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Abstract

The given rational matrix transfer function H(«) is viewed as a

network function of a multiport. The n x n matrix H(s) is factored

into D(s)_1N(s) = N(s)D(s)_1, where D(-), N(0, N(-)> &(•) are polynomial

matrices of appropriate size, with D(«) and N(-) left coprime and $H«)

and D(0 right coprime. For nQ >.n., (nQ <_ n ),a zero of H(«) is a

point z where the local rank of N(«), (N(*)» resp.), drops below the nor

mal rank. The theorems make precise the intuitive concept that a multi-

zt
port blocks the transmission of signals proportional to e if and only

if z is a zero of H(*)» Classical analysis defines the concept of a

pole. We show that p is a pole of H(-) if and only if some "singular"

input creates a zero-state response of the form re ., for t > 0. Although

these results have state-space interpretation, they are derived by purely

algebraic techniques, independently of state-space techniques. Consequently

with appropriate modifications, these results apply to the sampled-data

case.
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F44620-71-C-0087 and the National Science Foundation, Grant GK-10656X2.



Introduction

There is no widely accepted definition of a zero of a matrix

transfer function. We propose a definition based on the factorization

of a rational matrix into a product of a polynomial matrix and the inverse

of another polynomial matrix [1-6]. Such a factorization has been success

fully used in realization problems [4,5,6], in design problems [4-7], in

the study of the cancellation problem in feedback systems [8], and in

deriving the necessary and sufficient conditions for the input-output

stability of an open-loop unstable distributed multivariable feedback

system [9].

A number of authors have addressed themselves to the problem of

calculating the "zeros of large systems" or the "zeros of multivariable

systems" [15,16,17]. These authors define such zeros to be zeros of the

scalar rational functions which are elements of the matrix transfer func

tion. Except for the special case of a diagonal matrix transfer function,

such zeros have nothing to do with the concept of zeros introduced here.

Section I reviews the properties of the zeros of a scalar transfer

function. Sections II and III develop appropriate definitions of the

zeros of rational nxn matrices and Section IV considers rectangular matrices.

It is shown that our definition of zeros retains essentially the main dynami

cal properties of zeros for the scalar case. Section V characterizes the

poles in terms of their dynamical properties.

Notation; R, (C) , denotes the field of real, (complex, resp.), numbers.

R[s], (lR[s]pXq), denotes the ring of polynomials, (pxq polynomial matrices,

resp.), in the complex variable s with real coefficients. lR(s) , (R(s). ),
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denotes the field of rational functions (pxq matrices of rational functions,

resp.), in the complex variable s with real coefficients. <C(s) and <E[s]

are similarly defined. For an exposition on the terminology and basic

algebraic facts see [1,3,6,10,11]. Whenever we consider both a time func

tion and its Laplace transform, we use " to distinguish the Laplace trans-

a m
form: e.g., u(t) and u(s). 6 denotes the zero vector in <C , and I

denotes the nxn identity matrix. The superscript ' denotes the transpose.

Section I. Zeros of a Scalar Transfer Function

The properties of zeros of a scalar transfer function are well

known [12,13].

Theorem I; Given a rational function, h(s), s e (C, with h(s) = n(s)/d(s)

where n(s) and d(s) are polynomials in s and are coprime, then,

(a) z e a is a zero of h(s) o z € lis a pole of h(s) = d(s)/n(s);

(b) if z e a and h(z) = 0, (or equivalently n(z) = 0), then by choosing

an appropriate initial state xft, the complete response has the property

y(t,0,x0,l(t)ezt) =0, Vt >0;

(c) if h(z) ^ O.and h(*) does not have a pole at z, then by choosing an

appropriate initial state xn, the complete response has the property

y(t,0,x0,l(t)eZt) =h(z)eZt, Vt >0.

Comment: It is obvious that one could have started with the system in the

zero-state at t = 0 and then apply a suitable linear combination of 6(t),

6'(t), 6"(t), etc. at t = 0 to kick the system into the appropriate initial

state, at t = 0 . By doing this the only difference in Theorem I would be
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that (b) and (c) would be valid only for all t > 0.

