Copyright © 1972, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



'

MARTINGALES AND STOCHASTIC INTEGRALS FOR PROCESSES WITH
' A TWO-DIMENSIONAL PARAMETER

by

Eugene Wong

Memorandum No. ERL-M365

27 July 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



MARTINGALES AND STOCHASTIC INTEGRALS FOR PROCESSES WITH
A TWO-DIMENSIONAL PARAMETER

by

Eugene Wong
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

1. Introduction

For stochastic processes with a multidimensional parameter, both
theory and application suffer from an underdeveloped theory of'Markov
processes and the absence of a martingale theory. Markovian properties
for processes with a multidimensional parameter were introduced by Lévy
in connection with his multiparameter Brownian motion, and have been
studied to a limited extent. TFor processes parameterized by points on a
lattice, Hammersley [ 7 ] has introduced the concept of "harness'" as a
genefalization to martingales. However, this concept does not appear to
carry over well fo the continuous-parameter use. In this paper we develope
the concept of a martingale as a random function parameterized by subsets
of R*. In special cases this reduces to a random function parameterized
by points in R" together with a partial ordering on the parameter. For
a specific class of martingales, tﬁe Gaussian white noise, we shall define.
stochastic integrals, generalizing the Ito integral.

In view‘of the role that Brownian motion has played in the theory

of Markov processes and martingales with a one-dimensional parameter, a
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reasonable first step would be to generalize the Brownian motion to
multidimensional spaces. There are least two different generalizations
of the Brownian motion that might be considered to be natural, each
emphasizing a different aspect of the Brownian motion in one dimension.
Lévy [10] defined a Brownian motion with parameter space R™ as a Gaussian

process'{Bz, z € R"} with E B, = 0 and

-1 - |z-
(1.1) E BZBZO = 2(|z| + |z0| |z zol)

where Izl denotes the Euclidean norm of z. Lévy conjectured [11] and
McKean has proved [12] that for odd dimensional parameters the Brownian
motion so defined had a Markovian character. The covaniance function
in (1.1) is a special case of a general class of positive definite
kernels on homogeneous spaces that Gangolli has studied [5,6]. Results
thus far indicate that it would be interesting to study Brownian motion
and other Markovian processes on certain classes of homogeneous spaces
with the aid of harmonic analysis. Details of such a program do not
appear to have been carried out, although some preliminary results in
the direction have appeared [14].

A second natural way of generalizing the Brownian motion is to
consider it as an integral of Gaussian white noise. I.«et:'\-i;_”n denote the
collection of all Borel sets in R having finite Lebesgue measure. Let

' {XA, AEP %} be a real Gaussian additive random set functions with

(1.2) EX, = 0

E X,X, = <P are)

where Sizdenotes the Lebesgue measure. Intuitively, X, can be thought

A



of as the integral over A of a Gaussian white noise. We note that fer

n=1 X is just the ordinary Brownian motion. In the multidimensional

[o,t]

case the process

(1.3) W = X
(zl,zz, cees Zn) [o,zll x [o,zz] Xauwo X [o,zn}

is a sample-continuous process, and the probability meaéure that it
induces on C([O,l]n) generalizes the Wiener measure. The process defined

by (1.3), which we shall call Wiener process, has been studied by a

number of authors [8,13,15]. In particular, results of the Cameron-
Martin type on absolutely continuous affine transformations of the Wiener
measure have been obtained [13].

