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INTRODUCTION

Prograsiming science9 as the term is used in this book^ Is

the science9 as opposed to the art^ of constructing programs for

digital computers In algorithmic languages* It Is the "mathemati

cal science of computation" whose deitolopaent was predicted In

CMcCarthy 633**

There have been many attempts» over the years 9 to construct

a theory of algorithms* as contrasted with a theory of programs*

Since an algorithm may be programmed In any one of various lan

guages 9 but must be programmed In some way In order to be analyzed9

all that Is necessary In constructing a theory of algorithms Is to

construct some progrananlng language or type of machine which Is

powerful enough to encompass all algorithms of the type being stu

died, and then to study an arbitrary algorithm as programmed In

this way. Historically, the theory of Turing machine computabllity

Is the earliest of these theories; recently, this theory has been

significantly extended by research on time and space limitations of

computations (theory of computational complexity)* This theory was

later recast by Kaphengst, and again by Shepherdson and Sturgls, In

a form In which the type of machine used more closely resembles a

modern digital computer* Markov's theory of algorithms Is another

theory of this kind; although Markov uses algorithms of a specific

type, whereas Turing uses machines, the essential characteristic re

mains, namely that an algorithm. In order to be analyzed In either

of these ways, must be recast (either as a Markov algorithm or as a

Turing machine program)*



More recent theoretical studies have also often tended to

follow this "algorithmic" philosophy. Thus in Floyd's work on pro
gram correctness, and in the work of Floyd's student, James King,
on computer-aided program verification, it is assumed that all pro
grams to be verified are of a particular, relatively simple form.

C. A. Ro Hoare has axiomatized the verification conditions which

appear in proofs of program correctness; Hoare's axioms, however,
are true In a programming language only in the absence of side ef

fects and certain other general features. There are also at least

two distinct theories of "program schemes," one due to Yanov and

the other due to Luckham, Bark, and Paterson; in either case, a
particular algorithm to be analyzed must be cast in a special form

in order for it to be an interpretation of such a program scheme.

In a theory of programs, the program, as well as the algo

rithm, is assumed to be given. Various questions may be asked about

a program, such as whether it is correct, whether it terminates, or

whether it is equivalent to some other program. We are then concerned

with developing methods of proving such facts; we are concerned with

formulating theorems which simplify the job of proving them or which

facilitate the Construction of efficient and easy-to-use computer

aids to proving them.

Our present approach is divided into three parts. In the first

part, we take up the syntax and semantics of programming languages.

If a program P is written in a language L, and we wish to prove facts

about P, we must know both the syntax and the semantics of L, an!

we must know them in a form to which our theory is applicable. The

syntactic approach which we use is basically Backus-Naur Form (BNP).

The semantic approach is of our own construction, based principally

on the state vectors of McCarthy and the synthesized and inherited

semantic attributes of Knuth.
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In the second part, we Introduce the fundamental methods of

proving assertions about programs: correctness9 termination,,and

equivalence# In the third part, we proceed to more advanced topics:

the correctness of compilers, the correctness of self-modifying

programs, the construction of canputer aids to verification, and

the semantics of data structures#

This book has been very carefully constructed so as to be

readable by people with a wide variety of backgrounds, both in

mathematics and in progranming#

To take mathematics firsts Rpograraming science is a mathema

tical science, and, like every other mathematical science (even

mathematical logic), can be, and is in fact here, based on the con

cepts of set pnd function a^ primitive, undefined terms# Many mathe

matical sciences, such as group theory, are based on set theory but

only in a trivial wayj most group theory is done without much thought

about abstract sets. This is definitely not the case in the theory

discussed here# Sets, functions, restrictions of functions, composi

tion of functions, and cartesian products are found in great profu

sion, and the semantic rules by which a programming language is de

scribed are full of references to finite and infinite sets, union

and intersection of sets, functions as sets of ordered pairs, and

so on# Ifevertheless, this book has been constructed so as to be read

able by those who have never before worked with a mathematical science,

such as, for example, the majority of practicing programmers# For this

reason, the usual section in which all of the mathematics necessary

to understand a subject is neatly collected and summarized will not

be found in this book. The definitions of set, function, restriction
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of a function^ and so on^ ar© spread out over several early chap

ters; and each one is accompanied hy an immediate application of it

to the developing theory. Those who are familiar with higher mathe

matics may skim lightly over these sections, although they will need

to understand thoroughly exactly how the set theory is used.

From the standpoint of programming, the prerequisites for

reading the entire book are a knowledge of FORTRAN, ALGOL, at least

one assembly language, and a smattering of higher-level languages,

particularly LISP and SN030L. It is not, however, necessary to read

the entire book in order to understand what programming science is

about. Part I, with the exception of section 3-5 (which is not es

sential and may be omitted), requires only a reading knowledge of

FORTRAN and ALGOL, and even this may be learned concurrently, if

the reader is studying programming from an intuitive point of view

at the same time. Part II requires even less than fert I in the way

of programming knowledge; all the algorithms presented here should

be obvious even to a non-programmer. Each of the sections of Part III

has its own set of prerequisites, which should be relatively obvious

upon reading the titles of the sections.

This book was written while the author was supported by Na

tional Science Foundation Grants GJ-821 and GJ-31612, and by the lihi-

versity of California as an Assistant Professor, including one summer

during which the author held a Summer Faculty Fellowship given for

the express purpose of research relating to this book.
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PART ONE

S YNT AX AND

SEMANTICS OF

PROGRAMMING

LANGUAGES
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C ]J A P T E P ONE

C 0 M P T A 1'̂ T S

1-1 Syntax of Constants

Consider the follov/inc strings of characters:

8

-12

99999999^^99999CV)99999999

17B

Oc?7

.27

621^5

to?
?0.

93B

Intuitively, each of these "looks like" a constant in some

programming language. Some of ^liera, however, will be considered,

under certain cireinstances, to be improperly fomied. These circum

stances Involve the programming language being used, the particul-ar

interpreter, 'compiler, or other system being used to translate that

language, and even the version nimiber of this system as it is gradu

ally modified and extended.

PTOgrarnming science is concerned with exact statements about

computer programs. The most fundamental exact statement we can make

about a program is that it is properly formed. In order to make such

a statement, we normally construct certain rules for well-formed
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programs, and then require that any well-formed program must obey

these rules* These are then calledi the (or s^^nij^ctlc) rules
of the given programning language or programming system*

The syntax rules of actual programming languages give a wide

variety of answers to well-formedness questions even as applied to

something as simple as a constant* Looking back at the ten examples

above, we cannot find any one of them that is always, unequivocally,

well-formed* The digit 8, for example, is not a constant in the as

sembly language of the PDP-8, where all integers not followed by D

are taken as octal* Ih ALGOL^ —12 is a simple arithmetic expression,
but it is not a constant, according to the ALGOL definition (for exam

ple, we cannot write 2^-/-12 in ALGOL, whereas for any constant x 9^ 0 we

can write 2Vx). Many languages (although not ALGOL) specify

999999999999999999999999 to be improperly formed, because it will
not fit into a computer word. The remaining examples either involve

B (for "binary," not permitted in ALGOL), or else involve real numbers,
which are, of course, not permitted on any computer or system which

lacks floating-point or other real number handling facilities*

Most programing syntax rules are constructed in essentially

the same way. This way was first widely publicized in connection

with ALGOL, and is known, in its original form, as BI\1F (Backus-Haur

Formj formerly. Backus "Normal" Form), honoring John Backus, who

developed it, and Peter Naup, editor of the ALGOL report. BW is a

symbolic form of expressing certain types of syntax rules which may

also be expressed in other ways* As an example, we.shall now give

a complete set of syntax rules for numbers. These rules are equiva

lent to those given in the ALGOL report*

♦Throughout this book, "ALGOL," unless further qualified, refers to
AIGOL 60 as modified in the Revised Report on the Algorithmic

Language ALGOL 60. published in 1963.
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A nijrtiber is an unsigned number« optionally preceded by a sign

(+ or -)o

Mk unsigned numl^er consists of a decimal number followed by an

exponent nart^ where either the decimal number or the exponent part

may be omitted»
i

The exponent part of unsigned number consists of the subscript

symbol followed by an arbitrary (possibly signed) integer«

4 decimal number consists of ^ unsigned integer followed by a

decimal fraction^ v/here either the unsigned number or the decimal

fraction may be omitted.

A. decimal fraction consists of a decimal point (o) folJ-Owed by

an arbitrary unsigned integer.

An integer is an unsigned integer, optionally preceded by a sign

(+ or -)•

An unsigned integer is an arbitrary sequence of digits (0, 1,

^j 65 7^ 85 or 9)•

The above rules are completely rigorous; in the fol3.ov/ing sec

tion, we shall see how they may be used to prove that 8,

999999999999999999999999, 0.27, 027, 621^^5, and ^^5 are properly
formed unsigned numbers in ALGOL, that -12 is a properly formed

number, and that jOo (for example) is not a properly formed number.

However, as presented above, the syntax rules have the disadvantage

that they are not very easily processable by computer themselves.

In order to remedy this difficulty, we rewrite the rules in sym

bolic form, and it is this symbolic form that is known as BNF. ?

The variable quantities with which BMP is concerned (in the

above rules, "number," "unsigned number," "exponent part," "decimal

number," "decimal fraction," "integer," "unsigned integer," and

"digit") are referred to, in the ALGOL report, as metalinguistic
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variables. Each metalinguistic variable has a definition^ in terms

of other metalinguistic variables and (sometimes) characters, in

this case 0, 1, 2, 3, if, 6, 8, 9, +, -, and the period,

all of which may be called "metalinguistic constants#" In BNF,

metalinguistic variables are enclosed in angle brackets < > ,

and the symbol means "is defined as#" Thus, for example, the

definition of "decimal fraction" is given in the ALGOL report as

<decimal fraction> :e <unsigned integer>

In order to reduce confusion later on, we shall enclose all

metalinguistic constants in quotes » * # Thus the above rule now

reads

<decimal fraction> :<unsigned integer>

Similarly, the definition of "exponent part" is

<exponent part> : := <integer>

In both these rules, the \iiordis "followed by" are represented by a

blank#

Another symbol used in BI^IF is the vertical line ( , which

means "or#" This allows us to define a metalinguistic variable as

either of several alternatives# For example, "digit" is defined as

<digit> ;:= »0» ( | '2* \ "B" 1 'ifr' | 1 >6' I '7* | 'S' | »9«

Most of the rest of our rules for constants may now be expressed

without any further notational conventions# Thus "number" may be

defined

<number> ;:= <unsigned number> | <unsigned
number> j <unsigned number>
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In words: A nimber is either an unsigned number, or • + ' followed

by an unsicned nuiriber, or follov/ed by an unr,igned number* This

definition clearly expresses the meaning of "optionally preceded by

a sign." Similarly, the definitions of "integer," "unsigned number,"

and "decimal number" may bo given as

<integer> :<unsicned integer> f '+• <unsigned
intoger> | <unsigned integer>

<u»isignod number> : <decimal number> j <exponent
part> I <decimal number"- <exponent part>

<deciinal number> <unsigned integer> ( <decimal fraction> |
<unsigned integer> <decimal frac tion>

There remains the definition of "unsigned integer." Since the ALGOL

report was published, several authors have made extensions to BilF,

one of which embodies the idea of "arbitrary sequence." Thus by

writing

<unsigned integer> :<digit>*

we could express, in this expanded notation, the statement that an

unsigned integer is an arbit^^ary sequence of digits. This includes

the null sequence, which is probably not what we want; but we can

easily cure this by writing

<unsigned integer> <digit> <digit>*

In this book, however, we shall use the original notation of the

ALGOL report, and write

<unsigned integer> <digit> | <unsigned integer> <digit>

This is a recursive syntax rule; it defines unsigned integers in

terms of other unsigned integers. Iiocursive syntax rules are often
-10-



harder to visualize than non-recursive ones; for the moment, v/e

shall merely note the fact that we can always define an "alpha" to

be an arbitrary sequence of "beta's" by writing

<alpha> :<beta> | <alpha> <beta>

as we have done here. We can define the same thing by writing

<alpha> ::= <beta> j <beta> <alpha>

The distinction between these two methods will be taken up further

in section l-5»
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1-2 Derivation Tiroes

Using syntax rules such as those discussed above, we may analyze

the syntax of any constant and break it down into its component parts.

Let us consider, for example, the constant 62V- This is short for

621 X10^, or 62,100,000o Its exponent part Is ^^5, and it also con
tains the decimal number 621, We may express this relationship by

v/ritlng

unsign^

sTi
decimal number

number

b
xponent part

This makes it easy to see that is an unsigned number, according

to the rule for unsigned numbers, provided that 621 is really a deci

mal number and that is an exponent part. Using the rule for expo

nent parts, we may write

exponent part

I t
to

10
5"

integer

in analogy with the above. By putting these two diagrams together,

we obtain

decimal number I ^^xponent part

'iq' integer

Let us carry this analysis further. Both 621 and ? are clearly un

signed integers. One of our rules says that any unsigned integer

is a decimal number, which is what we want to know concerning 621.
-12-



Another rule says that any unsigned integer is an integer, v/hich

takes care of Expanding our diagram to incorporat.e these two

facts, we obtain

unsigned number

j^ecimal number j—

lol
unsigned integer

10 ft-x:p9pfin-h .pay-h

' • integer
\0 ^

5"
unsigned integer

Now let us consider our recursive rule for unsigned integers. In

words, an unsigned integer is either a digit or an unsigned integer

followed by a digit. The unsigned integer ? is clearly of the first

kind, nee 5 is a digit. The unsigned integer 621 is of the second

kind; it is the unsigned integer 62 followed by the digit 1. Thus we

can further expand our diagram:

unsigned number

taiLs-
decimal number '^^xponent part

CXL J5~
unsigned integer

unsigned integer digit
^ imsigned inte^^
•1.' ^

dfgit

The unsigned number 62, in turn, is the unsigned number 6 followed
by the digit 2. The unsigned number 6 is Itself a digit. By incor

porating these last two facts, we obtain a diagram which gives, in

graphical form, a complete proof of the fact that 621^ is an un

signed number according to our rules:
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7.

/ .
10 11

Ih
\

17 '

2 '

/ \
8

12

1

15

unsigned number

decimal number '^exponent part

C21
unsigned Intepnr

~T3Tr~
unsigned integer difrit

£Tr~ 1
u/isifrned interor digit '1®

2
di&it 'S'

G
•6«

In the same way, if we started with any unsigned number (or integer,

or unsigned integer, etc.), we could make a diagram like this one

to show how it is constructed.

In order to analyze further this type of diagram, let us redraw

the diagram above in a more abstract form;

13

16,

10
t f

to

s

integer

unsigned integer

This is called a graph. It consists of points, called nodes, and

line se^pTients which join the nodes, called links. The correspondence
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between the original diagram and the abstract diagram may be shown

by means of the following table:

NODE METALINGUISTIC CU/O^ACTER METALINGUISTIC
NUMBER VARIABLE STRING CONSTAOT(IF ANY)

1 unsigned number

2 decimal number 621

3 exponent part

unsigned integer 621

6 integer 5 -

7 unsigned integer 62 ——-

8 digit 1

9 unsigned integer 5

10 unsigned integer 6

11 digit 2

12 til

13 digit 5

llf digit 6 .

15 f2t

16 tjt

17 t6t

Each link in a graph such as this one arises in a standard way

from the definition of some metalinguistic variable. For example,

consider the link from node 1 to node 3« This link is present be

cause the definition of "unsigned number," which corresponds to node

1, contains a reference to "exponent part," which corresponds to

node 3» Let us represent this relationship by an arrow pointing from

node 1 to node 3. If we redraw the graph again, replacing all of its
-15-
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links by arrows in this way, we obtain!

1 /

2

If f

7 ^ .

'I
lo| j 22' I

11+, 15 ' 137

16 4^
17 '

This is called a directed OTanho In each case, if an arrow points
• 'V'-A VV*-

from node X to node Y, then node X corresponds to some'metalinguistic

variable V, and node Y corresponds to a metalinguistic variable or

constant which appears in the definition of V as it applies to the

particular string being analyzed.

lOvory directed graph may have initial nodes and tormina.l nodes.

An i iiti-^l node is one with no arrows pointing to it; a terminal

node is one with no arrows leading out of it. If wo thinJc of a train

running along a directed graph in the direction of the arrows, then

a terminal node is the "end of the line," so to speak, whereas ari

initial node is the point from which a journey logically starts.

In the above graph, there is one Initial node, namely hode 1, while

the terminal nodes are nodes ?, 12, l5, l6, and 17.

We may notice immediately that the terminal nodes of a graph

which is constructed as above correspond precisely to the metalin

guistic constants. This follows, in fact, from the method of con

struction. A rnetali iguistic variable presumably has a definition,

-16-



which gives rise to at least one arrow in the graph loading out of

the corresponding node. Thus it follows immediately that this node

cannot be terminal; it may or may not be initial. A metalinguistic

constant, on the other hand, does not have a dtf inition, and there

fore the corresponding node has no arrows leading out of it; that is,

it is a terminal node. These considerations allow us to label each

terminal node with a constant and each non-terminal node with a

variable, as follows:

unsigned^ number
decimal exponent

\
unsigned integer / integer

/ 4^
unsigned integer digit.v / unsigned

/ \ / integer
unsigned integer digit \ / >1

^ \ \ / digit

6 2 1^ 5
10

This is Called the der^JyatJ^^ tree of the string 621^ as an unsigned

number. It is^tha final form of diagram which we will associate with

a character string in this way.^ In order to explain the term "deri

vation tree," it is necessary first to explain two other notions.

A in any graph is a se quence of nodes with a connected sequence

of links between them, such as the nodes 1, 2, 7? and 15 in

our example. A ^ graph is a path which leads back to v;here

it started. Our example of a graph does not have any cycles, and, for

this reason, it is called a t:^e. All derivation trees are trees in

this sense; the derivation of 621,.5i for example, refers to the proof,

as we have given it, that 621^^5 is an unsigned number.
The correspondence between metalinguistic constants and vari

ables, on the one hand, and terminal and non-terminal nodes on deri-
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vation trees, on the other, was noticer" v^ory early in t?ie mathema

tical study of syntax. Indeed, the term "notaliriguistic variable"

has almost com])letely disappeared. Instead of metalin/^uistic con

stants, wo speak of terj^nnal sjm^ls (usually, simply t.grn;nj^^

instead of metalinguistic variables, we speak of nonterminal s. This

standard terminology will continue to be used throughout this book.
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1-3 Sem^ tics of Constants

There are various ways of determining the value of a constant#

For example, considor the unsigned integer 621, and let us suppose

that we are regarding this as an octal integer# How do we find its

value? One way is to find the value (as an octal integer) of 62, mul

tiply by 8, and add 1# The point of this method is that 621 is an un

signed Integer precisely because it consists of 62 (unsigned integer)

followed by 1 (digit). Thus, if we use this rule, there is an immedi

ate relation between the syntax of unsigned integers and the calcula

tion of their values.

In formal terms, let the unsigned integer U follov/ed by the

digit D be defined to be an unsigned integer, called I. Furthermore,

let Vy, and v^, denote the value of U, of D, and of I, respective
ly. We wish to derive an equation for Vj in terms of and v^^. In

this case it is

If \Te were considering 621 as decimal instead of octal, the rule

would be

V = 10•v + V
I U D

Such equations will be called seiruytj^c rul^. Syntax is concerned

with form; semantics is concerned with meming. It might seem that

the meaning of a constant resides entirely in its value, but this

is not the case, as we may see by considering decimal fractions.

Let the decimal fraction P consist of the period (.) follov/ed by

the integer I. What is the value of F in terms of the value of I?

The answer is that v/e obtain the value of F by dividing the value

of I by 10'̂ , whore His the number of digits in the integer I, or

-19-



the iengib of I. Unless the length, as well as the value, of I is
part of Its meaning, we cannot derive the value of a decimal frac-

tloHo We may write

where rij in the length of I; but in that case we must give a sepa-
rate semantic rule for Going back to our previous conventions,
if Hy is the length of Uand n^ is the length of I, we obviously have

Hj = ny + 1

An unsigned integer consisting of a single digit may then be declared

to have length 1©

Is the value of a real number enough to specify its meaning?

In this case, as it turns out, there is no need to knov/ the length,
as a character string© We may, however, need to know the type © that

is, whether the real number is in fact an integer. The type of a deci-

^^1 number, according to the syntactic rules we have given, may be

determined from the following table:

Kind of decimal number Type

Unsigned integer only Integer

Decimal fraction only Real

Unsigned integer follov;ed by decimal fraction Real

Similarly, the type of an unsigned number is determined as follows:

Kind of unsigned number Type

Decimal number only Same as the type of
the decimal number

Exponent part only Real

Decimal number followed Real
by exponent part



Normally it is not necessary to know the type of a number for the

purposes of the semantics of constants; but the type may be needed

for other semantic purposes. For example^ the value of the expression

2x3 •1^1592653? Is found by performing real multiplication on the con

stant 3•1^15926535 and the result of converting the integer 2 to real

form. (Expressions will be taken up more generally in Chapter 2.) If

by real multiplication we mean floating point multiplication, this

will not always give the same result as does integer multiplication,

even for integral arguments.

Length, value, and type are examples of attributes. We shall

take the point of view that any character string in a language which

has a meaning at all has that meaning expressed in terms of one or

more attributes. The process by which the attributes of a string are

constructed in terms of the attributes of its substrings, as \^e have

been doing, is called synthesis. and our attributes are said to be

synthesizedo (There is another sort of attribute, associated with a

different kind of semantic rule, which we shall introduce in section

2-lf.)

We shall now give notational conventions for semantic rules

which give values of synthesized attributes, when these are associa

ted with a syntactic definition of a language as given in BIF. For

this purpose, we slightly alter the form of a rule. Where there

are no alternatives — that is, where the vertical line (j) is not

used — we insert a lower-case letter after every nonterminal, to

serve as a label. Thus the rule

<decimal fraction> <unsigned integer>

might become

<decimal fractions f :<unsigned integer> i

-21-



In words; decimal fraction £ consists q£_ a period (.) followed

by the integer io

Where the vertical line is used n times, there are n+l alter

natives, and each of these causes a label to be given to the nonter

minal at the left of the sign® This label, followed by and

preceded by ; , takes the place of the vertical line for every al

ternative except the first. Thus the rule

<integer> :<un3igned integer> | •+• <unsigned
integer> | <unsigned integer>

might become

<integer> x <unsigned integer> ii; t +t <unsigned

integer> v; ^ <unsigned integer>

In words: Tjie integer x consists of the unsigned integer u;

the integer x consists of a plus sign (+) followed by the m-

signed integer y;;

the integer ^ consists of a minus sign (-) follov/ed by the un

signed integer w.

Semantic rules are now given which make reference to the labels

just giveno For the value of the decimal fraction f, we shall not

write v^, ^ before. but f^^o The purpose of this superscript con
vention is mainly to reduce the awlcwardness of more complex expres

sions. Thus if a be replaced by x?", and b by c^, then a^ , for

example, becomes (e^)^, which may as well be written Similarly

a, and vbc^ Xi-t-xp

become d®^ and (x^+x^)"^ respectively (assuming that x^ and x^ are
unaffected by the convention). In general, only one level of super

scription is necessary, thus reducing printing costs as well a
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The semantic rule v/hich we have given for decimal fractions

would now be written

<value> f"^ = i^/expdO, i^)

Notice that we use exp(x, y) instead of x^ in order to use super

scripts for one purpose only. The term <value> is included here for

explanatory purposes only. We shall write the semantic rule or rules

directly under the corresponding syntactic rule, thus:

<deciinal fraction> f <unsigned integer> i

<value> f*^ = i'^/expClO, i^)

Similarly, the rules for exponent parts now read

<e3jponent part> e : <integer> 1

<value> e"^ = exp(10, i^)

Where there is more than one alternative in a rule, we must have

separate semantic rules for eachj these are separated by semicolons .

As an example, we give the rules for unsigned integers:

<unsigned integer> x <digit> u; y : <unsigned

integer > 2 <digit> x

<value> = u^; ~ 10*z^ +

<length> x^ = I5 y^ = 2^ + 1

In words, unsigned integer is either:

(1) ^ single digit, in which case its value is the value of

Sbat digit and its length is i; ^

(2) ^ unsigned integer ^ followed ^ a digit y, in which case

Its length ig. one more than the length of 2, ar^ ii^ value is found
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by takin/T the value of multiplying by 10^ and adding the value

of

The interaction between a rule like this, which defines "un

signed integer," and a rule such as the one for decimal fractions,

in which unsigned integers are used, bears further study. The super

scripted letters i^ and i^ in the rule for the value of a decimal

fraction refer to the value and the length, respectively, of the

integer i. Although and i^ do not occur in the rules which define

unsigned integers, we note that 1, in the decimal fraction rule,

clearly denotes an unsigned integer; this then tells us to look for

the superscript v in the definition of unsigned integers if we want

the proper interpretation of i^, and similarly for i^. In fact, we

do find both V and n defined here as superscripts. Also note (com

pare, for example, tlie definitions of decL tnal fraction and e^qDonent

part) tliat there is nothing vn^ong with repeating labels (in this

case, the label i) from one syntax rule to another; each label has

validity only for the semantic rules associated with that particular

syntax rule.

The remaining syntactic and semantic rules for constants may

noi>r bo vrritten as follows *

<(1icit> a ::= 'O'; b ::= 'l'; c : := 'S'; d ; := 'S'; e "+•;

£ •5«; £ •6«; h ::= '7'; i :!= 'S'; 1 ::= '9»

<value> aV ^ 0; - 1? = 2; d"®' - 3; = ?5

gV ^ 6; = 7; = 8; f 9

<lnteger> x <unr.lened integer> ja; £ === <unslgned
integer> 2; ^ 5•= <unsigned integer> w

<,ralue> x^ =

-24-



<declinal ni;unber> S ••= <unsigned integer> u; x <dec±mal

fraction> f; z <unsigned integer> y. <decimal

fraction> ^

<\ralue> =• rt

<type> x^ = integer; = real; z^ real

<unsigned ni®iber> x ; := <deGimal nuinber> y <exponent

part> £5 s, ••= <deciinal nuinber> y <exponent part> ^

<Value> x^ ~ y^ = p^; z^ = v^-q^

<type> x"^ = u^; y^ == real: z^ = real
<number> x ::= <unsigned nnmber> y : := *+* <unsigned number> y;

S, •-* <unsigned number> j£

<Yalue> x"^ = y^ = v^; ^

<type> x^ = u^; y^ = v^; z^ = w"^
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lA Consecfuences of Deffnitions

What facts can we prove, having set up a syntactic and seman

tic definition such as the one above? We shall find that a number of

more or less arbitrary choices have effectively been made.

A numbey max M signed> This Innocent-looking statement Is the

cause of a great deal of trouble when we start analyzing expressions.

Suppose, for example, that v/e allow the sum of any two numbers to be

an expression. This means that expressloiis such as 5+7 and 18-32 are

allowed, which Is all right, but it also means that +5++7 and -18—32

are expressions, which we may not \mnt. It is (julte permissible, of

course, to allaw multiple minus signs In a language, and to Interpret,

for example, —3 as —(-(-3))o In ALGOL, however, this Is not allowed,

and thus the sum of two numbers cannot. In general, be regarded as an

expression. What ALGOL does Is to ignore completely the syntactic

definition of "number" which has just been made. Any two unsIgned

numbers may be added, subtracted, etc., to produce an expression,

while constriKJtIons like —7"^ (which Is allowed) are handled In other,

special ways.

An exponent part may stand alone^ In FORTRAN, we may write
X = l.CB§ to set Xequal to one hundred million; but X ss E8 would
set X equal to the value of the variable E8o In ALGOL, however, the

character cannot be used in a variable name, and so It Is perfectly

permissible to write X:=i^8 , for example.

A decimal point must be followed bv at least one digit in a

declmajl_ fraction. If the preceding fact seems too general, this one

may seem too restrictive. If .125 Is an acceptable substitute for

0.125 (which It Is), why Isn't 37# an acceptable substitute far 37.0?