Section II. Zeros of H(s) e (R(s)nXn

An important difference between the scalar case and the matrix case

is that in the matrix case "zeros" can coincide with poles. Consider

H(s) =
s-1

s-1
0

s+1

(1)

2x2
clearly s = 1 and s = -1 are poles of H: (C -*• <E . However s = -1, (s -' 1) ,

should, by any reasonable definition of "zeros", be called a zero of H(s)

since for that value of s there is no transmission (in the sense of Theorem

I (b)) from the first, (second, resp.), input to the two outputs. Since

the concept of a zero of a polynomial is unambiguous, we use it as a basis

for our definition.

Definition I. (i) Given H(s) = D(s)"1N(s) where N(s), D(s) e.lR[s]nXn

and are left coprime, then z € <E is called a zero of H(s) iff det N(z) = 0.

(ii) Given H(s) = N(s)D(s)"1 where N(s), D(s) € fl^[s]nXn and are right

coprime, then z£ Cis called a zero of H(s) iff det N(z) = 0.

Note that the factorization described above is also valid when H(*)

is a rectangular matrix. It is well known [1,2,6,10] that for the case
n xn

where H(s) e IR (s) ° ,with nQ not necessarily equal to n^, that

n xn n xn

(I) N(-) e R[s] ° and D(.) e R[s] ° ° are left coprime if and only
n xn noXno

if there are polynomial matrices P(-) G R[s] ° and Q(*) ^ IP\[s]

such that
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N(s)P(s) + D(s)Q(s) = I Vs•€ C. (2)
o

n xn. n-txni
(II) N(-) e [R[s] ° x and fi(-) S R [s] are right coprime if and

n.xn n.xn.

only if there are polynomial matrices P(*) £ R[s] and Q(0 € R[s]

such that

P(s)N(s) + Q(s)D(s) = I Vs e <C. (3)
ni

Finally note that

N(s)fi(s) = D(s)N(s) Vs e <E. (4)

Lemma II: For the square matrix H(s), Definition I, (i) and (ii), above are

equivalent since

det N(z) » 0 o det N(z) =0. (5)

Proof: =* From (2) and the two factorizations of H(s),

P(s) + fi(s)N(s)"1Q(s) = N(s)""1. (6)

At s = z, the r.h.s. of (6) has a pole, hence det N(z) =» 0.

*= Similar argument on

P(s) + Q(s)N(s)"1D(s) » N(s)"1. (7)

Q.E.D.

nxnTheorem II; Given a rational matrix H(s) e R(s) with

H(s) = 0(8)^(8), (8)
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where N(s) , D(s) £ R[s] and are right coprime, then,

(a) z G <E is a zero of H(s) <> z € C is a pole of s h- H(s) ;

(b) if z G d is a zero of H(s) then ^ un ), g e G , g # 6 , o'€ s

index set, such that, for the input

u(t) =l(t)eZtg+ Ema6(a)(t),
a

the zero-state response has the property

ome
n^

y(t,0,8n,u(.)) = en Vt > 0;

(c) if v e (E is neither a zero nor a pole of H(s) , (i.e., det N(v) t 0,

det D(v) ^ 0) , and if k ^ 0 is any vector in (E then 3 ^0 E ^ » a e

index set, such that, for the input

u(t) ol(t)eVtk +EV(a)(t)

the zero-state response has the property

y(t,O,0 ,u(0) = H(v)keVt Vt >0

Proof of 11(a): => From (6) we have

P(s) + H(s)_1Q(s) =N(s)"1 (9)

Since by assumption det N(z) = 0, (9) implies that H(s)~ must have a pole

at z.
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*= Follows directly from (9). Q.E.D.