Our interest is to develop a stochastic calculus of the Ito type
for multi-parameter processes. The experience with stochastic integrals
in one dimension makes it clear that the Ito calculus 1is a calculus of
continuous—-parameter martingales and local martingaleé [4,91. Thus, a
useful generalization of the stochastic integral must necessarily involve
a generalization of the martingale property to multidimensional parameter
spaces. From this point of view, it is natural to consider martingales
as random functions parameterized by subsets of R® rather than points in
R®. Set inclusion provides a partial ordering in terms of which the
martingale property can be defined iﬁ a natural way. Martingales with
a partially ordered parameter is not new [see e.g. 2]. However, they do not

appear to have been studied with specific reference to multiparameter

processes, nor has stochastic integral been defined.
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2. Martingales

Let Q be a directed set. That is, Q is a nonempty set partially

ordered by a binary relation < satisfying the condi;ion that for every
pair x,y in Q there is a z € g such that x< z and y< z. Let (@,
'14533) be a probability space. A collection of o-subalgebras LJA S

s € Q} is said to be increasing if sl> Sy = /‘ASI 2 Jll Sz. Given a
family of random variables {XS, s € {3} and an increasing collection
{1145, s € {;}, we shall éay {XS,;}ls, s € S;} is a maftingale if s » So

implies

(2.1) E X =X . almost surely

Let p be a g-finite Borel measure on Rn. Let Cpn denote the
. n . - Cpn
collection of all Borel sets of R which are py-finite. Let {Xs, s E-K}

be a real Gaussian additive set functions with F.XS = 0 and

= Ns!
(2.2) EXSXS, p(s M s')

If we take Q to be any subcollection of CQn which is a directed set
with respect to set inclusion, and take -'JJ(S to be the g-algebra generated by
{XS,, s' C s}, then {XS,rJ4S, s € g} is a martingale. More generally,

we can take {'j‘s, s EQ} to be any increasing collection such that _Xs
0
E s, and '_}ls—independent if s, and s are

o 0
s G‘:‘Qn

is '_As-meaSurable if s0

disjoint. It is customary to refer to {Xq, } as a Gaussian
white noise. Thus, we see that a Gaussian white noise has a natural

interpretation as a martingale.



From (1.3) it is easy to see that the Wiener process WZ, z € R:,
has a natural interpretation as a martingale with respect to the par-
tial ordering defined by: z > z' < 2, 2 z{ for every i. Levy's
Brownian motion also has a natural interpretation‘as a martingale. The
best way to see this is via the Chentsov construction [1]. Let R" be

n-1

given a polar coordinate system (r,8) € [0,%) x S , where Sn_1 denotes

the unit (n-1)-sphere. Let u be a Borel measure on R" defined by

u(a) = j dr de
A

where d6 denotes the uniform measure on Sn—l. Chentsov showed that

.
Levy's Brownian motion had a representation

B = constant - X
z s

where {X,, A 6‘13“} is a Gaussian white noise corresponding to the

. n . .
u-measure and Sz denotes the sphere in R having the origin and the
point z as its two poles. It is clear that {Bz, z € R"} is a martin-

gale with respect to the partial ordering

(2.3) z >.z' = Sz 2 Sz' = gz = qz' (a > 1)

It is interesting to observe in this connection that even in one
dimension, a Brownian motion with a parameter space (-»,») is not a
martingale with respect to the usual ordering of the real line, but

only with respect to the partial ordering defined by (2.3).
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3. Stochastic Integrals

We begin with the simplest extensions of stochastic integrals.
Let A denote the unit square [0,1]2 in the plane and S; the collection
of Borel subsets of A. Let p be a finite measure on (A,S;), absolutely
continuous with respect to the Lebesgue measure. Let Gl,;jifq)) be a
fixed probability space and {gj&s, s € E;} an increasing family of o-
subalgebras. Let {Xs, L]is’ s € E;} be a Gaussian wh;te noise corre-
O

sponding to p-measure. That is, Xs’ s € >, is a Gaussian family of

random variables such that
(3.1) (a) X  is ﬁJ4S,—measurable if s' Js
(b) Xs is tjis,;independent if s and s' are disjoint

(c) EXs =0, EXSXS, = u(s Ns')

