markovian processes on certain classes of homogeneous spaces

with the aid of harmonic analysis. Details of such a program do not

appear to have been carried out, although some preliminary results in

the direction have appeared [14].

A second natural way of generalizing the Brownian motion is to

consider it as an integral of Gaussian white noise. Let^Q denote the

collection of all Borel sets in R having finite Lebesgue measure. Let

{X ,A £ CjJ } be a real Gaussian additive random set functions with

(1.2) EXA = 0
A

EXAXB = ^ (AOB)

where Jl denotes the Lebesgue measure. Intuitively, X can be thought



of as the integral over A of a Gaussian white noise. We note that for

n=l X, , is just the ordinary Brownian motion. In the multidimensional

case the process

(1.3) W, s = Xr , r , r ,(z1,z2, ..., z^) [o^] x [o,z2]x... x [o,znJ

is a sample-continuous process, and the probability measure that it

induces on C([0,1] ) generalizes the Wiener measure. The process defined

by (1.3), which we shall call Wiener process, has been studied by a

number of authors [8,13,15]. In particular, results of the Cameron-

Martin type on absolutely continuous affine transformations of the Wiener

measure have been obtained [13].

Our interest is to develop a stochastic calculus of the Ito type

for multi-parameter processes. The experience with stochastic integrals

in one dimension makes it clear that the Ito calculus is a calculus of

continuous-parameter martingales and local martingales [4,9]. Thus, a

useful generalization of the stochastic integral must necessarily involve

a generalization of the martingale property to multidimensional parameter

spaces. From this point of view, it is natural to consider martingales

as random functions parameterized by subsets of R rather than points in

Rn. Set inclusion provides a partial ordering in terms of which the

martingale property can be defined in a natural way. Martingales with

a partially ordered parameter is not new [see e.g. 2]. However, they do not

appear to have been studied with specific reference to multiparameter

processes, nor has stochastic integral been defined.



2. Martingales

Let ,Q be a directed set. That is, 2 is a nonempty set partially

ordered by a binary relation < satisfying the condition that for every

pair x,y in 2 there is a z£ 2 such that x< z and y-< z. Let (ft,

•J^^P) be a probability space. A collection of a-subalgebras {'J\ ,

sS 2) is said to be increasing if s > s9 =* <J\ 2 J^ a ' Given a1 z s± s2

family of random variables {X , s^M and an increasing collection

i'Jk ,s^ 2 ), we shall say {X 9>J\. ,sG 2 ) is a martingale if s> s
S S S VJ

implies

>A
(2.1) E X = X , almost surely

S so

Let p be a a-finite Borel measure on R . Let k denote the

collection of all Borel sets of R which are u-finite. Let {X , s £Lk }

be a real Gaussian additive set functions with F.X = 0 and
s

(2.2) EX X , = p(s H s')
s s

If we take o> to be any subcollection of H<- which is a directed set

with respect to set inclusion, and take lA to be the a-algebra generated by

{X ,, sf C s}, then {X ,>Jx , s ^ b } is a martingale. More generally,

we can take {•jj\ , s ^:>} to be any increasing collection such that X

1 S S°is '_7\ -measurable if s-.Cs, and JK -independent if s_. and s are
s 0 — s 0

disjoint. It is customary to refer to {X , s GE k } as a Gaussian

white noise. Thus, we see that a Gaussian white noise has a natural

interpretation as a martingale.



From (1.3) it is easy to see that the Wiener process W , z £ R ?

has a natural interpretation as a martingale with respect to the par

tial ordering defined by: z > z' "^ z. >_ z! for every i. Levy's

Brownian motion also has a natural interpretation as a martingale. The

best way to see this is via the Chentsov construction [1]. Let R be

given a polar coordinate system (r,6) G [0,°°) x Sn ,where S denotes

the unit (n-1)-sphere. Let y be a Borel measure on R defined by

-Iy(A) = drde

A

where d6 denotes the uniform measure on S . Chentsov showed that

Levy's Brownian motion had a representation

B = constant • X
z s

z

where {X ,A^^n> is a Gaussian white noise corresponding to the
A

y-measure and S denotes the sphere in R having the origin and the
z

point z as its two poles. It is clear that {Bz, z€ R } is a martin

gale with respect to the partial ordering

(2.3) z >V *=* S 3 S f*=> z = az* (a >_ 1)

It is interesting to observe in this connection that even in one

dimension, a Brownian motion with a parameter space (-00,00) is not a

martingale with respect to the usual ordering of the real line, but

only with respect to the partial ordering defined by (2.3).

