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INTRODUCTION

Programming science, as the term is used in this book, 1is
the science, as opposed to the art, of constructing programs for
digital computers in algorithmic languages, It is the "mathemati-
cal science of computation" whose development was predicted in
[MeCarthy 631.*

There have been many attempts, over the years, to construct
a theory of galgorithms, as contrasted with a theory of programs,
Since an algorithm may be programmed in any one of various lan=
guages, but must be programmed in some way in order to be analyzed,
all that is necessary in constructing a theory of algorithms 1is to
construct some programming language or type of machine which is
powerful enough to encompass all algorithms of the type being stu=-
died, and then to study an arbitrary algorithm as programmed in
this way. Historically, the theory of Turing machine computability
is the earliest of these theories;‘recently, this theory has been
significantly extended by research on time and space limitations of
computations (theory of computational complexity). This theory was
later recast by Kaphengst, and again by Shepherdson and Sturgis, in
a form in ﬁhich the type of machine used more closely resembles a
modern digital computer, Markov's theory of algorithms is another
theory of this kind; although Markov uses algorithms of a specifie
type, whereas Turing uses machines, the essential characteristic re-
mains, namely that an algorithm, in order to be analyzed in either
of these ways, must be recast (either as a Markov algorithm or as a
Turing machine program).



More recent theoretical studies have also often tended to
follow this "algorithmic" philosophy. Thus in Floyd's work on pro-
gram correctness, and in the work of Floyd's student, James King,
on computer-aided program verification, it is assumed that all pro-
grams to be verified are of a particular, relatively simple form.

Ce Ae Ro Hoare has axiomatized the verification conditions which E
appear in proofs of program correctness; Hoare's axiomsy however,

are true in a programming language only in the absence of side ef-
fects and certaln other general features, There are also at least

two distinct theories of "program schemes," one due to Yanov and

the other due to Luckham, Park, and Paterson; in either case, a
particular algorithm to be analyzed must be cast in a special form

in order for it to be an interpretation of such a program scheme,

In a theory of programs, the program, as well as the algo-
rithm, is assumed to be given. Various questions may be asked about\

a programy such as whether it is correct, whether it terminates, or
whether it is equivalent to some other program., We are then concerned
with developing methods of proving such facts; we are concerned with
formulating theorems which simplify the job of proving them or which
facilitate the construction of efficient and easy-to-use computer
aids to proving them,

Our present approach is divided into three parts. In the first
party, we take up the syntax and semantics of programming languages.

If a program P 1s written in a language L, and we wish to prove facts )
about Py we must know both the syntax and the semantics of L, and -
we must know them in a form to which our theory is applicable. The
syntactic approach which we use 1is basically BackuseNaur Form (BNF),
The semantic approach is of our own construction, based principally

on the state vectors of MeCarthy and the synthesized and inherited

semantic at tributes of Knuth,



In the second part, we introduce the fundamental methods of
proving assertions about programs: correctness, termination,.and
equivalences In the third part, we proceed to more advanced toples:
the correctness of compilers, the correctness of self-modifying
programs, the construction of computer aids to verification, and

the semantics of data structures.

* %k K ok Kk k ok & o k ok k %k k Kk K

This book has been very carefully constructed so as to be
readable by people with a wide variety of backgrounds, both in
mathematies and in programminge.

To take mathematies firsts Programming science is a mathema-
tical sciencey and, like every other mathematical science (even
mathematical logic), can be, and is in fact here, based on the can-
cepts 'of .set and function asg primitiwe, undefined terms, Many mathe-
matical sciences, such as group theory, are based on set theory but
only in a trivial way; most group theory is done without much thought
about abstract sets., This is definitely not the case in the theory
discussed here, Sets, functions, restrictions of functions, composi=
tion of functions, and cartesian products are found in great profue
sion, and the semantic rules by which a programming language is de~
seribed are full of references to finite and infinite sets, union
and intersection of sets, functions as sets of ordered pairs, and
so on. Nevertheless, this book has been constructed so as to be read=-
able by those who have never before worked with a mathematical science,
such asy for example, the majority of pragticing progreammers. For this
reason, the usual section in which all of the mathematics necessary
to understand a subject is neatly collected and summarized will not

be found in this book. The definitions of set, function, restriction
-3



of a function, and so on, are spread out over several early chape-
tersj and each one is accompanied by an immediate application of it
to the developing theary. Those who are familiar with higher mathe-
matics may skim 1lightly over these sections, although they will need .
to understand thoroughly exactly how the set theory 1s used,

From the standpoint of programming, the prerequisites for E
reading the entire book are a knowledge of FORTRAN, ALGOL, at least
one assembly language, and a smattering of higher-level languages,
particularly LISP and SNO30Le It is not, however, necessary to read
the entire book in order to understand what programming science is
aboute Part I, with the exception of section 3-5 (which 1is not ese-
sential and may be omitted), requires only a read ing knowledge of
FORTRAN and ALGOL, and even this may be learned concurrently, if
the reader is studying programming from an intuitive roint of view
at the same time, Part II requires even less than Part I in the way
of programming knowledge; all the algorithms presented here should
be obvious even to a non-prograrmer, Each of the sections of Part III
has 1its own set of prerequisites, which should be relatir ely obvious
upon reading the titles of the sections,

This book was written while the author was supported by Na-
tional Sclence Foundation Grants GJ=821 and GJ=31612, and by the Uni-
versity of California as an Assistant Professor, including one summer
during which the author held a Summer Faculty Fellowship given for
the express purpose of research relating to this book,

-4 -



9

Y4

L]

P A RT

A MM ING

U A G E S



CHAPTERR ONE

CONSTANTS

1-1 Syntax of Constants

Concider the following strings of characters:

- 8
-12
999999997999999999999999
178
0627
.27
621,5
"~
50
93B

Intuitively, each of these "looks like" a constént in some
programming language. Some of them, however, will be considered,
under certain circumstances, to be impfoperly formed. These circum=
stances involve the programming language being used, the particular
interpreter, ‘compiler, or other system béing used to translate that
language, and even the version number of this system as it is gradu-
ally modified and extended.