Now, let Wz = and ?9; = 2J4

X - . Then {W_,7}
[0,2,1x[0,2,] [0,2,1x[0,z2,] en { 2'72’
z € A} is a Wiener process and a martingale with respect to the partial

ordering z ¢ z' <z, < zi, i =1, 2. We shall investigate stochastic

integrals of the form

Il(¢) = ~[ ¢, W(dzl,dzz)
A
and
I, = j v, W(dzl,zz) W(zl,dzz)
A



for integrands ¢ and { satisfying the following conditions:

le $(w,z) and Y(w,z) are bimeasurable functions with respect

to ;}Q (:) S;.
H,: For each z € A ¢z and Yy, are measurable with respect to
¥ - A

[0,2,1%[0,2,]"

. 2
Hy: J;mz u(dz) < @

I By B(dz) <

A
In H3 we have introduced the measure
(3.2)  M(dzj,dz,) = u(dz;,[0,2,]) w(10,7,],d2))

Definition of Il and 12 follows a procedure similar to the one
dimensional case. First, suppose that ¢ and ¢ are simple, i.e., they

are of the form

(3.3 ¢

]
-©-

where Av = [a;,bz) X [a;,b;) are disjoint rectangles. For simple ¢ and

Y we set

o K K
(3.4) Il(¢)' =Z 4’\: XA\) =Z ¢v Av W



= ¢ w - W W - W
: : v b \Y a\) a\) a\) a\) b v a\) a\)
oov=l 1°72 1’72 1’72 1°72

K
_ v, .,V
= E 6, AW AW
v=1

where Avw, A;W and A;w are obvious simplifying notationms.

Lemma 3.1. Let ¢ and ¥ be simple processes satisfying the

hypotheses H1 - H,. The integrals Il(¢) and Iz(w) defined by (3.4)
satisfy the following conditions

P Ii’ i = 1, 2, are linear functions of the integrands.

r~

2 2
P,: E11(¢) ), B, u(dz)

r

Ewi p(dz)

2
L = )

EL (6) I,(y) =0

Proof. P1 is obvious. For Pz, we write

2, _ 2 2 *
EI7(6) = F{Z RCRORED DR NN Auw}
\Y

v#n

Now, ¢i is ;7'a -measurable while E[(AvW)ZI’T]a ] = u(A\)) so that
v v



E Yoo’ E[Z 6,7 ELG W | ﬂ'av]]
Y

2
EZ 62 (s )

\Y

J E d)i p(dz)
A

On the other hand, ¢'\) cbu is ’Jv u-measurable where av b (max(al,
a Va

it

bl), max(az,bz)). Therefore,

E E ¢v ¢u Avw AvW

v#u viu

EZ 6, 6, E(OW Aquq o

a Va

because the three rectangles Av’ Au and [0, max(a\l’,a‘{)) x [0, max(a:,

a;)) are disjoint. It follows that

E 12(6) = S E 9> u(da)
A

The expectation E I%(lb) is evaluated by a similar computation.

We write

E T5() = E{Z 42 E[(A‘l’w>2(A';w)2|¢1;v1
\Y

AY] g H u :
+z AN
¢, 8, E[L]W AW AW /\.f).WI J ) “!}

V#U a1 va



\Y

: u
For v # u, 2’ and a" differ in at least one coordinate (say a, > al).

Then, A;W is independent of A;W Aiw A;W and ;; v u so that the second
ava

sum is equal to zero. Therefore,

]

2 2 Vein 2,V 2|~
RHORED PN COROD I3,
\Y

.2 v 2 v 2
Ez ¢v E(AIW) E(AZW)

\Y

2¢3 u([azyb;_)) x [Oaa;))
AY)

u([0,a)) * [ay,b,))

j 42 B(dz)
A

Finally, the orthogonality of Il(¢) and Iz(lp) is easily proved by

noting that

Vv V
E(AW A0 Auwl’TTv »
a Va

is always zero whether p = v or not.