-A-



3. Stochastic Integrals

We begin with the simplest extensions of stochastic integrals.

Let A denote the unit square [0,1] in the plane and 2 the collection

of Borel subsets of A. Let y be a finite measure on (A,2), absolutely

continuous with respect to the Lebesgue measure. Let (ft,_A, P) be a

fixed probability space and {>J{ ,sG 2 }an increasing family of o-

subalgebras. Let {X , 'J^ ,s€8 1be a Gaussian white noise corre-
s s

sponding to y-measure. That is, X , s £ ->, is a Gaussian family of

random variables such that

(3.1) (a) X is Jr ,-measurable if s' 2s

(b) X is '~A f-independent if s and s' are disjoint

(c) EX = 0, EX X , = y(s H s')
s s s

Now, let Wz =X[0>li]xt0f,2j and % ='^[o.^Mo^r The" {V^Z«
z G A} is a Wiener process and a martingale with respect to the partial

ordering z< z' <==> z < z!, i = 1, 2. We shall investigate stochastic

integrals of the form

:.,_(♦) = I <J>Z W(dzlfdz2)

and

I2W = J *z W(dZ;L,z2) W(Z;L,dz2)

•D-



for integrands <{> and tj> satisfying the following conditions:

H : <j>(o),z) and ^(io,z) are bimeasurable functions with respect

to A © 2.
H : For each z £ A c(> and ty are measurable with respect to
2' z z

qf _ 1
z " ^[0,z1]x[0,z2]*

H_: I E({)2 y(dz) < °°

f 2 -I Eib y(dz) < «
JA Z

In H,. we have introduced the measure

(3.2) y(dzrdz2) =y(dZl,[0,z2]) u([0,Z;L],dz2)

Definition of ^ and I2 follows aprocedure similar to the one

dimensional case. First, suppose that 4> and t|> are simple, i.e., they

are of the form

(3.3) ♦z =V *z =V * e \ >v=x» 2' ••-.K>

A = i|/ =0, elsewhere
z z

where A = [a?,b?) x [a* b*) are disjoint rectangles. For simple <J> and

ip we set

K K

(3.4) I.U) =£*vXA -JVvW

-6-



K

I2W -£ X[a-)bv)><[0)av) X[0,apx[a^bv2)
K

Ti \Va2 ara2/V Vb2 ara2;

K

v=l

<j> aYw a^Iw
v 1 2

where A W, A^W and A^W are obvious simplifying notations,
v 1 2

Lemma 3.1. Let <j> and \Jj be simple processes satisfying the

hypotheses H -K-. The integrals 1^) and I2W defined by (3.4)

satisfy the following conditions

P : I., i = 1, 2, are linear functions of the integrands

> - IP2: EI*(t) =J E<J>2 y(dz)
A

•1EllW = J E^2 S(dz)
^ ^A Z

EI1(<f.) I20J/) = 0

Proof. P.. is obvious. For P«, we write

«!<« • m>: *;(v>' +>^ ♦» *u v v
^ v v^y

Now, <jT is t? -measurable while E[(A W) | 71 ] = u(A ) so that
v av v av v

-7-



On

2 *'(ivW)2 ={E
V v

2 _ 2

v * * v ' ' ' a
f 2E[(A W)2 |rT ]

= E> 6* y(A )
v v

{ E <\> y(dz)
z

the other hand, * <f> is t) -measurable where a v b (max(a
a Va

b-), max(a2,b2)). Therefore,

eV ♦ * AW AW=E>^ 4> 4> E<. „ „.
2_^ v yy v v 2--/ v y v y a vay
v^y v^y

= 0

;(A w A w|t} )

v y.because the three rectangles A , A and [0, max(a,,a1)) x [0, max(a.?,
v yx xx *—

at)) are disjoint. It follows that

\W - jE I E d> y(dz)
z

The expectation E I?(ij0 is evaluated by a similar computation.