Programming science is concerncd with exncet statements about
computer programs. fhe most fundamental exact statement we can make
apout a program is that it 1s properly forﬁed. In order to make such

a statement, we normnlly construct certain rules for well-formed
-6-
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programs, and then require that any well-formed program must obey
these rules., These are then called the syatax (or synkactic) rules
of the given programning language or programming system,

The syntax rules of actual programming languages give & wide
variety of answers to well-formedness questions even as applied to
something as simple as a constant. Looking back at the ten examples
above, we cannot find any one of them that is always, unequivocally,
well-formed. The digit 8, for example, is not a constant in the as-
sembly language of the PDP=-8, where all integers not follaved by D
are taken as oc¢tal. In ALGOLz =12 is a simple arithmetic expression,
but it 1s'not a constant, according to the ALGOL definition (for exam=
ple, we cannot write 24/-12 in ALGOL, whereas for any constant x ¥ O we
can write 24/x). Many languages (although not ALGOL) specify
999999999999999999999999 to be improperly formed, because it will
not £it into a computer word. The remaining examples either involve
B (for "binary," not permitted in ALGOL), or else involve real numbers ,
which are, of course, not permitted on any computer or system which
lacks floating=-point or other real number handling facilities,

Most programming syntax rules are constructed in essentially
the same way. This way was first widely publicized in connection
with ALGOL, and is known, in its original form, as BIF (Backus-laur
Form; formerly, Backus "Normal" Form), honoring John Backus, who
developed it, and Peter Naur, editor of the ALGOL report. BiF is a
symbolic form of expressing certain types of syntax rules which may
also be expressed in other ways. As an example, we.shall now give
& complete set of syntax rules for numbers. These rules are equiva-

lent to those given in the ALGOL report,

*Throughout this book, "ALGOL," unless further qualified, refers to
ALGOL 60 as modified in the Revised Report on the Algorithmic
Language ALGOL 60, published in 1963.

-7-



A number is an unsigned number, optionally preceded by a gign

An unsigned number consists of a decimal number followed by an
exponent part, where either the decimal number or the exponent part

may be omitted.

~

The exponent part of an unsigned number consists of the subscript

sxmbollﬂ:followed by an arbitrary (possibly signed) integer.
A decimal number congists of an unsigned interer followed by a
decimal fraction, where either the unsigned number or the decimal

fraction may be omitted.

A decimal fraction consists of a decimal point (.) followed by

an arbitrary unsigned integer.

An integer is an unsigned integer, optionally preceded by a sign
(+ or =),

An unsigned integer is an arbitrary sequence of digits (0, 1,
2y 35 44 59 64 7, 84 or 9),

The above rules are completely rigorous; in the following sec=-
tion, we shall see how they may be used to prove that 8,
999999999999999999999999, 0274 27, 621»5, and w5 are properly
formed unsigned numbers in ALGOLs that =12 1s a properly formed
nunber, and that 50, (for example) is not a properly formed number.
However, as presented above, the syntax rules have the disadvantage
that they are not very easily processable by computer themselves.

In order to remedy this difficulty, we rewrite the rules in sym-

TR

bolic form, and it is this symbolic form that is known as BNF,

The variable quantities with which BIF is concerned (in the
above rules, "number," "unsi gned number," "exponent part," '"decimal
number " "decimal fraction," "integer," "unsigned integer," and
"digit") are referred to, in the ALGOL report, as metalinguistic

-8-
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yariable§. Bach metalinguistic variable has a definition, in terms
of other metalinguistic variables and (sometimes) characters, in
this case 0, 1, 2, 3, 4, 5, 6, 74 8, 9, +, -y 1o» and the period,
all of which may be called "metalinguistie constants." In BNF,
metalinguistic variables are enclosed in angle brackets < > ,
and the symbol ::= means "is defined as." Thus, for example, the

definition of "decimal fraction" 1s given in the ALGOL report as
<decimal fraction> ::= , <unsigned integer>

In order to reduce confusion later on, we shall enclose all
metalinguistie constants in quotes ' ® , Thus the above rule now

reads
<decimal fraction> ::= ¥,' <unsigned integer>
Similarly, the definition of "exponent part" is
<exponent part> ::= 'm' <integer>

In both these rules, the words "followed by" are represented by a
blank.

Another symbol used in BNF is the vertical line | , which
means "or,." This allows us to define a metalinguistic variable as

either of several alternatives. For example, "digit" is defined as
<digit> s:= 10t | 11r| 120 | 131 rqc' 15 rge| 1ge | 181| 191

Most of the rest of our rules for constants may now be expressed
without any further notational conventions. Thus "number" may be

defined by

<number> ::= <unsigned number> ' '+! <unsigned

nunber> ’ '.! <unsigned number>

-9



In words: A number is either an unsigned number, or !'+?! followed

by an unsigned number, or '=' followed by an unsigned number. This
definition clearly eXpresses the meaning of "optionally preceded by
a sign,”" Similarly, the definitions of "integer," "unsigned number,"

and "decimal number" may be given as

<integer> t:= <unsigned integer> ‘ 1+! <unsigned

integer> ! 8.t <unsigned integer>
<unsigned number> ::= <decimal number> ' <exponent

part> l <decimal number:> <exponent part>
<decimal number> ::= <unsigned integer> ' <decimal fraction> l