Proof of 11(b) : Since by assumption det N(z) = 0,^8 e ^ such that

N(z)g = 0n, g t 0n. (10)

In other words, there exists a nonzero vector, g, which is an element of

the null space of N(z). Taking Laplace transforms of the input given in

11(b) we have

u(s) = g/(s-z) + m(s) where m(s) - J]m s .
a

Hence

y(s) =H(s)u(s) =D(s)"1N(s)g/(s-z) +D(s)"*1N(s)m(s). (11)

We will show that m(s) can be so chosen that the r.h.s. of (11) is a

polynomial vector. Since the Laplace transform of 6(n) is s11, the. zero-

state response will then be identically zero for positive t (at t = 0,

the zero-state response might contain impulses and derivatives of impulses)

Note that

P(s) = N(s)g/(s-z) <12>

is a polynomial vector since the residue of p(s) at s = z is N(z)g = 0 .
n

So (11) becomes

y(s) =D(s)""1[p(s) +N(s)m(s)]. (13)

Choose m(s) = - P(s)p(s), so that
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y(s) = D(s)"1[I - N(s)P(s)]p(s). (14)

Using (2), eq. (14) becomes y(s) = Q(s)p(s) which is a polynomial vector,

and the conclusion 11(b) follows. Q.E.D.

Proof of 11(c): Since v is not a pole, det D(v) 4 0 as can be seen from (33)

below. Taking Laplace transform of the input given in 11(c) we obtain the

Laplace transform of the corresponding zero-state response

y(s) =H(s)k/(s-v) +H(s).(£masa) (15)

=H(v)k/(s-v) + D(s) 1[N(s)k/(s-v)-D(s)D.(v)"1N(v)k/(s-v)]

+ D(s)""1N(s)m(s) , (16)

where m(s) = ^m s : the bracketed term has no pole at s = v, and hence
a

is a polynomial vector in s, say q(s). Thus,

y(s') = H(v)k/(s-v) + D(s)_1[q(s) + N(s)m(s)]. (17)

Choose m(s) = - P(s)q(s) and substitute into (17) to obtain

y(s) = H(v)k/(s-v) + D(s)_1[I - N(s)P(s)]q(s). (18)

Using (2) again we obtain

y(s) = H(v)k/(s-v) + Q(s)q(s). d9)

Taking the inverse Laplace transform of (19), conclusion 11(c) follows.

Q.E.D.

Remarks: (i) Note that in the proof of 11(c) we never used the fact

that H(s) was a square matrix. Therefore, provided D(v) is nonsingular,
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this proof is valid for cases where H(s) is rectangular. (ii) In the

present case, since det N(v) 4 0, for any_ k 4 .6 ,"H(v)k 4 0r; hence,

y(t) is not identically zero for t > 0.

Section III. Zeros of H(s) G R(s)nXn; State-Space Method

We again consider an nxn matrix H(s) with elements in R(s). As we

shall see, by appropriately choosing a non-zero initial state vector x^,

the statements in Theorem 11(b) and (c) now hold for all nonnegative t

(i.e., this will eliminate any steps, impulses and derivatives of impulses

that previously might have occurred in the zero-state response at t = 0).

Theorem III; Given a rational proper (i.e., H(«) bounded at infinity)

matrix H(s) e R(s)nXn with

H(s) = N(s)D(s)"1 where N(s) ,D(s) € R[s]nXn and are right coprime;

given any time-invariant representation R = (A, B, C, E) where A, B, C, E

£ IR such that

N(s)D(s)""1 = C(sI-A)"1B + E,

then

(a) z £ Us a zero of H(s) «• z G (C is a pole of s H- H(s)

(b) if z G (E is a zero of H(s) and not an eigenvalue of A then there

exists an input

u(t) = l(t)D(z)eZtg (where D(z) € df1^, gG (En, g 4 6)
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and an initial state xQ £ <E such that the corresponding output has the

property

y(t,0,x0,l(t)D(z)eztg) =0n Vt >_ 0.

(c) if v G (E is neither a zero nor a pole of H(s) then for any non-zero

k £ (Cn, and for any input of the form u(t) = l(t)eV k, there exists

an x.G (C such that the output has the property

y(t,0,x0,l(t)eVtk) =H(v)eVt Vt >_ 0.

Proof of III(a): Identical with that of Theorem 11(a).

Proof of 111(b): Using the representation (A, B, C, E) and the following

identity [12,13] which holds for any s and z that are not eigenvalues of A

(sI-A)_1/(s-z) » (zI-A)"1/(s-z) - (sI-A)"1(zI-A)"1, (20)

then by standard techniques, with the initial state x~ chosen as

xQ =(zI-A)"1BD(z)g (21)

the conclusion 111(b) follows.