In fact, In many other languages, It Is; but not in ALGOL. In order
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to include such constructions, we might add a fourth alternative de

finition of decimal numbers, so that the definition reads

<deciraal number> w <unsigned integer> a; x cts <unsigned

integer> b 2 2:= <deciTnal fraction> f; ^ =

<unsigned integer> c <decimal fraction> ^

<value> = f^; 2^ ^ c"^ +

<type> w''̂ = Integer; x''̂ = real; real; r:- real

Ifegatlve exponents are permitted. Compare carefully the defi-

nitions of decimal fractions and of exponent parts« In the first case,

the period must be followed by an unsigned integer5 we do not want

370-5? for example, to be a legal decimal numbero In the second case,
however, any integer may be used, and thus 6.023 +23 and 6.63 -3^+,

10 ID

for example, are allowable unsigned numbers©

Leading zeros aye permitted. If a progranmer wishes to v/rite

JAMUABY :=:01; FEBRiiARY:=025 and so on, this is permitted under the

above rules© To prohibit unsigned integers from having leading zeros

faob advocated by this author as good language design), we might
proceed as follows (syntactic definitions only):

<non-zero digit> 'l* | •a'f «3« j j j | 171 j igi j 191
<non-zero integer> <non-zero digit> ( <non-zero

integer> '0* | <non-zero integer> <non-zero digit>
<unsigned integer> <non-aero integer> | *0'

Logical constants have not been provided for© In some languages,

such as APL and PL/I, there is no difference between a logical con

stant and any other kind; "true" is represented by 1 and "false" by

0. In ALGOL, however, the keywords true and fa3.se are used, and we

employ here a definjtion which has no relation to that of an integer:
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<a.ogical valuo> i ::= £ ::= ^Igg
<TOlue> •b'̂ = 55ue; = ftjso

Into gers. follovfed ^ the letter B, are not allovred.

as they would be in many vorsi ons of PCRIRAN. In order to allow

these, we might introduce the following rules:

<octal digit> a »0«; b "l'; c •2«; d :;a "B*;

a f »5'; £ : •6»; li s := «7»

<value> a"^ =0; = 1; = 2; d"^ = 3; e"''' = If; f^ = 5.

gV = 6; = 7

<octal lnteger> s 22= <octal digit> d 'B"; jr ::= <octal

digit> e <octal integer> 2

<length> x'^sljy'^sz^+l

<value> = d^; + e^-exp(8, z")

Decimal digits may then be defined in terms of octal digits:

<digit> a 22= <octal dlgit> d- b «8*; c 'p*

<value> a'*'" = d^; b"^ = 8; = 9

This example illustrates several further facts. The rule for octal

integers is a recursive one; it defines the octal integer 257B, for

example, as the octal digit 2 followed by the octal integer 57B, The

value of 257B is found by adding the value of 57B to 2*6^ (that is,

2*exp(8, 2), since the length of ?7B is 2), which is, of course, the

value of 200B, 'Note that the letter B does not figure in the length

of such-an octal integer; also, of course, d^, in the rule for the

value of an octal integer, refers to any of the quantities a^ through

h7 in the definition of an octal digit, and not specifically to d"^
there•

No limits are placed on the sizes of numbers« In programming

terminology we might say, "arbitrary precision is permittedy" for
both integers and real niunbers. Of all the rules set forth above,

this is the only one that is methodically broken in AICOL implemen

tations, Nbt only is it broken (which is clearly necessary in a
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world containing only a finite total number of tape reels), but it

is broken in different ways for different implementations, correspon

ding normally (but not always) to the size of a computer vrord. It is

thus important to know how to specify, within the context of a lan

guage description, a particular \raiy in which to break the ruleso

Let us first consider integerso Suppose that 0( is the smallest

possible negative number that will fit into a word on some given com

puter, while ^ is the largest positive number. (B'or a one's complement

computer, normally o( = -p; for a two's complement computer, normally

oC= -(p+l)p) If the value of the integer 1 is denoted by i^, then we

must have

oC ^ ^ P

We shall take the simplest possible course and add this relationship

directly to the description of our language, enclosing it in parenthe

ses to indicate that it is a necessary condition. In the case of the

definition of unsigned integers given above, we would write

<unsigned integer> jc <digit> u; y ;<unsigned

integ€r> ^ <digit> y

<cvalue> ~ y"^ - 10*2^ + v^

(tt ^ y"^ < p)

<length> = 1; y^ ~ + 1

Note tliat only y^, and hot x^, needs to be restricted in this way,

because clearly -9 <^ ^ 9, while ^ and p will normally have abso
lute value greater than 9«

For floating point numbers, the corre^ending condition is

harder to express. Of course, t?iere is a largest possible floating

point number on any given computer, and likewise a smallest possible

positive floating point number (corresponding, on most computers, to
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the bit pattern which is the same as that representing the integer !)•

We could require that the absolute value of any floating point number

lie between these t\'/o limits ^ in much the same way as we have done

above o But this is not the only condition which a legal floating point^'

number must satisfy, because of the question of finite accuracy. A

legal floating point number must be representable as a positive or

negative power of 2 (or of l6, on the IBM 36O) times an integer be

tween certain upper and lower limits. Whenever a constant which would

otherwise be legal and of type real does not satisfy these require

ments (such as Ool, for example), its value must be defined in some

way as a legal floating point number. Often there is more than one

reasonable way of doing this; for example, a choice between trun

cating and rounding off always presents itself. It is these considera

tions which make the proof of assertions about prograns involving

floating point numbers much more difficult than corresponding asser

tions about integers; this subject will be taken up further in

Chapter 5©

At this point we may ask ourselves: Why make any such restric

tions at all? We are, after all, dealing with a mathenatical abstrac

tion, which may be carefully distinguished from the actual situation

on a given computer in a way somewhat analogous to that in which the

ALGOL reference language and the ALGOL hardware representations are

distinguished in the ALGOL report© Eventually, of course, it will be •

necessary for us to prove assertions about programs which run on real

computers, and for this we must have a way of describing the mathe- t

matical effects of floating-point operations and the actual corre

spondence between real constants and their floating-point equivalents.

For the moment, however, let us concentrate on the ideal case in

which real numbers and integers may be arbitrary.
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1-5 Alternative Definitions

The importance of as a way of rlescribing languayos arises

from its fTeneralitv; it is not restricted to languages v/ith ALOOIi-likc

rules. As an example of this, we give lules for the syntax of con

stants in a language resembling FOj-!TP.A]i. V/e emphasize that POr\TM;l

is not as strictly defined as ALGOL, and consequently not all FOI'TPAl

systems will handle constants in exactly this way.

<octal digit> a :'0'; b :*1*: c :*2*; d :'S';

e, ;:= : f *5'; £, '6*; Ji '7'

<value> a^ -- 0; b"^ 1; c^ - 2; - 3; f^ -- 5;

gV . 6; 7

<digit> X it- <octal digit> y : f8«; ^ »9t

<value> x^ - d*^; y^ - 8; - 9

<octal integor> x :<octal dicit> d y <octal

digit> e <octal integer> ^

<length> x^ ~ I5 y^ " z^ + 1

<value> x^ - d"^; y^ •- z^ h- e"^*exp(8, z^)

<docijtnal integor> x :<digit> d; y ::= <diglt> e <decimal

integer> ^

<length> x^ = I5 y^ • z^^ + 1

<value> x^ = d"^; y^ - z"^ + e'̂ oexpClO, z^)

<urisigned intGger> x :<octal integer> £5 y <aocimal

integer> d

<value> x"^ = o"^; y^ - d^

<intGger> x : ;= <un3igned intcger> y *+* <unsigned

intoger> y; z <unsigned iriteger>

<valuo> x"^ = u^5 y^ - v^; z"^ ~
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<real number without exponent> g J := <deciinal integer> a

X ::= <(iecimal integQ7> b <deciinal integer> cj

z : :=•• <deciraal integer> d

'̂ Value> xV = = b"^ + cVexpdO, c^); ^ =

d^/exp(10, d^)

<unsigned real number> gc <peal number without exponent> 2.5 r

y <peal number without exponent> ^ 'E* <integer> J,

<value> - r"^; ~ s'^»exp(10, i"^)

<real number> 2 :;= <unsigned real number> X •'=

<unsigned real number> y; ^ <unsigned real

number> j£

<value> x^ = u^; = v^; ~ -w^

<unsigned double precision nuraber> x ::= <real number without

exponent> 2 <integer> X

<7alue> x^ = r'^^expdO, i*^)

<double precision number> x ::= <unsigned double precision

number> y : := *+' <unsigned double precision number>

y; ^ 25= <unsigned double precision number> w

<value> x^ = u^; y^ = v^; z^ = -w^

<complex nuraber> c <i:'eal number> 2 <real numbGr> s. ')'

<value> c^ = r"^ + l*s^

<logical constant> t ; := 'oTRUBo'5 £ : := •®FAISEo*

<value> t"^ = true; = false
V»AA/^ WxA-v^

Note that this is still very much an ideal description of

FORTRAN. No limits are placed on the size of integers or the pre- r

cision of real numbers; even more obviously, there is no difference .

between the value of a real number and the value of the correspon

ding double precision number. In order to describe such a difference

on a particular computer, we might define two functions, fanprox and
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dapprox^ for that coniputer, such that fapprox(x) is tliat floating

point number and dapprox(x) is that double-precis:!on number which

is closest in value to the value of the real rpimter x® The semantic

rule for the value of a real number is then r0j)laced by

<value> fapprox(u^); = fapprox(v^); =

fapprox(-w^)

and t>ie rule for tlio value of a double precision number by

<value> x"^ - dapprox(u^); y^ = dapprox(v^); ~

dapproxC-vr^)

Note that by doing this we give actual values (floating point aM

double precision numbers) to strings of type <real number> and

<double precision number>, but ideal values (real numbers) to strings

of type <unsigned real numbor>^ <unsigned double precision number>9

and <real number without exponent>o If^ instead, vre gave all quanti

ties actual values, we would encounter the usual error propagation

problems associated with multiplication and division in these rules®

For the value of a string such as 3ol65, for example, we wxnt that

floating point number whose value is as close as ^jossible to 3ol68,

and this is not necessarily the floating point number obtained by

dividing l68 by 1000, using floating point division, and adding the

result to 3*0, using floating point addition.

The rules gilven ah -ve for octal integers are the same as those

of the preceding section^ the rule for deci.mal integers is given in

analogy to the rule for octal integers. As \re ronarkod at the end of

section 1.1, the syntactic rules

<alpha> ::= <beta>j <alpha> <beta>

and



<alpha> ::= <beta> | <beta> <alpha>

are equivalent; each defines an "alpha" as an arbitrary sequence of

"beta's," The decimal integer rule above is of the second kind, as

contrasted with the earlier rule, which was of the first kind. The

semantic rules are also equivalent, although they are quite dissimi

lar. Note also that the octal integer syntax rule is a special case

of the use of

<alpha> : := <beta> <gamma> | <beta> <alpha>

to define an "alpha" as an arbitrary sequence of "beta's," followed

by a single "gamma." Similarly, the rule

<alpha> : := <gamma> <beta> | <alpha> <beta>

defines an "alpha" as an arbitrary sequence of "beta's," preceded by

a single "gamma"; while either of the two equivalent rules

<alph?.> <beta> | <beta> <gamma> •^lpha>

or

<alpha> : := <beta> j <alpha> <ganima> <beta>

define an "alpha" as an arbitrary sequence of "beta's" separated by

"gamma's," that is, in the order

beta gamma beta gamma gamma beta

Several examples of these general rules are treated in the next

four chapters•

As an example of a derivation tree in FORTRAN, we give the

derivation of (3o75E8,-loO) as a complex number according to the

FORTRAN rules given above. To each nonterminal in this tree, we have

attached its semantic attributes:
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complex values
number 375000000-1

real
number '375000000

r unsigned ^».-value=
real nimiber 375000000

\ ,
value

integer -- -- =8

real number
vrithout

exponent /
i

decimal
integer ^

value'

length i

real
number

unsigned
real number

V
real number
without ex-

QOC lUIcll

integer ^

digit Value

value
=1
length

=1

value

=-l

value
si

VcllUlB

deoimal

integer .

value

length

digit value

octal value
digit ^--sO

/i octal
digit

value
-=1digit

decimal

values75
lengths2

digit

value

=7
decimal
integer

digit VAlue=5

i
octal value
digit— s?

values

length

7 5 E 8 , - 1
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ilOTEB

The notation which came, later, to be called was developed

by John Backus CBackus 593 for use in the various conferences which

were concerned with the dovolopment of ALGOL# is actually an al

ternate form of a notation first used by Chomsky in describing the

grammar of natural languages# The first version of ALGOL, later to

be called ALGOL 58, was described in CPerlis and Samelson 5935 the

version known as ALGOL 60 was published in three places in I96O

CWaur et al# 6o3 and in rev'sed form three years later CNaur et al#

631. It is the revised form to which reference will be made in this

book.

The study of v;hat we refer to as derivation trees is very old,

and antedates the computer by many years# At this time, of course,

derivation trees were studied only for natural languages. The prac

tice (discontinued some years ago in most elementary schools) of

toaching children how to "diagram" a sentence — so that "The quick

brown fox jumped over the lazy dog" is represented, for example, by

fox / irnnned

— corresponds, in natural languages, to derivation trees for pro

gramming languages#

Our treatment of attributes, and the terms "attribute" and

"synthesized," follow the treatment of HKnuth 683 and CKnuth 713#

(See also the treatment of inherited attributes in section 2-^.) VTith

respect to the subject of programming language semantics, there are
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currently many differing schools of thought^ which are excellently

summarized in Cde Bakker 693• Of special interest are the state vec

tor concept [McCarthy 633, which we will be using in the sequel; the

formal definitions of interpreters according to the so-called "Vienna

method" [Lucas and Walk 693; the formal definitions of compilers

using Floyd-Evans production language [Feldman and Cries 683; and

the EULSR language [Wirth and Weber 663 and the IBWIM meta-language

[Landin 663©

The notation which we use for attributes has been described

in [I'^aurer 723.
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EXERCILUCG

lo The following syntax rules are given in English, Express

them in BWo (These rules deal with statements, to be examined

further in Chapter 3. They do not correspond to the rules of ALGOL,)

a, An unlabelled statement is either an assignment statement,

a conditional stcstoment, or a transfer statement,

b, A statement is an unlabelled statement, optionally preceded

by a label,

c, A clecloration section is an arbitrary sequence of declara

tions O

d, An assignment statement consists of a variable followed

by := followed by an expression,

e, A conditional statement consists of the word IF followed by

a Boolean expression followed by THEN followed by a statement, op

tionally followed by EIBE and another statement,

2, A commonly encountered extension of BNF involves the use

of curly brackets \ } to denote optional quantities. Thus the rifles

<sign> : «I
<integer> ^<sign>^ <unsigned integer>

are equivalent to the rule for Integers given in section 1-1,

Rewrite the definitions of number, unsigned number, decimal number, :

and integer, from section 1-1, and the definitions of statement and

conditional statement in the problem above, using this notation. You C

should not need any alternative signs except in two of the above cases,

3, Construct derivation trees, as defined in section 1-2, for

, the following character strings:
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a* 736 (unsifjned integer)

b. -5o7 (number)

Co 2j^-.7 (unsigned number)

d• 1 (number)

hi, Which nodes are initial and v/hich are torniruxl in each of

the follov/ing graphs?

ao

1 2
/ /

^ yL \l/
1+

i 'i '
7 8

1' ^ '2 ^3 " 5 6
— / 4 <

Consider the syntactic rule

<unsigned integer> x ::= <digit> d; y :<iuisigned

integer> z <digit> e

Assume that digits have their usual values a.vi hiir.t t^^e superscript

V is used for the value of a digit# 'o/liat ?*. • the vnln^ of the unsigned

integer 5^8217 under each of the follov/ing soma'itic ru3.es for un

signed integers?
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ao <value> + e"^

b. <valu0> x"^ - d*^; y^ =

Co <value> x^ - d"^; y^ ~ e*^

do <value> x"^ d"^; y^ -- z^ -

6. Complex constanta in FORTRAN are denoted by pairs of real

constants separated by a comma and enclosed in parentheses; thus

(2o0, 3oO) is the constant normally denoted by 2+31 (or in electrldal

pnginoering, 2+33). Assume that a definition of <peal number> has

alreatly br^on given for FORTRAN real numbers, in which the super

script V deiotes the value of a real number© Write a syntax rule

for complex constants in this form, in terms of real numbers, and

tl'On give a semantic rule which gives the value, in the usual sense,

of such a comp'ex number, again using the superscript Vo

7o (a) How would we modify the syntactic rules presented in

section 1-1 in order to prohibit exponent parts from standing alone?

That is, vre wish 1,^ and Io0,p5 to be legal unsigned numbers, for
example, but not ^^5 by itself•

(b) Suppose that we wifhed to remove the restriction, in sec

tion 1-^-, that a decimal point must be followed by at least one

digit• Let us try to do this in a different way than is done in

t'le text, by defii^'ng

<decimal fraction> x «•»; y <unsigned integer> u

<value> x"^ = 0; y^ = uVexpClO, u^)

and leaving all other definitions unchanged© Show that this change

produces almost, but not (^uite exactly, the same effect as does the

one given in the text©

(c) Give semantic rules to go with the syntactic definitions

of non—^ero digit, non—zero integer, and unsigned integer given in
-40-
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section which express the clearly intended meaning of these

quantities in this context®

80 (a) Give a semantic rule, in terms of the others in this

chapter9 which defines the length of an integer to be the same as

length of the unsigned integer contained in it#

(b) Using this rule, express as a semantic condition (enclosed

in parentheses as in section 1-Jf) the statement that the length of

the integer in an exponent part must not exceed 2# (This is similar

to a condition found in some versions of FORTIIAIV#)

(c) Give semantic rules, in terms of the others in this chap

ter, which define the length of any quantity to be the number of

characters in it. (This rule conflicts with that of (a) above.)

(d) Using these rules, express as a senantic condition, as in

(b) above, the statement that no number (as <nuraber> is defined) can

be too large to fit on a single 80-column card.

9. Give syntactic and semantic definitions, according to the

style illustrated in the text, for:

(a) Binary Integers (containing l*s and 0*s, optionally preceded
oy J •

(b) Unsigned hexadecimal integers, using the hexadecimal digits

I9 2, 3, If, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

(c) Roman numerals (from 1 through 3,999).

lOo Give derivation trees with all attributes attached, as at

the end of section 1.5, for the following FOHTRAU constructions as

defined in that section:

(a) -377B (integer)

(b) -7ol2E-Jf (real number)

(c) ^loTDO (double precision number)

(d) l83otelOB (what is this?)
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CHAPTER TWO

!•: X r- H E s s I 0 m s

2-1 Precedence

Thr: c3ass of arithmotic expressions such as A+E, TAU/BKTA-GArW^X2.0,

and JiIXP(5»0-C0S((G-H)xDi;LTA), ?o?)/(^.0+LH(r;ia:iA)) is the prototype

for a rather loosely He f ined collection of classes of objects called

^ expression is made up of o^oj^gtors and ogerai^, which
!;avo various properties depending on the kind of expression being

stU' led. For aritlunetic expressions, the operators are + - * / in

iO^.Ti\AH, or + - x / in ALGOL (where real division / and integer di

vision-f are disti-guirhed from each other), or the like; parenthe

ses are sometimes viewed as a special kind of operator# The opera, if^s

are constants and variables; a function call (such as the use of i;XP

above) or an expression in parentheses (such as ('1-#0+LN(SIGMA))) may
also be viewed as an operand#

Most operators are either binary or A binary operator

hr s tv;o arguments; thus / (for division) is a binary operator, since

one quantity must be divided by another one# A binary operator Is

normally written beti-reon its two operands; thus we write A/B or

(W+X)/(Y-;i)#* [Mary Oj-er\tors have one argument; probably the most

common use of a unary operator is the use of the minus sign to de

note negatives# Thus -X ri s the negative of X# A unary operator is

normally written before its 'rgument# In theory, there is nothing

to prevent expressions from being conrtrncted with n-CTy operato->^s,

* Sometimes, in computing, this rule is not followed, and we write, for
ey^.mple, A B / instead of A/B# This is called Polish notation (see
also spr.t.i'nri — i.



for ^bitrary a? fact the name* of a function of n arguments

is very often regarded as an n-ary operator.

Let us now consider the problem of describing expressions in

BNF. For simplicity, w© use only the operators + and X, and we do

not allow the unary + (that is, the convention according to which

may be used instead of oC, for any operand o(). Ifiider these con

ditions, it is clear that an expression is an arbitrary sequence: pf

operands, separated ty operators. This may be expressed in BNP as

follows:

<expression> : := <operand> | <expression> <operator> <operand>

It might also be expressed as

<expression> <operand> j <operand> <operator> <expression>

Using the first rule, the derivation tree of 2x5+3)C^ would be

^^^^press
expressio!^" operator operand

opetand
i

expression

expression operator

operator operaind

operand

while using the second rule, it would be

expression

operand operator expression

ind .operator expression

operand operator expression

operand

5 + 3 X,
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The trouble with these BNF riOes may be seen when we start considering
the semantics® In the first case, the expression 2x5+3y^ is made up
of the expression 2x5+39 the operator X, and the operand h. The

expression 2x5+3 has value 13, and if this is multiplied by 4-, the
answer is 52. In the second case, 2x5+3%!+ is made up of the operand
2, the operator X, and the expression 5+3X^; this last expression

has value 17, and if this is multiplied by 2, the answer is 3^* This

is actually the way in which values are calculated in the language

APL, where this expression, in particular, would have the value 3!+;
in most languages, however, the value of 2x5+3X^ is 10+12, or 22.

Our oroblera is that we have not taken account, in our BNF rules, of

the conventions accordi/ig to which certain operations are performed

before others. In this case, the normal convention directs multipli-

cation to be performed before addition; so we would multiply 2 by 5,

obtaining 10, thon 3 by if, obtaining 12, and finaUy add the results

to get the value of 2X5+3)(^« We cannot express this method of cal

culating values as a semantic rule which synthesizes the value of

an expression from the values of the operand and subexpression which

it contains according to either of the above syntactic rules.

We say that the operator X jhas a greater gi^ggg^ence than the
operator +. Whenever there are precedence rules, one method of ex

pressing them in BNP involves a different nonterminal for each level

of precedence. Consider an expression as above, just after all multi

plications have taken place; we may then say that the expression is

made up of ^erms, each of which is the result of some midtiplication.:

In the example above, the terms are 2x5 and 3%!+. Each term, in turn,

is made up of factOTg. What we do is to construct separate syntactic

definitions of expression, term, and factor. An expression, in the

sense above (that is, where the only operators are + and X9 with the

usual precedence) is a sequence of terms, separated by plus signs.
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A term is a sequence of factors separated by multiplication signs#

In our example, the factor is the primary expression type from which

all expressions are built up| but if, for example, we add the expo

nentiation operator with the usual precedence rules — namely,

tliat all exponentiations are performed first, then all multiplica

tions, and finally all additions, so that, for example, 2+5x^3)^841

is interpreted as 2+(5x(lf^3)c8)+l or 2563, with Vf3 standing for

— then a factor would be considered as a sequence of primary ex

pressions separated by exponentiation signs©

All these rules may be expressed recursively© We may write

<expression> <term> [ <expression> '+• <term>

<term> <factor> | <term> •x* <factor>

for expressions involving only + and xj a factor is then the same

as an operand© For expressions involving +, x, and f, we add the rule

<factor> <primary> | <factor> 'f** <primary>

This last rule is taken directly from ALGOL; here a primary (short

for "primary expression") is a variable, an unsigned number (recall

the discussion of this in section 1-^), a function reference (that

is, the name of a function, followed optionally by a list of argu

ments in parentheses), or an arbitrary arithmetic expression enclosed

in parentheses©

Other binary operators are subject to similar rules© Subtrac

tion is said to have the same precedence as addition, according to

the normal rules of precedence. This means that as soon as all mul

tiplications, divisions, etc©, are performed, the additions and sub

tractions are performed in their natural order, from left to right©

In particular, 15-^-+3 is not 15-(^+3) or 8, but (15-^-)+3 or Ih. This

affects the structure of our syntax rules if we wish later to add
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SGmantic puIgs to thonij as bafor©® W© may \jTit©

<plus or inirms> ::= '+* j
<expression> js= <terin> j <expression> <plus or rriinus> <terni>

but not

<expresslon> <terin> ( <fcerm> <plus or rainus> <expression>

as may te seen by constructing the corresponding derivation tree

for 15-^+3; in the first case it is

expression

expression plus or minus
< V

expression plus or minus term

term

i
15

while in the second case it is

term

expression
Ssl

plus or minus expression
/

term plus or minus

vlr

If

term

expression
>ir

term

4

Thus in the second case l^-h+3 consists of the term 1?, the "plus

or minus" - , and the expression any semantic rule associated

with this syntactic rule would interpret 15-Ih-3 as IJ-CtrB), Notice

that this problem does not arise with addition; it would cause no

difficulty to replace our rule

<expression> j;= <term> | <expression> *+• <term>
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for expressions with + and X only by

<expression> <term> | <terin> *+* <expression>

(since addition is associative)•

In practice, ALGOL uses the slightly misleading term "adding

operator" instead of "plus or minus." Similarly, "multiplying opera

tor" covers multiplication and both kinds of division, and the ALGOL

syntactic rules for terms are

<multiplying operator> : 'x'| j
<terra> : := <factor> j <term> <multlplying operator> <factor>

The ALGOL rule for factors, involving exponentiation operators, namely

<factor> : :=: <primary> | <factor> •'t* <primary>

has one slightly unnatural consequence. To see it, note that the

derivation tree of ^t3T2 (for example), as a factor, is

factor

)/ \ \l
factor \ primary

factor

/
primary

LI.A \primary^ \^u^igned number
uns igned numbSf\

J/ \ ^ \decimal number
unsigned number

I
decimal number

V

decimal number \ ^
I \unsigned integer

unsigned integer \ V
unsigned integer \ ^ j digit

digit \ "f"
-V

t 3

In other words, >ft3t2 is the factor lfT3, followed by T, followed by
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the primary 2; it is interpreted as C4-t3)T2, and semantically its

value is thus or ^096© Writing in ordinary exponential no-

tat ion without parentheses, however, one obtains , which is nor

mally interpreted as 2621^+© To reflect this result in

a lan^^uage such as ALGOL, we might write

<factor> ::= <primary> | <primary> •'f® <factor>

Further considerations of expression syntax, such as the

handling of unary operators, conditional expressions, and logical

or Boolean expressions, is postponed to section 2-?© Let us now turn

to the calculation of values of expressions©
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2-2 State Vectors

The value of an expression which is the sura of two terms is

clearly, at least in simple cases, the sum of the values of the

terms© We might, therefore, write

<expression> e : <term> 2 • + • <term>

V V V
<vsiue> 0* = V + w

as long as we could ignore all other kinds of expressions© But this

semantic rule is lacking in one important sense: it does not express

the fact that the value of an expression (as contrasted with the

value of a number) is not a constant©

We can, of course, construct a class of expressions built up

from constants only© All we have to do is to restrict our notion of

primary expression in such a way that variables are not permitted©

This allows us to find the (constant) values of compressions such as

23+^5/(6+^-1)-8 by semantic rules resembling the one above© Even if

variables are allowed, there are some situations in which a variable

has one and only one value in a given program© For example, the lines

TABLE DA 20P

LTABLE EQU 80

in BAL (IBM 360 Basic Assembler Language) mean: Reserve 20 full words

(80 bytes) of memory to hold a table called TABLE, and set the value

of the constant LTABIE (presumably, the length of the table) equal to

80© TJider these conditions, the BAL assembler (and, ultimately, the

linkage editor as well) will determine some start location for TABLE©

If this location is 1000 (decimal), then the expression TABLE+LTABLE-ii-

in the line

P8 LA 7,TABLE+LrABLE-lf
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has constant value 1000+80-^ or 1076.

In most computing, however, the variables in an expression

change their values as the program proceeds. Every time an expres

sion is evaluated, the current value of each variable must be taken.

We may say that the value of an expression is a function of Wie cur-

rent state of the computation. If the current state of the compute- V

tlon is denoted by then we may write

<expression> e <tenn> 2 • +• <term> w

<value> eV(s) -r v'^(S) + w'̂ (S)

in place of the simplified rule above. That is: If S is the current

state, then the v : ue of the value-ftmctioh when, applied to vS,

is calculated by adding the values of the value-functions v^ and w^,

applied to that same S. This is true whatever S may be.

Let us, first of all, note that things are not always this

simple. Suppose, for example, that the terms 2 and have side effects.

^ will be defined, for the moment, as anything which causer,
one or more variables to change their values. In the process, the

current state of the computation is changed to a new state. Thus a

side effect may also regarded a^ a function of the current state

of the computation, but its value is another state, rather than an

integer, real number, etc. (Side effects may arise from references

to functions, discussed in Chapter hm) Suppose tliat the terms y and w,

in addition to values and w"^, have side effects v® and w^. That is,

if S is the current state, then v®(3) is the new state after the term. •

y is evaluated; in fact, if we first evaluate y and then w, our state

changes from 3 to v®(S) and then to w®(v®(S)). It is reasonable to

define this cliange as the side effect of the expression e. Thus we

may write
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<expression> e ; <terin> ^ <fcoriii> ])£

<slde effect> e®(S) = w^(v^(S))

<value> e'^(S) = v^(S) + w^(v®(S))

Note that the semantic rule for the value of an expression has also

been slightly altered# After 3r is evaluated, the current state is

not S but v^(S), and thus w^(v®(S)), not simply w^(S), is the proper

value of (if evaluation proceeds from left to right)#

N'ow we take up the question: What is the nature of S? What

kind of object is the current state of a computation? One way of

looking at S is as a function* If 2 is siny variable, then S(v) is

the current value of v» Such a function is sometimes called a con-

is the (current) gontent^ of v# Another way

of regarding S is as a vector * that is, mathematically, an ij-tuple

of the form

(k^, kjj)

Here there are presumed to be 11 variables manipulated by the program

— call them x^, ..o, Xj^ —• and the current value of x^ is k^,

i ^ (When n = 2 or 3, such an n-tuple resembles the co-ordinate

specification of an ordinary vector in the plane or in 3-space#) We

might also write

(Xi = k^, X2 = = k^)

as a representation for S# This representation has the advantage that

If the variables of the program are not called x^, .*0, x^, we can
include their actual names in the vector specification# Thus

(1= 12, J7 = 9r X = 3o8, Y = 0«0)

might specify the current state of a FORTRAN computation# Such a
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vector Is called a state vector. In the future, we shall refer to
\/W-vxA '

the current state of any computation as a state vector; in represen

ting it, we shall use the fimction form and the vector form inter

changeably, since they are clearly equivalent.

This is perhaps a good time to review some elementary facts

about sets and functions, since these will be needed in the precise

sj)ecifIcation of state vectors. A set^ is a collection of objects;

each of these is called a mem^r of the set, or an element of the set.

If X is a member 6f the set X, we say that x is X, and we write

X € X. A fmc^on from one set to another is a way of associating an

element of the second sot v/ith an element of the first. If A and B

are two sets and f is a function from A to B, then we write f: A-^B;

if a is an element of A, then f (a) is the element of B which f as

sociates v/ith a. For the functions of high-school algebra such as

f(x) : x^ + 5x - 2lf, we may write f: R-^R, where R is the set of all
real numbers. For the state vector

S = (I = 12, J7 = 9, X = 3.8, Y = 0.0)

given above, we may \>rrite S: A-^B (v^ere S now denotes the corre

sponding content function), where I, J7, X, and Y are members of A,

and 12, 9, 3.8, and 0.0 are members of B.

If the number of elements in a set is finite, the set may be

called a fini^ se^t. Any finite set may be specified by listing its

elements, separated by commas, and enclosed in curly brackets ^ ®

Thus v/e may \rT±te , .

A = J7, X, Y'r

if we wish to specify the set A in the previous example as being the

set of exactly four elements I, J7, X, and Y. The set of all elements

with which a function associates values is called the d^omain of the
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function; thus A is here the domain of S.

If P and Q are two setS) and every element of P is also an ele

ment of Q, then we write P C Q, or P is oogtaijtjg^ 35 Q* If Q» we
may also write Q 2 P» or Q' contains P, If both P c Q and P Q, then

P and Q are the same set, and we write P = The notation P C Q Is

also used to express the fact that P is contained in Q; however, we

shall use PC Q to exclude the case that P = Q, That is, if Pc Q,

then P S Q and P 9^ Qc If f is a function from X to P, then f can also

be regarded as a function fl»om X to Q, if P C Q. For example, P might

be the set

P ={12, 9, 3.8, 0,0^

and Q might be the set of all real numbers (including the integers)#

The state vector S cited above is a function from A to P, but we

normally regard it as a function from A to Q — that is, as a func

tion which assigns some integer or real number tO I, to J7, to X, and

to Yo The set of all values of a function is called the ^ange of the
function; in this case P is the range of S# For any function f: AB,

if the range of f is B, we say that f is ggjyj B; if the range of f is
merely contained in B, then f is into B« A set which is contained in

B is called a subset of B©
V/sA'v^A/Vv

^1? X > ©••, X are any n sets, their cartOsian prodhct

X K ••. A is the set of all ^^dered ^ti^l^ of the form
(x^, X2, x^), where BX, x^ £ X^, x^^ £ X^. If we write

^or the set of all legal values of the variable x, then the car-

; • tesian product of all the for all variables x that wa wish to

consider, is effectively the set of all legal state vectors involving

those variables#
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2-3 Type Conversion

Let us now consider how to modify semantic rules for expressions

in the presence of mixed-mode arithmetic. If A and B are real numbers,

I and J are integers, and S is the current state vector, then the

current value of the expression is not normally obtained

simply by adding the current value to A*B to the current value of I*J,

On most computers, we must perform tyjge oon^rersij^ on I*J first, con
verting it from integer form to real form before multiplying.