<unsigned integer> <decimal frac tion>

There remains the definition of "unsigned integer." Since the ALGOL
report was published, scveral authors have made cextensions to BIlF,
one of which embodies the idea of "arbitrary sequence," Thus by

writing
<uncigned integer> ::= <Ldigit>*

we could express, in this expanded notation, the statement that an
unsigned integer is an arbitrary sequence of digits. This includes
the null sequence, which is probably not what we want; but we can

easily cure this by writing
<unsigned integer> ::= <Jigit> <digit>*

In this booky however, we shall use the original notation of the

ALGOL report, and write
<unsigned integer> :::= <digit>’ <unsigned integer> <digit>

This is a recursive syntax rulej it defines unsigned integers in

terms of other unsigned integerse. Recursive syntax rules are often
-10-
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harder to visualize than non-recursive ones; for the moment, we
shall merely note the fact that we can always define an "alpha" to

_be an arbitrary sequence of "betals" by writing
<alpha> ::= <beta> , <alpha> <beta>

as we have done here., We can define the same thing by writing
<alpha> ::= <beta> l <beta> <alpha>

The distinction between these two methods will be taken up further

in section 1-5,

-1l-



1-2 Derivation Trees

Using syntax rules such as those discussed above, we may analyze
the syntax of any constant and break it down into its component parts.°
Let us consider, far example, the constant 621,56+ This is short for
621 X 105, or 62,100,000, Its exponent part 15’05, and it also con=-
tains the decimal number 621. We may express this relationship by

writing

This makes it easy to see that 621”5 is an unsigned number, according
to the rule for unsigned numbers, provided that 621 is really a deci-
mal number and that m5 is an exponent part, Using the rule for expo-

nent parts, we may write

exponigzﬁgggj
NG

|-
'
w' integer

in analogy with the above. By putting these two diagrams together,

we obtain

%xponent part

o5

'm' integer

un

Let us carry this analysis further., Both 621 and 5 are clearly un-
signed integers. One of our rules says that any unsigned integer

is a decimal number, which is what we want to know concerning 621,
-12-



Another rule says that any unsigned integer is an integer, which
takes care of 5. Expanding our diagram to incorporate these two
factsy we obtain

unsigned number
A 5
degimal nman?-LQ_gzs?mMzs
6] 0] 2
unsigned integer .
o integer

5

uns igned integer

Now let us consider our recursive rule for unsigned integers. In

words, an unsigned integer is either a digit or an unsigned integer
followed by a digit. The unsigned integer 5 is clearly of the first
kind, since 5 is a digit. The unsigned integer 621 is of the second
kind; it is the unsigned integer 62 followed by the digit 1l. Thus we

can further expand our diagrams

unsigned numbe

Gat] 5

gecimal_number'o onent; part
Al

unsigned integer

Lt
¢ 2[L o' Aoigrer
unsigned integer digit

unsigned integex

51" 5

digit

2

The unsigned number 62, in turn, is the unsféned number 6 followed
by the digit 2. The unsigned number 6 is itself a digit. By incor=-
porating these last two facts, we obtain a diagram which gives, in
graphical form, a complete proof of the fact that 62lw5 is an un=~

signed number according to our rulest
-13-



uns igned number

éli! 5

decimal number |{Cexponent part

G L1

unsig integer i0

é :l 1- 'm' integer

unsigned integer digit 5
\‘E’r;z\‘—' 1 unsigned integer
5

unsigned integer ~ digit 1t
6; :Z digit

[

dié:‘gt ot .?5'
151

In the same way, if we started with any unsigned number (or integer,
or unsigaed integer, etc.), we could make a diagram like this one
to show how it is constructed.

In order tn amalyze further this type of diagram, let us rcdraw

the diagram above in a more abstract form:

/\

./ AN

./ N\ ‘{
10./}f .’12 13"
W N

This is called a graph. It consists of points, called npdes, and
line segments which join the nodes, called l‘U’IkS. The correspondence

-14-
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between the original diagram and the abstract diagram may be shown
by means of the following table:

NODE METALINGUISTIC CHARACTER METALINGUIST IC
NUMBER VARIABLE STRING CONSTANT (IF ANY)
1 unsigned number 621,5 = em---
2 decimal number 2 R
3 exponent part 07 ——
L unsigned integer 621 ————
> —em= === "o'
6 integer 5 ——
7 unsigned integer 62 ——
8 digit 1 ———
9 unsigned integer 5 ——
10 unsigned integer 6 -—————
11 digit 2 —————e
12 ———— —— 118
13 digit 5 ——
1k digit 6 ———
i i ——— 121
16 3= 00 ceee- ———— t5e
17 ———— —— 151

Fach link in a graph such as this one arises in a standard way
from the definition of some metalinguistic variable. For example,
consider the link from node 1 to node 3. This link is present be-
cause the definition of "unsigned number," which corresponds to node
1, contains a reference to "exponent part," which corresponds to
node 3. Let us represenf this relationship by an arrow pointing from

node 1 to node 3., If we redraw the graph again, replacing all of its
~15 -~



links by arrows in this way, we obtain:

AR
WARWAN
74 N, '
AN

w0 J/ 12° '

14\,1’ 15 - BJ/ '
| 164

17 ¢ .