Proof of III(c): Again using standard techniques with the initial state

chosen as

xQ =(vI-A)"1Bk (22)

the conclusion follows.

n xn.

Section IV: Zeros of H(-) € R(s) o i

Let n , (n.), denote the number of outputs, (inputs, resp.), of the
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linear tima-invariant multivariable system represented by the possibly

rectangular transfer function matrix H(s). We consider the following

factorizations of H(s) throughout Section IV:

H(s) = D(s)~1N(s) = N(s)D(s)_1 (23)

where

n xn n xn n xn n.xn

N(s) e R[S] ° \ D(s) e R[s] ° °, N(s) e R[S] ° \ D(s) e R[s] 1

(24)

N(s) and D(s) are left coprime. (25)

N(s) and B(s) are right coprime.

Since we are dealing with rectangular matrices Definition I has to be

generalized. First we recall some well established terms [14].

Definition (i) For any z e G, the rank of N(z) is called the local

rank of N(») at z and is denoted by PN(z)•

(ii) For any z € <D, the rank of N(z) is called the local rank of N(-)

at z and is denoted by p«(z)

(iii) max Pvr(z) = PN is called the normal rank of N(•).
z e <E

1

The local rank of N(»)> (N(*))» at z is simply the rank of the matrix
N(z), (N(z)), where the elements are complex numbers. The normal rank of
N(#), (N(*))> is in fact the rank of the matrix N(»)» (N(*)» resp.), pro
vided that when we calculate minors we view their elements as members of

<E[s]. Equivalently, in determining linear independence, we view the rows,
(columns), as elements of the module (<E[s])ni, (((Cts])1^, resp.), over d[s].
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(iv) max P«(z) = p~ is called the normal rank of N(»).
z e (E N w "" : :

Part 1: n- > n.
• o — i

We assume in Part 1 that the normal rank of N(») and N(«) is equal

to n..
1.

Since. N(-)» (N(0)» is a polynomial matrix, PN'(z) - PN ,(Pfj(z) = pn* resp*^

except at a finite number of points. With n > n. , the condition pXT(z) < p.. ,
0_1 N N

(p~(z) < p~), means that the columns of N(z), (N(z), resp.)»are linearly

dependent.

n xn.
o iDefinition IV. 1: z € '<E is called a zero of H(») £ R.(s) ,with n ji n.,

iff p~(z) < p~ - n±.

Lemma IV.1: p^(z) < p^ = n± => pN(z) < pN = n±.

Proof of Lemma IV.1

n
iSince p«(z) < n. , -\ c £ (C such that

N i J

N(z)c = 0 , c 4 0 (27)
n n.
o i

Multiply (3) on the right by c and use (27) to obtain

and therefore

Q(z)D(z)c = c 4 0 , (28)
ni
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D(z)c 4 0 . (29)
• n.

i

Multiply (4) on the right by c, let s + z, and use (27) to obtain

N(z)D(z)c = 0 . (30)
o

Hence, in view of (29), PN(z) < n. Q.E.D.

Comment on poles, zeros and local rank, (i) If we use (23) in (2) and

(3) we obtain

H(s)P(s) + Q(s) = D(s)"1 (31)

P(s)H(s) + Q(s) = D(s)"1 (32)

From (31) and (32) we observe that

p e <E is a pole of H(-) <> det D(p) = 0 <> det D(p) = 0. (33)

(ii) If z e C is a zero of H(»)» but not a pole of H(»)9 then

PN(z) = p~(z) < n± (34)

Proof of (34): From (4) we have

N(z) = D(z)N(z)D(z)"1, (35)

and

N(z) = D(z)"1N(z)D(z). (36)

The conclusion follows since D(z) and D(z) are nonsingular. Q.E.D.
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n xn

Theorem IV.1 Let H(-) e R(3) ° ,„q >n±, with the factorizations (23),

and n. = p„. Under these conditions,
1 N

2 L
(a) z £ <D is a zero of H(*) =* z is a pole of any left-inverse , H (•)»

of H(-);

ni(b) If ze (C is a zero of H(*), then J {m }, ge G with g 5^ ©n ,such
a i

that for the input

u(t) = l(t)eZtg + Vm 6^(t), aG some index set,
a

the zero-state response has the property

y(t,O,0n ,u(0) - 0n Vt > 0;
o

(c) if ve d is neither a zero nor a pole of H(») and if k 4 0R is any
n n i

vector in <C , then J {m }e <jj , such that for the-input

u(t) = l(t)eVtk + 23m <S (t), ae some index set,

the zero-state response has the property

y(t,O,0n,u(-)) =H(v)keVt Vt >0.