We write

E i:W =eI^T <j>2 E[(A^W)2(A'̂ W)2|q'v]

+Y^ 4. <J> E[A?W AoW APW a!Jw|T 11£-4 v W 12 12 avvap /
v^y

-8-



v ^ u.For \> £ y, aV and ay differ in at least one coordinate (say a_L > a^ .

Then, A^W is independent of A^W AyW AyW and Tt so that the second
1 a vay

sum is equal to zero. Therefore,

EI2(<J>) =E^T <f>2 E[(A^W)2(A^W)2|C;^]

eVV E(A^W)2 E(A>)2
2

i2 u([aj,bj) x[0,a^))

[

y([0,a^) x [aVrbV2))

2 ~
<j> u(dz)

z

Finally, the orthogonality of I,(4») and I2(i/>) is easily proved by

noting that

E(A^W A^W A w|9T )
1 2 y 7 v4 u

is always zero whether y = v or not.

Lemma 3.2. Let Vjj (resp. fjj ) denote the class of all processes

(resp. \\>) satisfying H - H~. Let Yfv 0 (??Jo) denote tne subclass of

simple processes. Then .-fln *••** dense in j\ with respect to the norm

-9-



>-\/r E <j> y(dz)

and 9-JrL is dense in Y^ with respect to the norm

4Mo = \/l E^ ^(dz)

Proof, It is clear that we only need to prove the first case

since y is sufficiently general to include the case of y. It is also

clear that the subset of bounded processes is dense in M so we only

need to prove that every bounded <\> in 9U can be approximated by

elements of ^Wn- For each positive integer kdefine amapping
2 2

a, : R •* R by
k

v,y = 0, + 1, + 2,...

Take a bounded $ ±n\U and adopt the convention 6(o),z) = 0 for z f A.

Then

\
2

|<Ku>,z+£) - *(u,a (z) + C)| VJ(d^) ^0
K k-^°°

R2

for every zG R2 and for almost all w. It follows that

J
2

U(-,z+0 " <K-,a,(z) + 0\ V(M V(dr)
2 2
R«R

k-*»

-10- .



so that there is a subsequence

( U(',z+C) -<K'»ak (z) +C)|2 u(dz)

converging to 0 for almost all C as j + ». For each (k,0 set

>k (w,z) = <|>(u>,ak(z-c) + C), z€ A

= 0 elsewhere

Since afc(z-c) +C<z, 9fz2 3- («-0 +cso that *k,C(-'z) is ^z "
measurable for every (k,?). Since <f» €^g, every bounded <f> £(rU
can be approximated by a sequence in XTJq and tne Proof is complete. •

Now, it is clear how the stochastic integrals can be defined for

integrands in 7JJ andrjj • For 4^^T7 lemma 3.2 implies the existence

of asequence {<J> } in <ld0 such that

I E(* -4 )2 y(dz) -0
J z n'z n-x»
A

which implies

JI E<<L .-♦« J2 ^<dz) ^°m, z n,z
' ' * m,n->«>
A

which in turn implies (lemma 3.1)

R[l,(* )"^C+n)!2 •0

-11-



so that (l,(<j> )} is a quadratic-mean convergent sequence. We define
1 n

(3.5) IA4>) = lim in q.m. ^(4^)
n -»• °°

Similarly, for ip £ vjfcf we take a sequence {^ } in "*j Qsuch that

Hip -iff II ** 0 and define
n 2 n+~

(3.6) l2W = lim in q.m. ^V

Theorem 3.1. Let the stochastic integrals

(dz)

A

I2(if>) = I *z W(Zl,dz2) W(dz][,z2)

be defined by (3.4) for <J> € (rUQi $ <= vW0 and by (3.5) and (3.6) for
<J> e ^j ij> e<^W. Then, the following properties are satisfied.