This is called a dlr“f??? gravh, In each case, if an arrow points
from nnde X tn node ¥, then node X corresponds to some- metalinguistic
variable V, and node Y corresponds to a metalinguistic wariable or
constant which appears in the definition of V as it anplies to the
particnlar string heing analyzed,

Bvery directed graph may have 1n1tial P?ﬂﬁi and fTﬁT{P?& Qgﬂgio
An initirl node is one with no arrows pointing to itj a terminal
node is one with no arrows leading out of it, If we think of a train
running nlong a directed graph in the direction of the arrows, then
a terminal node is the "end of the line," so to speak, whereas an
initial node 1s the point from which a journey logically starts,
In the above graphy there is one initial node, namely hode 1, while
the terminal nodes are nodes 5, 12, 15, 16, and 17. |

We may notice immediately thnt the terminal nodes of a graph
which is constructed as above correspond precisely to the metalin-

guistic coanstants. This follows, in fact, from the method of con-

struction, A metalinguistic yvariable presumably has a definition,
-16-
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which gives rise to at least one arrow in the graph leading out of
the corresponding nodee Thus it follows immediately that this mode
cannot be terminalj it may or may not be initial, A metalinguistic
constant, on the other hand, does not have a de& inition, and there=-
fore the corresponding node has no arrows leading out of itj that is,
it is a terminal node. These considerations allow us to label each
terminal node with a constant and each non-terminal node with a

variable, as follows:

unsigned
number'\rs
deciﬁgl exponent
number part \Sn

unsigned :Lntegez“Z 1nteger
nsigned 1nteger dlgit uns gned
4 1ntegcr
unsigned integer digit
A dlgit
digit
¥
6

This is called the derivation tree of the -sring 621,5 as an unsigned
numbér. It is.tha final form of diagram which we will associate with
a character string in this way. In order to explain the term "deri-
vation tree," it is necessary first to explain two other notions.
A Eg&g.in any graph is a sequence of nodes with a connected sequence
of links between them, such as the nodes 1, 2, %, 7, 11, and 15 in
our example, A gxg}g in a graph is a path which leads back to where
it started. Our example of a graph does not have any cycles, and, for
this reason, 1t is called a tree. All derivation trees are trees in
this sensej the esggxﬁiig& of 621w5, for example, refers to the proof,
as we have given it, that 621m5 is an unsigned number.

The correspondence between metalinguistic constants and vari-

ables, on the one hand, and terminal and non-terminal nodes on deri-

-17-



vation trees, on the other, was noticec

AiES ik id

21y early in the mathema-
tieal study of syntax. Indeed, the term "metalinguistic variable"

has alwost completely disappeared. Instend of metalinguistic con=-

stants, we speak of terminal symbols (usunlly, sinply terminals);
instead of metalinguistic variables, we speak of no

nterminal s, This

L Sl D N T i

standard terminology will continue to be uscd throughout this book,

-18-
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1-3 Sementics of Constants

There are various ways of determining the value of a constante.
For example, consider the unsigned integer 621, and let us suppose
that we are regarding this as an gctal integer. How do we find its
value? One way is to find the value (as an octal integer) of 62, mul-
tiply by 8, and add le The point of this method is that 621 is an un-
signed integer precisely because it consists of 62 (unsigned integer)
followed by 1 (digit)e Thus, if we use this rule, there is an immedi-
ate relation between the syntax of unsigned integers and the calcula-
tion of their valueso,

In formal terms, let the unsigned integer U followed by the
digit D be defined to be an unsigned integer, called I, Furthermore,

let vy Vpo and v_, denote the value of U, of Dy and of I, respective-

I

ly. We wish to derive an equation for Vi in terms of vU,and V5o In
this case it is

= 8ev._ + v

Vi v

If we were considering 621 as decimal instead of octal, the rule
would be

VI = 1O~VU.+ Vb

Such equations will be called gsemantic rules, Syntax is concerned
with form; semantics is concerned with mem ing. It might seem that
the meaning of a constant resides entirely in its value, but this
i1s not the case, as we may see by considering decimal fractions.
Let the decimal fraction F consist of the period (.) followed by
the integer I. What 1s the value of F 1n terms of the value of I?
The answer is that we obtain the value of F by dividing the value
of I by 10V, where N is the number of digits in the integer I, or

-19-



the length of I. Unless the length, as well as the valuey of I is
part of its meaning, we cannot derive the value of a decimal frac-
tion., We may write
- 1
Vo = V/10
where n; is the length of I3 but in that ease we must give a sepa-
rate semantic rule for nre Golng back to our previous conventions,

if n, is the length of U and n; is the length of I, we obviously have

nI = nU + 1

An unsigned integer consisting of a single digit may then be declared
to have length 1.

Is the value of a real number enough to specify its meaning?
In this case, as it turns out, there is no need to know the length,
as a character string. We may, however, need to know the type, that
isy whether the real number is in fact an integer. The type of a deci~
mal number, according to the syntactic rules we have given, may be

determined from the following table:

Kind of decimal number Type
Unsigned integer only Integer
Decimal fraction only Real
Unsigned integer followed by decimal fraction Real -

Similarly, the type of an unsigned number is determined as follows:

"nw.

Kind of unsigned number Type
Decimal number only Same as the type of
the decimal number
Exponent part only Real
Dec imal number followed Real

by exponent part ~20-
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Normally it is not necessary to know the type of a number for the
purposes of the semantics of constants; but the type may be needed
for other semantic purposes., For exampley the value of the expression
2x3.1415926535 is found by performing real multiplication on the con-
stant 3,1415926535 and the result of converting the integer 2 to real
forme (Expressions will be taken up more generally in Chapter 2,) If
by real multiplication we mean floating point multiplication, this
will not always give the same result as does integer multiplication,
even for integral arguments.

Length, value, and type are examples of attributes. We shall
take the point of view that any character string in a language which
has a meaning at all has that meaning expressed in terms of one or
more attributes, The process by which the attributes of a string are
constructed in terms of the attributes of its substrings, as we have
been doing, is called synthesis, and our attributes are said to be
synthesized. (There is another sort of attribute, associated with a
different kind of semantic rule, which we shall introduce in section
2%,)

We shall now give notational conventions for semantic rules
which give values of synthesized attributes, when these are associa-
ted with a syntactic definition of a language as given in BiF. For
this purpose, we slightly alter the form of a BNF rule., Where there
are no alternatives -- that is, where the vertical 1line (|) is not
used == we insert a lower-case letter after every nonterminal, to

serve as a label, Thus the rule
<decimal fraction> ::= ',! <unsigned integer>
might become

<decimal fraction> £ ::= '.' <unsigned integer> i
-21-



In words: The decimal fraction f consists of a period (.) followed
by the integer i.