2 n xn nnxni
Any left-inverse, ^(O €E (R(s) 1 °, of H(-)-€ R(s) has the property

HL(s) H(s) « I' Vs e (J. (37)
i

A candidate for hV) is H^s) = [H(s) !HCs)]"1 H(s)1
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Remark: Since in Theorem IV.1(c) , v € c is neither a zero, nor a pole of

H(0> D(v) is nbnsingular and the column rank of N(v) is n ; therefore the
n

column rank of H(v) is n . Hence, for any k € C , k M , the zero-
i n±

state response is not identically zero for t > 0.

Proof of IV.1(a) : By contradiction. Suppose that s h- HL(S) is analytic
n xn

at z, then K*(z) e <E °. Define c as in (27) and use (4) and (29) to

obtain,

H(z)D(z)c = N(z)c = 0 ,
o

where c ^ 0 , D(z)c ^ 0 . Using (37) we obtain
ni ni

Hlj(s)H(s)D(z)c = D(z)c ^ 0 Vs <= <t
ni

Letting s •> z in (39) and noting (38) we obtain the contradiction,

(38)

(39)

Hij(z)0n =D(z)c 4 0n . (A0)
o i

Q.E.D.

Comment: From (38) we see that even if z is a pole of H(-) (equivalently,

det D(z) = 0) there is a linear combination of the columns of H(0 which

sum to the zero-vector 0 . In that sense we could say that, at z, the
n

°

rank of H(0 is smaller than n .

Comment: The converse of IV(a) is not true. To wit:

1

HL(S) =
s-p

1

s-p

» H(s) =

-15-
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where indeed, Vp G (J

HL(s)H(s) = I Vs e a;.

Proof of IV. 1(b) : By assumption zEiis a zero of H(«). From Definition
n.

IV.1 and Lemma IV.1 it follows that PN(z) < n.. Hence ^ 8e G such

that

N(z)g = 0n , g 4 0n • (42)
o i

The remainder of the proof is identical with that of 11(b), above, except

that H(s) and N(s) are rectangular and the vectors are n - or n.- dimensional
o 1

Q.E.D.

Proof of IV.1(c): The proof of Theorem 11(c) establishes IV.1(c). The

only difference is that H(s) and N(s) are rectangular and the dimensions

of the vectors change accordingly.

Part 2: n < n.
o — 1

We assume in Part 2 that p„ = pa = n < n.. Consequently, we have
N N o — l .

to modify Definition IV.1.

n xn

Definition IV.2: z e (t is called a zero of H(-) € iR (s) ° , with

nQ <n., iff PN(z) < PN=V

Lemma IV.2: pN(z) <"p~N = nQ * Pfi(z) <P^ = nQ.

n

Proof of Lemma IV.2: By assumption J a row vector c1 e <E such that
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c'N(z) = 0» , c» 4 0' . (43)
n. n

i o

By (2) we conclude that

c'D(z) 4 0f . (44)
n

o

Hence, by (4) we have

c,D(z)N(z) = 0f . (45)
n.

i

Therefore, p~(z) < n . Q.E.D..
No

Observation: Again by using (4) we can show a dual statement to (34); viz.,

if z £ C is a zero of H(*) but not a pole of H(»)» then PN(z) = P^(z) < n .

Comment: We cannot have a theorem identical with Theorem IV.1. Indeed,

ni
for n < n ,V v€ (D, there is a non-zero vector g € <E such that N(v)g =

0 . Thus by the proof of Theorem IV.1(b), there is an input of form given
o

in Theorem IV.1(b) which produces a zero-state response which is identically

zero for t > 0. Intuitively, since n < n., we can use the "surplus" of

inputs to compensate their collective actions at every output.

n xn

Theorem IV.2: Let H(«) e R(s) ° , n < nJ} with the factorization (23),_ Q £

and n = pxt. Under these conditions,
o N

(a) z e d is a zero of H(*) =*• z is a pole of any right-

-17-



inverse3, HR(.), of H(-);

(b) If z € <E is a zero of H(*)» then there is a linear combination of the

zero-state response, viz., i//(t) = c*D(z)y(t) , (where c'N(z) = 0* , c' 4 6' ),
i o

such that for any input of the form

zt-. *- Aa)u(t) <= l(t)ge^+ Jina6w(t)

rt.