(3.7) I. (a* + bip) = a I («|») + b I±W (linearity)

(3.8) E.I.(cf.) I.0|0 = 6±. I E«|» ^ y±(dc) (inner product)

y,(dc) = y(dO, y9(dO = y(dO

(3.9) ElljU)!^] =J «|V m
i

«z

(<|r>) (mart inhale)

-12-



M (dc) = W(dc), M2(d?) = W(dCrC2) W(cx,dC2)

Proof. Linearity is trivial. (3.8) follows from Lemma 3.1 and

the application of the Schwarz inequality. Hence, if {<{> } and {ij> }

are approximating sequences for <J> and i|> then

E I±(*) I.W lira E 1.(4. ) I. (41 )
in in

= lim 6

n-x»
ij i n»C n,£ 1

and (3.8) follows. To prove the martingale property, first suppose

that <f> is simple, and number the rectangles so that A_ , A?, ..., A

are in [0,z..) x [0,z9) while A ., > ...., A are outside of it. Now,
J. z m+JL K

m K

I.(<J>) =y^ 4> M.(A )+ V^ <j> M.(A ;
1 / J V 1 V / j V 1 V

v=l v=m+l

The first term is T^ -measurable while

K

V^ <\> M.(A )
/ * v 1 v

v=m+l

K

W.

= E '£ E[VV
m+1

?TJ ^:

= 0

Hence, the martingale property is true for a simple if). For a genera

(J), write

-13-



E[ii(4>)| r3Tz] =e[W|^z] +E[l±^-K)\%]

•I
C«z

♦n M.(dO + E[I.((M>n)

-9f^ f *rM.(dC)n ->• » J C i
C<z

and the proof is complete. a

^J

Remarks. (1) It is useful to interpret lA<\>) and I?(i/0 as

f 32
(<t>) = I <f> T r-r W(C,C,J dC, dC01V4V j yC 3C-, 3?2 12 *1 ^2

II2(*> = | *c
3 W( 1, 2) 9 W(C1,C2)

dra dc2
3C 3r,

p2

(2) The necessity of introducing I2 is clear if one wants to develop

a stochastic differentiation rule. Even if W were differentiable

(which it is not) we would have

2 32W

32W „ 3W 3W
in which both ^— and -^— -^— appear

3z- 3z9 3z1 3z~

3W 3W

9" f(W ) = f'(W ) ,„ ,2 + f"(W_) —2- —*-3z1 3z2 ~x'z' " X"V 3zx 8z2 vz 3zj 3z2

(3) As the dimension of the parameter space increases, the number ol

-14-



types of stochastic integrals that need to be introduced increases

rather quickly. Thus, the stochastic calculus associated with raulti

parameter martingales becomes increasingly complicated as the dimen

sion of the parameter space increases.

A. An Elementary Differentiation Formula

The Ito differentiation formula together with its generalizations

form the cornerstone of the calculus of martingales with a one-dimen

sional parameter. Unfortunately, even in the two-dimensional case

the corresponding formula is already much more complicated. In this

section we shall develop a restricted version of such a differentiation

formula. First, we need to generalize somewhat our definition of

stochastic integrals.

Let <j> and ty be processes satisfying hypotheses H and H_ of the

last section and instead of H~ the following condition:

f 2(H^) I <J>_ y(dz) < «> almost, surely
JA

l3' 1 *z

Now define

I
2 -

ty y(dz) < « almost surely
z

z (go) = min <a: I <f> (w)y(dz) > n 1

[0,a]x[0,l]

„{b: fz2 (a)) = min^b: I <j> "(m) y(dz) • n
fO,l]x[0,l>J

-15-



f 2
and denote z (w) = (z, (u)) , z„ (a))). If B (j). (aj)y(dz) < n

n In 2n J[0,l]2 J

we set z (o)) = (1,1). If we define
n

<j>(n)(o)) = <J> (w), 0< z <z (w)
z z n

^ v a.s. / \
then (H') implies <{r • <f> . Since for each n $ satisfies (H3) ,

n -»• °°

I <* w(dz) is well defined and

Wl j" <*ln> -*zm)) W(dz)i *°)
A

-a (f> y(dz) >_ min(m,n)

m,n -*• m

Hence, I <(> W(dz) converges in probability as n •> « and we can
'A

define

JI $ W(dz) = lim in prob. I <jrn W(dz).
A n"°° JA

The integral I ^ W(dz) is defined in an analogous way. It is easy

f 4> W(dz).
A Z

r ^ a,s* f (n)
to see that <fcW <f> for all z G A implies 1 * W(dz)

Z Z JK

a.s. f /,\ in Prob

-16-



2
Theorem 4.1. Let f(x,z), x G R, z € [0,1] , have continuous

partial derivitives of the following order:

f•<*.») =̂ f^ . f^x.z) -^f^l , f2(x,z) -^|f^

2 2 2

fn(x,z) =^-4 , f'(x,z) =~4r-. f;(x,z) = a f2 ' -;p-»-/ 9x az » -2v",-/ 3x 3z
dX 1 ^

* /- >> - 32f
rl2U,z; 3z 3z2

3 3 3
rftf/ \ _ 3 f -.„/• s _ 3 f _,, 3 f
f'"(x,z) = —=• , f';(x,z) = —X , fo =3 * ^\~»-/ 2 * 2 2

3x 3x 3z, 3x 3z.