Lemma 3.2. Let ?H (resp. "H) denote the class of all processes

(resp. y) satisfying Hl“ H3. Letmo GHO) denote the subclass of

simple processes. Then ﬁHO is dense in '“ with respect to the norm



ll¢lll = ﬂ E ¢§ u(dz)

A

fad

and ;;JO is dense in §3J with respect to the norm

ol = \/J E y_ u(dz)

A

Proof. It is clear that we only need to prove the first case
since p is sufficiently general to include the case of ;. It is also
clear that the subset of bounded processes is denmse in<5¥{ so we only
need to prove that every bounded ¢ in‘?&’ can be approximated by
elements of-¢1}0. For each positive integer k define a mapping

2 2

a, : RT > R" by

k

ok gk P BT |
ak(z)_(v/zau/z),zelzazk)xlzkazk)

v,u =0, +1, +2,...

Take a bounded ¢ inqu and adopt the convention é(w,z) = 0 for z ¢ A.
Then

j |6 (w,2z+2) - ¢(w,a, (2) + c)!z p(dg) —0
) .

ko>
R

for every z € R2 and for almost all w. It follows that

E J. 8- 242) = (e (2) + D] w(@n) (D)
2 o2

R™ xR
——t ()
koo

i



L

so that there is a subsequence

E J. lo (- 2+7) - $(-,a, (2) + c)l2 u(dz)
2 -3

R

converging to 0 for almost all f as j » ®. For each (k,z) set

¢k,c(“’z) = ¢(w,ak(z—§) +2), z€A

0 elsewhere

. _ :)‘—’ . . 1 -
Since ak(z g + < z, <;¥z 2 dk(Z-C) + ¢ 5° that ¢k,C( ,2) is T;z

measurable for every (k,z). Since ¢k:€ € ?}50, every.bounded ¢ € ?}3

can be approximated by a sequence in ?}40 and the proof is complete. W
Now, it is clear how the stochastic integrals can be defined for

integrands in';}i and?j; . For ¢ G?T;J lemma 3.2 implies the existence

of a sequence {¢_} in “H  such that
n 0

I B(8,-0, )7 w(d2) —=0

A e

which implies

which in turn implies (lemma 3.1)

RIL(4) - 1, ()17 — 0

m’ 1) P

-11-



so that {Il(¢n)} is a quadratic-mean convergent sequence. We define

(3.5) Il(¢) = lim in q.m. Il(¢n)
n > o
Similarly, for ¥ € ¢}J we take a sequence {wn} in:;k;o such that

“w -y "2 — (0 and define
n -0

(3.6) Iz(w) lim in q.m. Iz(wn)

n->

Theorem 3.1. Let the stochastic integrals

r

Il(¢)_ ¢, W(dz)

A

~

1) = | v, Wz .dz)) Wdzy,z))

‘A

~

be defined by (3.4) for ¢ € H,, v € H and by (3.5) and (3.6) for

¢ € Q;J, ¥ qu;é. Then, the following properties are satisfied.

(3.7) Ii(a¢ + by) =ta Ii(¢) + b Ii(w) (linearity)
(3.8) E.Ii(¢) Ij(w) = Gij j. E ¢C wc ui(dc) (inner p;oduct)
A
uy (d) = u(do), u,y(dz) = u(de)

(mart inpgale)

(3.9) e, )17,

[{}

| —
.\?
X
=
=
Z

~12-



Ml(dc) = W(dzg), Mz(dc) = w(dtl,cz) W(cl,dcz)

Proof. Linearity is trivial. (3.8) follows from Lemma 3.1 and
the application of the Schwarz inequality. Hence, if {¢n} and {wn}

are approximating sequences for ¢ and ¢ then

E Ii(¢) Ij(w) lim E Ii(¢n) Ij(wn)

n>e

lim sij s E(¢n,c wn,c) ui(dc)

oo A
and (3.8) follows. To prove the martingale property, first suppose
that ¢ is simple, and number the rectangles so that Al, Az, ceey A

m

are in [0,z,) X [0,22) while A A are outside of it. Now,

okl e Bk

m K
L) =) o M)+ Y b M ()
v=1

v=mt+1

The first term is ;;;-measurable while

K
E Z ¢\) Mi(Av)lC‘TZ

v=mt+1
K
= E{E ElM, (8 )| T ) qz}
ml a
=0

Hence, the martingale property is true for a simple ¢. For a general

$, write

-13-



El1, ()| TF) = EL1, 6 )| TR1 + B, (6-0)| )