Types and type conversion are handled in fundamentally dif-

I'^orent ways in different programming languages. The method used by

ALGOL involves the introduction of a new technique of specifying se

mantic attributes, and it is therefore postponed until the next sec

tion, We shall now study several other ways of handling types.

Let us first consider FORTRAN II, A variable name in FORTRAN

II is of type integer if its starts with I, J, K, L, M, or N, and of

type real otherwise. We may represent this by

<integer letter> :;= | | «L» ( I «N»
<real letter> ;:= *A* | 'B" tC«[ «D" | j 'F» | {'H'j

\ 'Q* ) I I »T* 1 I j »W» j 'X' I I
<alphanumeric character> <real letter>j <integer letter> | <digit
<identifier> 2 ••= ^Cceal letter>5 y : := <integer letter>5

2. •*- <identifier> <alphanumeric character>

<bype> x^ -= real; = integer:

<length> x^=l5y^ = l5 z^ = w^ + l

Note that the last of these four syntax rules is the only one which .

has semantic rules attached, A syntax rule with no associated seman

tic rules will be written, as above, in BI^ without the modifications

involving labeling and replacing vertical lines by semicolons. Even
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if there are associated semantic rules, we use labeling only where

necessary; thus <real letter>, <integer letter>, and <alphanuineric

character> are unlabeled where they occur in the definition of

<identifier>« The rule for length is given in order that the length

of an identifier may be restricted by a semntic condition; thus

writing

(w^ < 6)

under the rule for <length> would force all identifiers to have

length less than or eqioal to 6»

By combining these rules with the FORTRAN rules of section 1-5,

we may introduce type as a semantic attribute of expressions, terms,

factors, and primary expressions® At one end, we have a rule such as

<primary> 2 ••= <unsigned integer> x <unslgned real

number> £5 z :;= <identifier> x

<type> x^ = integer; = real; z^ = v^

<value> ~ i^; y^ = r^; z^(S) = S(v)

(We might also include other kinds of primary expressions, such as

subscripted variables, function references, and general expressions

in parentheses; see also section 2-5») At the other end, our role

for expressions (for the moment without side effects, and composed

of two terms only, separated by a plus sign) might become

<expression> e <term> y <term>

<type> e"^ = v^

(v^ = w^)

<value> e^(S) = v^(S) + w^(S)

This rule forbids mixed mode arithmetic, as is done in FORTRAN II®

It is not quite as rigorous as it might be, because the plus sign is
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taken to stand for both real and integer addition^ Let radd and iadd

stand for real addition and integer addition, respectively, as func

tions; that is, radd(x^ y) is the sum, in the usual sense, of the

real numbers x and y, v:hile iadd(i, J) is the sum, in the usual sense,

of the integers i and j® (For an ideal language description, radd and

iadd would be operations on all real numbers and all integers re

spectively; for an actual language description, radd \JDuld be floating

point addition, with all of its attendant rounding, overflow, and

underflow characteristics, while iadd would be 6n6-word integer ad

dition.) If we know, in advance, that the type of a term must be

either real or intQger, we may rev/rite the above semantic rule for

the value of an expression as

<value> e'̂ CS) = f(v^(S), w^(S)), where f =

if v^(S) - real then radd else iadd

(This is our first use of a o^jjditimial ©Jl^^ssi^o Even to those

unfa'liar with AI/IOL, the meaning of f = if V^(S) - r^al th6n radd
else iadd should be obvious; it is the same as that of

radd if v^(S) - real

iadd otherwise

but a bit easier to analyze by computer in various ways.) If we v/ish

to permit mixed mode arithmetic between real and integer quantities,

with type conversion in the usual way, we may introduce the function ;

comb(a, t, b, u, f, g), which cnmbines the quantity a, of type t,
t '

with the quantity b, of type (where t and u must be either intep:er >

or real) according to the real operator f or the integer operator g, '

as the case raa.y be© The semantic rule above would then be replaced by

<value> e^(S) = comb(v^(S), v^, w^(S), w^, radd, iadd)
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whei'e the formal definition of the comb function is

corabCa, t^ b, u, f, g) = t = real then f(a^ ^ u = real then

b else float(b)) else i£, n = real then f(float(a), b; else g(a, b)

Here float (a) is the real number corresponding to the integer a.

Such rules for permitting or forbidding mixed mode arithmetic

may be further refined by specifying, in a precise manner, the domain

of the state vectors S upon which various quantities depend. The

simplest approach is to specify that only those variables whose

values might affect an expression %pear in the domain to be deter

mined. In fact, this domain may itself be made an attribute of an

expressions If A/B is a term, with associated domain fA, (that is,

the set consisting of the two elements A and B), and B/C is a term

with associated domain-fB, Cj, then the domain to be associated with

the sum of these two terms, A/B+B/C, is clearly^A, B, . that is,
the set of all elements which are in either (or both) of the above

sets, or the union of these sets. If B and Q are any two sets, the

union of P and Q is denoted by P u Q. Thus in this case

<cbmain> = v^ u w*^

is a reasonable semantic rule for domains, to be associated with the

syntactic rule for expressions above.

J^fow suppose S is a state vector whose domain is e^. We must be

able to "reduce" S to state vectors whose domains are v^ and w^ re

spectively. If the expression e is A/B+B/C, for example, then the

value-function e^ is applicable to state vectors with A-, B-, and C-
components, but the value-function v"^ associated with the term v =

(A/B) is applicable to state vectors having A- ana B-components only.

Therefore, the expressions e'̂ (r>) and v^(S) in the semantic rule for

values are incompatible with each other. If S is the state vector
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^A-a, B=b, C:-c^, and S is the argument of e"^, then the argument we

want for io clearly the state vector B=b'̂ o In general,

viewing S as a content function with domain I), vrc v/ant the function

S' with domain D', v/here D'^ D (in this case D' ~ Ja, and D =

^A, B, C?) which sat is fie vS B^(x) = S(x) for all x£ D'o This is Icnov/n

as tBo restriction of S to D', and witten sId'. Thus the semantic rui^

for vaiiios which forbids mixed, mode arithmetic might be revjritten as

<vali.ie> e^(S) - fCv'̂ CSlv^), w^CslW^)), where f =

i£. v^CS) ~ real then radd else iadd

whereas the one which permits mixed mode might be written as

<value> e^(S) - comb(v^(Slv^), w^(S|w^), w^, radd, iadd)

In either case, the type of an expression is also an attribute of it«

If we define the FOi'TRAJJ" co nverted-type function, ctype, as

ctype(t, u) - aX t ~ Integer and u - integer then integer else real

tiien

<type> e"^ = ctype (v^, w"'')

is the indicated se?nantic rule relating types of expressions and

types of terms, with superscript t in both caseso In general, ctype(t,

u) is the type resulting from conversion, where t and u are the types

being convertedo ^

Let us now pass fi'om POKTfAN to APL, in which a single variable
1 -

may have different types in the same job# Wo may, for example, have Z

an assignment which sets the value of tiie variable A to be an array •

of 5 numbers, and later in the same job another assignment which sets

A to be a ^-by-^i- double array, or a 3-by-?-by 2 triple array, or even

a cliaracter string* Under such conditions the type o£ ^ expressipn,
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^ well as its value, a function of the current state of t}te com--

nutationc The APL expression A+B is valid when A and B are both ar

rays (of the saiae dimensi ons), in which case A and B are added com

ponentwise; but it is also valid when A is an array (of any dimen

sions) and B is simply a number which is to be added to all components

of Ao Thus we may define a converted-tj'-pe function, ctype, for APL,

with the sample values

ctype(array(5,3), array(5,3)) array(?,3)

ctype (scalar, ar2-ay(5,3)) = array(5,3)

ctype(scalar, scalar) = scalar

Using this function, a syntactic rule for expressions and a semantic

rule for thc^ir types, modeled after the treatment of expressions in

APL, is

<expression> a <term> t; b : := <term> ja <operator> o

<expression> c

<type> a^(S) = t^(S); b^(S) = ctype(u'̂ (S), c^(S))

Here the syntactic rule has taken account of the right-to-left scan

in the APL language (thus AXB+C means AX(B+C), for example).

In APL, the Current type of any variable may be determined from

its current value. This need not always be the case; for example, a

variable may be taken, in some language, to have values which are

bit patterns in a computer word, and normally it is not possible to

tell whether such a bit pattern represents an integer or a floating

point number. In such a case, the model may be altered in either of

two ways. We may associate with each variable v, such that our state

vectors all have v-components, another variable t^, the type of v,
and give t^-components to all state vectors as well. This reflects

the fact that the type of a variable is in this case just as much a
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variable quantity as the variable itself. The other method is to re

gard the values of a variable as pairs of the form (type, value),

which are added, subtracted, etc., to form other such pairs; for

example, in ALGOL, (integer, 5) + (real, 7) (real, 12),

Finally, lot us consider type conversion in SliOBOL.* Here the

value of a variable is always a character string. If this string is

numeric — that is, if it consists solely of digits, possibly pre

ceded by a minus sign — then the arithmetic operations +, -, *, aiYi

/are applicable to it, and, in addition, it is automatically con

verted to one-word integer (rather than character string) form on

some computers, provided that it fits into a single word. This, how

ever, is an internal, implementation-dependent conversion, and has

nothing to do with the formal definition of SMOBOL, In fact, SMOBOL

may be formally defined without any type conversion at all, S-^JOBOL

has, however, another related characteristic which affects the for

mal definition: any variable name may at any time be constructed by

a S'JOBOL program and used; that is, the total collection of variable

names used by a given SNOBOL program cannot be determined 1:^ simply

inspecting the statements of the program. Each such variable is as

sumed to have the null string as its initial value, and thefe are

no restrictions on character strings which may be used as variable

names (although strings which do not satisfy the rules for identifiers

must be referenced indirectly). Consequently, a state vector in 3!\r0B0L

must have a component for every possible variable name. Most of these

components are null, of course; in fact, in any given state vector,

only a finite number of variables will have string values of non^zevo

length.

* The term "SHOBOL," throughout this book, will refer to SNOBOL
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2-^ Inherited Attri butes

The FOPTRAA'APL, and SNOBOL languages studied in the previous

section all have a conimon featiore: they lack tyje decimations such

as REAL I, J (FORTRAM IV) or real I, J (ALGOL) or DECLARE I, J FLOAT

DECIMIL (PL/I>« Such declarations require a fundamentally new method

of obtaining the values of semantic attributes#

The process of synthesizing attributes which we introduced in

section 1-3 has the property that, if it is used exclusively, the

attributes of any string must all be derivable from the attributes

of its substrings# Let us consider, for example, the string 12*3^+56#

This is an expression vrith two terms, 12*3^- und '^6. The attributes of

12*3^+56 which we have studied are synthesized from attributes of its

terms© The term 12*3^» in turn, has attributes synthesized from those

of its factors, in this case 12 and 3^* Going even one level further,

the length and value of 12, 3^i and 56 are derived from those of 1,

2, 3? ^9 5? and 6, all of which are substrings of 12*3^56. In most

languages, this causes no difficulty, because the value of 12*3^+56

is intrinsic — nothing in the given program other than this string

can alter its value© There are, however, a few exceptions© In the as

sembly language of the PDP-8 computer, for example, there is a

pseudo-operation which changes the normal number base from octal to

decimal. If the pseudo-operation does not appear in a program, then

12*3J++56, anywhere in that program, has the octal value 506, or the

decimal value 326; if the pseudo-operation does appear (once, at the

beginning of the program), then 12*3^+56 has the dechnal value ^-6^©

Thus the value of 12*3^1+56 cannot be determined from attributes of

its substrings alone; that is, it cannot be an attribute of 12*3i++56

under a system in which all attributes are synthesized©
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The above is, admittedly, an unusual example; synthesis of

attributes is usually enough, vfhere constants are concernedo But

the situation with respect to expressions containing declared vari

ables is quite similar to tliis, and the difficulty it causes is even

more fundamental: we cannot tell whether a string is a properly

formed expression by looking at its substrings alone. If the ex

pression

appears in a FORTRAN program containing the declaration

INT]":GLB a, B, C

then it is properly formed, whereas if the declaration were

LOGICAL A, B, C

then A*B-k:; would not be properly formed. If the declaration were

INTEGER A, C

and B were left as a real number, then A and C would both have to be

converted from ihteger to real form before being mu^.tiplied and added,

respectively0 Thus we must find some new method of working with at

tributes which allows declarations and other "remote" constructions

to affect them.

The simplest method, and the one which appears the most prac

tical, is the reverse of the synthesis operation. Let us consider a

typical syntax rule:

<ralpha> : := <beta> | <gamma> <delta>

A synthesized attribute of "alpha" would be calculated from attii butes

of "beta," "gamma," and "delta." Now suppose that we have an attri-
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bute of "beta," of "gamma," or of "delta" which is calculated from

one or more of the attributes of "alpha." Such an attribute is said

to be inherited. If "beta" is defined by a syntax rule such as

<beta> ::= <epsilon>j <zeta>

then such an attribute may be further inheritedj that iS, an attribute

of "epsilon" or of "zeta" may be determined from those of "beta."

Continuing the process in this way, it is clear that attrl butes of

any nonterminal occurring on a derivation tree may, in particular,

be inherited from the nonterminal at the of the tree. (The term

"inherited" arises from considering derivation trees as if they wore

family trees, with the toot of the tree as the father of the family

and the other nonterminals as the sons, grandsons, etc.). Or, to put

it another way, any substring of a string 2 ^ay inherit its attri

butes from those of it appears in the derivation tree of x.

Let us first indicate how the use of inherited attributes solves

the problem with declarations discussed above. All constants, ex

pressions, and statements of a program P are substrings of P, and

appear in the derivation tree of P. One of the attributes of P is nor

mally a tgge fung^y^, or some generalization thereof. If the variable;

of P are I, J, K, A, and B, for example, where I, J, and K are integer

variables and A and B are real variables, and t is the type function,

then

t(I) =5 integer t(K) = integer t(B) = real

t(J) = integer t(A) = real

The type function is a synthesized attribute of P5 it is determined

from all the type declarations that occur in P, and, in the case of

FORTRA.N or PL/I, also from the names of undeclared variables v/hich are

used in P and thereby receive default declarations — by the "I, J, K,
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L, M, or N rule", for example. (How this is done is studied in

f^reater detail in Chapter 5.) This type function is then inherited

by each variable in the program. Strictly speaking, a variable in

herits the typo function from the expression in which it is contained:

this expression in turn inherits the type function from the statement

in which it is contained, and so on up to the program level. In a "c

block structiore language, each block has its own type function; for

the mor-ient, we shall regard this as an irrelevant complication, and

regard the terms "pi'ogram" and "block" as synonymous.

The type of a variable is now determined from the type fimction

which is its inherited attribute. Let us modify the simplified de

finition of a primary from the preceding section:

<primary> £ :<unsigned integer> i; 2 : <unsigned real

number> ^ ::= <identifier> 2

<:type> x"^ = integer; = real; - z^(v)

<value> x^ - = r^; z^(S) =: S(v)

Tlie only change is in the definition of the type of an identifier

which is a primary. We have assumed that the type function associ

ated with the primary z is denoted by the value of this func

tion, when applied to the identifier y itself as argument, is the

type of that identifier.

We must now give semantic conventions for denoting Inherited

attributes such as z^ in the above rule. We shall denote inherited

attributes by superscripted letters, just as with synthesized at

tributes ^ and each inherited attribute of a nonterminal has a name
8

which is enclosed in angle brackets, folloiired by the corresponding

superscript. For the rule above, we would write
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<priinary> x : := <unsigned integer > £ : := <unsigned real

number> 2. ••= <ldentifier> 2

<type function>y

<type> x^ = integer; == real; 2^ = z^(v)

<value> x^ = i"^; y^ = r''̂ ; z^(S) = S(v)

The name Ctype function>, and the superscript y, constitute the only

information about type functions of primaries which is needed in the

definition of a primary. The calculation of this type function will

be carried out in a rule in which <priraary> is used. For example, we

might write

<factor> X : := <primary> £; 2 <factor> 2 'f <primary> 2

<type function>^

py = x?^5 = y^;

We have omitted all other semantic attributes of factors to concen

trate on what happens to type functions. A factor, as well as a pri

mary, has a type function, and the definition of this inherited at

tribute of factors is of the same form as the correg)ending definition

for primaries. The inherited attribute equation p^ - x^ defines the

type function of any primary which is a factor; the inherited at

tribute equation q^" - y^ defines the type function of any primary

which appears in a factor on the right side of the exponentiation

symbol. In each case, the type function is the same as the one as

sociated with the nonterminal next higher in the derivation troco

The same is true for the recursive equation z^" = y^, which defines

the type function of a factor contained in another factor.
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2-5 General Expressions

Let us now take up where we left off at the end of section 2-1,

The syntax ru3.e for a primary in ALGOL is

<priinary> :<unr,igned number> (<variable> \ <function
designator>| '(* <aritlimetie expression> •)*

We recall that unsi^ned numbers and variables are analogous, in that

each can be prefixf\l with a unary operator (-3 and -A, for exan]p3.e).

Function designators are what in FGHTF^AM would be called function

calls — a function name togetlier v/ith its argmnents, if any, en

closed in parentheses, such as sqrt(aVa+bXb). The most important

device in this rule, hovrever, is the treatment of any arithmetic

expression, enoJosed in parentheses, as a primaryo This riae alone

embodies all of the usual cliaracteristics of parentheses as used for

grouping. Consider, for example, the expression 3)((8-(2-1))+5. The

value of 8-(2-l) is 7, and this is calculated by first evaluating 2-1

and then treating 8-(2-l) as if the value of 2-1 were substituted for

it. Thus (2-1) is treated as a primary expression, just as if it were

the single character 1, Similarly, (8-(2-l)) is treated as if it were

the single character 7 in finding the value of 3X(8-(2-l))+5, that is,

3x7+5 or 260

vSyntax rules for the junary operators + and - normally resemble i

the rules for integers and numbers given in section 1-1, Only a

slight alteration in these rules is needed if we wish to allow unary -

operators to appear in sequence (such as ++5 or +-+I8). For integers ,=

for example, instead of vrriting
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<integer> ::= <unsigned integer> | •+» <unsigned
integer> I <ijnsigned integer>

we write

<integer> ;:= <unsigned integer> j <lnteger> | <integer>

What precedence should we give unary operators, when compared

to the precedence of binary operators? If the unary + and - are given

the highest precedence, so that they are performed "before all binary

arithmetic operators, then a unary operator may immediately follow

a binary operator, so that 5+-^- or 8-+7 are legal and have values

equal to 1 in each case© Neither this behavior nor the use of several

unary operators in succession, as above, is allowed in ALGOL. On the

other hand, if we wete to give the unary + and - the lowest prece

dence, then an expression like would mean -(5+^) — since the

+ would be done first —» rather than (-?)+^, which would be the nor

mal algebraic meaning. The solution adopted in ALGOL is to give these

two luiary operators the same precedence as normal addition and sub

traction, so that the ALGOL rule for simple arithmetic expressions

reads

<simple arithmetic expression> : <term> | <adding
operator> <terra> j <simple arithmetic
expression> <adding operator> <term>

siiice "both "adding operators," + and -, are both binary and unary.

Simple arithmetic expressions may then be combined, using if, then,

and else, to form (general) arithmetic expressions according to the
\AA-^

rule

<arithmetic expression> : := <simple arithmetic

expression> | <if clause> <simple arithmetic
expression> 'else' <aritlimetic expression>
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where an "If clause" is defined by

<jf clan.r,e> : 'if <Booloari expression:- 'then'
Vv

All of those -iiles may now be augmented by semantic attributeso V/e

shall for the niomerit, give all the semant ic ft tributes required

by ALGOL, but shall confine oiorselves to values and side effects of

the type studied above, ignoring type conversion problems. lAider those

conditions, primaries, factors, terms, and simple and general arith

metic expressions may be described syntactically an! sofriantlcally by

tlie follov/Ing siriplifiod rules:

<Ddding operator> £ : m : :=

<biuary furictlon> p^ = plus; m^ • difference

<una.ry function> p^ Ident; - neg

Cniiltiplying ni)erator> t ::= 'x'5 L i :

<binary function> t^ =; times; r'^ = rdiv; i^ - Idiv

<primary> w : <unsigned number> u; x <variablo; y;

y :<furiction designator:- f; ^ '(« -^arithmetic

expression> e •)'

<value> w^(S) = u^5 x^(S) --= 3(v); y^(G) ~ f^(S); z'̂ (.G)

- eV(s)

<side eff0ct> w®(r>) ~ S; x®(S) = S; y®(S) - f^(G)5

z^(S) e^(S)

<factor> X :;= <primary> £5 y : := -'factor^- ^ ''j"' <primary^ c[

<value> x"^(S) p'̂ Cg); y'^(S) = e^(z^(S), q^(z'^(r>))

<side efrect> x®(S) - p^(S); y^CS) = q^(z®(S))

<torm> X ::= <factor> f; y ; <term> ^ <raultiplying

oporator> o <factor> jg

<value> x^(S) = f^CS); y'̂ (S) = o^(z^(S), g^(z^(rO))
<side effect> x® (S) = f® (S ) 5 y® (S ) = (z® (S ))

-68-



<simple arithmetic expression> 2 : := <term> t; x '<addlrig

operator> a <term> li; 2 2:= <simple arithmetic

expression> s <adding operator> b <term> y

<value> x^(S) = t'̂ ^S); yV(s) = a^(u^(S)); z^(S) = .
b''(s"^(S), v^(s®(S)))

<side effect> r^(S) = t®(S); y® (S) = u®(S); 2®(S) =

V®(s^(S))

<if clause> X <Boolean expression> b *the;[j®

<value> i'^(S) = b^(3)

<side efrect> i®(S) = b®(S)

<arithmetic expressiDn> £ <simple arithmetic expressl6a>
t

X ! •= <if clause> X <simple arithmetic

expression> i <arithmetic expression> ^

<value> x'̂ (S) = s"'''(S)} y'iS) = If i'''(S) then t^(i®(S))

else z^(i®(S))

<side effect> x®(S) = s®(S); y®(S) = if l'^(S) then

t®(l®(S)) else z®a®(S))
KA/V»%r

It is assumed, in the above rules, that plus, difference, times,

3.diy, and expi are respectively the addition, subtraction,; mul

tiplication, real division (fractional result), integer division (in

teger result v/ith remainder), and exponentiation fmctions of two real

variables, and that ident and neg are respectively the identity and

negation functions of one real variable (recalling that type convor-

sion is here being ignored)• The symbol = denotes, as usual, that the

valu© of a function (in this case in the rule for the value of a

primary) does not depend on its argument. The value b^(S) of the Boolean

expression b is assumed to be either true or false, depending on S;
also, b is assumed to have a side effect b^(S).

The calculation of the values and side effects of Boolean ex

pressions in ALGOL is analogous to their calculation for arithmetic
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expressions^ as above. Each of the Boolean operators has a distinct

precodence; the unary operator not (-1) has the highest precedence,

followed In order by and (a), p£ (y), implies C^), and equivalence

(s). Kecalllng our discussion of the unary minus, we see that this

convention allows for expressions such as aA-ib and av^b, where a and

b are Boolean variables. This is in contrast to the situation with :

arithmetic expressions, where a*-b, for excimple, is not allowed. (If

ax-b means axC-b), it Is, of course, equivalent to -axb, which Is

legal, whereas aA-ib and -raAb are clearly not equivalent.) Boolean

expressions may be formed using if, then, and else, lust like arlth-

metlc expressions, and, In addition, two arithmetic expressions joinel

"by 2- relation (such as form a Boolean expression. We give the AUiOL

syntactic rules for Boolean expressions, together with simplified se

mantic rules resembling those above:

<relational operator> u *<•; v :

X "^*5 y : '>*5 ^

<blnary operator> = less; v^ = notfrreater: w^ = equal:

x^ = notloss: y^ - greater: noteaual

<crelation> y : <simple arithmetic expression> x <relatlonal

operator> o <simple arithmetic expression> y

<value> r^(S) - o^(x^(S), y^(x^(S)))

<side effect> r^(S) = y^(x^(S))

<Boolean priinary> i <logical value> u; w : := <variablo> y; ;

2 : := <functlon designator> £; y : <relatiQn> y;

2 :'(* <Boolean expression> b ')• T

<value> t^(S) z w^(S) = S(v)5 x'̂ (S) = f^(S); y^(S) =

r^(S); zV(S) = b*^(S)

<side effect> t®(S) - S; w^(S) =85 x^(S) ss f®(S)j y^(S)

= r®(S); 2^(3) ^ 1^3(5)
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<Boolean secondary> ^ <Boolean i)riniary> t :'-7V

<Boolean primary> £

<value> s^(S) = p^(S); t^(S) = not(a'^(S))

<side effect> s®(S) = p®(S); t®(S) = q®(S)

<Boolean factor> x <Boolean seGondary> £; ;:= <BoolGan

factor> £ 'a* <Boolean seoondary> t

<value> x^(S) = s'^CS); y^(S) = and(z^(S)« t'^(2®(S)))

<side effect>x^(S) = s^CS); y^(S) = t^(z®(S))

^Boolean terra> 2C ::= <Boolean factor> £; y SJ- <Boolean

terin> £ 'v* ^Boolean factor> £

<7alue> x'̂ (S) = f^(S)5 y^(S) = or(z^(S), g^Cz^CS)))

<side effect> x^(S) = f®(S); yS(S) = g®(zS(S))

<implication> x ; <Boolean term> ij 2 <implication> £

•a* Ooolean terin> £

<value> x^(S) = y^(S) = Implies(z^CS)t u^(z^{S)))

<side effect> x^CS) = t®(S)5 y®(S) = u®(z®(S))

<slmple Boolean> 2 : := <implication> y : := <sLmple

Boolean> £ •=' <implication> j,

<V'alue> x^(S ) = 1^(S) 5 y^(S ) equivalence (z"^ (S), (z^ (G)))

<side effect> x^ (S ) = 1® (S ); y® (S) = (2® (S))

<3oolean expression> x :;= <slmple Boolean> £5 y <lf

clause> i <simple Boolean> jb i<3oolean

expression> £

<value> x'̂ CS) = s'̂ (S); y^(S) = ^ i^(S) t^(i^(S))
elg§ z'^d^CS))

<side effect> x®(S) = s®(S); y^(S) = if i^(S) then
' " \fsA sAA^vr

t®(l®(S)) else z®(lS(S))
V/wa/'

In these rules, and, oy, impliese and equivalence are assumed

to be Boolean-valued functions of two Boolean values, defined in the
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usual way, while not(ti^) - ard notCfal^e) = trueo Also, the
functions equal and less are defined by equaKx, y) = x=y then

true else false and le$s(x, y) = if x<y then tr^ el^ while
v/v/^^ v/vvva v'vA'vAV ' ' \/V~V\ V<'S/N/^

greater (x^ y) = less(y^ x), notequaKx^ y) = not (equal (x^ y)),

notlessCx. y) = not(le5s(x, y)), and notgreater (x^ y) =-• not (greater(x^

y)), for any two real numbers x and y (recalling again that type con- '

vnrsion has been omitted). Where arithmetic expressions require the

definition of four nonterminals (primary, factor, term, simple arith

metic expression) because of the three precedence levels. Boolean

expressions require these four plus two more (secondary, implica

tion), because there are five precedence levels for Boolean operators.

A number of points about the combining of simple arithmetic and

Boolean expressions using tJ^, and e^ bear mention. The ex

pression following ejse, in each case, is a general expression, and,

in particular, may itself involve Thus

if a>b then c else if d=:e then f else g
\/V \/V^^ V/\A^ VA'

is legal, whether c, f, and g are all arithmetic or all Boolean vari

ables. The expression between then and else, however, is a simple

expression; thus

if a>b then if d=e then c else f e3^ g
•ylVA- v/V>AA. VN/wV

Is not legal, although wo may make It so by Introducing parentheses, thus:

This is legal because any expression in parentheses is a primary,

and thus a factor, term, etc., and ultimately a simple arithmetic or'

Boolean expression.

In the semantic rules involving and e3^, we note that

the side effect of the if clause (or, equivalently, of the Boolean
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expression it contains) is taken regardless of wlu^ther the value

of the if clause is true or false; however, only one of the other
"v'S/V^ W^^'vv^

side effects is taken in any case* This corresponds to evaluating

either "b or c in the expression ^ a then b c, but not both*

The value of such an expression is calculated after the side effect

of a, but not after the side effect of b, even if the value of a

is false*
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NOTES

Many of the syntax rules in this section are taken directly

from the ALGOL report [Naur et al, 633©

Much work has been done on the subject of precedence© If the

syntactic rules of a language satisfy certain restrictions [Floyd 63],V

the language is called an operator precedence language, and there is

a simple syntax-checking algorithm for ito Floyd's restrictions have

been relaxed, and the corresponding syntax-checking algorithms ex

tended, in [V/irth and Weber 663 and further in [McKeeman 663. An

excellent account of this work is given in CFeldman and Gries 683©

The state vector concept is fundamental to all work in pro

gramming science. It has been rediscovered at least eight times©

CPodlovchenko 623 contains the first general account of state vectors

as content functions (in Russian, sostovaniva pamvati or "memory

states"), although the specific abstract computer defined in [Kap-

hengst 593 has Haschinenstellungen. or "machine states©" The term

"state vector" is introduced in [McCarthy 633, and the term "content

function" in [Elgot and Robinson 6^-3© State vectors are called

"snapshots" in [Ifeur 663, "the content of the store" in [Strachey 66],

and simply "states" in [Maurer 663© Other writers use state vectors

vfithout giving them any special names; thus [Engeler 673 refers to

a sequence of elements of an "underlying set" (of values), each of
a

which is presumably the current value of a variable, while [Cooper 69J

denotes by the (current) set of values of the registers in a pro-. ;

gram scheme© The "composite objects" of the so-called Vienna Defini-
a

tion Language [Lucas and Walk 693 are generalizations of state vectors.

The idea that the value of an expression is a function of the

current state of the computation first appears in [McCarthy 633; here

the notation val(t, ^) is used, where t is a term and ^ is the current
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state vector. In CStrachey 663, if g is an expression and g- is the

content of the store (that is, the current state of the computation),

then R(g, ^r) is the current value of g, as it appears on the right

side of an assignment, while L(6, r) is its current address, If any,

which is its value when it appears on the left side. Some of our se

mantic rules for expressions appear in simi.)lified form in CBurstall

703; thus, if plusCe, e*) is the expression vrhich is the sum of the

expressions e and e», and val(e, s) is the value of e, given the cur

rent state s, then Burstall gives the equation val(plas(e, e'), s) =

valCe, s) + valCe*, s).