Where the vertical line is used n times, there are n+l alter-
natives, and each of these causes a label to be given to the nonter-
minal at the left of the ::= sign. This label, followed by ::= and
preceded by 3 , takes the place of the vertical line for every al-

ternative except the first. Thus the rule

<integer> ::= <unsigned integer> l '+ <unsigned

integer> ‘ '-! <cunsigned integer>
might become

<integer> x ::= <unsigned integer> u; y ::= '+! <unsigned

integer> w; z t:= '-' <unsigned integer> w

In words: The integer x consists of the unsigned integer u;

the integer y consists of a plus sign (+) followed by the un-
signed integer y;

the integer z consists of a minus sign (-) followed by the un-
signed integer we.

Semantic rules are now given which make reference to the labels

just given. For the value of the decimal fraction £, we shall not
write v., as before, but fV. The purpose of this superscript con=-
vention is mainly to reduce the awkwardness of more complex expres=

sions; Thus if a, be replaced by xa, and bc by cb, then ap 9 for
c

b)a ba° Similarly

example, becomes (c”)”, which may as well be written ¢

a and v
bcd xl+x2

cha

become d and (x1+x2)'v respectively (assuming that Xq and X, are

2
unaffected by the convention). In general, only one level of super-

scerintion is necessary, thus reducing printing costs as well,
~22-
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The semantic rule which we have given for decimal fractions

would now bhe written
<value> fV = iv/exp(lo, i)

Notice that we use exp(x, y) instead of x¥ in order to use super-
scripts for one purpose only. The term <value> is included here for
explanatory purposes only. We shall write the semantic rule or rules

directly under the corresponding syntactic rule, thus:

<decimal fraction> f ::= ',! <unsigned integer> i

<value> £V = iV/exp(l0, i™)
Similarly, the rules for exponent parts now read

<exponent part> e ::= 'm' <integer> 1

<value> eV = exp(10, 1V)

Where there is more than one alternative in a rule, we must have
separate semantic rules for eachj these are separated by semicolons,

As an exnmple, we give the rules for unsigned integers:

<unsigned integer> x ::= <digit> u; y ::= <unsigned
integer> g <digit> ¥
<value> xV = ﬁv; yU o= 10z’ + vv
<length> xM = 13 y* = z% + 1

In words, an unsigned integer is either:

(1) a single digit, in which case its value is the value of
that digit and its length is 1; or

(2) an unsigned integer z followed by a digit v, in which case
its lensth is one more than the length of 2, and its yalue is found
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taking the value of z, multiplying by 10, and adding the value

1%
I

[

The interaction between a rule like this, which defines "un-
signed integer," and a rule such as the one for decimal fractions,
in which unsigned integers are used, bears further study. The super-

sV

seripted letters i¥ and i" :

in the rule for the value of a decimal
fraction refer to the value and the length, respectively, of the
integer 1. Although 1V and i™ do not occur in the rules which define
unsipned integers, we note that i, in the decimal fraction rule,
clear ly Aenotes an unsigned integer; this then tells us to look for
the superseript v in the definition of unsigned integers if we want
the proper interpretation of iV, and similarly for i, In fact, we
do find both v and n defined here as superscripts. Also note (com-
pare, for example, the definitions of decimal fraction and exponent
part) that there is nothing wrong with repeating ldbels‘(in this
case, the label 1) from one syntax rule to another; each label has
validity only for the semantic rules associated with that particular
syntax maleo

The remaining syntactic and semantic rules for constants way

now be written as follows:

I
i
s
10
I
-
N
-
12
i
w
D
!
-
+

<digit> a := 'O';
.j-': $i= '5'; g s '6'; h ::= '7'; i 3= '8’; i s = |93

3
=
o
Vv
Q
<
il
L
ej
<
‘l
< =
o
()
<
]
n
o
<
i
(UL
o
<
]
xr
L)
&
i
wn
9
1

LSNPS

<integer> x ::= <unsigned integer> u; ¥ ::7 '+1 <unsigned
integer> ¥; z ::= '~! <unsigned integer> W

v V. Vo .V
value> XV = W3 ¥y =v'; 2 = =W
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<decimal number> X ::= <unsigned integer> u; y ::= <decimal

fraction> £3 z ::= <unsigned integer> y <decimal

fraction> g
wvalue> %' = uv; yv = fv; z' = v o+ gv
<type> x° integers y~ = reals 2% = real

<unsigned number> ti= <decimal number> uj 2= <exponent

x
part> ps 2 <decimal number> y <exponent part> g
u
t

<value> xV = yv p'; :’."v o A\
<type> xb t = real;s = peal

<number> X ::= <unsigned number> Uu; y ::= '+! <unsigned number> y;
Z := t=l Qunsigned number> w
wvalue> x¥ = W5 ¥V = v 2V = =V

<type> xt = ut; yt = vt; zt = wo
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1-% Consequences of the Definitions

What facts can we prove, having set up a syntactie and seman-
tic definition such as the one above? We shall find that a number of

more or less arbitrary choices have effectively been made.