(where g € (C , a £ some index set, and the m's are appropriate vectors in
a

n.

tt.1 which depend on g) , that linear combination, if>(t) , is identically

zero for t > 0;

(c) If v e I is neither a zero nor a pole of H(«) and if k 4 ©n is any
ni ni i

vector in (C , then for some {m } £ <c , the input

u(t) = l(t)eVtk + 2m 6^t, (a e some index set),
a

generates a zero-state response of the form

y(t,O,0n,u(-)) =H(v)keVt Vt >0

Remark IV.2: In the special case where n < n. then concerning Theorem
= o i

3 n xn n xn

Any right-inverse, HR(.) € R (s) * °, of H(-) € R (s) ° * has the property

H(s)HR(s) =1 Vs e <E. (46)
o

-1

A candidate for HR(.) is H(s)»[H(s)H(s)'] *
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ni
IV.2(c) : (i) there are some k e <C with k 4 0 such that H(v)k = 0
—-—— n. n

i o

and the zero-state response is identically zero for all t > 0; (ii) since

det D(v) 4 0 and PN(v) = P^(v) = n , for any non-zero row-vector c' there

ni
is a vector k£ d such that c'H(v)k 4 0, k 4 0 ; hence, for any linear

n.

combination of the zero-state response, c*y(t), there is an input of the

form specified in Theorem IV.2(c) for which this linear combination is

not identically zero for all t > 0. Intuitively, there is no "zero of

transmission" at the frequency v.

Proof of IV:2(a): By contradiction. Suppose that s h- HR(s) is analytic
R niXno

at z, then H (z) e (E . Define c* as in eq. (43) and use (4) and (44)

to obtain

cfD(z)H(z) = c,D(z)D(z)"1N(z) = 0' , (47)
ni

where cf 4 01 ', c'D(z) 4 01 . Using (46) we obtain
n n
o o

c'D(z)H(s)HR(s) = c'D(z) ^0' Vs e (C . (48)
n
o

Letting s + z in (48) and noting (47) we obtain the contradiction,

R Q.E.D.
0! HK(z) = c,D(z) 4 0' .
ni no

Proof of IV.2(b): We define i/;(t) = cfD(z)y(t) where c'N(z) =0* , c' 4 01

(by assumption), and c'D(z) 4 01 (from (2)). Taking Laplace transform of
o

t/j(t) and using the given input we obtain,

*(h) - r,l)(z)!l(s)u(s) (49)
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= c,D(z)D(s)"1N(s)[g/(s-z) +m(s)] (50)

where m(s) = /^m. s .
a

a

Pick m(s) = gu(s) where p(s) £ I^[s] and substitute in (50) to obtain

<j)(s) = c»D(z)D(s)"1N(s)g[l/(s-z) + y(s)], (51)

where c'D(z)D(s)"" ?J(s)g = h(s) e R(s) has a zero at s = z by (47). Hence,

we can write h(s) as

h(s) =̂ - (s-z), (52)

where n,d ^ R[s] are coprime and d(z) 4 0. Substitute (52) in (51) to

obtain

Hs) =f^- [1+ (s-z)y(s)]. (53)

Since at s = z, the bracket term is equal to 1, and d(z) 4 0, we can

choose u(s) £ R[s] so that the bracket term is a nonzero constant, say

$, times d(s). (For example, we could set y(s) = [3d(s)-l]/(s-z) , where

g is such that 6d(z) = 1).

Therefore, with u(s) e R[s] chosen so that

[1 + (s-z)u(s)] = 3d(s), e.e. R, 3 f 0,' (54)

we have from (53) that

•$(s) = gn(s). . (55)
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Hence, *(t) = c*D(z)y(t) = 0 Vt > 0. Q.E.D.