Inherited attributes are the principal contribution of Knuth*s

paper mentioned earlier CKhuth 683. The algorithm given in this paper

to test wliether a language definition involving synthesized and in

herited attributes is inherently "circular" — that is, whether the

process of calculating the attributes goes on indefinitely and does

not terminate — is incorrect and has been corrected in CKhuth 713.
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EXERCISES

!• Give the values of the expression 5*6-lf*3, subject to

the conditions that * denotes multiplication5 •• denotes subtraction^

and:

(a) * and. - have equal precedence.

(b) * has higher precedence than - •

(c) - has higher precedence than * •

2. Using the syntax rules

<expression> : <term> | <term> •+• <expression> | <term>
<expression>

<terra> <factor> | <term> «*• <factor> | <terin> »/• <factor>
<factor> 'A* j j 'D* ( 'E' |

give derivation trees for:

(a) A+B'^C-D

(b) A-B/C-D

(c) A*B*C/D*E''F

(d) A+B+C/D/E+F

Let v(S) be the value of the expression (in the

usual sense) when the current state vector is S. Find the value of

I'CS) when S is:

(a) = 12, 13 = 6, Sf = 7, J = 0}

(b) |l = 12, J = 6, K= 7, L= 0^ ' f
(o) fA = 2.5, AO = -2.?, 1 = 0, J = o|
(d) = 17, J = 18|

How many different state vectors are there with 2^ components,

each of which is capable of assuming 2^ distinct values? (Such state
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vectors might express the current state of the core memory of a

computer with an ij-bit address field and b bits per full word,)

5o (a) Give rules for function names in FORTRAN II, each of

which must start v/ith a letter, must consist of letters and digits

only, and must end with the letter Fo Any fimction name star

ting with the letter X is of type inte^; all other function names

are of type (These rules were actually used in a very old

version of FORTRAN II,) Give the type of each faction name as a

semantic attribute of ito

(b) Give rules for identifiers in an assembly language, such

that each identifier must start with a letter and contain only

letters, numbers, and dollar signs. Give the type of each such

identifier as a semantic attribute, having two values, and

tis^; every identifier containing at least one dollar sign has type

and all other identifiers have type

6m Consider the syntactic rule

<expression> a : <term> t; b : <term> ii; c : •-»

<:term> 2; d : := <expression> y ' +' <term> wj e =

<expression> ^ <term> x

Give semantic rules to be associated with this lule, for the seman

tic attributes <value> and <type>, which

(a) forbid mixed mode,

(b) permit mixed mode,

in analogy with the semantic rules for values and types given with

the syntactic rule

<expression> e : := <term> v •+' <term>

in section 2-3®
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7o Which of the foUovring situations require certain of the

semantic attributes to be inherited (not necessarily the ones listed)?

(a) The type of an identifier is to be an attribute of itj

assume that type declarations are not allowed, but that an identifier

is of type integer if and only if its starts with any one of a certain

set of letters specified in the first statement of the given program,

(b) Identifiers are as in FORTRAN II, and the type of an ex

pression of the form IP b THEN ^ ELSE ^ is to be an attribute of it,

where x and y are not required to be of the same type,

(c) The rank of an identifier is to he an attribute of it,

where by the rank we mean the number of subscripts (zero for a

non-subscripted variable), this rank to be determined by PGRTRAN-style

D IMT'l MS ION s tatemehts ,

(d) An octal integer is defined, syntactically, to be m un

signed integer (in the usual sense, as, for example, in section 1-1)

followed by the letter B© The value of an octal integer is to be an

attribute of it©

(NOTE: In his paper on semantic attributes, Knuth shows that

any syntactic and semantic definition involving both synthesized and

inherited attributes is equivalent to one involving synthesized at

tributes only© However, the new attributes are not necessarily all

the same as the old ones© In the above problems, certain attributes

have been specified, and in some eases these attributes cannot be

defined unless certain inherited attributes are used©)

8 -

8© Give semantic rules for type functions, according to the ^

semantic conventions given in section 2-^, for the arithmetic ex

pressions and associated non-terminals (not those associated with

Boolean expressions) given in section 2-?©

9« Give derivation trees (syntax only) for the following arith-
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metic expressions. Use the syntax rules of section 2-5^, except that

the rule

<vari;ible> »A« 1'B* | 'C« ^'D'

is to ]jG used ia.stead of the rule for variables given in that section.

(a) AXBKC (term)

(b) A/BtCXD (terra)

(c) AXB+C-D (simple aritlirnetic expression)

(d) A-BXC*D (arithmetic expression)

10. Give derivation trees for the following Boolean expressions^

as in problem 9 above:

(a) AABvCaD (Boolean term)

(b) AvBaCvD (implication)

(c) -iAa-iB (simple Boolean)

(d) if AvB then-tC else DoE (Boolean expression)

-79-



CHAPTER THREE

STATEMENTS

3-1 Syntax of Statements

Syntactic rules for statements, in general, are much simpler

than syntactic rules for expressions. As an example, vre give a gene

ral syntactic rule for a^^i^nme^ stat^i^ej^:

<assignment> <variable> <expression>

There is not much more to assignment statements, syntactically, than

this. The symbol := may be replaced by «, as in FORTRAN or PL/I;

the variable may be allowed to be subscripted; and we may want to

distinguish two kinds of expressions, such as arithmetic expressions

and Boolean expressions in ALGOL. Also, experimental languages have

been constructed in which the assignment operator is treated much

like the other operators in an expression, and expressions take the

place of assignments. But in most practical cases, syntax rules for

assignments are simple, and, in particular, non-recursive.

a^^ignmen^, in which more than one assignment symbol

(normally := or =) is present, involve what are called left part

lists in ALGOL. The ALGOL assignment . ;

A:=B:=C:=OoO

has Aj=Bt?sCl= as its left part list; this is a sequence of left parts,

in this case tliree of them, As= , B:= , and C:= • In extended versions

of FORTRAN, this would be written A=B=:C=0.0, while in PL/I it wou3d be
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AjB^CsOoO • (The statement A=B=C in PL/I sets A equal to (B=C), that

is, to 1 if B=C and to 0 otherwise.) The ALGOL rule for left part

lists is

<left part list> ::= <left part> | <left part list> <left part>

where a left part is either a variable identifier or a procedure iden

tifier followed by := , that is,

<left part> ;<variable identifier> ':=• | <procodure
identifier> •:='

(Here the procedure identifier is assumed to be the name of a pro

cedure which contains the given assignment statement, and refers to

the quantity which will be treated as the value of the procedure when

6xit is made©) An ALGOL assignment is now a left part list followed

by an expression, that is,

<assignraent statement> : <left part list> Caritlimetie

expression> | <left part list> <Boolean expression>

since two kinds of expression must be distinguished in ALGOL©

Transfer stajbemer)^ are of various kinds. Most languages have

a simple GO TO statement of the form

<G0 TO statement> ::= 'GO TO ' <label>

or something similar; in FORTRA.N, <label> is replaced by <statement

number>o More complex GO TO statements involve the use of lists of

labels separated by commas, defined by

<label list> <label> | <label list> <label>

In ALGOL, instead of labels, we have here general designational ex

pressions. which may, for example, be constructed using then, and
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lal^el list is here called a switch list, and is used in

defining switch declarations such as s := a, b, c where a,

b, and c are labelsj thus sCi3 would transfer control to c,

for example, if ^ were equal to 3> or g, if were equal to !• The

ALGOL definition of a switch declaration is thus

<Switch declaration> : := 'sjjit^* <switch

identifier> <switch list>

where switch lists are defined by

<switch list> : := <designational expression> | <switch

list> *,* <designational expression>

and the general GO TO statement is simply

<go-to statement> <deslgnational expression>

In FORTEl/VN, however, the label list is part of the GO TO statement

itself. Here there are three kinds of GO TO statement — the simple

form discussed above and the assigned and computed GO TO statenents,

definable syntactically by

<assigned GO TO statement> ;:= 'GO TO ' <variable> ',('

<label list> *)'

<computed GO TO stateiiBnt> 'GO TO {' <label list> '),'

<variable>

(The comma is sometimes omitted from the computed GO TO statement.)

Conditional statements are also of various kinds. In FORTRAN,

there is an arithmetic IF statenant defined by

<arithmetic IF statement> *IP(' <arithraetic expression>

')* <stateraent number> •,• <statement

number> <staternent number>
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and a logical IF statement defined 1:^

<logical IF statement> ii~ 'IF(' <Boolean expression>

<statement>

Strictly speaking^ Boolean expressions are called logical expressions

in FORTRAN; also, the statement which appears as part of a logical

IF statement is somewhat restricted, and, in particular, cannot be

a DO statement or another IF statement© Analogous, although somewhat

weaker, restrictions exist in ALGOL. After the if clause (which, v/e

recall from section 2-?, consists of the word if, follov/od by a Boo-
VNA. ^

lean expression, followed by thj^) there may come any statement, ex
cept that if it is another if statement it must be enclosed between

the v;ords and end (thus making It a compound statement of a

rather degenerate kind), while if it is a for statement it cannot be

followed by else unless it is so enclosed. After the word else, if it

appears, may come any statement, including, of course, a com])ound

statement or block enclosed between the v/ords be^^ and end. The
ALGOL rule for if statements is simply

<if statement> : <if clause> <unconditionaL ^atement>

where an unconditional st.-.tement may be a compound statement or block,

enclosed in beg^ and end, or a "basic- statement" which may be an

assignment, go-to, or procedure statement — in other words, just

about anj'^thing except another if statement or a for statement. A
•«Aa iNyvA^

conditional statement may then be either an ^ statement, an ^
stateiaent followed by e2^ and an arbitrary statement, or an if

clause followed by a ^ statement. (All of the above discussion

omits the treatment of labels, which is taken up in section ^+-1.)

^^t^^at^on statements differ depending on whether the iteration
is restricted to a regularly increasing sequence of values, or whether
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It Is aUowed to be more general. In FQRTRAW, we may define DO
statements by the syntactic rule

<!D0 statement> : *D0' <statement number> <variable>

<two or three expressions>

where "two or three expressions" is defined by

Ctwo or three expressions> : <expression> «,» <expression> |
<expression> 'j' <expression> <expression>

In ALGOL, a ^ statement Is a fOT clause followed by an arbitrary
statement, where for clauses are defined by

Cfor clause> : 'for' <variable> •:=st <for list> 'do*

To restrict ALGOL iterations to approximately the scope of PGRTRAW

iterations, one would define for lists by the rule

cfor list> carithmetic expression> Carithmetic

expression> Carithmetic expression>

thus making them correspond roughly to the "two or three expressions"
of FORTRATI, as defined above• Actually, however, ^ lists are se
quences of ^ list elements, each of which may be of the above form,
of the while* form (that is, An arithmetic expression, followed by

Igh^, followed by a Boolean expression), or simply an expression.
(For special reasons, the semantics of iteration is postponed^ until
the chapter loniprograms and their effects.)

define syntac

tically. In FCRTRAN, a subroutine is called by using the word CALL

followed by a subroutine referencej in ALGOL, even the word CALL is

omitted. The structure of subroutine references themselves will be

taken up at the end of section 5-^.
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3-2 Semantics of Assignment

The effect of an assignment statement is to change the current

state of the computation to a new state# In the case of a simple

assignment without side effects, the new state is the same as the

old, except for the value of one variable. In general, however, this

need not be the case©

We will treat the word effect, as it is used above, as a tech-

nical term meaning a function of the current state of some computa

tion whose value is the next state# Thus if i is the set of all
possible states of a computation, then an effect e is a function

from i to i; if S is the current state, then we write e(S) = S®,
where S® is the next state# (Side effects are effects in this sense#)

How can we define an effect in a precise way? If is an ef

fect and e(S) = S®, then we must describe how S® is obtained from S#

RegardiAg S ®as a vector • we must be able to determine every compo

nent of that vector in terms of the components of the vector S. Or,

to put it another way, regarding S® as a (content) function, we must

be able to determine S®(x), for every x in the domain of S®, in terms

of the various values of S(x)#

In the simplest case, where the assignment a assigns the cur

rent value of the expression g. to the variable y, we may write

<assignment> a : <variable> y ®:=® <expression> g

<effect> a®(S) = S®, where S®(v) = e'̂ 'CS), S®(2) =

S (z) for z ^ V

assuming that the assignment symbol := is used# The semantic rule

here defines S®(v) first, and then S®(z) for all z vj thus it

gives a complete description of the new state S ® in terms of the old

-85-



state S. It is assumed that the expression e has a value e^, which

is a function of S5 this value becomes the new value of the variable

V, while every other variable has the same value as it did before.

Lot us nov7 assume that the expression e has a side effect e®

in addition to its value. In this case the new state vector a®(S)

will be the same as the new state vector e®(S) produced by the side

effect, except that the new value of v will be e'^(S), just as it

was beforo. Thus in this case we may write

<assignraent> a <variable> 2. '2=* <expression> e

<effect> a®(S) = S', where S'(v) = 0^(8)5 S*(z) =

S"(z) for z V, where S" = e®(S)

Another level of complication in assignments arises when the

variable y; may be subscripted. In this case the new state vector

will havo one of its variables set to the cuirent value of the given

expression, as before; but which variable is set to this value de

pends on the old state vector. Consider, for example, the assignment

A(I-7) = A(I-6), where A is given in FORTRAIT by DBffirBION A(3)o If

g. is the effect of this assignment, and

S = = 9, A(l) = 2,5, A(2) = ?.0, A(3) = -I2.5I

then g,(S) = S', where

S» = = 9, A(l) = 2.5, A(2) = -12.5, A(3) = -12.5|

whereas if

U=fl = 8, A(l) = 2.5, A(2) = 5.0, A(3) - -12.5|

then e (U) = U*, where

0' = = 8, Ad) = 5.0, A(2) = 5.0, A(3) = -12.5|
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Thus a variable occurring on the left side of an assignment will

have a new attribute giving the variable (that is, an element of

the domain of the state vectors under consideration) as a function

of the current state vector# This is called the ^va^ue (L for left

side) of the variable. In the above example, if v^ is the L-value

of the variable v, then v^(S) is the variable A(2), while v^(U) is
the variable A(l). The relation between the L-value of a variable

and its ordinary value (sometimes called its R-value) is

v'̂ (S) = S(v^(S))

where v^ is the value, and v^ the L-value, of the variable v® Un-

subscripted variables, of course, have constant L-values; that is,

their L-values do not depr.nd on the current state vector®

If the variable v has an L-valu« v^, the assignment rule above

may be rewritten

<assignment> a <variable> 2 <expression> gi

<effect> a®(S) = S®, where SHvks)) = e^(S), S«(z)
= S"(z) for z ji v^(S), where S" = e®(S)

Further complications ensue if the left side may have a side effect.

In FORTRAN, as it was originally defined, this cannot occur, because

subscripts are restricted to certain very simple forms. However, in

most languages allowing subscripted variables, including ALGOL, these

may include function references as part of a subscript, and such

function references may have side effects® At this point there are

two plausible interpretations, each of which leads to its own semantic

rule® For example, consider the assignment

ACF(3)] := F(8)

where F(I) = K + I, for a constant K which is incremented by one each
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time F Is calledo If K is Initially set to 1^ niay interpret this

in either of the following ways:

(a) Calculate FCP)? which is 9? then set A(5) = 9 (since K

has been incremented by 1 in calculating F(8), and therefore F(3)

is now 5); or

(b) Calculate F(3), which is then set A(^) = 10 (since K

has been incremented by 1 in calculating F(3)9 and therefore F(8)

is now 10)o

The first of these methods corresponds to our intuitive ideas

of calculating the value of the right side first, and then worrying

about the left side® It corresponds, in our terminology, to the

assignment rule

<assignment> ^ <variable> 2 <expression> e

<effect> a®(S) = S«, where S«(v^(e®(S))) = e'̂ CS), S«(z)
= S"(z) for z 4 T^Ce^CS)), where S" = v®(e®(S))

assuming that v® is the side effect of v. The second method corre

sponds to our intuitive ideas, at a lower level, that "vhen in doubt,

always do things from left to right"; it corresponds to the rifLe

<assignment> a <variable> 2 <expression> e

<effect> a®(S) = S», v/here S*(v'(S)) = s^(v^(S)), S*(z)
= S"(z) for z 4 v-^(S), where S" = e®(v^(S))

In fact, the informal semantic description of assignments given in

the ALGOL report specifies that the left side is to be evaluated

first, as we have done here®

Assignments, like expressions, are affected by type conversion®

Even in languages (such as FORTRAN II) in which mixed mode in ex

pressions is not permitted, it is almost always allowed to set the
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value of a variable of one type to the value of an expression of a

different type, after suitable conversion* The conversion function

to be used, of course, depends on the two types involved; in FQRTRA.N,

for example, we may define

ntcf(^e^, rea2) = ident ~

ntcf(real, toteger) = float ~ ident

where ntcf(vt, et) is the name of the type conversion function needed

to convert an expression-value of type ejt to the type 3^ of the vari

able on the left* (The fix function normally truncates its argimiont;

thus, for example, fix(3*99) is 3, not In order to use such

functions with arguments, we shall use the convention, suggested by

the language LIJ^P, according to which

app3y(f, x^, *0., x^) = ^^^1' •••'

Here f, of course, may itself be calculated by the use of another

function, such as ntcf above* Using this convention, we may modify

the last rule above for assignment statements as follows, assuming

that v^ and give the type of v and the type of e respectively:

<assignment> a <variable> y ':=* <expression> §,

<effect> a®(vS) = S', where S'(v®(S)) = apply(ntcf (v^,

e^), e^(v^(S))), S'(z) - S"(z) for z ^ v^(S), w?iere
S" - e^(v®(S))

We may also wish to replace by e (S) in the above equation when

the type of an expression is in fact a function of the current state

vector* ALGOL, for example, does not outlaw expressions of the form

if b then a else i where a is real and i is integer; the type of
VSA. — — t> 7 «/ f

such an expression obviously depends on the current value of b.

Let us now consider how to give semantic rules for multiple
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assignments# As before^ we shall assume that all processing is car

ried out from left to right# This statement must be made in the case

of multiple assignments even without side effects, as may be seen by

considering
I -

ACiD := i := 1+1

in ALGOL# If the initial value of i is then either ACJl or AC6I1

is set to 6, depending upon whether processing proceeds from left

to right or right to left# (The same thing happens in PI/I with

A(I),1=1+1 •) Nor is it enough to say that the assignments are made

from left to right, because this would seem to imply, for example,

that both AC?! and AC63 would be set to 6 in the assignment

ACi! := i := ACi! := i+1

hnd this is clearly not the case# What happens is that the subscripts

are evaluated from left to right, to enable us to decide what cells

have their values changed5 then the expression on the right is evalu

ated, and its value placed in each of these cells# It follows that a

left part list, in the ALGOL sense, has associated with it a set of

L-values, rather than a single L^^lue# If this set is called p^,

for the left part list p, while p® is the side effect of p and p^ the

type of p, oh6 may give a semantic rule to go with the ALGOL syntactic

rul6 for assignment statements:

<assignment stateraent> 2 : := <left part list> £ <arithmetic

expression> a; y ::= <ltf t part list> £ <Boolean

expression> b

<effect> x®(S) = S', where S®(z) = applyCntcf (p^, a^),
a"^(p®(S))) for 2 6 P^(S), S*(2) =S"(z) for 2 ^p^(S),
where S" = a^Cp^CS)); y®(S) = S*, where S«(z) =

applyCntcf(q^, b^), b^(q^(S))) for z 6 q^(S), S'(z)
= S"(z) for z $ q^(S)j where S" = b®(q®(S))

• on



We note that in ALGOL a left part list must have a single type;

that is, multiple assignments such as

a := i := 3

where a is real and ^ is an integer, are not permittedo Let us de

rive the attributes of left part lists from the corresponding attri

butes for left parts. Remembering that processing takes place from

left to right, the rules may be v/ritten as follows:

<left part list> gc <left part> £5 3!:::= <left part

list> £ <left part> £

<bype> = p^; = 2^

(2^ q^)
<set of L-values> x^(S) =: p^CS); y^(S) =2^(S) U^q'̂ (2^(S))|
<side effect> x®(S) - p®(S); yS(S) = q^(z^(S))

Here it is assumed that left, parts have L-values, with superscript ^2,

and side effects, with superscript Se

Our definition of ALGOL assignments is still not complete, be

cause it fails to take into account the case in which the evaluation

of the expression on the right is never completed. This case will be

taken up in section ^3©
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3-3 Transfer Statements

We now pass to other kinds of statements besides assignments

The logical IP statement vdiose syntax was given in section

3-1 has an effect, much like the effect of an assignment statement,

which may be specified semantically as follows:

<logical IF statement> ^ : ;= *IP(* <3oolean

expression> £ ')* <statement> i

<effect> s®(S) = 1£ b'(S) Jteg t®(ti®(S)) b®(S)

Here it is assumed that the Boolean expression b has a value b^ and

a side effecj; b®; we may replace b^(S) by S if no side effect is

present© If the statement t is an assignment statement, then t® is

its effect, as specified in the preceding section© Siren if t is mt

an assignment statement, however, it must, clearly, have an effect

in this sense©

The arithmetic IP statement given in section 3-1 does not

change tl^ values of any of the program variables© We may say that

it "does not have an effect"; but what we mean is that its effect

is the identity function — that is, if ^ is such a statement and

S® is its effect, then s®(S) = S© The arithmetic IP statement, how

ever, also determines the statement number of the next statement as

a function of the current state vector© We could, if we wanted to,

make this into a semantic attribute as follows:

<IP statement> ^ 'IP(* carithmetic expression> e

<stat^ent number> a <statement

number> b <statement number> c,

<next statement number> i^(S) = ^ e^(S) <0 then a

else if e^(S) = 0 then b else c
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Unfortunately, this type of rule does not extend to the logical IF

statement. Consider, for example, the statement IF (K=0) GO TO 25".

If the current state vector S specifies K •: 0 (that is, if S(K) ~ 0),

and if 2, is the attribute giving the next statement number, we may

write z(S) = 2^. But what is zCS) if S(K) 4 0? If statement number

23, for example, immediately follows this IP statement, then we might

write z(S) = 23. But it is not necessary, of course, for an arbitrary

statement in FOKTPjXN to have a statement number at all.

Let the statements in a program be numbered in sequence from

1 through n. If a stat onent is numbered k in this way — that is, if

it is the Irth statement in its program — then v/e say that its state-

ment index is k. What we would like to associate with an IP statement
VA/v^nA

is an attribute giving the statement index of the next statement, as

a function of the current state of the computation. It should be clear

from the discussion of the preceding chapter that this cannot be done

without introducing inherited attributes. A statement, by itself,

contains no statement index information; this can only be inherited

from the program of which that statement is a part©

There are two inherited attributes which we need. First, given

a statement, we want to know its own statement index. Second, v:e

need a function which gives, for each statement number in the pro

gram (or, in other languages, for each label), the corresponding

statement index. Using these, we may give syntactic and senantic rules

for a general FOKTRAN iCP statement as follows:

<IP statement> £ ;:= ^IP(* <arithmetic expression> ^ •)'

<st.:t orient number> S S' <statement number> 2

statement number> 2,5 E. 'IF(' <Boolean

expression> b <statement> t

<statement indGX>^

<label function>^ .93^



tl = gi

<effeot> fe(S) = e®(3); g®(S) = if b^(S.) ^§2 t®(b®(3))
else b®(S)

<exit index> f^(S) = e'^(S) < 0 then f^(x) else if

e'̂ (S) = 0 then f^(y) else £^(2)5 g*(S) = XL h^(S)
then t*(b®(S)) else + 1

The new attribute, "exit index," gives the statement index of the

next statement to be executed; we have assumed that the (more or

loss arbitrary) statement t has an exit index t* As well as an ef-

feet t o We have also assumed, as before, that the arithmetic ex

pression e and the Boolean expression b lifive values e^ and b^

respectively and side effects e® and b® re

spectively. The inherited attribute equation t^ = g^ sets the state

ment index of t to be the same as that of g; it reflects the fact

that if a logidal IF Statement is the 3^h statement of its program,

then the statement which it dbntains, being part of this Irth state

ment, can also be said to have statement index k.

We must now give rules for the effect and the exit index of

a more general statement. For simplicity, let us assume that there

are only three kinds of statements: assignments, IP statements, and

GO TO statonents. Then the general rule for statements may be dravm

up as folloi^rs:

<statement> 2 : <assignraent statement> a; y s := <G0 TO

statement> statement> X

<statement index>^

a^ = x^; g^ = y^, ~ 2^
<label function>^

a^ = X?; g^ = y^5 i^ =
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<effect> x^(S) == a®(S); ye(S) - g®(B); z®(S) i®(S)

<exit .index> x^(S) = a^CS); y^(S) =3 g^CS); z*(S) = 1^(S)

This rule is typical of those in v/hich one nonterminal is defined

syntactically as one of several other nonterminals, with no string

concatenation and no terminals in the syntactic rule. The synthesized

attributes are often simply "passed up the tree" and the inherited

attributes "passed down the tree," as here. That is, the value of

each synthesized attribute of the nonterminal on the left is given

as the corresponding value of the sara6 attribute of each nonterminal

on the right5 and the reverse is true for the inherited attributes.

(The statement index and the label fionction of s statement, of course,

must be further inherited from the program containing that statement.

Rules for doing this are given in the following chapter.)

It remains to specify the effect 6f a GO TO statement and the

exit index of an assignment or GO TO statement. Iformally, an assign

ment statement exits to the following statement, that is, to the

statement whose index is one greater than its own. Thus by adding the

semantic rules

<statement index>^

<exit indeso a^(S) = a^ + 1

to any definition of an assignment statement a, we may supply the

definition of exit index needed in this case. (Again, this is in the

absence of the special type of side effect to be discussed in section

^-3«) A simple GO TO statement may be defined very easily as

<G0 TO statement> £ 'GO TO ' <statement numl5er> n

<statement index>^

<label function>^

<effect> g®(S) = S

<exit index> g^(S) 5 g^(n)



In fact, if GO TO statements are restricted to this simple form,

we could eliminate the mention of their statement index and the

equation in the inherited attribute equation list for

statement indices of a statement; also, we could eliminate the

effect of a GO TO statement and replace g®'(S) by S in the rule

for the effect of a statement# Many languages, however, have more

complex forms of GO TO statements# For the assigned GO TO statement

whose syntax was given in section 3-1, the label list gives a range

of values for the given variable • This is now a label-valued vari

able: its set of values (see the end of section 2-2) is a set of

labels# Such variables are set by ASSIGN statements, whose syntax

and semantics is

<ASSIGN statement> s : := •ASSIGN* <statement

number> n 'TO* <identifier> i

<effect> s®(S) = S*, where S*(i) = n, 3*(z) ~ S(z) for

z i

The syntax and semantics of assigned GO TO statf^ ionts is then

<assigned GO TO statement> g, ; *G0 TO* <variable> y ',('

<label list> *)*

<effect> s®(S) = S

<label function>^

<exit index> s^CS) = s^(S(v))

with the label function inherited as before#

For the computed GO TO statement of section 3-1, let us as

sume that the label list has as its attribute a label-valued fiuic-

tion of integers# Thus the label list

23, 2^, 25, 99
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is associated with a function f such th?:it f(l) - 23 ^ f(2) ™ f(3)

= 25", and f(^) = 99o The label list also has a lengthy which is in

this case If we denote the length of the label list a by and

the associated function as above by a^, inoy formulate the syntax

and semantics of computed GO TO statements as

<computed GO TO statement> g. : := 'GO T0(' <label

list> a <variable> y

<effect> s®(S) = S

<label function>^

<exit index> s^(S) ~ 1 < S(v) ^ a^ then a^(S(v))
else error

VAaAtk,

It is assumed here tliat if we attempt to execute such a statement

at a time when its variable is not in bounds — that is, between 1

and the length of the label list, inclusive — a run-time error

should result. Some FORTRAN systems, on the other hand, allow the

program to proceed normally (without transferring) in tliis case, and

if we wanted our semantics to reflect this fact we would introduce

the statement index as an inherited attribute and proceed as v;e did

with the exit index of an assignment statement.

A statement in ALGOL involves a desif^national expression,

whose value is a function of the current state vector. A designa-

tional expression may also have a side effect5 it is permitted, for

example, to go to ACf(i)] where A is a switch and f is an integer-

valued procedure which changes the value of some variable. Ignoring

side effects for the moment, we may give the syntax and semantics of

designational expressions as follows:
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<simple designational 0xpresslon> 3C : := <label> a^; £ : :=

<switch designator> d; 2. •*= <designational

express ion> e

<label function>^

= y»; 9® = /

<exit index> x*(S) r x^(a); y^(S) = d^(S); z*(S) = e^(S) ;

<designational expression> x : :=s <simple designational

expression> d; x • •= clause> ^ <siinple

designational expression> e 'else* <designational

expression> 2

Clabel function>^

da _ ^a _ y.a. ^a _ y.a. _ yA

<exit index> x^(S) = d^CS); y^(S) = i£ i^{S) then

e*(S) else W^(S)

gg statements may then be given simply by

<go-to stateraent> £ ::= 'go <designational expression> e

<label function>^

<effect> g®(S) = S

<exit inde30 g^(S) = e^(S)

Note how the label function must be inherited through these defini

tions in order to be applied at the point where a designational ex- ;

pression is identified as a particular label®
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3-^ Iripuc-Qutput Statornents

A siriiple input statement vrfiich reads a new value for the

variable f. has an effect, in the sense defined above, since after

it is Gxecutod the now state vector Is different from the old one;

the v?ilue of X has changedo This effect, hov/evor, is not a function

of the values of the internal variables of the program, but rather

of the current state of the input tape, the input dock, or the

ini'iit medium in generalo A simple output statement vdiich prints

out the value of the varj- ble X has no effect on the internal vtiri-

ables of the program; the hew state of these vrrriables is the same

as t}ie old one. Hov/ever, such a statement clianges the CLu*rent state

of the output medium©

If we are to include ini)ut-output statements in the analysis

of the preceding section, we must give to each such statement an

effect and and exit index, as functions of the current state vector.

The exit index is obvious; such statements do not tro '.sfer, /uid wo

may therefore do the same thing v/e did for as'; •r ime-it rtatemeuts.

To define an effect, however, \ro shall have to make wliat may scorn a

radical assumption: matJiomaticallv. we shall make no distinction

between external and internal variables. Because of this, v/liou v/e

speak of tJie "current state of ti»G compi.ttation," or the "current

state vnctor," as a content fimction, v/e sliall mean a function of

all variable quantities involved in the computation — iruuit and

output media ajid tlieir positioning, as well as v/hat rtre ord " larily

called variables. The ciu?rent state of the internal variables, the

current state of the input media, and tlie cujTent state of the output

media are therefore merely ro.s trictions of the total current state

of the co!'iputation to a particiiTar subset of its domain as a con

tent function.
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The simplest input/output media are one-vjay> A one-way input

medium, such as a deck of cards or a paper tape to he read, may be

thought of as a variable whose values are sequences of data to be

reade If t is such a variable, and x^, •••, x^) is its current
value, then, after a read opei^ation, its current value will be (x^,
oe«, piece of data denoted by x^, having been read, is no
longer part of the value of t; or, to put it another way, the se

quence which is the current value of t consists of those items which

are still to ^ read, starting with the item which v/ill be read next.