0 ¢ My (@) + BT (o8| 7, ]
T4z .

e j 6, M, (dD)

n >
<z
and the proof is complete. o

Remarks. (1) It is useful to interpret Il(¢) and I,(y) as

2
2
11(¢) = s ¢€ -aT—Z" W(Cl,Cz) dz, dg,

]

I,($) dz, dz,

C 3C1 3€2
A
(2) The necessity of introducing I2 is clear if one wants to develop
a stochastic differentiation rule. Even if W were differentiable

(which it is not) we would have

a2 82 Wz awz BWZ
-2 fW)=f'"W) ———+ "W ) =— =5
le 822 z z 821 822 z le 822
32W oW aw
in which both ———— and —— —-— appear
azl 822 le 322

(3) As the dimension of the parameter space increases, the number of

~14—-



types of stochastic integrals that need to be introduced increases
rather quickly. Thus, the stochastic calculus associated with multi
parameter martingales becomes increasingly complicated as the dimen-

sion of the parameter space increases.

4. An Elementary Differentiation Formula

The Ito differentiation formula together with its.generalizations
form the cornerstone of the calculus of martingales with a one-dimen-~
sional parameter. Unfortunately, even in the two-dimensional case
the corresponding formula is already much more complicated. In this
section we shall develop a restricted version of such a differentiation
formula. First, we need to generalize somewhat our definition of
stochastic integrals.

Let ¢ and Y be processes satisfying hypotheses H., and H2 of the

1

last section and instead of H, the following condition:

3
(2
(Hé) ¢z p(dz) < = almost surely
“A
[ 2
wz u(dz) < = almost surely
A
Now define
zln(w) = min {a: J’ ¢:§(w)u(dz) > n}

[0,a]x[0,1]

zzn(w) = min {b: J‘ dji(m)u(rlz) -n }
[0,1]x[0,b]

-15-



and denote zn(w) = (zln(w), zzn(w)). If J;)}JZ ¢%(w)u(dz) < n

we set zn(m) = (1,1). 1If we define

(n) -
¢, (w) = ¢z(w), 0< z <zn(w)

a.S.
then (H}) implies ¢§“) — ¢_. Since for each n q>(“) satisfies (H,),
n-+ o

-( ¢§n) W(dz) is well defined and
A

CP(I j 6™ - ™y ] > o)

A
s Cp<j ¢§ u(dz) imin(m,n)>
A

—e 0

m,n-)oo
Hence, J. ¢in) W(dz) converges in probability as n + « and we can
A

define

n > o«

.[ ¢z W(dz) = 1lim in prob. j. ¢in) Ww(dz).
A A

The integral j. v, W(dz) is defined in an analogous way. It is easy
A

(n) a.s. () in prob.
to see that ¢zn — ¢z for all z € A implies ¢Z W(dz) =————————
n > ® A n > w

j; ¢z w(dz).

-16-



Theorem 4.1. Let f(x,z), x €R, z € [0,1]2, have continuous

partial derivitives of the following order:

azy = 2002 - 3(x,2) _ 3f(x,2)
£'(x,2) i , fl(x,Z) Y R fz(x,Z) =,
1 2
2 2 2
" = 2—-—‘2 ' = ....a__i__. ' = ____a £
£"(x,2) 7 fl(x,Z) = 5% 5z ° fz(x,Z) = 3% 92
ox 1 2
2
' O
£1o(xs2) = 7z, 9z,
3 3 3
fl'l(x’z) = _a__f s f"(x,Z) = a f s f" _ a f
8x3 1 3x2 3z 2 3x2 9z
1 2
4
f""(x,z) - a Z
ox
Then, for (0,0) € a ¢ z £ (1,1), we have
4. - . - .
(4.1) f(Wz,Z) f(Wal,zz, al,zz) f(WZl,aZ- zl,az) + f(Wa,a)