34ff""(x,z) =^-f
3x

Then, for (0,0) •< a < z < (1,1), we have

(4.1) f(W z) - f(w ; a-,z9) -'f(Vf : z ,a?) + f(W.a)
^ . a-i »zo J- ^ z_ >a« ± z. a

I [ff(w^,c) w(dc) + f"(w ,c) w(dcrc2) w(?1,dc2)]
a<C<z

J [f'(w^,c)d^2 =w(dcr?2)'+! f,f,(wc>o y(cr
a<C<z

dr.;) W(<lr.rr.2)l

•17-



J [f^w^Od^ w(crdi:2) +ff,"(V° y(dc1,c2) w(?1,dc2)]
a<C<z

*} [f12(Wc,c)dCx dc2 +\ fM(Wc,0 p(dC) +£fn,,(Wr,C) u(d?)
a^C-<z

+-j fJ(W ,c) dcx y(Cx,dC2) +j f^(W?,c)dC2 y(dcrC2>]

Remark. The first term on the right hand side of (4.1) involves

stochastic integrals of the two types that we have defined. The last

term involves only ordinary integrals. However, the terms in between

involve integrals of a mixed type, stochastic integral in one dimension

and ordinary integral in the other. We have assumed that y is absolutely

continuous with respect to the Lebesgue measure (say -^ = g), hence the

second term can be interpreted as

Z2 r Z

J \\ tf2(WC,C) +I f'"(WC'C) R(C1,?2)] W(d':i,r-2) r &r,2

a2

where the inner integral is a stochastic integral of one-dimensional

parameter. A similar interpretation can be given for the third term

in (4).

Proof. It is clear that we only need to prove the case where the

partial derivatives are not only continuous but also bounded. The rest

follows by approximating f by functions with bounded continuous partials

For notational simplicity we shall only prove the case where f is a

function only of W and not of z. The more general case imposes no
z

-18-



additional difficulties.

Let the rectangle [a^z ] x [a2,z2] be partitioned by a sequence

of square subdivisions.

4«0 „[.(»>, .<»>)„ [„<»>,>>)
v iv v+1/ L v v+1/

(n) (n) ,(n) ,(n) , ..
such that a'-a=b'-b ' and lim max

v+1 v v+1 v
n-*» v

(a("> -a(n)) =
\ v+1 v /

A ,6,6 and W denote the following quantities:
v,n v,n v,n v,n

0. Let

v,n (n) (n) (n) (n) (n) (n) (n) (n)
av+l'bv+l av+1,bv av ,bv+1 av ,bv

6 = W - W
v,n (n) (n) (n) (n)

a ,, ,b a ,b
v+1' v v v

v,n ~ (n) (n) (n) (n)
a ,d ._ a ,d
V ' V+1 V V

W = W
v,n

We can write

(n) (n)
a ,b
v ' v

f(W ) - f(W ) - f(W ) + f(W )
al' 2 l,a2 a

f>.(n)-f <„).(„>

-19-
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' * \ v,n v,n v,n v,n/ \ v,n v,n/