A one-way output medium, such as an output sheet or a paper tape be

ing punched, may be considered as a variable whose values are se

quences of data which have thus far been output® If ib is such a va

riable, and the item currently being output is 2, then the current

value of t is changed from (x^, o®®, x^) to (x, x^, o®®, Xj-^®
A sequential, tvro-wav input-output medium, such as a tape used

to stpre intermediate results of a computation, cannot be represented

simply as a variable whose values are the sequences of information

which it currently contains® It is necessary also to know the posi

tion of the reading and writing heads with respect to the tape; this

position varies, of course, as the tape moves back and forth® Perhaps

the best way to model this situation is to consider the tape as an

array of records, each of which is treated as a variable® If there

are n records on the tape t, then tCl], ®.«, tCn] are n. separate

variables, whose values are the possible contents of a given record;

there is then also another variable hj., representing the tape head

for this particular tape, and its values are the variables tC13, .o®,

tCn] themselves (or, alternatively, the integers from 1 through n)®

If tlie value of hj. is tCk3, then tCk3 is being read or written next®

We may obtain an alternate model of a one-way input medium by consi

dering it as a special case of a two-way medium modeled in this way®
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As n.n example of input-output on one-way media, lot us postu

late tv70 variables, reader and such that S(rgg,d;gr) and
state vector S, are respectively the current

sequence of records waiting to be read and the current sequence of

records which have thus fixr beeii printedo For the moment, vre shall

also assume tliat each record consists of tlio value of a single vari*

able» Simple READ and Pl\IT\jT statements such as

HEAD X, Y, Q1

PHII® II, 12, C, I^, 15

(taken from the language BAGIC) may now be described as follo*./s:

<RiiAD stateinGnt> x *READ' <variable> X <READ

statement> z <Variable> yi

<offGct> x®(S) - S', vdiere if S(i;gadg^) = (x^^, x^, •••,
x^) then S'C^ga^) - (x^, X^), G«(v) - rind
SKz) ~ S(z) for z 5«^ V, reader; y®(S) ~ S«, where if

z®(G) S" and S"(5gg^) = (x^, x^) then
and S'(z)

G"(z) for z 5^ w, reader

<Pr.IMT statGment> X <variable> v; y ; <P] i:a'

statement> ^ ' <variable> w

<effect> x®(S) - St, where if S(grirr^ ~ (x^, •••, x^)
then - (3(v), x^, x^), S«(z) - G(z)

^ ^ y®(S) S*, where if z®(S) S" and

(^1' "M x^) then S' . (S(w),
.,,, Xj,^), S'(z) -• S"(z) for z

In practice, of coiarse, records do not correspond to values of in

teger aiid real vo-riablesj an input record, for example, ma '̂* Ije con

sidered as an input card, or a character on such a card« If we take
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the individual characters as records, and set aside (say) fifteen

characters for each integer or real variable, then we may replace
the start of the semantic rule for the effect of a READ statonent by

<effect> x®(S) =S*, where if S(rea^) = (x^, x^, •«.,

^15' ^16' thenS*(5ga^) = (x^^^, ..., x^),
S«(v) = cconvCat^^, x^, ooo, x^^), ani SKz) =S(z) for
z v;

and follow this by similar changes in the equation for y®(S), Here

cconv.Cxj^, •••, is the integer, real number, etc«, resulting
from character-code conversion, where the values of the fifteen

characters in the string representing that number are x-,
•L a.y

respectively; thus, for example, in FORTRAN, cconv(»3», '0',

»E', tot, 131, ' t t, f I, . ^

Further complications may ensue if the number of cinracters which

represents a number is allowed to be variable, or if formatting is

allowed> these subjects are taken up in section - •

The definition of the READ statement" given above is deficient

in one other important respect: it does not indicate the effect when

there are no more cards to be read. If SC^je^ggj*) = (x^) and is
the new state vector after reading, then S*(reader) is presumably

the null sequence of values; but nothing is said about what happens

when S (reader) is itself the null sequence® Diffo? ent READ statoiaents

handle this case in different ways. Some set an end-of-file flag,

which is itself a variable. This variable can then be tested by an

"if end of file" staten^nt. Some simply do nothing; thus if S(re^^)
were the null sequence, we would have S* = S. Finally, some are

equipped with a point to which to transfer on end of file. In this

case, of course, the exit inderit of the READ statement will depend

upon whether S(read^) is the null sequence, for the current state

vector S© -102-



Let us now consider some statements which act upon a socpiontial

file called ALPIIfV, which may bo implemented as a tape, drum, or disk

file, or tlie like, let the current length of the file ALPII/V be n; vrc

therefore postulate n variables ALPHACIH, ALrHA.C2], ALPHACn],

each of which holds a record of the file® As before, we assume that

the records correspond to values of variables© There is also a vari

able pos .ALPHA., the position variable or zhe file ALPHA., v/hose values

are 0 through n. For brevity, v/e shall now specify correspondences

between typical input-output .otatenents on such a file and asfjiciuaent

and conditional statements which explicitly involve tte variable.s

ALPHACi], 1 < i < n, and pos©AJjPIiA:

OPHN FILE ALPHA poSoJVLPHA 0

READ ALPHA, X pos ©ALPIIA = pos ©ALPHA + 1, X

ALPimCpos oALPilA:

IF (.EOF, ALPHA) THL!lN ,,© IF pos ©ALPHA > n THCH ©©©

V/IUTE ALPHA, X pos©ALPPIA pos ©ALPHA + 1,

ALPHACpos ©ALPHA] - X

REWIND ALPHA pos ©ALPPIA - 0

BACKSPACE ALPHA pos.ALPHA po.s ©jALPHA - 1

PQSrriON ALPHA, N pos ©ALPHA -- N

POSITION FORWARD ADHIA, N pos©ALPim = pos ©ALPHA + N

POSITION BACKV/ARD ALPHA, N pos ©ALPHA pos ©ALPHA - N

It should be easy to see from these correspondences how sjmtactic

and semantic definitions of input-output sta.tements could be con

structed, since v/e already know how to make such def i.n.itions of as

signment and conditional statements© We shall give two such con

struct ions as examples:
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<READ statement> x ;'READ* <file name> n <variable> x

<effect> x®(S) = S*, where S*(n^) = S(n^) + 1, S*(x) =

SCn^CSCnP) + 1)), S«(z) = s(z) for z n^, x

<WRITE stateinent> x : *WRITE' <file name> n S' <variable> x

<effect> x®(S) = SS where SKn^) = SirP) + 1,

S*(n®(S(nP) + D) = S(x), S»(z) = S(z) for z 9^

n^(S(n^) + 1), X

Here, if ^ is ALPHA, then rP is pos.ALPHA and rP(k) ALPmCk], for

each k > 0. Note that we must vn?lte n^(S(n^) +1) (or n"^(S*(n^))),

rather than n®^(S(n^)), in each of the above rules, to express the

fact that poSoALPHA is considered as being incremented before it is

used©
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3-5 Macli ine Inst-i-uctioniq

A.11 of the analysis whic}i we have carried out for comnands in

algebraic languages has its analogue for instructions on di^:ital
computers ©

The componeiits of a state vector for a computer are the regi
sters, the memory cells, and the input-output anits as suggested in
the previous sectiouo The memory cells, of course, includo both .r o-

gram and data words. If, for a given program, there exists a con

stant association betv/eon variable names and addresses, them is m
difficulty in viev/ing the of-component of a state vector, for example,
where is an address, as its v-component v/here v is a variable v/hoso
address is Program words or instruction words are also state vec
tor cojfiponents; if their values change dur ing the execution of a pro
gram, we refer to that program as self-modifying.

An instruction word in a computer normallLy has a.n offeet, much
like t.]ie eflect of a statement in an algebraic language. This effect
specifies tlie^ nev; state S' of all variables in the computer except
for the program counter, given the old state S. It is usuallr/ inde
pendent of where the instruction wcrd is stored in memory, although
there are exceptions, as, for example, in the case of a subruutiae-

calling Instruction (since the return address depends on tlio instruc
tion location). An instruction word also has an wliich
is the analogue of the exit index of an algebraic language statemGnt,
This gives the value of the program counter after the instnaction is
executed, as a function of the current state vector, and, except in
the case of an unconditional transfer, is dependent also on the ad
dress of the instruction v/ord.

Simple instructions on computers often have algebraic equiva
lents, just as do simple input-output commands. As an example, let us
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consider a highly simplified computer with a l6-bit word, and one

instruction per word. The right-hand 12 bits in a word are the ad<

dress field, and the left-hand h bits give the operation code, as

follows:

Operation
code (octal)

Operation Mnemonic Algebraic
equivalent

00 Halt H none

01 Load Y ID Y ac = Y

02 Load N LDI N

II

03 Add Y AD Y ac = ac + Y

oi+ Add N ADI H ac = ac + N

0? Subtract Y SU Y ac = ac - Y

06 Subtract H SUI N ac = ac - N

07 Store Y ST Y Y = ac

10 Left shift by N ID N ac = ac*2^

11 Right shift by N RS N ac = ac/2^

12 Transfer TR L GO TO L

13 Transfer on + TP L IP ac ^ 0 GO

1^ Transfer on - TM L IP ac < 0 GO

1? Increment IN Y Y = Y + 1

16 Decrement DE Y Y = Y - 1

17 Subroutine call CA % none

where is the l6-bit accumulator, Nf is the signed integer in the

address field, the letter I in the mnemonics specifies immediate ad- ,

dressing, Y is the contents of the cell whose address is contained

in the address field, all shifts are arithmetic (that is, carry out

the indicated arithmetic operations properly in all cases), and L is

the contents of the address field, taken as representing the address
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of t-he instruction word to which transfer is made. Let us first give

an analosue of the syntactic and seiiantic rules for statements of

section 3-3s

<instruction> w :!- <asslcnment instruction> a; x ::= <transfcr

instruction> t; 2 <subroutine call instfuction> cj

^ <halt ;Lnstruction> h

<statericnt address>

= w^5 t^ = x^; = y^; h^ =
<label function>^

--t w®-; == X®; c® y^;

<effect> w®(S) = a®(tJ)! x®(S) = t®(S)5 ye(S) == c®(3);

z®(S) ^ h®(S)

<exit address> •(/•(S) = a^(S); x*(S) = y*(f3) = o '̂(S);

= h*(S)

The statement address and the exit address are ana.logous here to the

statement index and the exit index, respectively, in an algebraic

language description. This rule may be used regardless of whether

assembly language Onnemonics) or machine 3.anguage (operation codes

in octal, binary, etc.) is being described. In assembly language,

we might describe the syntax of transfer instructions as

<transfer instruction> <blariks> 'TR' <blanks> <labol> j
<blanks> 'TP' <blanks> <label> | <blanks> 'TM'
<blanks> <label>

<blanks> ::= ' ' | <blahks> ' '
<label> ;:= <letter> | <label> <letter> | <label> <digit>

whereas the syntax of transfer instructions in machine language

might be given as
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<transfer instruction> : '1010* <address> { '1011'
<address> | '1100' <address>

<address> ::= <bit> <bit> <bit> <bit> <bit> <bit> <bit>

<bit> <bit> <bit> <blt> <bit>

<bit> '0'( «1»

A syntactic and semantic rule for transfer instructions in assembly

language might be given as

<bransfer instruction> 2 '<blanks> 'TR' <blanks> <label> a;

2 2:= <blanks> 'TP' <blanks> <label>

2 <blanks> 'TN' <blanks> <label> c

<staternent address>^

<label function>^

<effect> x®(S) = Sj y®(S) = Sj z®(S) = S

<exit address> x^(S) = x^Ca); y^(S) = 1£ S (a^) > 0 then

y^(b) else +1; z^(S) = if S(^) < 0 then z^(c)
d

else z +1

Similar rules may be given for machine language, except that here

there would be no label function, and we would write simply a, b,

and c instead of x^(a), y^(b), and z^(c)o The values of the label

function, in either case, are addresses here, of course, rather tl-ian

statement indices. The constant 1 appearing; in the semantic rule for

the exit address will be replaced, in a more general case, by the

number of words per instruction, which may be fractional; thus, if

there are two instructions per word, one of these (presumably the

one on the left) has some integer address 0(, while the other has ad- *

dress +

It is easy to see the we could save space in our semantic de-

scription by changing 3t^(S) = t®(S), in the rule for the effect of
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an instruction, by x®(S) -- S in this caso, and olii'tinatinr: entirely

the rule for tjie effect of a transfer instruction® The possibility

of this sort of abbreviation is one reason why we have divided up

the sixteen instruction types here into four classes, rather than

giving sixteen alternatives in the syntactic rule for an instruction®

Assignment instructions may profitably be further classified; we de

fine them as follows:

<assignment instruction> x :<direct addressing ins truet:! 0ii> d;

y : := <iminodiate addressing instruction> i

<s tatome nt addre s s>^

<label function>^

d^ = x^5 i^ -

<effect> x®(S) = d®(S); y®(S) = 1®(S)

<exlt address> x?(S) = + 1; y^(S) 5 + 1

Just as we cbtild eliminate the effect in the previous rule, here vre

could eliminate the exit address (and the statement address) by re-

placing a (S) by a + 1 In the rule for the exit address of an in

struction© Whether we do this or not, however, there is no need for

the statement address to be inherited further than this, nor for the

exit address to be synthesized at any lower level® Thus the direct

and t-ie ir.imediate addressing instructions have only effects and label

functions® For the imiiediate addressing instructions, for examole,

we might write

<immediate addressing operation code> v : 'LIJl'; w : :=

'ADI'; X s := 'BUI'5 y S. '

<operation> v^(S, n) = n; w'̂ CS, n) - S (ac) + n;

x^(S, n) ~ S(ac) - n; y°(S, n) - S(ac)*2^:

z®(vB, n) - S (ac)/2^
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<imiTiediate addressing lnstruction> 1, ::= <blanks> <iiTimediate

addressing operation code> c <blanks> <address> a

<label function>^

<effect> i®(S) =: S*, where S»(^) = c®(S, a"^), S'(z) =
S(z) for z ^ ac

v/here the address a is assigned to liave the value a^^o For the direct

addressing instructions, assuming that each state vector S has a

component SCa"^) for each value of each address a, we then \^^rite

<direct addressing operation code> xj : 'ID*; 2 • •= 'AD';

}£ «SU'5 x ; 'ST'; £ 'INT'; ^ 'IE'

<operation> u°(S, v) = S(v); v°(S, v) = SCac) + S(v);

w®(S, v) = S(^) - S(v); x^(S, v) = S(^); y^(S, v)

= S(v) + 1; z°(S, v) = S(v) - 1

<register flag> vf = true; = true; w^ = true; x?* -
V^/N/v ' \/\/V\a. ' V/VVW '

false; - false; z^ = false
\AA/~W 'VV\aV*«

<direct addressing instruction> d :;= <blahks> <direct

addressing operation code> c <blanks> <addfess> a

<label function>^

<destination> d^ = if c^ then ac else

<effect> d®(S) = S», where S«(d^) = o°(S, a^), S«(z) =
3(2) for z / d^

The instruction words of most computers, of course, involve

more than two fields# instead of a simple address, as above, we have

an address which is subject to index register modification, indirect

addressing, relative or paged addressing, and the like. The "desti

nation" given above as a sen antic attribute is then replaced by the

effect!;^ addregs, which is also a semantic attribute# We might write

<effective address> i^(S) = + S(x?^)
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for an instruction i v/hose address field a has value a"^ and v/hose

index register field specification x corresponds to the index re

gister x?*, or

<s ta tement addre r, s>^

<8f.factive address> i^(S) = l^f = 0 then else

(i^/p)XP + a"^

for a scheme resembling that of the EDP-S (omitting indirect ad

dressing), with page size p, such that page-zero addressing or

current-page addressing is used depending on whether the value

of the address mode field m of the instruction is zero or one® A

single-level indirect addressing scheme with indexing may be de

scribed semantically by

<effective address> i®(S) - if n^ = 0 then y else

S (y-(y/2^)K2^), where y = + SCx?*)

where z is the number of bits in the address field and is the

value of the indirect address field m Multi-level indirect addres

sing requires a recursive semantic rule, since it is possible for

the calculation of the effective address in this case to continue

indefinitely©
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NOTES

The notion which we have called the effect of a command

that is, a function from the old state of the computation into the

new state — is one of the most frequently rediscovered notions in

all of programming science. The name "effect" goes back to CMcCarthy

633, but the concept is found in CElgot and Robinson 6m and [Maurer

663 for machine instructions, [Park 683 in connection with data

structures, [Cooper 693 for program schemes, and CScbtt 703 in a

general framev;orko

A certain amount of our work on the semantics of assignment

statements is hinted at in [Strachey 663, Cde Bakker 693, CBurstall

703, and CIgarashi 713o In particular, the concept of the L-value

is due to Strachey, In its original form, as noted explicitly in

[Park 683, Strachey's model involves a set of addresses, called

L-values, and a set of their possible contents, called R-valuesj

the "content of the store" (what we have been calling the current

state) is a function from L-values to R-values, Variable names, hovf-

over, are elements of still another set, and there is a mapping (some

times called the "environment") from this set to the L-values, and

hence, through the content of the store, to the R-values, This model

allows storage allocation algorithms, such as those of ALGOL, to be

described as changes in the environment. Side effects of both left ;

and right sides of assignments are also treated in [Strachey 663,

The term "statement index" is due to the author, "Statement

numbers," which are statement indices in this sense, are treated in .

[MsCarthy 6.63; but the term "statement number" has a different meaning

in FORTRAN from its meaning in this paper. The use of the exit index

as an attribute of certain statements is foreshadowed in [Burstall 70],
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The treatment of input-ootput (^ivon hero in iJitrcduced in

essential form in [Ihm'or 66]• The idea tJiat internal and oxteD-'nal

variables ought not to be distln2u:}.f5hed may appear somewhat startling,

since they seem to bo so different from each other® The ansv/or to

this argument is tliat an integer variable and a card reader a,re

really no more different from each other than an integer variable

and a real Vcsriable -- In eac}i case, v;e have two qnantiti.es, each

of vjhich varies (and thus has a state vectf)r coMpD}ient), but v/ith

quite different sots of values ©

It vms notod vz-ithout coiimiont in [McCarthy 63] that state vec

tors are just as a.pplicable to the descrijitiou of programs o \ * -i -

tal coi iputers as tlioy are for prograjiis in algebraic lazigu ns.

McCaj-thy was concerned mainly here vn'.th the latter case, rnoreas

D'^rs'iov 603, CElgot and Hobinson 6^3, CIiain?er 663, C. 1 rot 683, and

[Wagner 683, among others, are concerned mainly vr'.th 'igital corii-

puters, and construct for tJiein (sorti-formally by ^rs'irr/ and fomall^''

by the others) state vectors and functions on them corresponding to

computer ins tr uctions•
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JSXIiKCISES

!• Give formal syntactic rules to correspond to the followinc

informal specifications (suggested by the language BASIC):

(a) An assignment statement has tlie form LET v^e , where v

is a variable and e is an expression.

(b) A conditional transfer statement has the form IP (e) TIEN

n , v/here e is an arithmetic expression and n is a line number.

(Mote: Line numbers in BASIC are much like statement numbers ±n

FORTRAN. )

(c) A subroutine call statement has the form GOSUB P , whore

P is the name of a subroutine.

(d) A NEXT statement consists of the word NEXT followed by the

name of a variable. (This is used to terminate iterations; the vari

able is the loop index of the iteration.)

2. Rewrite the three syntactic rules given in section 2-1 for

assignment statements, left part lists, and left parts in ALGOL in

such a way that the rule for left part lists disappears (in other

words, there are only assignment statenents and left parts) and the

new rule for assignment statements is equivalent to the old rule.

3. Suppose that assignments in a simple language are of the

form y =5 £ £ ? where y is a variable, jo is a variable or a number,

and 0£ is +, *, or /. Give syntactic and semantic rules for such

assignments in terms of variables and numbers aLone, without intro- ^

ducing "expression" as a nonterminal.

How should the first sjuitactic and semantic rule in section

3-1 be extended to signify that no type conversion is to be permitted

(that is, v:=e is not allowed when v and e are of different types)?
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Consider the following alternative method of specifying

the semantics of an IP statement• We employ a special word,

for semantic purposes. This word is defined to be the exit label

of any statement whenever it exits normally (that is, whenever it

does not transfer anywhere, but is followed by the next instruction

in sequence). The exit label now takes the place of the exit index

as a semantic attribute of statements; its value is always either

a label (in POKTHAN, a statement number) or the word ngxf.
(a) Would this convention allow us to eliminate any of the

other attributes of statements?

(b) Rewrite the semantic rules for FORTRAN IF statements

given in section 3-35 using this convention.

(c) Two semantic lules are given in section 3-3 which specify

the exit index of an arbitrary assignment statement which always

exits normally. What rule or rules would replace these if the above

convention were used?

6. Rewrite the semantic rules for the last three nonterminals

defined in section 3-3 (simple designational expression, designa-

tional expression, and go-to statonent) under the assumption that

all of these have side effects, as do if clauses and switch desig

nators (but not'labels).

7# Modify the definition of the file READ statement at the

end of section 3-^-:

(a) To test for end-of-file, and do nothing if the file is

actually positioned at the end. Assume that the length of the file

n is a semantic attribute of it, called n^.

(b) To set an end-flag on end of file (and do nothing else
in this case). Assume that the end-flag of the file n is called n^.
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Also give a syntactic and semantic definition of the OPEN FILE

statenent in this case, assuming that this statement resets the

flag® (The values of the flag should be taken to be true and false®)

(c) To transfer to a eiven point on end of file. In this case

the statement has the form READ (0(, END=n), X where oC is a file

name, n is a label, and x is a variable name® If the file has reached

the end, transfer to n; otherwise, exit normally®

8® Give syntactic and semantic definitions of the REWII^,
the BACKSPACE, and the POSITION FORWARD statements defined in

section 3-^j using the same conventions as are used there for the

definitions of the READ and WHITE statanents®

9o Give the changes that would have to be made in the syn

tactic descriptions of

(a) immediate addressing operation codes,

(b) immediate addressing instructions,

(c) direct addressing operation codes,

(d) direct addressing instructions,

defined in section so that machine language, rather than as

sembly language, would be described®

10® Give a syntactic and semantic description of the sub

routine call instruction described in section 3-5, assuming that

it stores the return address (that is, its own address plus 1) in

the address field of L and the operation code for a transfer in the

operation code field of L, and then transfers to L+l®
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C il /V i' T ]•! R F 0 J R

1' R i.) OR i\ it

Rro/:rriia ?ioctions find L-ibolod ntato/aents

A collocL.'um of ntatriuionts no]taratofl by noiiiicolons (or otli^r

r.irnll.'vr roparatorn) ban va.r:! o;!.^-. names 9 such a.s a cnmpound

statemoiit^ a or simply a pro;Tanu In order not to conflict

vjith any nr the tor linolory of ALGOL, v;e ahall call t?ils a proiTarn

sect ion < or simply a section* We have the imin'si late s.yiitactic 3'ale

<section> : <r;taternojit> | <soction:- <statemont;

By a statement \Te hero moan a ,aossibly lab::led statofiont; tirif: \/o

ca.iiot simply use the syntax -and semantics ^f stotoiticnts fn' i t? o

p*•^^vio) IS cliapter *

In dovclopinp the semantic.'; of j^ropram sections, 3,ot ns r'-"st

con.sider hov; label fLmctions are to be calculated * vGoiisider the j'ol.

lov/inc AJlfOL program v/ith statomorit indicef3 given:

Gt.atonent Inlex Stat'sncnnt

1 F 1;

2 i 0;

3 us if i~n then go to v:

V p S-: pxa;

5 i ;= 1+1;

6 52 £P "5
7 vs
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This section calculates by successive multiplication, where a is

real and ^ is a positive integero Syntactically, it consists of a

section (namely, the first six statements) followed by the semicolon

on the sixth statement, followed by the dummy statement v: .

The label function f which is to be associated with this sec

tion satisfies f(u) = 3 and f(v) = 7. This label function must then

be inherited by each statement of the section; for example, in order

to calculate the exit index of the sixth statement, we must know t>iat

the statement index of the statenent labeled u is 3« We now make use

of another construction from elementary set theory: the definition

^ function as a set of ordered pairs • Let f: A->B be any function,

and consider the set of all constructions of the form (x, f(x)), for

all X € Ao Each (x, f (x)) is referred to as an ordered pair< and the

set of all these ordered pairs clearly specifies f completely and may

b: taken as a definition of fo In this way, we may build the tJieory

of sets on the primitive notions of set and brdered paij?, rather than

set and function© (The alternative would be to define an ordered pair

as a fimction whose domain is -[l, 2}; for the ordered pair f = (u, v),

we would have f(l) = u and f(2) = v©)

The advantage which we derive from considering a function as

a set of something arises from the oi.)eration of taking the union of

two sets© In our example, the label function f becomes the set

^(u, 3), (v, 7)1

Let tis now define the local label functibn of a statement, or of a
'>A/WA^

section, as consisting of those ordered pairs (x, f(x)) for which x is

a label of the given statement, or of some statement in the given

section© Thus the local label function of the section consisting of

the first six statements in our example is the set containing only

the ordered pair (u, 3); the local label function of the seventh

-118-



statement contains only the pair (v, 7)* The local label function

of the entire section^ as a set of ordered pairs^ is the union of

these two sets; thus we may write

<section> x <statement> 2 : := <section> ^

<statement> t

<local label function> x^ = s^; u

Both 2^ and t are sets of ordered pairs; in particular^ t may con

tain more than one ordered pair^ since a single ALGOL statement may

have more than one label• Even in FORTRAN, where this is not allov/ed,

t is still a set of either one ordered pair or none. The local label

function of a statement is then defined by

<statement> x : := <unlabelled statement> ij; y : := <label> a *•'

<stateraent> z

<statement index>-^

u^ = x^; 2^ = y^
docal label function> u^ = <(?; y^ -- ^(a, y^)^ u 2^

where the statement index must be inherited from the section in which

the statement is contained© This process is particularly simple: we

define the number of statements in a section as a semantic attribute

of it, and then the statement index of the last statement in any sec

tion is equal to the number of statements in that section© The seman

tic rules

<number of statements> x^=l;y^ = z^ + l

gl = I5

may be added to the definition of a section given above to perform

this calculation©

The ordinary label function is obtained from the local label
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function of ^ny section which appears as part of a higher-level ride

such as

<block> <declarations> <section> *end*

or

<compound statement> ::= <section>

Taking the second of these as an example, we may define its label

function as the local label function of the section which it con

tains; this section, then inherits that label function, as follows:

<compound statement> c :s= <section> s 'en^'
<label function> ~

s^ ~ c^

By slightly extending the notion of an inherited attribute, we may

shorten this "definition by writing

<compound statement> c 'begin* <section> s 'end'

S^ = S^

Here the family-tree analogy breaks down; the section §. "inherits"

its label function from itselfI We will continue to use such rules,

however, and to refer to them as inlierited attribute eqiiations \^en-

ever the quantity on the left is an attribute of a quantity on the

right of the syntactic rule. Note that only sections which are di

rectly part of compound statements and the like have their label

functions determined in this way. We certainly do not, for example,

want the label function of the section consisting of the first six

statements illustrated at the start of this section to contain only

the pair (u, 3); it must contain the pair (v, 7) as well.

There is another sort semantic rule which it is important

to associate with compoLUid statements and the like. Sets of ordered
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pairs can represent multi-valued, as well as single-valued, functions

We would like the label function of a section to be single-valued5

in fact, it'will be single-valued if and only if there are no dupli

cate labels• A set S of ordered pairs represents a single-valued func

tion if and only if the statement

(x, y) € S and (x, z) S S implies y = z

is true© We may add the semantic rule

(s^ is single-valued)

to the definition of compound statements above© We might also add

the semantic rule

(y^ is single-valued)

to the definition of a statement; this would check for multiple

labels on a single statement, which is perhaps unnecessary since

there is no real ambiguity here© We do not, however, need to add any

further test of this kind to the definition of a section, since such

a test will always succeed if the corresponding test for compound

statements succeeds©

The device of treating functions as sets of ordered pairs has

many further uses in semantic rules© In FORTRAN, for example, vari

ables need not be declared unless they are logical, complex, or

double precision, or unless their names violate the "I, J, K, L, M,

or N rule©" If we wish all state vectors applicable to a given

FORTRAN program to involve the set of all variables of that program,

ve must therefore associate with each statement a set of ordered

pairs (vn© type)© or its equivalent, where is a variable name used

in the given statement and type is its type according to the "I, J,
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Kf L9 or N rule#" This may then be treated as a function from

variable names to types9 and the sets of ordered pairs may be oom«

bined Just as the pairs for the label function are© We shall see in

Chapter 5 that most of the attributes of declarations ai^e of this

kind; that is, they are functions of variable names, given by sets

of ordered pairs, which give their types, array dimensions, and

other such informationo
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^"2 The Effect of a Section

What other semantic attributes do we want a program section

to have? For a section which is a straight-line program — that is,

one in which control always passes from each statement to the next,

without branching — each individual statement has an effect which

transforms the current state vector, and by stringing these all to

gether we obtain an effect for the entire section# This may be de

noted by the rule

<section> x : s= <statement> ^5 y; : <section> 2. *5*

<staternent>

<effect> x®(S) = s®(S); y®(S) = t®(z®(S))

assuming that s® and t® are the respective effects of the sections

s and t# In terms of still another elementary function-theoretical

notion, y is the composition of t and z, and we may write y = t o z#

This notation is somewhat confusing in a programming context becaijise

the effect of y is the effect of z followed by the effect of t, not

the other way aroundj thu^ -we would like to write y = z 0 t, rather

than t « z# This can be done if we define f g, in general, as the

function h satisfying h(x) = g(f(x)) (rather than f(g(x))). In v;hat

follows, we shall not use either convention, but shall continue to

write semantic rules without using the composition operator#

Does the concept of effect make sense for a section which is

not a straight-line pro gram? Suppose that y is a section and S is a

state vector# Suppose further tliat y is "self-contained"; that is,

every label which is referenced in the section is also defined in the

section# Let us consider the section as a program and run it; when

it reaches the end, there will be some current state vector S*, and

we set y®(S) = S' where y® is the effect which we are defining for y#
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If the program never reaches the end ~ that is, if it goes into an
endless loop —we leave y®(S) undefined. That is, the effect of y
is, in general, a pa^^t^ fjmctioji —a function which is undefined
for certain elements of its domain. We recall from section 2-2 that

we may write fj X Yeven when the range of f is not Y, but merely
a subset of Y. If the domain of f is not X, but merely a subset of X, •"
then f is called a partial function; if the domain of f is X, then f
is a total ftmctira.