[f'(wc,c) W(dc) + f"(wg,c) W(dcl,cz) w(cl,dcz)]

a<t«z

' ~ 1
+ [fz(wc,c)dc2 = w(dcl,cz) + E’f"'(wc'C) u(cl,
a4z

dfp) W(dtx,ﬁz)]

-17-



1
+ t = [RN]
J [£] W, 0)dey W(gy,dny) + 5 £17T(W,,0) uldgy,0y) Wig,,dey)]

a<C<Z
1 ' 1 -
+ = &n = "
j [flz(wg"?)d‘?1 dg, + 5 f (wc,r,) u(dz) + o f (WC’C) u(dzg)
a<i<z

+ 3 B0 dop u(Ey,dey) + 5 500 ,0dE, w(dr;,T))]

Remark. The first term on the right hand side of (4.1) involves
stochastic integrals of the two types that we have defined. The last
term involves only ordinary integrals. However, the terms in between
involve integrals of a mixed type, stochastic integral in one dimension
and ordinary integral in the other. We have assumed that u is absolutely
continuous with respect to the Lebesgue measure (say %% = g), hence the
second term can be interpreted as

kA Z

2 1

' l Ty
j 5 [fz(WC,c) + 5 f (wc,c) g(\cl,cz)] w(dr,l,r.z) dz,
a

2 !
where the inner integral is a stochastic integral of one-dimensional

parameter. A similar interpretation can be given for the third term

in (4).

Proof. It is clear that we only need to prove the case where the
partial derivatives are not only continuous but also bounded. The rest
follows by approximating f by functions with bounded continuous partials.
For notational simplicity we shall only prove the case where f is a

function only of W? and not of z. The more general case imposes no

~-18-



additional difficulties.
Let the rectangle [al,zll x [a2,z2] be partitioned by a sequence

of square subdivisions.

o [0 42) [ 52

(n) _ _(n)

vl a, ) = (. Let

such that a(n) - a(n) - b(n) _ b\(’n)

v+ v ol and lim max (a

n>® v

A, 6(1) 6(2) and W denote the following quantities:
v,n v,n

?
v,n’ “v,n ,

=W - W - W + W
v,n (n) _(n) (n) , (n) (n) _(n) (n) . (n)
a\)+1’b\)+1 av+l’bv ay ’bv+1 a, ’bv

=W - W
v,n (n) . (n) (n) , (n)
av+1’bv v ’bv
(2)
8 =W - W
v,n (n) . (n) (n) , (n)
a, ’bv+1 ay ’bv
W

v T @
AV v

We can write

f(WZ) - f(Wa ) - f(Wz a ) + f(wa)

1°%2 1°%2

= f(wW - f[W - f[W + f{w
E : (n) , (n) (n) . (n) (; (n) (n{) ( (n) ’n£>
v < av+1’b\)+l) < av+]’bv > ay ’bv ay ’bC

~-19-



=z[f(A Com 6@y o5, )
v,n v,n v,n v,n v,n v,n

\Y)
f(s(z) ru ) +EQW )]
v,n v,n v,n
=Z {f'(w ) b, + U )[A
v,n° v,n 2 v,n
Vv
1 W (@\, [\ (@
+z £ )F G ) +@ )'6 ]
\),n v,n v,n V,n V,n
2 2
1 cun (1) (2)
crema, o [(2) (62)] )
; (1) Ne) 1 ocvnvgy
z: {f (W n v,n]Ay,n * 3! £ (wv,n)
[(A )+ 308, )2 (5(1) + 5(2)) + 38 (5(1) + 6(2)> ]
v,n v,n v,n v,n v,n\ v,n v,n
1 _ue 4 3 [.(1) (2)
+ g7 £y D) {(Av’n) A ) (av’n 8.0 )
. 2
4 2 /.(1) (2) (1) (2)
P (8) 0,0 (8 + o B) v an, , (58 62)]
+_l_ f"" ) f"" W ) (l‘) 5(1)\“ (6(2) 2
4 (e\),n - (v,n 2 v,n/ v,n
1 DY /. ()]
+Lopme [& (6( )) (5( >)+ . (5“))(5( )) ]
! v,n v,n v,n v,n v,n
4
(121} " (1)
[f (8, ) - f (av,nﬂ (av,n)