<0

>

A number may be signede. This innocent-looking statement is the
cause of a great deal of trouble when we start analyzing expressions,
Suppose, for example, that we allow the sum of any two numbers to be
an expressions This means that expressions such as 5+7 and 18=32 are
al lowed, which is all right, but it also means that +5++7 and =18-=32
are expressionsy which we may not want, It is quite permissi ble, of
coursey to allow multiple minus signs in a language, and to interpret,
for example, --=3 as =(-(-3)). In ALGOL, however, this is not allowed,
and thus the sum of two numbers cannot, in general, be regarded as an
expressiono. What ALGOL does is to ignore completely the syntactic
definition of "number" which has just been made, Any two unsigned
numbers may be added, subtracted, etc., to produce an expression,
while constructions like ~7<% (which is allowed) are handled in other,
special wayse

An exponent part may stand alone. In FORTRAN, we may write
X = 1.8 to set X equal to one hundred millions but X = E8 would
set X equal to the value of the variable E8, In ALGOL, however, the
character 0 c@mnot be used in a variable name, and so it is perfectly
permissible to write X:=”8 y for example,

A decimal point must be folloved by at least one dipgit in a
decimal fraction. If the preceding fact seems too general, this one

R

may seem too restrictive. If o125 is an aceeptable substitute for
06125 (which it is), why isn't 37. an acceptable substitute for 37.0?

In fact, in many other languages, it is; but not in ALGOL., In order
-26-



to include such constructions, we might add a fourth alter native de=-

finition of decimal numbers, so that the definition reads

<decimal number> w ::= <unsigned integer> a; x ::= <unsigned
integer> b 'o!; ¥ ::= <decimal fraction> f; gz ::=

<unsigned integer> ¢ <decimal fraction> g

<value> w¥ = aV; xV = EV; yWo=1Y5 27 = eV o+ gV
<type> w" = integer; x” = reals; yo = reals zb - real

Nepative exponents are permitted. Compare carefully the defi=

nitions of decimal fractions and of exponent parts., In the first case,
the period must be followed by an unsigned integer; we do not want
370~5, for example, to be a legal deecimal number. In the second case,
however, any integer may be used, and thus 6.0?3 ,+23 and 6,63 ..34

for example, are allowable unsigned numbers,

Ieading zercs are permitted. If a progranmer wishes to write
JANUARY ¢=01; FEDBRUARY:=023 and so on, this is permitted under the
above rules. To prohibit unsigned integers from having lsading zeros
(not advocated by this author as good language design), we might
procced as follows (syntactic definitions only):

<non=zero digit> ::= 'l'l '2" 131 t'h'l 151 |'6'\ '7'{ '8" 19t
<non-zero integer> ::= <non-zero digit> | <non-zero
integer> '0" <non=-zero integer> <nonezero digit>

<unsigned integer> ::= <non-zero integer>| 10¢

Logical constants have not been provided for. In some Ianguages,
such as APL and PL/I, there is no difference between a logicel con-
stant ~nd any other kind; "true" is represented by 1 and "false" by
0. In ALSOL, however, the keywords true and fslse are used, and we

employ here a definition which has no relation teo that of an integers
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<logical value> £ ::= true; £ ::= false

<value> tV = &R‘,&i £V = false
Octal integers, followed by the letter B, are not alioved,
as they would be in many versions of FORTRAN. In order to allow
thesey we might introduce the following rules:

<octal diglt> g 3= 'O'; b s:= ¥1%; o ::= 1205 @ $:= 1313
g ::= Wt £ 1:= 150 g sz 1605 h i 170
<value> a¥ = 0; BV = 1; ¢V = 2; ¥ = 3; ¥V = 43 £V = 5;
g¥=6; 0" =7
<octal integer> x ::= <octal digit> d 'B'j y ::= <octal
digit> g <octal integer> z
<length> x® = 1; yl = 20 + 1

<value> xV = dV; ¥V = z¥ + eVeexp(8, 27
Decimal digits may then be defined in terms of octal digits:

<digit> a ::= <octal digit> d; h t:= 184; ¢ 3:= 1O
<value>aV =d’; bV =8; ¢V = 9

This example illustrates several further facts. The rule for octal
integers is a recursive one; it defines the octal integer 257B, for
example, as‘the octal digit 2 followed by the octal integer 57B. The
value of 257B is found by adding the value of 57B to 264+ (that is,
2¢exp(8, 2), since the length of 57B is 2), which is, of course, the
value of 200B, ‘Note that the letter B does not figure in the length
of such an octal integer; also, of course, d', in the rule for the
value of an octal integer, refers to any of the quantities aV through
h' in the definition of an octal digit, and not specifically to dv

there,
No Limits are placed on the sizes of numberse. In programming
terminology we might say, "arbitrary precision is permittedy" for )

LIS

both integers and real numbers. Of all the rules set forth above,
this is the only one that is methodically broken in AIGOL implemen-
tations. Not only is it brroken2 8(wh:[ch is clearly necessary in a



world containing only a finite total number of tape reels), but it

i1s broken in different ways for different implementations, correspon-
ding normally (but not always) to the size of a computer wrd, It is
thus important to know how to specify, within the context of a lan=-
guage description, a particular way in which to hreak the rules,

Let us first consider integers. Suppose that o is the smallest
possible negative number that will fit into a word on some given com-
puter, while p is the largest positive number. (For a one's complement
computers normally = -P3 for a twols complement computer, normally

= =(B+1)o) If the value of the integer 1 is denoted by iY, then we

must have

o« <17 <p

We shall take the simplest possible course and add this relationship
directly to the description of our language, enclosing it in parenthe-
ses to indicate that it is a necessary condition. In the case of the

definition of unsigned integers given above, we would write

<unsigned integer> ti= <digit> us y ::= <unsigned
integer> z <digit> v
<value> xV = w3 y¥ = 10ezV + vV
<y <)