Proof of IV.2(c): Same as proof of 11(c), with of course, the necessary

changes in the dimensions of the matrices and vectors involved.

Section V. Poles of H(s)
n xn

With H(s) € IR (s) ° , classical analysis [18] defines a pole of the

rational matrix H(-); viz., p e <D is called a pole if and only if some

element of H(.) has a pole at p. In Section V, the relative magnitude

of n and n. is of no consequence,
o 1

n xn

Theorem V: Let H(s) e R(s) ° with factorization (23). Under this

condition, p e <E is a pole of H(«) ° 3 an input,

u(t) =Xua6(a)(t), (56)
a

where u e ffi •, .a € some index set, such that the corresponding zero-state
a

response has property that

y(t) = rept Vt > 0, (57)

n

where r is a nonzero vector in C

In other words, a "singular" input u(») of the form (56) kicks the

system from its zero state at t = 0~, to a state at t = 0 which results

in the purely exponential output for all t > 0 if and only if p e <E is a

pole of H(«).

Proof of Theorem V: =>. By assumption, p 6 C is a pole of H(0; hence, by
n

(33), det D(p) = 0. So there is a nonzero vector, r e C , such that
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D(p)r = 6 . Hence the polynomial vector function s h- D(s)r has a zero
o

at s = p and can be written as

D(s)r = k(s)-(s-p), (58)

n xl

where k(s) is a polynomial vector, i.e., k(0 e R[s] ° '

Now, with (2) in mind, choose the input to be given by

u(s) = P(s)k(s). (59)

The zero-state response to this input is

y(s) = H(s)P(s)k(s) = D(s)"1N(s)P(s)k(s). (60)

Using (2) in (60) we obtain

P(s) = D(s)~1[-D(s)Q(s)k(s) + k(s)] (61)

= - Q(s)k(s) + r/(s-p), (62)

where we used (58). Since Q(s)k(s) is a polynomial vector in s, the

conclusion follows.

*=. Suppose that, starting from the zero-state at t = 0~, some polynomial

vector input u(s) would produce as a zero-state response rep , for t > 0,
n

where r is a nonzero vector in <L and p6 C, then

y(s) = H(s)u(s) = D(s)"1N(s){i(s) (63)

= q(s) + r/(s-p), (64)
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where q(s) is a polynomial vector in s contributed by the linear combination

of 6(t), <Sf(t), etc. which occur at t = 0. By (64), y(s) has a pole at p.

By (63), this implies that det D(p) = 0; hence, by (33), p € <E is a pole

of H(*). Q.E.D.

Conclusion

This paper is based on the factorizations of the rational matrix

transfer function H(«) given in (23). The zeros of H(-) are defined in

terms of the local rank of the polynomial matrices,N(0 or N(»). The

dynamic properties associated with the zeros are given in Theorems II,

III, IV.1 and IV.2. The poles of H(-) are defined by classical analysis

and are characterized in Theorem V. If the complex variable s is changed

into z and if the resulting elements of H(0 are interpreted as z-transfer

functions, then the algebraic techniques used above can be applied to the

sampled-data case and, except for a few modifications in interpretations,

the results still hold in this case.
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Footnotes

1

The local rank of N(v), (&(•))> at z is simply the rank of the matrix

N(z), (N(z)), where the elements are complex numbers. The normal rank of

N(*)> (N(»))'f is in fact the rank of the matrix N(«)t (N(»)» resp.), pro

vided that when we calculate minors we view their elements as members of

C[s]. Equivalently, in determining linear independence, we view the rows,
n. n

(columns), as elements of the module (<C[s]) , ((<E[s]) , resp.), over

<E[s].

2 n xn n xn

Any left-inverse, BT(0 e R(s) °, of H(-) e R(s) ° has the property

HL(s) H(s) = I Vs'e-C. (37)
ni

-1

One candidate for HL(-) is HL(s) • [H(s)fH(s)] H(s)f

3 n xn n xn

Any right-inverse, HR(«) e IR (s) i °, of H(-) e R(s) ° has the property

H(s)HR(s) s I Vs e (K. (46)
o

R -1A candidate for HK(«) is H(s)f[H(s)H(s)*] '
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