+

bl»—a

~20-



IH

+

N

4
nn o fgun ‘ (2))
! [f (ev,n) £ (Bv,nﬁ (5v,n

where 6 s O s B are W evaluated at some z in A
v,n’ v,n’ “v,n z

(n). If £ has

bounded continuous derivatives, the first sum

(e o, F e, o0, 268 83)
v
2 2 (2)
v,n v,n v,n v,n v

2 2
v,n v,n Vv,n

converges in quadratic mean to

N+

FP

1
] = gn
{f (WC) Ww(dg) + 5 £ (wc) [u(dg) + 2 w(dcl,cz)W(cl,dcz)
0<Z<z

+5 £ NE),T,) u(E),dey) + H(E,de,) u(de),Ty)]

!-_ "
+ g £ wldzyLgy) u(cl,dcz)}

On the other hand the second sum converges in quadratic mean to zero.
For example,

2

E fll"( ) - f"ll( ) (l) 4
Z [ 6\),“ u\)an 5\),“ .
v
2
4
cxfo ey - e 1 (40)))
\%

2,864(™) ”
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4 A -!/2

I ot
<.{E‘ 2 :@(l)> E sup  sup £ (w )y - £ )IAJ
2 v,n ! : ' o TOB

v v a,Beﬁ(n)
v
. o (1.4, -
It is easy to verify that E[ I (Sv n) ] is bounded, and
v ’ ®
E sup |[£"(W ) - £"(W )l4 —— 0 by the bounded countinuicty of
o B :
v, a,B . n -+

f"" N .

Example 1. Let u be the Lebesgue measure. Then

W - zl z2 = pA WC W(dg) + 2 .g: W(dgl,gz) w(;l,dgz)
04g<z 0<z<z

which yields an interesting relationship between the two types of

stochastic integrals.

’

Example 2. Let u(dz) = g(zl,zz) dzl dzz, and take
2, %y
oW --l-J 5 g(z,,z,)dzg, dg
. z 2 1°72 ? 2
0 0
e .

Then,

F, - 1= ﬁ [F, W(dE) + F, W(dE,,c,) W(Ey,dey)]
0<g<z

so that Fy 1s a positive martingale with EFy = |.
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Example 3. Let Xz be a Wiener process corresponding to the

Lebesgue measure and WZ = f g(z) X(dz). Then, Wz is a Wiener
0z z

procéss with p(dz) = g(z)dz. Therefore, if we take

I g(z) X(d7) -% J g(z)de

0<t<z 0«2z
(4.2) F =¢e

then Fz is a positive martingale with EFz = 1. 1If we introduce a new
probability measure (D' by

aPr

alp - 11

then it is not hard to show that under fp', Xz —f g(r)dzr is a
0<g<z

Wiener process corresponding to the Lebesgue measure. This is obviously
a generalization of the Cameron-Martin formula for translations of the

Wiener measure. (c.f. [16])

5. Conclusion

The results of this paper are preliminary in several respects.
First, there is a need for a general differentiation formula for

f(MZ,z) where M is a martingale of the form

(5.1) M= j [4, Wldg) + ¢, W(z),dey) Wde),z))]
0t =z

Second, there are reasons to believe that ecvery martingale with
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_respect to §§;'=7§Ikwg, 0 < ¢ £ z) can be represented in the form of
'(5.1). Such a representation theorem plays an important role in one
dimension [3,9]; Finally, the eiponential formula (4{2) represents
only a very restricted ciass of absolutely continuous transformations
of the Wienér méasure. Complete characterization of absolutely con-
tinuous transformations of the Wiengr measure woulﬁ.be‘an important

achievement of the martingale theory.
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