<length> x = 13 y? = 2% + 1

Note that only yV, and not x', needs to be restricted in this way,
because clearly -9 < x¥V < 9, while ¥ and F will normally have abso=
lute wvalue greater than 9,

For floating point numbers, the corresponding condition is
harder to express. Of course, there is a largest possible floating
point number on any given computer, and likewise a smallest possible
positive floating point number (corresponding, on most computers, to
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the bit pattern which is the same as that representing the integer 1).
We could require that the absolute value of any floating point number
lie between these two limits, in much the same way as we have done
above, But this is not the only condition which a legal floating point’
number must satisfy, because of the question of finite accuracy. A
legal floating point number must be representable as a positive or
negative power of 2 (or of 16, on the IBM 360) times an integer be-
tween certain upper and lower limits. Whenever a constant which would
otherwise be legal and of type real does not satisfy these require-
ments (such as 0.l, for example), its value must be defined in some
way as a legal floating point number, Often there is more than one
reasonable way of doing this; for example, a choice between trun-
cating and rounding off always presents itself., It is these considera-
tions which make the proof of assertions about programs involving
floating point numbers much more difficult than corresponding asser-
tions about integers; this subject will be taken up further in
Chapter 5. ’

At this point we may ask ourselves: Why make any such restric-
tions at all? We are, after all, dealing with a mathematical abstrac-
tion, which may be carefully distinguished from the actual situation
on a given computer in a way somewhat analogous to that in which the
ALGOL reference language and the ALGOL hardware representations are

distinguished in the ALGOL report. Eventually, of course, it will be

‘Y -

necessary for us to prove assertions about programs which run on real
computers, and for this we must have a way of describing the mathe- :i
matical effects of floating-point operations and the actual corre-
spondence between real constants and their floating-point equivalents,
For the moment, however, let us concentrate on the ideal case in

which real numbers and integers may be arbitrary.
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1-5 Alternative Definitions

The importance of BNF as a way of describing langun;es arises
from its generalitys; it is not restricted to languages with ALCOIL=lilce
rules. As an example of this, we give miles for the svntax of con-
stants in a language resembling I"ORTRAN, We emphasize that FORTRAY
is not as strietly defined as ALGOL, and consequently not all FO'TRAIS

systems will handle constants in exactly this waye.

<octal digit> g ::= '0'5 b ::= V105 ¢ si= 1205 4 ::= 030,
ti= 865 h 1= 17
35 eV - s £V = 5y

D
It
=
-
1=
il
Wl
[14°]

[o])
<
1

<value> av - O; bV =2 l; cv = 2
gv jae] 6; hv s 7

<digit> x ::= <octal digit> d; y ::= 18¢

N

il
-
O
-

<value> x¥ = dVy yV = 8; 2V = 9
<octal integer> x ::= <octal digit> d 'B'; y ::= <octal
digit> e <octal integer> z
<length> x™ = 13 y0 = 20 + 1
<value> xV = dV; yV - 2V + eVeexp(8, z™)
<decimal integer> x ::= <digit:- d; y ::= <digit> ¢ <decimal
integer> gz
<length> xM = 13 y = gt + 1
<value> x' = d¥; ¥V = z¥ + eVeexp(10, z")
<unsigned integer> x ::= <octnl integer> @3 y ::= <decimal
integer> 4
<value> xV = o3 yv = aVv
<integer> x ::= <unsigned integer> Y3 y ::= '+! <unsigned
integer> ¥3 z ::= '=' <unsigned integer> y

<value> xV = uv; yv = vv; zV = -V
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<real number without exponent> x ::= <decimal integer> g 'e';
Y ::= <decimal integer> b 'o' <decimal integer> ¢j
z := ',' <decimal integer> d
value> xV = a¥; ¥V = b7 + eV /exp (10, e); 2V =
aV/exp(10, d™)
<unsigned real number> X ::= <real number without exponent> r; '
Y ::= <real number without exponent> g 'E' <integer> i
<value> xV = rv; y¥ = sVeexp(10, iV)
<real number> x ::= <unsigned real number> u; y s:= '+¢?
<unsigned real number> y; z ::= !-! <unsigned real
number> y
<value> xV = W3 ¥ = VW3 2V = ayV
<unsigned double precision number> x ::= <real number without
exponent> r DY <integer> jJ
<value> xV = rVeexp(10, 1V)
<double precision number> X ::= <unsigned double precision
number> u; y ::= *+! <unsigned double precision number>
¥; 2 ::= '-=! <unsigned double precision number> w
<alue> x¥ = W3 ¥ = VW3 27 = =w’
<complex number> ¢ ::= !(' <real number> r ',! <real numbcr> g ')!
<value> ¢V = vV + fesV

<logical constant> £ ::= '.TRUE.?'; £ ::= ' ,FAISE,!

<value> tV = true; £V = false

Note that this is still very much an ideal description of
FORTRAN., No limits are placed on the slze of integers or the pre- 'f
cision of real numbersj even more obviously, there is no difference
between the value of a real number and the value of the correspon-
ding double precision number., In order to describe such a difference
on a particular computer, we might define two funetions, fapprox and
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dapprox, for that computer, such that fapprox(x) is that floating
point mumber and dapprox(x) is that double-precision number which
is elosest in value to the value of the real mmber X. The semantic

1ule for the value of a real number is then replaced by

<value> xV = fapprox(u); y' = fapprox(V); 7’ =

fapprox(=w"’)
and the rule for the value of a double precision number by

<value> xv = dapprox(dv); iv = dapprox(vv); zv -

davprox (=w’ )

Note that by doing this we give actual values (floating point and
double precision numbers) to strings of type <recal number> and
<double precision number>, but ideal values (real numbers) to strings
of type <unsigned real number>, <unsigned double precision numbérz,
and <renl number without exponent>, If, instead, we gave all quanti-
ties actual values, we would encounter the usual error propagation
problems associated with multiplication and division in these rules.
For the value of a string such as 3,168, for example, we want that