- f (6(2) +W ) + f(W )
\ v,n v,n/ v,n

^ <f'(W )A +if"(W )[a2 +25(1) 6(2)
JUmd I v,n v,n 2 v,n v,n v,n v,n

+if»(W )[«(1) (6(2)>)2+(6(in2«(2)l2 v,n I v,n \ v,n/ \ v,n/ v,nj

+!-cwv>n)[(^)2(C)2]}

Z/f"(W )[6(1) +6(2)]a +|Tf,,,(W )^ v,n |_ v,n v,nj v,n 3! v,n

[(A )3 +3(A )2(^ +^)+3A (*(1> +,S<2>) 1
I v,n v,n \ v,n v,n/ v,n\ v,n v,n/ J

fj- f""(8 ) [(a )4 +4(4 )3 (<s(1) +s(2) \
4! v,n v,n v,n \ v,n v,n /

+(5) (4 )2 (6(1)+«(2))2 +4A (6(1) +4<2>fl
\2/ v,n \ v,n v,n/ v,n \ v,n v,n/ J

Ur-Ce )-f""(w )1(42) (s(1>)2 (s(2))24! v,n v,n J \2/ y v,n/ \ v,n/

irf""(e ) [4(6(1))3(6(2)) +«(«a%(2)V4! v,n ^ \ v,n/ \v,n/ \v,n/\v,n/

fr |fm,(e ) - f""(a )1 (s(1))4! I v,n' . v,nj y v,n/

+

-20-



4!
f""(6 ) - f""(

v,n v,n J \ v,n/ J

where 0 , a ,3 are W evaluated at some z in A
v,n v,n v,n z

bounded continuous derivatives, the first sum

(n)

E(f'(W )A +±f"(W )(a2 +26(1) 6(2))\ v v,n v,n 2 v,n \ v,n v,n v,n/

If f has

+ i f,?,(W.. _)
v.n •«: (c)2 *(cf (#8

i f-w )(«U'1Z («<2))!}4 v,ny y v,n/ \ v,n/ J

converges in quadratic mean to

I {-0<?<z ^

(w ) w(dO +|f"(w ) [y(dO +2w(dc1,c2)w(c1,dr,2)

+ jf,M(W) [W(dCr?2) y(C1,dC2) +W(?ltdc2) y(dC1,C2)J

+ £f""(wc) y(dc1,c2) y(c1,dc2)[

On the other hand the second sum converges in quadratic mean to zero.

For example,

2

v

^eJsup sup |fm,(Wa) -f","^
^v a,B^A(n)

v

-21-
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±{E(XX6S) j e»»» su>(n) if,,"(v -*-<vi*}
V

It is easy to verify that E[ Z (<T ;) ] is bounded, and
v,n

v

E sup |f""(W )-f"I!(W6)|4 ^ 0by the bounded continuity of
v, a,$ a . n -»• °°

fM": •

Example 1. Let y be the Lebesgue measure. Then

W2 -z± z2 =J zW? W(dc) +2J W(dC1,?2) W(cl,d?2)
0«C<z OKCkz

which yields an interesting relationship between the two types of

stochastic integrals.

Example 2. Let y(dz) = g(z-,z2) dz.. dz2, and take

Zl Z2

Wz "7 I J gU^^*3^ dC2
0 0 .

F = e
z

Then,

Fz -1=j [F? W(dc) +F^ W(dCrC2) W(cl,dC2)l
0<^<z

so that F is a positive martingale with KV = I.
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S^. Let Xz be . Wiener process co.esp^s e, *.

Lebesgue measure and W =J g(c) X(d£) .' Then, Wz is a Wiener
z ^0 C z

process with y(dz) = g(z)dz. Therefore, if we take

(4.2) Fz = e

j g(0 X(dO -\ J g(C)dC
0-(C-<z 0-cCxz

then F is a positive martingale with EF =1. If we introduce a new

probability measure Cp' by'

<fl>' _ F
dcp 1,1

then it is not hard to show that under ^p', X - I g(OdC is a
•Vc<z

Wiener process corresponding to the Lebesgue measure. This is obviously

a generalization of the Cameron-Martin formula for translations of the

Wiener measure, (c.f. [16])

5. Conclusion

The results of this paper are preliminary in several respects.

First, there is a need for a general differentiation formula for

f(M ,z) where M is a martingale of the form

(5.1) Mz =j [$ W(dc) +* W(r,x,dc2) W(dc1,C2)l
- 0 £ z

Second, there are reasons to believe that every martingale with

-23-



respect to yf = oKW , 0 < C < z) can be represented in the form of
z Q

(5.1). Such a representation theorem plays an important role in one

dimension [3,9]. Finally, the exponential formula (4.2) represents

only a very restricted class of absolutely continuous transformations

of the Wiener measure. Complete characterization of absolutely con

tinuous transformations of the Wiener measure would be an important

achievement of the martingale theory.
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