How can we determine the effect of a section from the effects

of its individual statements? We start by defining the single-step

of a program sectlono Most computers have a "single-step

button" or its equivalent} if the computer is stopped and the

single-step button is pushed, a single instruction will be executed,
namely the instruction whose code is in the memory word (or starts

at the memory byte) whose address is currently in the program counter.

At the same time, the program counter is modified in the way indicated

by the instruction which is executed, so that, by pushing the button

over and over, the operator can "step through" a program•' The

single-step function of a program section is set up in an analogous

fashion. It Is a function of one argument, and that argument is a

form (S, k), where S is a state vector and k is a state

ment index} and its value is the next such pair, in execution order.

Any pair of the form (S, k) may be identified with a single

state vector T having all the components that S does, plus a new

component corresponding to a program-counter variable X whose values '

are statement indices. Hecalling the discussion at the end of section

2-2, let Mbe any set of variables and let M® = Mw-fX}, where X^ M.

^ where V is the set of all legal valuesXfen X€n
of the variable x, then there is a natural correspondence between 3'
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and i X Specifically, if S€Xand k 5 V^, then the pair (S, k)
defines an element S® € iL" whose A-component is k and whose other

components are the same as the corresponding ones of S. If X Is a

program counter, then is a set of indices (or addresses) of state

ments of the given program•

A semantic rule for single-step functions may be given as followst

<section> 35 : != <statement> ^5 2 ' <section> 35

<statement> t

<number of statements> x'*=l5y^=z® + l

s^ = 1| t^ = y®
<single-step function> xP((S, 1)) = (s®(S), s*(S))5

yP((S, k)) = zP((S, k)) for 1 ^ k ^ z**,

yP((S, y»)) = (t®(S), t*(s))

Note that hy vfrlting yP((S, k)) rather than yP(S, k), we define a

function of onp argument (which is a pair), rather than two©

Now we are ready to define the ®

gram section, from which we will easily obtain the effect. The gene

ralized effect has the saiiie fofm as the. single-step functions it'

has a single argument, which is a pair (S, k), and its value is also

a pair (S®, k®). If the section is started at the Jgth statement, and

the starting state vector is S, then, when the program terminates,

the final state vector will be S® and the final statement index will

be k®. For programs using the statements we have defined thus far,

k® will always be one greater than the number of statements in the

program section (but see also the discussion in section :^-3)* 'ThS

generalized effect £ may be defined in terms of the single-step func

tion £, and the total number of statements u, by the equation

g((S, k)) = 1 k ^ n then g(p<(?, k))) else (SV k)
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This is our first use of a recursive conditional expression;

g is defined lay expressing g(z), for a given in terms of g(z*),

where z' depends on z» Intuitively, the result g((S, k)) when the

program is started at the Jg-th statement, with current state vector

S, is the same as the result g(p((S, k))) when the program is star

ted at the statement with index 1^, with current state vector S^,

where (S^, k^) = p((S, k)) is the resOlt of the first step of the

program when it is started at statement k with state vector S®

Recursive conditional expressions are the only expressions

encountered so far \diich give a partial function as their result.

If the given program section is an endless loop, or if, more general

ly, it runs endlessly when it is started at certain pairs (S, k) as

above, then the recursive conditional expression becomes a circular

expression — it cannot itself be evaluated in a finite number of

steps. More importantly, a recursive conditional expression does not,

in itself, lead to any method of determining when it is properly de

fined and when it is not. Thus, when we use a semantic definition of

a programming language which involves such expressions, we can always

determine the effect of a program, so long as we know that it actually

has an effect, but otherwise we cannot. Intuitively, this is quite

reasonable. It is easy, for example, to write a simple program to

search for counterexamples to Fermat's last theorem, or any number of

other unsolved problems in mathematics; we should not expect to be

able to determine whether such a program always loops endlessly hy

means of simple algorithmic arguments. Moreover, by the elementary

theory of recursive functions, there are certain problems that are

not only unsolved but lyisolvable: and one of these is the problem of

determining, for an arbitrary recursive conditional expression,

whether it can be evaluated in a finite number of steps.

Are there any programming languages in which the effect cf a
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program may always be calculated without encountering any unsolvable

problems?.For straight-line programs, this can always be done; but

straight-line programs are not very general# A much more important

class of programs of this type will be introduced in Chapter 6: those

programs for which it is possible to construct a proof of termination#

The Importance of this class of programs arises from the fact that,

while in theory a programming language may be used to write programs

for which it is not known whether they terminate, in practice this

is almost never done intentionally# Even when it is done intentional

ly, the resulting program is often run under the control of an opera

ting system which stops it automatically after a certain maximum time,

so that, whatever happens, we are only interested in the result of a

finite sequence of operations# By restricting our analysis to programs

which are known to terminate, we are able to avoid the general prob

lem of the existence of unsolvable questions#

Let us give a semantic rule for the generalized effect of a

compound statements

<compound statement> SL * <section> 2. 'eM'

<generali2ed effect> c^ ((S, k)) = !£ 1 k ^ s^ then

c^(sP((S, k))) else (S, k)

<effect> c®(S) = S*, where (S», k') = c®((S, 1)) for some k^

Here s^ is the single-step function of s, while s** is the number of

statements of sj although in this case we will always have k' = s*^

+ 1, that fact is not made use of# Notice that we have also assumed

that the program always starts at its first statement# This assump

tion is tenable in ALGOL, but not in certain other languages, which

have EIKTRY statements or the equivalent; an ENTRY statement (actually

a declaration, rather than an executable statement) defines a label

of a program to be an allowable starting point# In such a case, we
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may let such a declaration inherit the generalized effect of the

program in which it is contained; if the label function is also

inherited, we may write (for example)

<entry declaration> j t:« •ENTRy* <label> 2 8j= <entry

declaration> it S • <label> ^

<generali2ed effect>^

z® = y®

"dabel function>®^

<name function> x® = ^^(a, f)l where f(S) = S« for

(S», k») = xS((S, x^Ca))); y® = z® u :^(b, f)}

where f(S) = S' for (S®, k') = yS((S, y^(b)))

The name function then associates names of programs with their cor

responding effects; that is, if a is a label of a function appearing

in an entry declaration, and m is the name function, then m(a) is the

effect of the given program when started at the label ao Such func

tions and their generalizations are further studied in section
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<f-3 Multiple Exits ^ Escape

It is very common for a program section to have more than one

possible exit. In this case, sje may determine aa exit Index for the

sectiopi. in much the same way as we have determined the effect. Given

the starting state vector S, the value of the exit index c*(S) of the

section is the index of the statement to which transfer is ulti

mately made after the given section is finished. Thus, in particular,

a effect^ a^^d ^ i^dejs — dust ^ ^ individual

statement does. In fact, the appearance of a compound statement or

a block. o£ ihe calling of a subroutine, may ^ regarded exactly

1£ it were the execution of a single statement whose effect and exit

index are those of tliat compound statement, block, or subroutine.

The semantic rule for the effect of a Compound statement as

given in section ^2, namely

<effect> c®(S) = S*, where (S», k») = c®((S, 1))

for some k®

needs only a very slight modification to produce a son an tic rule

for the exit index of a compound statement:

<exit ind8x> c*(S) = k®, where (S®, k') = c®((S, 1))

for some S®

Similar constructions may be used where entry declarations are

allowed.

Let us now see how the phenomenon of multiple exits affects

the semantics of a block structure language. We shall assun» that

every statement in a program, including those in inner blocks, has

a distinct statement Index, and that these are numbered from the
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beginning of the program. In an if statement of the form if B then S.
Wv V/\yv^ *

the if clause B then) will be considered as a statement^ and S

will be considered as another statement, or as several statements if

it is a compound statement or a blocko The meaning of "if B then" is

taken to be "if not B, then skip around S." Here is an example of a

program with staten»nt indices specified:

STATEMENT
INDEX

STATEMENT

1, J, m, n; Boolean match; re^ ACl:n3, BCl:m3
1 matchistrue;

VA-vvA '

2 i:=l;

3 outer: if ACi3 0 1
1
then

>f

5 inner? If A[i3=BCJ] then

6 go to found?
V^/VXAA »

7 i«=J+i?

8

9 go to inner end;
vv»^

10 i«=i+l;

11 if i ^ n then
w

12 go^ to outer;

13 match:3false;
*AAA<'v

l>f found:

This routine exits with match = tr^ if ACi3=BCJ39^0 for any i arei J,

l^i^n, l^j^m® Statements h through 9 constitute an ALGOL com

pound statement with two exits; one to statement 10 (the normal exit)

and one to statement l^•o

Hecalling the syntactic and semantic definition of logical IP

statements in FORTRAN which was given at the beginning of section 3-3,

ve may set up a similar definition for if statements in ALGOL:
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<if stateinent> i <lf claiise> ^ <unconditional statement>

<effect> i®(S) = c'(S) llJga i^(c®(S)) gjgfe eS{S)
<exlt index> 1*(S) = i£ c*(S) then U*(c®(S)) else o*(S)

Here and c are respectively the value and the side effect of the

if clause e« that is, of the Boolean expression which it contains;

U® and u are respectively the effect and the exit function of jj.
We can now see what happens when a is a compound statement or a

block* For example, in statement 3 above, a f® the entire compound

statement including statements 'f through 9, and its effect and exit

function are taken in the sense of the preceding discussion* If S

is any state vector, then u*(S) = Ik — that is, the compound state

ment u exits to "found" -- if there exists J, 1 ^ j ^ m, such that

S(indicates ACI3 = BCj3, that is, S(A[S(i)]) = S{BCS(j)])| and u*(S)
= 10 otherwise. Since the if clause c a^ACil s# 0^ has no side effect,
that,is, c®(S) = 89 the exit index i* of the entire if statement is
therefore such that if S(ACS(i)3) ^ 0 then i*(S) = u*(s) as above,
while dtherwise i*(S) = 10, that is, the exit index of the if clause,
which is the index of the statement Immediately following the if

statement*

In order to bring this about$ we shall have to associate with

each compound staten©nt or block In an ALGOL program, Including the

outermost block, a set of statement Indices of statements In that

block* Thus, In our example, th^ outermost block Involves statements

3i 10, 11, 19, 13, and 1^, 'plus the compound .statement whose

Index Is ^ and which contains statements 5, 6, 7, 8, and 9# The
computation performed by a block Is taken as ending when any transfer
Is made to a statement outside that blocko Thus the rule for com

pound statements at the end of section ^-2 Is replaced ty
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<compoiind statement> £ s 'fegijOL* <sectlon> £

<statement lnd0X>^

S =s <5

<number of stat0ments> c® »

<genorallze<i effect> c®((S^ k)) = i£ ^

then c®(s^((S, k))) else (S, k)
<effect> c®(S) = S', where (S% k*) = c^{($9 c^))

for some k*

<exit ind0x> c^(S) = k®^ where (S®, k®) = c®((S, o^))
for some S®

where a section is now defined

<section> S t «= <stateinent> £; £ s <section> £ •; •

<statenient> i

<niimber of statements> =3

4

<statement indea^*^

S^-= X^} = 7^5 = 54 + 2^
<single-step function> xP((S, 1)) =s (s®{S), s*(S));

yP((S, k)) = aP((S, k)) for 1 k i; z®}
y^((S, y®)) = (t®(S), t®(S))

Since9 in this rule^ a "statement" may Itself be compound9 it has9

as an attribute9 a "number of statsQents^" with supersofipt n^^This

is 7the masb^ of"statements which It contains 9 if it is a compound

statement or KLookf it is 1 for an assignment statement; and it is

one more than the number of statements in S9 for a statement of the

type if B then So

When an ALGOL program contains a procedure used as a functiony

the procedure may or may not exit normallyo Consider the following

program with statement indices specified!
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STATEt'lENr STATEMSNT
IMDiSX

iSSSISS e(l>5 Integer U

^ 5?/?^ 3»=j+10j
2 g»=7}

3 if 1=2 tlmn\J\/^ VA^AA.-

k ffo to m

5 ?a3 Si
6 3«=3}

7 lc:ag(l)+g(2)+g(3)}

8 go to done;^y\/\ '

9 m: outreal(float(j))}

10 done:

This program section starts at statement number 6* Since the value of

g(l) is always 7» g(l) + g(2) + g(3) would seem to be equal to 21;

but in fact the evaluation of this expression is never completed be

cause we transfer to ^ when 1=2, that is, when evaluating g(2)« Thus

the output function outreal(float(j)) is performed, and the number

23*0 is printed out, because J is initialized to 3 and is incremented

twice, once in evaluating g(l) and once in evaluating g(2)o

The procedure g has two exits; one to statement 5 (the normal

exit) and one to statement 9* We say that g e;^ca|),^ if it jumps to

statement 9» Thus g; will have three associated state vector functions;

a value, which in this case is always 7 (and is independent of the

state vector); an effect, which here is always to increase ^ by 10

(that is, it is the effect of the statement jt=j+10); and an exit

index® If S(l) = 2, for the state vector S, then x(S) = 9, where x is

the exit index; if S(l) ^ 2, so that g exits normally, we will set

x(S) equal to a special keyword, normal, to denote this fact® The

effect and the exit index of g, of course, are determined in the man-
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xier described at the beginning of this sectlono

The possibility of escape affects all of the semantic rules

for asslgnmentsy expressions^ terms^ factors^ and primary expresslonso

Consider, for example, the simplified rule for expressions with side

effects given In section 2-3i

s
/V

<expresslon> g, i:= <term> j •+• <term>

<slde effect> e®(S) = w^(v^(S))

<value> e^{S) = v^(S) + w^(v®(S))

If escape Is allowed, this rule becomes

<expresslon> g. s «= <tern> 5; •+• <term> h

<exlt lndex> e*(S) = v*(S) ^ nsjrggl then v*(S) else
w*(v®(S))

<slde effect> e®(S) a v*(S) normal then v®(S) else

w^(v®(S))

<value> e^(S) = If o*(S) ^ QgJISl theft non» else
v^(S) + wW(S))

Here the superscripts x, s, and v are presumed to have the same

meanings for terms as for expressions* If x escapes, then the side

effect of is simply the side effect of Xf assuming that evalua

tion takes place from left to rl^t* Otherwise, vl^ther x escapes

or not. It Is the result of combining the side effects of x 2C«

Of course. If X escapes, then is eald to escape to the same '

plaoe$ otherwise x^ escapes only If x does* Here by "x escapes"

we mean "the exit Index of x ie not normal*" It should also be clear
—" Waa/VVv*

that X'il a value If and only If It does not escape*

Similar changed may be atade-m other rules for expressions, and

In rules for terms and factors* For a primary expression, we must de

termine Its value, side effect, and exit Index* Just as the side ef-
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feet of most kinds of primary expression is the identity — that is,

e(S) = S, where e is the side effect — so the exit index of most

kinds of primary expression is always goj^nalo In ALGOL, the only

cases where it can be anything other than normal are function re-
WWn/^

ferences, as g(2) in the example above; expressions enclosed in pa

rentheses; and parameters called by name, to be discussed in section

Again, consider the rule for assignments with side effects

given in section 3-2«

<assignment> a *•= <variable> x <expression> e

<eff0ct> a®(S) = S», where S*(v) = e^(S), S'(z) =

S"(z) for z V, where S" = e®(S)

In the presence of expressions which may escape, this becomes

<asslgnment> a * <variable> ^ <expression> a

<effect> a®(S) = i£ e^(S) 4 Qg^gl then e®(S) else
S», where S»(v) = e^(S), S»(z) = S"(z) for

z V, where S" = e®(S)

If a escapes, the effect of the assignment is precisely the side

effect of a; the variable j; is not changed (unless it is changed

by that side effect). Later in section 3-2, a more general rule

is given, assuming that the variable v has an L-value v^ and a
side effect v® of its ovm, and that evaluation is as in ALGOLi

<assignra0nt> a *2= <variable> a •«=• <expression> a

<effect> a®(S) = S', where S®(v^(S)) = e^Cv^CS)), S'(z)

= S"(z) for z ^ v^(S), where S" = e®(v®(S))

Assuming that the left side or the right side, or both, might pos

sibly escape, this rule becomes
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<as3lgnin8nt> <\rarlal>le> j <expressloii>

<effect> a*(S) a v*{S) fS goaggj then v^(S) else
e*(T'(S)) jtorml tten o®(7®(S)) else S». where

S«(v®(S)) a e'(v®(S)), s«(a) = a"(z) for z ^ v®©).
Where S" =a g®(7^(S))

<0xlt index> a*(S) =i£ v*(S) / ngpjjal then v^(S) else
i£ e*{v®(S)) Qjjjggl then e*(v®(S)) else a^ + 1

<statement lndex>®

Allowance for the possibility of escape must also be made, for exam

ple, in evaluation of subscripts# If aCe, e*3 is an array reference,

where e and e® are expressions, then e is normally eval

uated first, followed by e*# If e escapes, then so does aCe, e^l5 if

e does not escape, then e' may escape#
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Wf Iteration Statements

The original purpose of Iteration statements (DO In FORTRAN

and PL/I9 for In ALGOL^ PERFORM In COBOL| etc*) was to repeat a

statement, or a group of statements, a certain number of times# If

the number of Iterations Is constant, and the statement always exits

normally, the effect of such an Iteration statement Is easy to define#

For example. If A Is a simple assignment statement with effect e,

then the effect f of (for is=l stegi 1 un^ 3 go A) satisfies f(S)

= e(e(e(S))) for each state vector S, provided that is not refe

renced in the assignment A#

If A Is a general command, with an effect £ ^ exit Index

we must distinguish normal exit of A from abnormal exit# Consider

the following sequence:

a: k::3g(i};

m: nt'iij;

where the function g may escape to m, as In the preceding section#

It is clear that the exit index of statement a is constant, since It

always exits to statement m# However, If we precede these two state

ments by

for i:=l step 1 until 3 do

then we must distinguish normal exit to ^ and escape to ^ through g(l),

because In the former case iteration proceeds, while In the latter

case It does not# Let us do this by defining x(S) = normal whenever

exits normally, where 2c Is the exit Index of the statement a# Then

the effect e' and the exit index x® of (for li=sl step 1 until 3 do A)

may be defined by

e®(S) = XL x(S) normal then e(S) else j^f x(e(S)} normal

then e(e(S)) else e(e(e(G))}
.1^7



x«(S) = 1£ x(S) 4 nOTzaal thaii x(s) algft j£^ x(e(S}) ^

then x(e{S}} else x(e(e(S)))

where ft and a, respeotively, are the effect and the exit index of A.

As before, it is assumed that A nalces no reference to

Under this last condition, wo may define the effect p* and the

exit index of the oK>re general iteration

P = (£85 l«-8(8jej) p mm Tf ^ A)

vhero ^9 and are Integer constants and ^ > O9 by a recursive
equation as follovrs« Let e and x be as before9 and assume that x(S)

~ normal when A exits normallyo Let

q = (for s^p p untdJL ^ ^ A)

and let the effect and the exit index of q be q® and q* respectively#

We assume the same conditions on p* and q* as we do on xj that 189

for example, q*(S) = norm^ whenever q exits normally# The semantics

of p may now be dtf ined in terms of the semantics of q (aM A) as

followst

P^(S) - 1£ o( > Y then S else x(S) normal then e(S)

else 9®(e(S))

P*(s) =1£ Ot. >r iitisa if x(S) ^ la^x^ then
x(S} else qi''(eCS}}

These rules do not work if p < Oj we must replace o(>t by o(.<^.
In fact, for general ^9 we may write

p^(S) aJXp(*^-oC) < 0 than S else if x(S) / noirol
then e(S) elsM q^(e(S))

p*(S) = if A(^ - d) < 0 then normal else if x(S) ^ normal

^hen x(S} else q^(e&})
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since the general condition for terminating the Iteration is that

- oc and p. have opposite signs (and therefbre their product Is

negative). ClearI7, if p( <- y) = 0 — that is, p = 0 or X= r —

Iteration should continue* The slightly cumbersome property of

ALGOL-style iteration illustrated above has given rise to separate

Btatenmt9« in Ghe language PASCAL, for iterating with ^ > 0 and

with p; < 0* (POHTFtAN simply requires p > 0 at all times.)

What happens if the statement A does, in fact, make reference

to X? This will happen, in particular, in any loop which traverses

a subscripted array. One solution is to replace 3,' throughout the

right sides of the rules, given above, by e»(S), where e» is the ef

fect of the as.jignnent i*s=ot (which always exits normally, since K

is still being regarded as an integer constant). Difficulties arise,

however, if X ^7 changed by A. What is the effect of the itera

tion

for 11=1 step 1 until 3 do i 1=1-1

Does it iterate three times, or do6s it keep going Indefinitely?

According to the above definition. It iterates three times; but most

ecaipilers for existing languages would not Implement this specifica

tion* It is possible, of course, to make such behavior illegal, and,

in fact, although almost all iterated statements in actual programs

make reference to the loop index, or controlled variable (X in this

case), very few of them change the loop index*

Let us now consider what would be involved in casting the above

equations in the form of semantic rules* If we wished to define the

effect and the exit iiidex of £, as above, we would first have to de

fine the so»Jrce string a as an attribute of p* This introduces a new

level of complexity into our definitions; and we still have not re

laxed the condition that o(, and X are constants* In the ALGOL re-
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port, it is suggested that the best way to define an iteration state-

ment is to regard it as a collection of statements which explicitly

initialise! incrementf and test the loop index* In our terminology!

we should set up a program sectiofi for each element of a for-list!

and then define the effect and the exit index of an iteration as the

effect and the exit inde*! respectively! of the corresponding section*

We shall now indicate how this may be done for ALGOL*

Our first task is to make the effect and the exit index of the

statement to be iterated! and also the controlled variable! into in

herited attributes of each element of the for-list* By doing this we

may calculate an effect and an exit index for each such element! which

is effectively the result of iterating only as far as that element

specifies* The effect and the exit index of the entire for statement

are then determined from those of the for-list elements by effectively

taking these in sequence* Our syntactic and semantic rules for

for-lists are thus

<far list> 2 t laa <for list element> 2 : :=» <for

llst> 2 •!* <for list element> 5;

<controlled variable>®

u® = xPj 2® =» y®5 V® = y®

<iterated effect>^

= x^; 2^ = y^; v^ =
<iterated exit index>^

u^ = X®; 2** = y^; V** = y^

<effect> x®(S) a u®(S)j y®(S) =1£ z*(S) ^ormaj
then 2®(S) else v®(2®(S))

<exit index> X*(S) a u?^(S)j y*(S) a a*(S) 9I

normal then 2*(S) else v*(s®(S))
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We are here assuming that the controlled variable is a simple vari

able, and is not a parameter called by name; otherwise we would have

to inherit its effect and exit index as well* The semantics of a

for-statement may then be given by

<for statemont> £ 'JSS* <varlable> y • <^or

list> i •do* <statement> s
•• Naa —•

1® = V

11

1" = 8*

<effect> f®(S) := 1®(S)

<exlt index> f*(S) = 1*(S)

The syntactic rule here ignores labelled for-statements, and defines

a for-statemmt directly in terms of a for-list, without the inter

mediate nonterminal <for cla\]se> as given in the ALGOL report •

It remains to specify the effect and exit index of each type

of for-list element© For a simple arithmetic expression, no program

section needs to be defined; the effect of this kind of element is

simply the effect of assigning this expression to the controlled vari

able, followed by the effect of the iterated statement, where this

intuitive description must be modified in the usual way to account

for possible escape© If this were the only type of for-list element,

we could write

<for list element> 2 :i» <arlthraetic expression> c

<controlled variable

<iterated effect

<iterated exit lndex>'*

<effect> x®(S) = ££ c*(S) normal then c®(S) else x^(S'),

where S*(x®) = c^(S), S*(z) = S"(2) for z x®,

with S" = c®(S)
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<exit lnd0X> x*(S) = c*(S)

Here we are assuming that the expression o has the value the

side effect c®, and the exit index c*, and that no type conversion

takes place (the type conversion hules .hstre would be exactly the

same as those for the assignment statements)•

For^each of the other two kinds of for-list element, we con^

struct a program section as directed in the ALGOL report itselfo

For an element of the form A step B until C, where S is the state*

ment to be iterated and V is the controlled variable, the ALGOL re*

port gives this section as

V J= A|

Lit ^ (V*C}xsign(B)>0 j^hgn ^ element exhaustedj
statement S;

V i« V + Bj

go to LI;

whereas for eoi element of the form E F, the section is given as

L3t V 1= E;

if nF then go to element exhausted;

statement S;

go to 13;

Here nF, of course, means "not F«"

Our semantic rules for elements of a for*list are now construe*

ted as followso First we define the effect and the exit index of

each of the statements above, in accordance with the rules for as*

signments, go*to stat^ents, and if statements • We then define a

single*step function (see section ^2) applicable to pairs (S, i),

where 1 1 i (We may regard V ta V + B and go to LI in the first
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section above as a single statement9 so that each of these sections

consists of four statements*) The effect and the exit index:'of the

for^list^dlement are then defined hy a recursive rule which makes

reference to this single-step function, as is done at the end of

section ^-2*
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'h>5> SS£ S£. MMnes

The concept of block structure in programming languages ^ in

which each block has its own declarations, has given rise to the

concept of several variables with the same name, each associated

with a different block level# In nwdeling this situation by a col

lection of state vector functions, a problem arises as to the pro

per specification of the domain of a state vector# Must our state

vectors have components for different variables with the same name?

If so, we must find a way to identify such variables uniquely#

There are several different solutions to this problem# In the

first place, there are certain situations in which it is not, in

fact, necessary ever to consider state vectors with more than one

oC-component, for a given variable name (?(# In particular, this will

be true in the absence of procedures# Consider a block structure

language in which variable names may be re-used inside each block,

but there are no procedure calls# In this case, there Is ^within each

block a unique variable with a given name which may be referenced or

changed# Thus the state vectors in an innermost block have only one

ot-component for each «(, and an innermost block has an effect and an

exit index which Involve those state vectors • We may now construct

f37om these an effect and an exit index which may be used at the next

lower block level# This new effect and exit index involve state vectors

which'are valid a't that 'blook leveli that is, the QC->comp>dnent^ 'for

each oc, references that variable named o( whose scope' includes that

block level, oven though o( nay have been redefined at the inner block

level# The inner block is now treated as a single statement with the

new effect and exit index, and, continuing inductively, we see that

the state vectors in any block of the program may be taken to have

only one o(-oomponent for each o(#
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In order to derive the effect e' and the exit Index x'at the

outer block level from the effect e and the exit Index x at the

Inner block level, we go through a two-stage process. Let M'be the

set of all variables whose scoi)e Includes the outer block level

(defined at that level or at further outer levels). Let be the

set of all variables defined at the Inner levelj then M = M'l/ M*

Is the set of all variables whose scope Includes the Inner level.

^ ® = TT V^; then AIs the domain of e and of
X, while Is the domain of e® and of x®. The first step Is to

eliminate the variables defined at the Inner level. Let M" = M'-

that Is, M" consists of all those variables whose scope Includes

the outer level and which were not redefined at the Inner level.

We then wish to construct e" and x** with domain il" = IT V . For
A X6M" *each S € 'A, we may form Its restriction to If', or this Is an

element of Our definitions of e" and x" are then

«"(s|m") = (e(S))|H" x"{s|m") =x(S)

In order for o" and x" to be well-defined in this way, it must be
true, for each S^, Sg € i, that

if sJm" =S |M' then (e(S ))|M" = (e(S ))lM" and x(S ) =x(S^)
± ^ 12

That Is, lija fiaai saiiias. fi£ am aat define<^ ^ blocks

aM laast Uat depend qq imtlal values ^ variables

421 £t2a This, of course. Is due to the fact that entering
a block In which variables are defined does not, In Itself, set these

variables to any values (even default values, such as zero, although
conceivably a block structure language could be described in which

default values were assigned In this way). These facts about a block

must be proved correct as part of the proof of correctness of the block.
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To derive e* and x* from e" and x!'f we simply specify that

the values of any variables whose names are refused in the inner

block cannot change during the execution of that block. Thus the

rules are
Q

I I

(e»(S*)))M* =5 e"(S*)ff*), e*{z) =z for z ^ Jf'j x*(S») =xf*(S*(lf*)

In general9 this, again, is true only in the absence of procedures.

To see this, consider the following ALGOL programi

begto integer kj

p^;joce^^ loop(loopflag); Bool^ loopflag;
begto k:ak<»-l; loopflaglafal^I

^ k ^ 10 loopflage]^ loop;

ki=l;

begin integer k; ^^lean x; ks«l;

at ktsk + k|

loop(x); ^ X goJbo a;
outinteger(k) end;

outinteger(k) e^

The output here consists of the numbers 102^* (that is, 2^^) and 11.

The program manipulates two variables named k at the same time; de

noting the outer k by oC and the inner k by the statement kt^k + k

always sets ^ a ^ and the statement loop(x) sets y » c( 1# The ef
fect of loop(x) involves state vectors without ^-components, and it ~

is possible to calculate an effect for the inner loop which likewise ..

involves state vectors without ^-components. However, in the calcula-^

tion of the effect of the inner loop by considering the effects of

its individual statements, the state vectors involved must have both

0^-components and ^-components.
In the absence of recursive procedures, this problem may be
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solved with only a slight increase in complexity. If each block has

a unique name9 the domain, of each state vector9 instead of being

simply a set of variable names9 is now a set of pairs (^9 vn)>

where is a block name and is a variable name defined in the

corresponding block* If the names of blocks are not unique9 or (more

commonly) if some of the blocks do not have names9 we assign to each

block in the program a analogous to the statement index

defined earlier 5 that is 9 if a block b has index k9 then b is the k-th

block in its program, Pairs (^9 vn) are now used in place of the

pairs (^9 vn)* With each block we may associate as a semantic at

tribute 9 not only its own block index9 but the sequence of indices

of all blocks in which it is contained9 woricing outward and ending

with the index of the outermost block (normally 1)* Each statement

now inherits the sequence associated with the block in which it is

contained9 and this sequence is further inherited by the expression

or expressions in this ^ atement and ultimately by each variable in

the statement* It is now easy to determine9 for the variable name yp^

which pair (J2i9 ya) represents itt we simply look at the sequence of

indices ^ which we have inherited9 and pick the first one for which

there exists a pair (J^9 yjj) for this particular ya* corresponds

to taking the innermost possible definition of a variable name*

Somewhat the same solution may be applied if the concepts of

local and global variables are used9 as in FORTRA.N, Here we have no

blocks 9 but we have main programs 9 functions 9 and subroutines 9 each

of which may use variable names that need be unique only within it

self* This time9 since each function and each subroutine has a name9

the pairs may be of the form (^9 ya)9 where jeu is a program name

(a special name9 such as $M^IN9 in the case of the presumably unique

main program) and ya is a variable name which is local to that program.

In the absence of global variables 9 the name of each program is in-
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herlted as an attribute of each variable in that program, and used
as the first element of the pair vn)>

Global variables in FORTRAN arise in tliree ways. The mathemai-

tically simplest system, available only in extended versions of

FORTRAN, uses ENTRY and EXTERNAL declarations. We have seen in sec«>

tioa how ah ENTRY declaration may be used to specify a FORTRAN

program with multiple entay points, but, in some FORTRAN systems,
it may be used to specify global variables as well. An EXTERNAL de

claration specifies that reference to a certain variable name in

the program containing that declaration refers to its definition in

some other program as a global variable (with an ENTRY declaration).

From the viewpoint of syntactic and semantic description, there is

no difference between the two declarations, although for implemen

tation purposes the variables declared in ENTRY declarations in a

program normally occupy memory addresses next to the instruction

words of that program. We set up a special name ($GLOBAL, for exam

ple) as the "program name" of all global variables given either by

ENTRY or by EXTERNAL declarations.

When jglobal )Vdrlabld8 are defined using blank each one

will be assigned a ccpnon variable index. If o( is the k-th common

variable in a program, then fiC has common variable index k. All state

vectors involving such a variable have a k«component, rather than an

oC-component, because, by the definition of blank common, the decla

ration of common variables defines their position (that is, the common

variable index) only. If p is the k-th common variable in a subroutine

of tho above program, then ^ and p are considered to be the same

variable. (This would happen, for example, if the program contained

the statement COMMON X, ALPHA, Y and the subroutine the statement

COMMON X, BETA, Y with no other COMMON statements in either program.)

A variable oC defined in labeled common, in a common block called
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is similarly represented in state vectors by a (b, fc)-component,

where^ is its common variable Index relative to the block Jb; that

ISf U is the S-th variable to be defined in the block

Again^ all of this analysis is in the absence of recursive

subroutines5 these, of course, are not allowed in FORTRAN^ If sub

routines are allowed to be recursive, there may be different vsri^

ables with the same name at various recursion levelso There are se

veral possible treatments of state vectors in this case, all of which

seem either more cumbersome or more indirect than the treatments we

have analyzed thus far® We may give our state vectors (gg., vn)-

components, where is a variable name and ggi is the current con

tents of the stack (that is, the general-purpose stack used in im

plementing the language)® We may give our vectors vn-components in

which the value of each variable is a sequence of values of all cur

rently active variables with the name yjj® A third solution is to im

pose an intermediate stage in the form of an infinite sequence of

"generalized addresses" a^, a2, •••; a state vector in our sense is

then the composition of a mapping L of variables into geieralized

addresses and a mapping C of generalized addresses into their cur

rent contents or values® Entry to a block or procedure, whether re

cursive or not, corresponds to a change in the current mapping L®

This construction models the usual implementation of block-structure

languages; Its apparent disadvantage is that, if it is used, such

statements as the fact that a block or procedure always does tlie

same thing, regardless of the current contents of the stack, must be

proved instead of being "built in" to the description of the language®

Further discussion is given in section 5-5®
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Recursive conditional expressions play a central role in

McCarthy's theory of computation CMoCarthy 633. In fact, McCarthy
shows that a computation theory may he built up entirely in terms

of recursive functions, including recursive conditional expressions,
without any of the usual mechanisns of assignment and transfer of

control. Roughly speaking, a conventional program P with,£ state

ments may be replaced by a functions of all the variables of P^

each of which is defined as its successor (or as various of its

successors, depending upon a conditional expression) with the same

arguments, except that the argument corresponding to the assigned

variable, if any, is replaced by the expression assigned, Ifeing li

to stand for "undefined" (which is taken as a third truth-value, in

addition to true and false), a typical FORTRAN program is expressed

in this theory roughly as followst

USITE(^ FUNCTION GGD(M, H) gcd(m, n) = i»7(A, Ji, m, n)

I = M p7(i» j, m, n) = p8(m, J, m, n)

® J = N p8(i, j, m, n) = pl(l, n, m, n)
1 IF (I-J) 2, If, 3 pl(i, 1, m, n) « if 1-.1<0 then

2 J = J - I pl,(l, J, a, n) eSe S^(l, j, m, n)

I- p2(i, j, m, n) = pKi, j-i, m, n)
3 I = I - J p3(i» J, m, n) = pl(l-j, J, m, n)

00 TO 1 p'f(i, j, n, n) » 1

If CCD = I

RETffiN

END

The definition of god(m, n) given above is equivalent to the usuAl

definition of the greatest common divisor if ffl>0 and n>0, aid cor-
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responds quite closely to the given FORTRAN prograja. Of course^

although none of the functions pi, p2, p3, p^, p7» or p8 calls

Itself, the entire collection of functions is ultimately re

cursive; for example, pi calls p2 and p3, both of which call pi®

Our derivation of the generalized effect from the single-step

function is similar to the construction of the so-called "tail

function" CMazurkiewicz 713® The tail function corresponds to the

generalized effect, and the transition function fiom which it arises

corresponds to the single-step function#

The material on multiple exits and escape is new, so far as

can be determined# The observation that the multiple use of names

does not make it necessary to assign unique names to variables in

a block structure language unless procedure calls are allowed is

likewise new (see, for example, CBurstall 703 for the "unique name"

approach)# The subject of iteration, at least in this author's

opinion, seems to have been avoided, up to now, more because of its

intrinsic cumbersomeness than due to any logical difficulty# Several

people have experimented with formalizing the "while" type of

for-list element; notice that the "step-until" type red'jjes to the

other two types, for we can always replace A step B C by

A, A+B while (C-A)xsign(B} < 0# For an alternate approach to itera-

tion, using the FORTRAN DO statement, see CMaurer 723#

Gteneralized addresses, as suggested at the end of section 5,

are introduced in CStrachey 663# The concept of the state vector as

a composition of two mappings, the set of generalized addresses for

ming the range of the first and the domain of the second, appears

explicitly in (Park 683 and also in CKaplan 683#
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SXBRCISES

!• Hovr might the syntactic rule

<eectlon> :i» <statement> | <sectlon> "i* <statement>

given at the beginning of section lf-1, be altered (using semantic

rules and semantic restrictions) In order to describe a language

which does not use semicolons 9 but rather uses one statemant per

card as in FORTRAN (assume no continuation cards), and in which a

card consists of

(a) A (S 72) characters followed by a carriage return character?

(b) exactly 72 characters, with possible trailing blanks?

2* The syntactic rule

<blanks> *1= • • j <blanks> • •

In a language in which blanks are to be Ignored, such as FORTRAN,

may be altered to

<blaito> tta 9 f j <carrlage return character> j <blanks>
• • I <blanks> <carrlage return character>

to denote the fact that a carriage return character followed by a

period Is likewise to be Ignored* Thus a period in column 1 effective

ly serves as a continuation character* Give analogous rules for the

cases in which

(a) the continuation character, a period. Is in the 72nd

column of the (72-column) card before the continuation cardf

(b) continuation la as in FORTRAN, with any non«»blank charac

ter In column 6 signifying a continuation card*
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3« Let ft CT be an arbitrary single-step function, where

^ with M* = Mu {Ai, and let P be an element of V o TreatingXtp

V. as a program counter whose values are statement indices, P is thus

such a statement index# Give explicit rules, in terms of f, for the

effect and exit index of the statement with statement index P. The

effect should be a function ei i where i =1? V^; the exit index

should be a function xt

^# Give a semantic rule involving a recursive conditional

expression for the WHILE statement, defined syntactically as follows:

statement> : •WHIU3* <Boolean expression> 'DO*

<statement>

Assume that the Boolean expression has a value, .but no side effect,

and that both the WHILE statement and the statement it contains have

an effect but always exit normally# The intuitive meaning of WHILE b

DO a is: if i is true, then stop; otherwise, do a Sind then loop back

to test again if b is true#

5# (a) M6dify the s^^tactio and Semantic ruleS given for if

statements in section to take account of statement indices as in

the example programs of that section; that is, the statement index
\

of the if statement and of the statement it contains must be properly

set up# How does this affect the semantic rule given in section 1

for the number of statements in a program section?

(b) Modify these rules further, to Include statements of the

form if B then U else V, where B is a Boolean expression and U ai^

V are statements# Hbte that either U or V, or both, may be labeled,

and that, if U is labeled and transfer is made to it, U is executed

and transfer is then made around V# This transfer may in all cases

be taken as the semantics of the word ej^e (as a complete statement)#
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6o Itodlfy the rules for

(a) factors9

(b) if clauses9

(c) arithmetic expressIons9

(d) Boolean terms 9

given In section 2-5, to allow for the possibility of escape*

7* The requirement, suggested In section 2-4., that the value

of any exit Index should be the special word jgoiged whenever exit Is

made In the normal manner, necessitates changes In certain of the

rules which we have studied* Discuss the changes. If any, which would

be Indicated In the rule for the exit Index of

(a) a general FORTRAN IP statement,

(b) an assignment statement,

(c) a statement In ALGOL,

as given In section 3-3©

8* Iteration In assembly language Is often aided by means of

special Instructions* Give syntactic and semantic rules. In the con

text of the assembly language of section 3*5, for the Instruction

LOOP I

which decrements I by 1 and skips the next Instruction (which Is

presumably a transfer back to the beginning of the loop) If I ^ O,

after the decrementing operation* (The H)P-10 instruction SOSIE —

Subtract Om and Skip If Lass or Equal to zero -m* does this, amoni^

other things*)

9© Consider the statement made In section W5 that the final

values of any variables not defined In a block must not depend on

Initial values of any variables defined In the block* Dbes this 1®*
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ply that every variable defined in a block must be set to some value

before it is used — that is^ must appear on the left side of an as

signment (in execution order» and assuming no side effects) before

it may appear on the right? Why or why not?

10» Consider the statement made in section ^5 that it is not

necessary, in the absence of procedures, to consider state vectors

with more than one -component, for a given variable name oc* When

ALGOL-style procedures are present, we showed here that this state

ment no longer holds; but our example involves an ALGOL convention

not present in FORTRAN — namely, the ability, within any block, to

use quantities declared not only in that block but also in any outer

blocko Thus, in the example, we called loop(x) from inside the inner

block, although the loop procedure was defined at the outer level•

Suppose now that the FORTRAN style of subroutine cslling is used.

Since FORTRAN does not use recursive subroutines, it is possible to

arrange a program and its subroutines in order, in such a way that

any program calls only programs before it in order (or only programs

after it in order). Under these conditions, is it possible, as we

have done in the absence of procedures, to use state vectors with

only one ^-component for each variable name t<?
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CHAPTKR FIVE

DECLARATIONS

5-1 £23^ Declarations

The purpose of declarations in a program is normally to state

certain properties of identifiers in that program® In our terminology,

the declarations determine the errviroig^, which is considered as a
set of ordered pairs® Each declaration contributes certain ordered

pairs as its lo^^ union of all the local environ
ments is the environment of the program, which is then inherited by

each statement in the program® These relations are expressed by the

following simplified description of programs in which declarations and

executable statements are separated by semicolonsi

<set of declarations> 2 ' <declaration> dj y ? ja <set of

declarations> ja ';» <dec.larat.3,on> £

<local environment> x^ » d^j y^ = U

<program> £ : :== <set of declarations> £ <set of statements> ^

<set of stat€ments> 2 <statement> S.! Z * <set of

statements> & *5• <statement> i

<environme nt>y

s^ = z^ = y^5 t^ =

It is further assumed that the environment is inherited by the com

ponents of a statement — the expressions, factors, terms, and pri-
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mary expressions, and ultimately by the variable names# This is ne

cessary in order to determine all properties of a variable name which

will be used in the synthesis of values of expressions, effects of

statements, and so on©

The semantic rule b^ = in the definition of a program given

above is still another variation on the concept of an inherited at

tribute. The set of statements b is here inheriting its environment

from its "brother," the set of declarations a. Like the rule for the

label function of a compound statement given in section ^-1, this

rule may be replaced by two conventional "father-to-son" rules, namely

<local environraent> ~

In a language in which the only declarations are type dec3.ara-

tions, the environment may be cast in the form of a tj^e function,
as studied in section 2-lfo If this function is called t, then tCjc)

is the type of the variable x. The type function for ALGOL type

declarations (ignoring the use of own for the moment) may be con-
\Aaa "

structed by using the following rules:

<type> £ •real*: i •integer*; b : *Boolean»

•Ctype set> ^ real; = Integer; = ftrue, false?

<type declaration> d <type> t <type list> 2

x^ = t^

<type function> d^ = x^

<type list> : :=s <simple variable> s;* £ s<simple

variable> *, * <type list> 2i

<type set>"^
t tz = y*'

<type fimction> = ?Xt, x^)|; = |'(w,
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Thus, in particular, the type declaration

Inte^ xl, x5, zeta

would have as its type function the set of pairs

^(xl, integer)a (x5, integer), (zeta, integer)?

We have made a distinction here between the keywords real and integer,

which appear in ALGOL programs, and the sets real and integer, which

are sets of all allowable real numbers and integers re^ectively#

These sets may be defined in different ways, of course, for implemen

tations on different actual computers© Note that type lists in

volve "simple variables" which are, in particular, not subscripted

variables ©

When a language contains other declarations, we might try to

set up a separate function, like the type function, for each kind of

information to be attached to a variable name© This, however, would

mean that each of these functions would have to be a separate in

herited attribute© It Is somewhat simpler to have a single function

of two arguments, of which the second is a special keyword descri

bing the kind of infonnation being passed© This is the function which

we shall, from now on, call the environment® In the case of type in

formation, we shall use the special keyword tj^© Thus for the example

;eger xl, x?, zeta

of a type declaration given above, instead of a type function t with

t(xl) = t(x5) = t(zeta) =5 integer, we wish to construct an environ

ment y with yCxl, t^pe) = y(x5, tyge) = yCzeta, 5^) = integer© This

means that the set of ordered pairs we wish to construct becomes

S*((xl.t^). integer). ((x^.t^). integer ). ((ze ta. t^).integer )Z
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and the construction may be made by giving a semantic riile for a

local environment, rather than a type function, as follov;s:

<local environment> = C((v, type), y^ =

Strictly speaking, if the local environment is we now have 3{(v,

ty^)) = t, rather than z(v, t^ge) = t, where v is a variable of type to
The type function, or the type information in the local envi

ronment, determines the set of all state vectors which forms the do

main of the functions giving the value, effect, exit index, etco, of

various nonterminals in the language. If t is the type function and

S is in the set of state vectors we wish to determine, then 3 Juis the

same domain as t, and S(x), for each variable x, is a member of tlie

set t(x)o The set of all state vectors having this property will be

called the state vector domain t^ of the type function to Thus

= ^S: domain(S) domain(t) and S(x) £ t(x) for all x £ domain(t)}

If the nonterminal x (say) has the associated type function x^, we

shall denote the state vector domain of x"^ by x^^# (Recall the dis

cussion in section 1-3; if were denoted by D. , and x^ by t , then
T/ X

would have to be denoted by D,. , involving two subscript levels,)
X

We shall use y^ for the state vector domain of a more general envi
ronment y, with the understanding that y^ depends only upon the type

information in y; thus

= iS: domain(S) =-^x: y(x, t^J®) is defined^
and 3(x) = y(x, type) for all x domain(S)t

In all of the semantic rules which have been presented so far,

the domain of the state v^JCtor fimctions which are semantic at tributes
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has been left understood. If we wish to specify this domain, we may,
in the interest of brevity, include it within the parentheses which

enclose the first usage of a state vector in that domain, the state

vector symbol (normally S) then being followed by ^ (is a member of).

Consider, for example, the first semantic rule involving state vectors

given in section 2-3*

<expression> £ s:ss <term> 2 <term> ^

<value> e'̂ '̂ CS) = v^(S) + w^(S)

Suppose now that an expression also has an environment, which is,

as usual, an inherited attribute. Then we might write

<expression> £ tia <term> j •+* <term>

<environment>3^

yy = 0^5 wy = ey

<value> e^(S 6 e^) = v^(S) + w^(S)

By writing e'̂ (S € e^^), rather than simply e'^(S), we are defining
the domain of e^ as e^. The state vector symbol S may then be used,
as usual, in the remainder of the semantic rule.

We have assumed throughout this section that our language is

such that all declarations precede all executable statements. In some

languages, this does not hold; declarations and executable statements

may be mixed (and in fact the word "statement" often becomes a more

general term, so that a declaration is also called a statement). In

such a case, the following general rules may be used*
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<prograin> jf <declaratlon> d; jc : <executable

statement> 5,5 £ <program> £ <declaration> e;

<prograin> * <executable statem0nt> i

<environment>2^

= (^5 py = yy- qy = 2^5 ty = ^

<local environnient> = d^; x^ = U

<complete program> ::= <prograin> £

py = p^

Here it is assumed, as before, that d^ is the set of pairs associated

with do The nonterminal <complete program> used here involves an

end*-marfc^, a standard technique often used with syntactic rules•

The end-marker here is end, and it is assumed that no other rule in
WW

the description of this language involves ^ndo If this is true, and
the string S is a complete program, then no initial substring of S is

a complete programo That is, if the characters of S, in order, are

c^, •••, c^, then the string consisting of c^, •«•, Cj^, for k < n,
cannot be a complete program unless k = n© This property of languages

is very convenient for the purposes of compilers and other translators

which work on a program from left to right5 if the property does not

hold, such a translator might very easily "stop too a) on" and trans

late only part of the source program®
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<•-2 Array Daclaratlona

In a language In which array dimensions are always Integer

constants 9 each element of each array may be thought of as belonging

to the domain of the type function, as defined above# Thus for an

array In FORTRAN given by DIMENSION A(3), there are three real vari

ables, A(l), A(2), and A(3); If t Is the type function, then t(A(l})

« t(A(2)) = t(A(3}) = real# We may construct a simple rule for such

array declarations as fbllowss

<array declaratlon> i, :?= 'DIMENSION* c^lable> y •('

<lnteger> i •)•

<type functlon> dF = ^(concat(v, •(•, k, •)', v*)i
1 i k i 1'^

It is assumed here that the Integer 1 has value 1^, and that the

variable v has type v^, which Is in this case Its default type

(IntegOT If V begins with I, J, K, L, M, or N, and ^gfil otherwise)#

We have introduced he^e still another way of giving a semantic

rule# Instead of specifying the set d^ by listing all Its elements,

or by an operation such as Intersectlon^ union, or cartesian product,

we have specified It here as the Image of a function# If X Is any set

and f Is any function whose domain Is X, then

^f (x) I XS X?r

stands for the set of all elements f(x) for all x £ X# The definition

of above Is effectively of this kind; the set X Is the set of all

Integers between 1 and the value of 1, Inclusive, while f(l), for the

Integer 1, Is the ordered pair (A(l), t), for the array A of type t#

The function concat(8^, ###, s^^) Is defined as the string formed

by concatenatlaig the strings s^, ••#, s^« Its appearance In the above
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rule is a slight abuse of notation, since Jc is an integer, not a

string© In fact, we do not need to use the concatenation function

if we agree that the ordered pair (A, i), rather than the string

•A(i)*, be in the domain of the type function for each i© Our rule

for the type function of an array declaration would then read

<type function> d^ - U(v, k), v^)i 1 £ k ^

In the case of DIMENSION AO), the type function would thus be the

set of pairs

^((A, 1), real), ((A, 2), real), ((A, 3), rgal)|

Generalization of these rules to multidimensional arrays,

and to array declarations with specified types, is immediate© The

second element of each pair (A, k), where A is the array name, is

now itself an n-tuple of integers, for n-dimension£tl arrays© iCC ^

is the list of subscript bounds for a given array, we shall denote

the set of all such n-tuples which are legal for that array by b**©

The rule for array declarations now becomes

<array declaration> d : <type> t <variable> 2 •(•

<subscrlpt bound list> i •)•

<type function> d^ = ^((v, k), t^)j k €. ^

The method of definition of d^ is essentially the same here as it

was before; the second element of each pair ((A, k), t) is now the

set of values of the given type i, rather than being determined by

the variable name 2»

To derive b^ from b, we may use a semantic rule involving car

tesian products© If the subscript bound list is a list of integers

separated by commas, giving the upper bounds, While the lower bounds

are always 1 (as, for example, in FORTRAN), the rule becomes
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<sub3crlpt bound Xlsb> 2 <lntegep> 2 ^ <subserlpt

bound Ust> a •»' <lnteger> ^

<set of n<>tuples> x** a ^k* 1 k ^ i'J{ = z*' x
?lcs 1 ^ k i

Here, as before, and J* are the respective values of the integers
1 and J« This semantic rule Involves still another method of speci

fying a set, namely the set of all quantities satisfying a certain

property. If X is a set and P is a property of elements of X, then

^x e X: P(x)\

stands for the set of all elements of X which have the property P.

In the above rule, strictly speaking, we should write ^k £ tote^t

1 i » rather than simply fk» 1 ^ k ^ v}, where v is either i'
or and where integer, as before, is the set of all allowable in-

tegerso

We may generalize the above rule for subscript bound lists to

make them look like bound pair lists in AXiGO^^ although still re

stricting them to be integer constants rather than e::^essionst

<subscript bound list> s ^«=» <integer> a ®• <integer> Jjj

2 s«a <subscript bound list> a <integer> g.

*t • <integer> 4

b*)

(o' ^ d')

<set of iii-tuples> =-fki a"^ k ^ b |̂} X
{lii 0^ St k ^

Note still another use of semantic restrictions ^ this time to insure

that each lower bound is not greater than the corresponding upper bound
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Array declarations may be further generalized to allovr several

arrays to be declared at once^ just as type declarations may declare

the type of several variables at once# ALGOL involves another kind

of generalization: if several arrays have the same bounds, then the

bounds need not be specified except for the last of these arrays.

Thus, for example,

a, b, c[1:1003

has the same meaning as

jgal ^rr^ aCl:1003, bCl:100], c[1:1003

which in turn has the same meaning as

arrg^ bCl.lOO]; ^ cCltlOO]

— that is, it declares three arrays, a, b, and e, each containing

100 real numbers. In fact the word rea!t may be omitted from such a

declaration in ALGOL^ so that we could have written simply

^r^ a, b, c[l:1003

in the first place. Syntactic and semantic rules to cover these

generalizations may be given as follows:

<array declaration> ^ <array list> Z *2=

<type> i •arre^* <array list> ^

<type function> = a^; y^ « b^

<a'ray list> ^ <array segment> ^5 y <array

list> <array segraent> i

<type set>^
t t t t ^t ts = x"; z = y 5 t^ = y^

<type function> - s^; y^ = z^ u t^
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<arpay segment> ^ Oarray ldentifler> i <subscrlpt bound

lisfe> i; 2 carray ldentlfiep> i S* <^rray

segment> s,

<type set>^
t t

= y

<set of n-tuples> = b^j

ctype functlon> y? = k), x^)s k € b^}; a
k), y^)i k €

where subscript bound lists are as defined above®

When a subscripted variable is used® the semantic rules for its

value depend upon the form of the semantic rules for its declaration.

In ALGOL, we may write

<variable> 22:= <simple variable> H <subscripted

variable>

<L-value> = s® j
<iralue> v*(S) = S(v4(S))j w'(S) = SCw'̂ CS))

using the relation between values and L^values given in section 3-2«

This makes it necessary to define only L-values, and not ordinary

values, of simple and subscripted variables® The L-value of a simple

variable, of course, is the variable itselff this is a constant func

tion of the state vector. The L«^lue of a subscripted variable de

pends on the evaluation of the subscripts, v^ich in turn d^ends on

the state vector. Let us assume that each subscript list (that

is, each sequence of subscripts, separated by coimiias) has as a seman

tic attribute an n-tuple of Integer values Which is a function of the

state vector. Such an attribute might be defined, for example (in the

absence of side effects, and assuming no type conversion) by
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<subscript list> 2 • <subscript expression> jg.; x

<subscript list> z. <subscript expression> ^

<n-tuple of values> x^(S) = s^(S); y^(S) =

concat{z^(S),

<subscript expression> Si s s= <aritliinetic expression> a

<value> s^(S) = s^(S)

(a^(S) z Integer)

where is the type of the arithiaetic expression a. (In the pre

sence of side effects, we \gD nld normally, as we have done before,

assume that evaluation takes place from left to right.) Subscripted

variables may now be defined by

<subscripted variable> z •'= carray idQitifier> ^

<sub5cript list> i ']•

<L-value> s^(S) = concat(a, t^(S), •]•)

The of an identifier is the number of subscripts that

should follow ito By including rank information as part of the en

vironment, we may make semantic restrictions which insure that the

numl>sr of subscripts in any use of an array name agrees with tlio

number of subscripts appearing at the time it was defined© We sim

ply add to the definition of array segments, given above, the seman

tic rules

<pank> =s b^; y^ rs 2^

<local environraent> x^ = f((l, rank), x^)J: y^ =

2^ u ^((j,

where Is the length (defined in the obvious manner) of the sub-

script bound list b; if this local environment is synthesized and in-
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herlted In the manner described in the previous section, then vre
may Include the semantic restriction

{s^(a, rank) = t^)

on the rule above for subscripted variables, where s* is the envi^

ronment of the subscripted variable s and t° is the length of the

subscript list t» Mb may also.include the restriction

(v^(l, rank) = 0)

on the rule for the unsubscripted variable v which is being defined

as the identifier i© To complete the picture9 we may then Include

rank as well as type information in the local environment of such an

unsubscripted variable» giving the rank of such a variable as zero©

Thdse rules asisure lus . that ^nb variable name can occur in a program in

both subscripted and unsubscripted form, and that every subscripted

variable must be declared as such©

Can semantic restrictions similar to those above be imposed

to insure that subscripts never go out of range? Except for constant

subscripts 9 the answer is no5 even when the subscript bounds are con

stant© The problem is that we have no way of knowing, in general,

whether a given variable will stay in bounds© If the subscript bounds

are constant, we may define a subset of state vectors for which the

subscripts are in range as the domain of state vector functions in

volving subscripted variables© This device may be extended to handle

the case in which the subscript bounds may be variable1 we associate

with each array name two new variables, a lower bound variable and

an upper bound variable (only the latter is needed, of course, if the

lower bound must be constant, as in FORTRAN). The values of these

variables are always the current bounds, and, since these variables
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have state vector components, we may, just as before, determine a

set of state vectors for which the subscripts are all in range —

a state vector being in that set if it specifies bounds which it then

satisfies#
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?**3 Declaratloi^

We now pass to a kind of declaration which is not found in

ALGOL, although it is found in FORTRAN and in PL/It the declaration
which imparts initial values to certain variables • In FORTFIAN, this
is called the DATA declarationo Thus

DATA P, Q, R/5oO, -.^ttO, 3»0/

gives the initial value of P as 5.0, of Qas -7.0, and of R as 3.0. In
PL/I, the same initial values would be given to the same variables by

DECLARE P INITIAL (5.0), Q INITIAL (-7.0), R INITIAL (3.0)

^ variable in a program is given an initial value in
this way, the result is an initial state vector the final state

vector is then eCS^), where e is the effect of the program. In some
languages, and under some operating systems, any variable which is

not declared to have an initial value is given one by default. Thus,
in SNOBOL, the initial value of every variable is taken to be the

null string of characters^ while many operating systems clear the

data area before execution, that is, they set all cells in this

area to zero. In such a case there is always a single initial state

vector, whether initializing declarations are present or not.

How should the initial state vector be defined in case the

program variables are not all given Initial values? One solution

is to introduce a new value, "undefined," often denoted by Si. When

Appears as an'argument of any function, the value of that func

tion is taken to be ilj in particular, H + n =52 , - n =Jl, and so
on, for every n. The initial value of any variable is now defined

to be whenever it is not defined otherwise. Thus we have an ini-
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tial state vector^ some or all of whose components may be 51; cer-»

tain components of the final state vector, of course, may then con

ceivably also beiZo However, normally this does not matter, as long

as the undefined components do not represent output of the program.

We may note that the use of is often indicated in other situations;

for example, it is the k-component of e(S) where e is the effect of

any ALGOL statement beginning for ki= and S is any state vector

for which this statement exits normally, since in that case the ALGOL

report specifies that the value of k is undefined after a normal exit.

If the introduction ot Si seems unnatural, we may choose, in

stead, to deal with a collection of possible initial state vectors©

Let M be the set of all variables of the program, and let M* ^ M be

the set of all those variables which are initialized either by de

fault or by the use of initializing declarations. Let e be the effect

of the given program, as before, and let be a particular initial

state vector, that is, one which assigns to each variable in M* its

given initial value© If S is any other initial state vector, that is,

if S agrees with Sq on M*, then it is reasonable to demand that e(S)

must agree with e (S^) on some other set M" ^ M, which Usually, although

not necessarily, consists of the output variables of the program;

that is,

(s|m» =Sq!m«) ^ ((e(S))|ff' = (e(SQ))|M»)

This equation may be made into a semantic restriction on any pro

gramming language, provided that e, S^, M*, and If' are appropriate

semantic attributes. We have already discussed the effect e of a pro

gram as a semantic attribute of it; the set M" may be determined in a

straightforward manner, for example by reference to the kinds of

output statements occurring in the given program. It remains for the
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initializing declarations to specify and K® as semantic attributes •

(We note that) in the case of the for statement above« its effect

will be a multl^valued function if we Qaxvy through the philosophy

described above, avoiding the use of il©)

We shall determine a semantic attribute of programs which may

be called the partial i^tial gt^e vector© It is a state vector

whose domain is M®, and which is given by semantic rules as a set of

ordered pairs© Any state vector of the program whose restriction to

M® is the i)artial initial state vector, as determined in this way,

may then be taken as Sq© In the case of the DATA declaration ih

FORTRAN, or its equivalent in PVI» which were introduced at the

beginning of this section, the set of pairs

?(P, 5.0), (Q, -7.0), CR, 3.0)"^

would correspond to the partial initial state vector© Our first task

is to associate a function i with each list of values, such that v(i)

is the value of the i-th element of the list© Thus for the list

^©0, 7*0, 3oO

we would have v(l) = 5©0, v(2) « 7*0, and y(3) = 3©0. In the simple

case in which each value is a single constant, v may be defined by

<list of values> x <constant> c; y 58= <list of

values> z, * <constant> d

<length> x^=l5 + 1

<value function> = ^(1, c^)"^} \J f(y^, d"^)!

where cP and d"^ are the respective values of c and Value func

tions, like most of the other functions we have introduced as seman

tic attributes, are given as sets of ordered pairs©
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DATA declarations in FOliTIiAW also permit elements of the form

n*v to appear in a list of values, where n Is a positive Integer and

V is any constant; the meaning of this construction is "repeat v, n

timeso" To allov/ such elements, wo might write

<list of value3> <constant> a; 2 5:=

<integer> ^ <constant> i; 2 ::= <list of

value3.> ii <conr>tant> c; ^ <list of

values > <integer>J. <constant> ^

<length> w^ " 1; ^ i*^; + !• 2^ = v^ +

Cvalue function> ^ ^(1, a'"')}; -= f(k, 1 ^ k

^ 1^; o f(y°, c')}} 2^ . u
\(k, d^): v^ < k < z^i

The DATA declaration itself is now defined by

<DATA declriration> d ::== *DATA* <list of var iables> x

<list of values> y •/'

<partial initial state vector> d^ = x^

x^ = y^

(x^ = y^)

where a list of variables, in the simplest case, is given by

<llst of variables> 2 <idai tifier> i; y : ;=s <list of

variables> 2 S* <i.ientifier> J[

<length> x^ -- 1; y^ + 1

<list of values

<partlal Initial state vector> x^ = f(i, x^(l))^;

yP = 1/ Uu y^(y^))^

We have required here, by the sa/iantic restriction (x^ =a y^)» that the
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length of the list of values be the same as that of the list of

variables. This restriction may be generalized to ^ y^ vdthout
further altering the semantic rule.

The rule for a list of variables may be generalized to permit

implied looping, so that, for example, the statement

DATA (A(I), l=l,10O)A00*0/

may be used to set the variables A(l) through A(IOO) to zero. The

generalized rule must be accompanied by a rather subtle semantic

restriction: we uld like to be able to replace A(I), in the above

example, by A(I+1), by A(I, I), or even simply by I, but not by

A(I, J); that is, we do not want the statement

DATA (A(I, J), I=1,100)A00»0/

to bo legal (since this is merely a declaration and the valt© of J

would be unspecified). We may obtain the names of the variables which

should appear in the partial initial state vector by finding the

L-values of the variable which appear;^, applied to state vectors in

which the component corresponding to the implied loop index Access-

ively assun»s all integer values between the given lower and upper

bound. The semantic restriction mentioned above is then the state

ment that the L«values of this variable applied to any two state vec

tors are the same whenever thoSe state vectors have the same loop

index component. Assuming tliat a variable v (whether simple or sub

scripted) always has an L-value v-^, a rule for lists of variables may
then bo given as
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<llst of variables> ^ ;:= <identifier> £5 2

<variable> ^ <ldentin.er> i <integer> ^

<integer> e ")*; z •• 'list of variablos> iJ S'

<lclGntifieT> d; ^ <list t€ variables> y ',(•

<variable> b <identifier> J '=* <integer> t

•,• <lntegGr> f •)•

<length> - 1; -- + 1; 1|

+ fV - t"^ + 1

(s < e)

(t < f)

<list of values>^

<partial initial state vector> wP = w^(l))};

xP = x^(k-s+D): s <"k £ where S^(i)
=k| yP = uP u i(d, y^(y^))5; =v^ u f(b^(Sj^),
z^Cv^+k-t^-D): t ^ k < where Sj^(j) = k

(s < S(±) = S«(l) £ e ^a^S) = a'̂ CS*))
(t :< S(j) = S»0) £ f ^>^>'̂ (.5) = b%«))

This rule may easily be generalized to DATA declaratibns such aS

DATA (A(I), B(I), I=:l,99,2)/100*0/

in which two or more variables may appear before the loop indox^

and in which the step size may be greater than 1® We note that a

list of variables is also used, for example, in a FORTRAN READ state

ment such as

READ (5, 22) a(I), B(I), 1=1,99,2)

but here the semantics is slightly different! in particular, the

semantic restriction made above is not applicable in this case,

since a READ statement is executable and makes reference to current

values of all variables© -ly-,.-



5-^ Procedures and Parameters

There are two general forms of syntactic rules describing the

interaction between a program and its subroutines® In the first, as

exemplified hy FORTRAN, programs areogrouped .Into "collections of

programs" which may be defined simply hy

<collection of program3> <program>j <collection of
p3x>grams> <program>

The end of a collection of programs is normally an end-of-file card

or something similar® In the second form, as exemplified by ALGOL,

there is a hierarchical structure of procedures® There is an outer

most procedure, and every procedure tecept the outermost is subor

dinate to some other procedure® Both these forms may be combined in

the description of a single language, as in PL/I®

A program has an effect, which we wish to associate with the

name of that program® In the simplest case, we have a function l^om

procedure names into effects© This function is an attribute of any

collection of programs, and is inherited by each program in the col

lection and ultimately by each expression in such a program® When an

expression contains a function reference, the value of that reference,

as a semantic attribute of it, is determined agr a fudotion of the

state vector by evaluating the effect, as determined by the function

described above, and then applying the resulting state vector to the

function name as a variable® The effect itself becomes the side ef

fect of the function reference® In a more general case, we can have

a second function from procedure names into exit indiCCs^^ind this-

may be referenced to find the exit inde:^'of the;giv0fn:'.ft!hotion reference®

(This extends the philosophy expressed at the beginning of section ^3®)
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In line with the discussion in section 5-1, we shall include

both of the above functions as part of the environment# If y is the

environment, then y{n, ef^^) will be the effect of the procedure

with name n, and y{n, exit) will be the exit index of that procedure.

The contribution to the environment which is made by a single sub

routine is then specified by a rule such as

<subroutine> ^ :::= •SUBROUTir®* <subroutine name> ja <body> ^

<local envirDnment> u f((n, effect), b®),

((n, exit),

where b® and b* are, respectively, the effect anl the exit index of
the body b of the subroutine, and b^ is the local environment of the

body, including type, rank, aa d other information contributed by de

clarations in the subroutine. If we agree to use the superscript 2

for the local environment of a main program and of a function, as

well as a subroutine, the synthesis of the local environment and the

inheriting of the global environment may be given by rules sucj-i as

<complete collection of progr?uns> :;= <collection of

programs> c <end marker>

~ c^

<collection of progranis> 2 • <program> y J

<collection of pro3rams> 5 <prograra> ^

<local environment> x^ ~ p^j y^ - 2^ o

<environment>y

py = xy; ^y = yy? qy = yy

<prograra> 2c : ;= <raain program> y <function:^ f;

5 ::= <subroutine> ^

<local environfient> x^ ~ m^; y^ ^ f^j 2^ = s^

<environrae nt>y

my = x^; fy ^ yy,. sy --- 2y
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In ALGOL^ there is^ as we have seen^ a separate enviponment

for each blocko Ppocedure declarations in ALGOL are treated on the

same basis as any other declaration. The collection of all the de

clarations in a block, together with the word ^egin at the beginning
of the block, is csi led the block heada Its syntax and semantics are

<block head> 2 <declaration> 4; 2 1:= <block

head> ' 5• <declaration> q,

<local environment> = z® u

where declarations are described by

<declaration> "}£ 11= <type declaration> Jjj; 2 * <array

declaration> a; 2 1:= <switch declaration> 2.5

2 : ts <procedure declaration> £

<local environment> = a^l y^ = s^| z^ =

The local environment p* of the procedure declaration p consists

of pairs of the type ((n, ^ff^), e) and ((n, exit), x), just az
the local environment of the type declaration t, for example,

consL St s of pairs of the type ((n, ), t) ®

I^t us now turn our attention to parameters. A formal para

meter in a program is somewhat like a variable of that program^ In

particular. It has a state vector component. However, when a formal

parameter is used as a primary expression, its semantics are not the

same as the semantics of an ordinary variable, unless the parameter

Is called by value. If the parameter is csiled by name, in the ALGOL

sense, then, as a primary expression, it may have a side effect} in

fact, it must have a side effect if the corresponding actual para

meter does. Likewise, if the corresponding actual parameter makes

any abnormal exit, then the formal parameter must be considered as
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making an abnormal exit as well.

We shall model this behavior^ semantically, by altering the

form of the values of formal parameters. When a formal,parameter is

called by value, its values will be taken to be the values of the

corresponding actual parameter. When a formal parameter is called

by name, hov/ever, its value is an n-tuple, consisting of all of its

necessary semantic attributes# If it appears as a primary expression,

its value is an ordered triple (u, e, x), whore u is its L»value as

studied in section 3-2, e is its effect, and x is its exJ.t index.

The ordinary value is then obtained from the L-value in the manner

described in section 3-2© This ordered triple of state vector func

tions determines the semantics of the formal parameter as a primary

expression.

It is also, of course, possible for a formal parameter to be

called by location# as in FOP.TRAJV. Call by location does not lead to

side effects or escape, but it must be treated differently from call

by value. We shall consider the values of parameters called by loca

tion to be variables, that is, elements of the domain of the state

vector functions under consideration. When such a parameter is used,

the corresponding component of the cuiTent state vector becomes its

L-value, from which the ordinary value is obtained just as before.

Au actual parameter called by valne as in ALGOL is evaluated

once and for all, just prior to the subrouti ne or function call. There

are other slightly different forms of call by value; for example, one

of the FORTRAN compilers for the IBM 3^0 allows t?ie user to call any

parameter by value, but this value is retiuuied at the end of the sub

routine. Thus if o( is the actual parameter and p the formal parameter,

the compiler effectively sets p~iK at the start of the subroutine —

but it also sets at the end >f the subroutine. (This eliminates
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the most Important disadvantage of call hy value in ALGOL, namely

that a parameter called hy value does hot have the intended effect

if it is used on the left side of the assignment symbola)

The correspondence between actual and formal parameters may

be treated as assigning the formal paramd: er to the actual one, no

matter how the parameters are calledo If they are called by value,

the new value of the formal parameter becomes the value of the actual

parameter. For call by location, the new value of the formal para

meter is the actual parameter itself (as a variable). If that vari

able is subscripted, the new value is that variable which results

from evaluating the subscripts and taking the element of the array

with integer subscripts as found by evaluation. For call by name,

the new value of the formal parameter is the n-tuple, as described

above, of semantic attributes of the corresponding actual parameter.

This assignment of formal to actual parameters may be considered as

an executable statement which is executed Just before the given sub

routine is called (and, in the case of IBM 36O FORTRAN mentioned

above, another executable statement executed afterwards). Like any

executable statements, these may have abnormal exits, as, for exam

ple, when an actual parameter called by value is an expression in

volving a function which escapes.

In order to distinguish between parameters called in different

ways, and between parameters and other variablesf we may introduce

a new keyword, gem (for "parameter calling method"), analogous to

^ijjge and If V is any variable and y is the envlrons^nt, then

shall be name, 1^, or lor v called respectively by

name, by location, or by valtes, or g0ne if v is not a parameter. A

simplified rule for primary expressions, omitting all stjCh expressions

other than simple variables, may then be given as
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<prlmary> £ :s= <varlable> ^

<envir onment

i7

<value> p^(S) = S(v^(S))

<si de effect> p^ (S ) • v® (S )

<exit index> p^(S) - v*(S)

<Yariablo> y. <siriple variable> £

<environment>^

<Ii-value> v^(S) = if is j = mme then u(S), where
S(s) (u, e, x), else i£ v^Cs, = loc then 3(s)

else s

<side effbct> v®(S) v^Csj j^) =: t?ien e(S),
\diore S(s) - (u^ e, x), else S

<exit index> v^(S) : i£ v^Cs, pern) name then x(S),

where S(s) = (u, e, x), else normal

The parameter callinc method information is introduced into the en

vironment in a straightforward manner ©Any forma l.»parameter f" gives rise

to the ordered pair ((v, gem), loc) in FORTRAN, or ((v, pern), name)

in ALGOL© Any forioal parameter V occurring on the value list in ALGOL

(that is^ following tl\e keyword ya^e) gives rise, in addition, to the
ordered pair ((v, gem), value), and the correjp ending pair (Cv, pern),

na^) is removed from the local environment© Any ordinary variable v in

either FOHTIIAW or ALGOL gives rise to the pair ((v« pern), none)©

The effect and the exit index of a procedure with parameters

are functions of the list of actual parameters© Wlien such a proceduiv)

is called, a list of actual parameters v/ill be given, and to this list

we apply these two functions, obtaining the effect and the exit index

of tho procedure call. When a procedure is defined, it has an 'Effect

and an exit index which do not depend on actual parameters, but which
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involvB the values of formal parameters • This effect and exit index

are combined with those of the operations which initialize each

formal parameter to the corresponding actual parameter; these lat

ter operations, of course, are themselves functions of the actual

parameter list. The result will be an effect and exit index"of

the procedure as applied to its own environment, and this must then

be altered, as it is for blocks, to produce the effect and exit index

of the procedure as applied to the environment of each procedure call.

Note that initialization of a parameter called by name must always

exit normally, whereas initialization of a parameter called by value

involves evaluation of the corresponding actual parameter and there

fore may not exit normally. Even if the procedure does nothing what

soever, it may, Ux such a case, exit abnormally.
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storage Mappings

In some languages, it is possible to treat declarations as if

they were executable statements« This is particularly true in block

structure languages if we take into account the usual method of im

plementing such languages on computers. At any given time during exe

cution of a program in such a language, the first k locations in

memory, for some k, will be in use. When we enter a block, we encoun

ter various declarations. Each of these requires the allocation of,

let us say, new cells of storage, and these are normally cells ]c+l

through Ig+j,. The implementation will involve a variable (let us call

it SIZE) whose value at any given time is the total number of cells

in use at that time. In this case, the value of SIZE ^lould be

after the declaration, where it was ^ before the declaration. Thus

we may think of executing any declaration by increasing the value of

SIZE by the number of calls which that declaration requires.

It is expected, in addition, that executing a declaration will

change the current assignment of program variables to storage cells.

This assignment is called the ^toraje it is a function from

variables to cells. If the value of SIZE is a declaration alloca

ting J[ new cells will augment the current storage mapping so that it

maps certain variable names into the cell numbers fe+1 through

Each cell has a current value at any time, and the function from cells

to their current values is called the content of the store. The cur-
sA/SA/.'VN/^ VV V/VA- v/v/Vv/'v*

rent value of any variable, in this situation, is found by reference

to both the current storage mapping and the current content of the

store. If M is the set of all variables of the program, C the set of

all storage cells, and V the set of all possible values, then the

current storage mapping is a function M->C and the current content
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of the s^re is a function C while the current value of any

variable x € M is cr(o((x)).

Entry into a block and exit from a block, in this situation,

must also be treated as executable statements • V/hen we exit from a

block through its ^ statement, SIZE must be decreased by the anount
of space allocated for that block® This amount may change fEom one

entry into the block to another, particularly if the block contains

array declarations with variable array bounds® The amount pf space

allocated for any block is thus the value of a second program vari

able (let us call it BSXZE)® Every time a declaration is executed,

SIZE and BSIZE are both increased, and by the same amount® In addi

tion, BSIZE must be initialized to zero at the beginning of the block,

which makes entry into any block executable as well® At the beginning

of the outermost block, both SIZE and BSIZE are initialized to zero®

When exit is made from two or more blocks in succession, SIZE

must be decreased by the sum of several quantities, all of which are

essential components of the current state of the computation® If we

are inside several blocks, the value of BSIZE for each of these blocks

must be stacked® Experience with block structure languages ^ows that

only one stack is necessary, and we may treat it as a variable whose

values are sequences of those things that are currently stacked® Such

a sequence may be null, in which case we denote the value of the stack

nil® If the stack is called STACK, the effect of pushing down X is

given by

e(S) = S«, where SKz) = S(z) for z / STACK

and S»(STACK) = S(STACK) = (x^, x^f
•••, x^) then (X, x^, x^, .o®, x^^) elsp (X)

In the "else" case, of course, it is assumed that S(STACK) = -

The effect of popping up X is then given by
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e(S) = S', where S«(z) = S(z) for z X, STACK, and

St(X) = x^, S»(STACK) = (x^, x^),
where S(STACK) = (x^^, •••, x^)

and this operation Is undefined If S (STACK) = ail*

Using this concept of stacking, we may now define the effects

of the operations associated with a block# We assume that the cur

rent storage mapping Is a variable, SMAP, whose value Is a set of

pairs. That portion of the current storage mapping which represents

a contribution from the declarations In the current block will be

given as another variable, BMAP, of the same form as SmP. The value

of BMAP or of SMAP may be denoted by nil If It Is the null set of

pairs. In the absence of multiple use of names, the effects of en

try Into a block, of a typical declaration, and of normal exit from

a block may be described as follows:

Begin: push BMAPj BMAP:=nil: push BSIZE; BSIZE:aO

integer x: SIZE:=:SIZE+l5 SMAPi=:SMAP u ^(x, S(SIZE))^j

BSIZB:r=BSIZE+l5 BMAP:=aMAP 0 f(x, S(SIZE))?

End: SIZEir^IZE-BSIZE; pop BSIZE; MAP:=MAP-BMAP

(where the minus sign denotes the difference

of sets of pairs, that Is, removal of all

pairs In BMAP from those In MAP); pop BMAP

If multiple use of names Is permitted, we may remove from Sl^P any

pair which conflicts with a newly Inserted pair at the time of In

sertion (that Is, when executing a declaration) and add this pair

to another set of pairs called UMAP (U for "unused"). The operation

MAP:=MAP-BMAP now becomes MAP:=:(MAP-BMAP) \j UMAP. When we begin a

block, we push UMAP and set It to sJlJ when we end a block, we pop

UMAP. Care must be taken, of course, to pop quantities In reverse
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order fl*om the order in which they were pushedo

The effect of an abnormal exit from a block depends upon the

block level of the exit point* An exit fiom a block by going to the
next outer block level is treated exactly as a normal exit5 the

effect (as outlined above) then becomes a part of the side effect of

the conditional or unconditional transfer. If transfer is made to a

point which is block levels outside the current level, this must

be treated as fl normal exits in succession, from innermost to outer

most. ALGOL does not allow transfer into a block, but where this is

aUowed (as, for example, in the algebraic language CPL) it is treated

as a succession of entries into blocks, from outermost to innermost,

or as a single entry into a block for a tranter into the block level

immediately inside the current one.

Executable statements, in the 'Pi?esence of a storage mapping,

have effects much like those they would have otherwise. If the current

storage mapping is &(, the new storage mapping is o(», the current con

tent of the st ore is T, and the now content of the store is v', we

may write e(oC, = (o(*, rO, where e is the effect of an executable

statement. In AIXiOL, it is always assumed that pC® = i3(, unless the

executable statement transfers to an outer block level. Even if the

execution of the statement involves evaluation of an expression which

contains a function reference that changes the storage mapping, nor

mal exit flrom the referenced function is expected to reset the storage

mapping to What it was before the reference is made. In PL/I, on the

other hand, there is a function called ALLOCATE, which may be called

at any time, and whose purpose is effectively to augment the current

storage mapping; there is then another function, called FREE, which

undoes what ALLOCATE does.

The idea that block entry and exit, as well as declarations,

should be executable is quite well known to those vho design com-
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pilers and interpreters for block structure languages# It is well

known, for example, that whereas GO TO o( in FORTRAN may be compiled

into a single unconditional transfer instruction, the corresponding

statement in ALGOL is true only if is at the current block level#

If it is not, the object code must handle exit from one or more block

levels# We have preferred, however, to view this aspect of block

structure languages as basically concerned with the implementation

(although it is not implementation-de^endei^, since at least every

known implementation must take account of it)# Thus, in the semantic

models we have constructed, we have sought to avoid treating block

entry and exit as being executable# In fact, as we have seen, this

is possible if each block is regarded as if it were a single state

ment, which has an effect and an exit index# Uhder these conditions,

it is not necessary to introduce a storage mapping into the model#

However, if a storage mapping is introduced, and if we are willing

to accept the consequences of doing so (that is, treating block entry

and exit, and declarations, as executable statements in the manner

suggested above), it becoites easier for us to model certain advanced

features of block structure languages, as will now be described#

In ALGOL, arrays are permitted to have dimensions (that is,

lower and upper subscript bounds) which are variable, and which may,

in fact, change during a single run# Consider the following program:

beg^ integer k, ij ininteger(k); if k=0 th^ go to done;
beg^ integer arra^ aCl:k3j
for ij=l ^t^ 1 unty. k do inintGger(aCi3)}

sort(a, k);

for iissl step 1 until k do outinteger(aCi3) end;
VAaaA N'w*

done: end
\A>^'
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This program reads lii) sorts 9 and writes out one or more collections
of integers, each of which is preceded Isy its length. The procedures

ininteger(x) and outinteger (x) respectively read and write the in

teger X, while the procedure sort (a, k) sorts tlie array a of length k.

Suppose now that we denote by e the effect of the sort procedure. What

collection of state vectors constitutes the domain and range of e?

If we write e(S) = S®, then S and S® must have an aCill-component for

each i, 1 i ^ k. However, since the variCus Collections of integers

may have different lengths, corresponding to different values of k,

it is not clear how to specify, once and for all, a set of state

vectors upon which the effect e acts. One solution is to require all

such state vectors to have an aCil-component for every integer i, and

to require further that the aCi3-component have the valie Si (see sec

tion ?-3) whenever i is currently out of range. However, this slight

subterfuge must then be repeated for every other such array. If a

storage mapping is used, the execution of the declaration Integer

^xragf aCltk] causes cells to be allocated in storage. These cells

may be different for different entrances to the block, even if arrays

with va^^lable bounds are not declared in the block, if such arrays

are declared in some outer block. The content of the store, in this

situation, is always a mapping from the set C of storage locations to

the set V of values.

Sharing of temporary storage is explicitly specified as part

of the model if a storage mapping is used. Suppose that two subrou

tines (procedures) are celled, and each of these involves temporary

variables. It is customary, in implementations of block structure

languages, for these temporary variables to occupy the same positions

in memory. (To be truly teii5)orary, such variables must not, in ALGOL,

be declared as om.) In our semantic models, we have not taken account
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of this sharing♦ If a storage mapping is used, however, then, when

the first subroutine is entered, certain cells are allocated, and

when exit 3s made from that subroutine, these cells are released.

When the second subroutine is entered, the same cells are allocated

again. Of course, they may be allocated in different ways; they may

now contain real numbers, for example, where previously they con

tained Boolean quantities or Integers. In the storage-mapping model,
the set of values must be a universal set, which contains anythiiig

that could conceivably be a value of something.

Multiple use of names may also be handled "cleanly'* using a

storage mapping, even in the presence of rociXTsion. Whenever a name

Is re-used, whether it was previously used in a different block or

procedure or recursively in the same procedure, the preceding use

of the name is effectively stacked* If the re-use is recursive, this

can happen to an arbitrary number of recursion levels. Similarly,
upon exit from a procedure, whether this exit reduces the recursion

level or not, the preceding use of each name re-used in that pro

cedure is recovered from the stack.
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Notes

The semantics of declarations are discussed briefly in CStrachey

663 and in [Burstall 703# !Ehe term "environment" is used in CLandin

6^*3» in a slightly different sense than we use itj an environment^
in Landings sense, includes value information, that is, it is more

like a state vector than like our concept of environment. In the

Vienna method, the type, rank, parameter calling method, and so on,
of a variable are attributes (in the PI/I sense) of that variable,
but the ^current) value is also. Kb distinction is made in the Vienna

method between attributes that change (such as the current value) and

attributes that normally do not (such as the rank). In APLi,in fact,'
the .rank of a variable'can change ad a pfogram runs.

Otir term "state vector domain" is reminiscent of the "domain

of interpretation of a program scheme" as studied in CRutledge (M-l

and in CLuckham, Park and Paterson 703, aM the input, program, and

output domains of [Manna 693. The word "domain" unfortunately has

two meanings in mathematics j we use it here in its first meaning, as

(apparently) synonymous with "set" (compare also "alphabet" and "uni

verse") rather than as the specific set of all first elements of the

set of ordered pairs specifying a function, that is, the set of all

X for which f(x) is defined (for the domain of f).

Arrays may be thought of as single variables whose valtjes are

sequences of elenentsi we have preferred to think of them as sequaices

of variables. Our treatment of initializing declarations seems rather

obvious, but the subject seems to have excited little interest, al

though such declarations are mentioned in passing in CStrachey 663.

The use of a special symbol to denote "undefined" is part of McCarthy®s

theory of computation, and appekrs, for example, in [McCarthy 653. '
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A partial function which may be extended to a total function hy

defining it as Jc (or "undefined**) on a recursively definable set

acts more like a total function^ from the viewpoint of mathematical

logic, than like a partial function (an example of such a function

is the effect of a statement which makes reference to a subscripted

variable)® Procedures and parameters are treated axiomatically in

CHbare 713; they are also mentioned in CStrachey 663^ In which our

"call hy location" is referred to as "call by reference#"

The concept of a storage mapping, and the use of state vectcrs

which are mappings from a set of variables tliroufch a set of locations

to a set of values, has been studied by quite a number of people#

It appears first, informally, in CStrachey 663, and mom explicitly

in CPark 683, where the state of a computation is defined to be a

pair C>; here t maps the currently legal expressions (among which

are the variables) into some set of locations, while C maps each lo

cation into its current value# Similarly, [Kaplan 683 defines the

program state vector of a program TT to be the ordered pair (^^y, 1^),
M maps program variables into the positive integers and maps po

sitive integers into values# The "unique names" of CBurstall 703 also

bear a certain resemblance to an intermediate set of locations#
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EXERCISES

1. In COBOL, the type of a variable Is called its picture.

The picture Is a string of characters, each of which Is either 9,
X, or 2 (and possibly others, which we shall Ignore for the moment).

If the length of this string Is a, the length of each value of the

given variable must be a^ and each character In such a value must

be numeric, alphanumeric, or alphabetic If the corresponding char

acter of the picture Is respectively 9, X, or 2, Thus, for eaample,
If the picture of D Is »XX99Z', then 'ABiaj', •Y511Y«, and *2256k*

are legal values of D, but •GB2W, »CLOa>», and »TR2« are not,

let us Introduce picture Infoimatlon Into the environment of

a variable by using the keywords picture (analogous to type) and

length. If V Is a variable and y Is the environment, then y(v, length)

shoul(a be the length of the picture of v, and, if y(v, length) = n,
then y(v, ^Icti^, 1), for 1 ^ 1 ^ n, should be the of all these

Characters which are allowable as the l«th character of v«

Variables may be given pictures by a SI2E clause (SIZE IB n,

where n Is an Integer giving the length of the picture), a CLASS

clause (CLASS IB NUMERIC, CLASS IB ALPHANUMERIC, or CLASS IS ALPHABETIC,
In each case specifying all characters of the picture to be respective

ly 9, X, or Z), or a PICTURE clause (PICTURE IS s, where s Is a cha

racter string to be used as the picture)® Formulate syntactic and se

mantic rules which specify the picture Information to be Included In

the local environment in each of Ihe above cases® The word IB may al

ways be omitted from any of the above clauses® J-feke the simplifying *

assumption that either PfCTURE alone, or both SIZE and CLASS (in that

order), must be specified®

-192-



2» Consider the simplified COBOL syntactic rule

</VDD statement> ^ : :=s •ADD • <variablG> a • TO •

<Variable> b • GIVING • <variable> c

Here, for example, ADD X TO Y GIVING Z sets Z equal to the sum of

Xand Yo Let s^Cv, lenj^) and s^(v, ^ctu^e, i) be as defined in
problem 1 above, where v is any of a, b, and c«

(a) Formulate a semantic restriction on pictures which assures

that no alph.abetic characters can ever be added in the above rule©

(b) Formulate a seroantic restriction which insures that the

picture of the variable c can never be too short to hold the result#

(Note: This restriction is relaxed in actual COBOL systems overflow

is held to be a run-time error#)

(c) In part (b) above, what happens if ADD is replaced by

MULTIPLY? By DIVIDE?

(d) Consider the simplified COBOL syntactic rule

<MOVE statement> 'MOVE • <variable> ^ • TO • <variable> b

which is such that MOVE X TO Y sets the new value of Y equal to the

value of X» Using the terminology above, forraulate a semantii restric

tion which insures that the new value of Y will always conform to the

picture of Y# (Note that it should be allowed, for example, to move a

numeric quantity into an alphanumeric character position, but not

vice versa#)

3« Generalize the rule for subscript lists given in section

5-2, so as to allow side effects, escape, and real subscripts which

are converted to integer form by truncation#

U-o Suppose tliat we wish to regard array names as variables whose

values are sequences. For example, if A is given in FOKTRAN by
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DU'ffij^ISION A(^), the values of Aare to be sequel ces (v 9 Vp?
where is the current value of A(i) for 1 i < Each such se

quence may be r^arded as a function f with domain Jl, 2, 3,

where f(i) = for each io

(a) Formulate a semantic rule to accompany the first syntactic

rule of section 5-29 which defines the type of the variable v to be
a

the set of all functions f as outlined aboveo

(b) Same as (a) above9 with the second semantic rule of section

5-2 (for multiple arrays)• The set of n-tuples of the subscript bound

list should here be the domain of the functions corresponding to the

determined sequences©

(c) Formulate a semantic rule for the value (not the L-value)

of a subscripted variable involving a general subscript list, as de

fined in section 5-2, in accordance with (b) above©

(d) If the values of array names are sequences, it is necessary

to treat assignments to unsubscriptecl variables and assignments to

subscripted variables in different ways© In words, explain why©

5* Explain the extensions which would have to be made to the

syntactic and semantic rules for machine instructions given in sec

tion 3-5 in order to take into account space-reserving and initiali

zing declarations of the forms

BSS u
A

^ DATA u

where ^ is a label and q is an integer© The first of these reserves

a :cells (for an array requiring jj words, for example); the second

reserves one cell and gives it the initial value 21©

6© It is quite common, in the study of programming languages,

to regard variables as having properties such as type and rank, and
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then to retjard the value of a variable as a property of it in the

same sense that its type and rank are® Suppose that in our formula

tion of the environment y of a variable v we used the keyword

so that y(v, yaj^ue) is the value of Vo What would this imply about v?

Could we use this for the values of all variables?

7» Suppose that the function f(x, y) is defined by x 0

then output (y)« Suppose that we now call f as a procedure by wr1 binp

f(Oj g(x))j where g(x) is a function which outputs x. When f(0, g(x))

is called, will x be output or not? (Note: The answer to this ques

tion depends on whether x and y are called by value, by location, or

by name# Discuss#)

8# The following parameter calling method, which we shall re

fer to as delayed call by value# has been proposed# At the start of

any procedure, a flag is set to zero, corresponding to each parameter

called in this manner; the value of the actual parameter is not cal

culated# If, in ti^ body of the procedure, the value of the parameter

is needed, the flag is tested# If it is zero, the value of the formal

parameter'>is set to the value of the actual parameter, and the flag

is set to one# If it is one, the value of the formal prraraeter has

presumably already been calculated in this manner, and hence it is

simply retrieved#

(a) How does this proposed method affect the answer to the

preceding question?

(b) Discuss the speed of the proposed method as compared with

that of calling by name#

9# Suppose that a stack is represented by an array called STACK

of size together with a single variable I^5TACK whose value is the
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durrdnt length 6f the stack, which is an integer between 0 and jj

inclusive. Under these conditions, describe the effect of pushing X

and the effect of popping X, Also describe their exit index; given

that exit is to be made to STACKERRQR if pushing down causes stack

overflow or If an attempt is made to pop an empty stack; otherwise

exit is normal# Assume that the dtatemeiit index of STACKERROR is io

10# (a) Extend the specification given in section 5-5 of the

effect of the declaration integer X to integer arrays, including

multiple arrays# Assume that each variable or array is given by a

separate declaration#

(b) In the treatment of declarations as executable statements,

are any special difficulties caused by the fact that a variable name

may be refused with change in rank (for example, that it may be a

two-dimensional array name inside an inner block, and a one-dimen^onal

array name outside that block)? Explain#
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