3,168,

floating point number whose value is as close as wssible to
and this is not necessarily the floating point number obtained by
dividing 168 by 1000, using floating point division, and adding the
result to 340y using floating point additione

The rules giveﬁ abwe for octal integers are the same as those
of the preceding sectiong the rule for decimal integers is given in
analogy to the rule for octnl integers. As we remarked at the end of

section l.l, the syntactic rules
<alpha> ::= <beta>‘ <alpha> <beta>
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<alpha> ::= <beta>' <beta> <alpha>

are equivalent; each defines an "alpha" as an arbitrary sequence of
"betals." The decimal integer rule above is of the second kind, as
contrasted with the earlier rule, which was of the first kind. The
semantic rules are also equivalent, although they are quite dissimi-
lar. Note also that the octal integer syntax rule is a special case

of the use of
<alpha> ::= <beta> <gamma> ’ <beta> <alpha>

to define an "alpha" as an arbitrary sequence of "beta's," followed

by a single "gamma,.," Similarly, the rule
<alpha> ::= <gamma> <beta> ' <alpha> <beta>

defines an "alpha" as an arbitrary sequence of "beta'!s," preceded by

a single "gamma"j while either of the two equivalent rules

<alpha> ::= <beta> | <beta> <gamma> <alpha>
or

~<alpha> ::= <beta> ‘ <alpha> <gamma> <beta>

define an "alpha" as an arbitrary sequence of "heta'!s" geparated by

"gamma's," that is, in the order
beta gamma beta gamma .e... gamma beta

Several examples of these general rules are treated in the next
four chapterse,

As‘an example of a derivation tree in FORTRAN, we give the
derivation of (3.75E8,=1.0) as a complex number according to the
FORTRAN rules given above. To each nonterminal in this tree, we have

attached its semantic attributes:
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. complex __ __value=
""" number _ —._ _375000000=1

g / \\——\‘*
¥ value= value N“\\

real real
number 375000000 number T " ==l
unsigned . . .value= unsigned _ _ _ value
f real number 375000000 real number =1
real number \/
without real number
exponent | value without ex- value
integer - -~ =8 ponent .77 T =1
unsigned value

\ integer v~~~ =8 decimal decimal
J! integer \\ integer \'

\L deeimal value valle value
decinmal integer ™ " " = = =0
integer\ \t length length length

\ =1 =1 =]

value! digit -~

=3 \ v

length value=8 digit +value [digit wvalue

=1 J/ “or=] 1‘ >~ =0
octal wvalue | octal wvalue

digit- digit*~-=1 digit* - =0
*\ decimal
value | integer ™|

value=75%
lenrth=2

value decimal value=5
=7 integer length=1
\' - -

( 3 ° 7 5 E 8 s - 1,0 )

-35-



HOTLS
—————

The notation which came, later, to be called BNF was developed
by John Backus [Backus 59] for use in the various conferences which

were concerned with the development of ALGOL, BNF is actually an al=-

AR

ternate form of a notation first used by Chomsky in deseribing the
grammar of natural languages. The first version of ALGOL, later to
be called ALGOL 58, was described in [Perlis and Samelson 5913 the
version known as ALCOL 60 was published in three places in 1960
[Naur et ale. 60] and in revised form three years later [Naur et al.
61}, It is the reviced form to which reference will be made in this
book.

The study of what we refer to as derivation trees is very old,
and antedntes the computer by many years. At this time, of course,
derivation trees were studied only for natural languages. The prace
tice (discontinued some years ago in most elementary schools) of
traching children how te "diagram" a sentence -- so that "The quiek

brow.a fox jumped over the lazy dog" is represented, for example, by

fox
(%
S

/ jumped
\;\N% doz
W

~=- correspondse in natural languages, to derivation trees for pro-

W oe

N

gramming languageso,

Our treatment of attributes, and the terms "at tribute" and
"synthesized," follow the treatment of [Knuth 68] and [Knuth 71],
(See also the treatment of inherited attributes in section 2-4,) With
respect to the subject of programming language semantics, there are
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currently many differing schools of thought, which are excellently
sumarized in [de Bakker 691, Of special interest are the state vec-
tor concept [MeCarthy 631, which we will be using in the sequelj the
formal definitions of interpreters according to the so-called "Vienna

me thod" [Lucas and Walk 691; the formal definitions of compilers

using Floyd-Evans production language [Feldman and Gries 6813 and

the EULFER language [Wirth and Weber 661 and the ISWIM meta-language
[Landin 661,

The notation which we use for attributes has been described

in [Maurer 72].
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EXERC I 1SS

1. The‘following syntax rules are given in Englishe. Express
them in BWF, (These rulesrdeal with statements, to be examined .
further in Chapter 3. They do not correspond to the rules of ALGOL,)

2o An unlabelled statement is either an assignment statement,
a conditional statement, or a transfer statement,

be A statement is an unlabelled statement, optionally mreceded
by a label,

ce. A declaration section is an arbitrary sequence of declara-
tions,

de A assignment statement consists of a variable followed
by := followed by an expressione

€. A conditional statement consists of the word IF followed by
a Boolean expression followed by THEN followed by a statement, op-
tionnlly followed by ELSE and another statement.

2+ A commonly encountered extension of BNF involves'the use

of curly brackets § ¥ -to denote optional quantities. Thus the rules

<sign> ::= '+" 1.t

<integer> ::= {<sign>§ <unsigned integer>

are equivalent to the Tule for integers given in section 1-l1,
Rewrite the definitions of number, unsigned number, decimal number, :
and integer, from section l=l, and the definitions of statement and
conditional statement in the problem above, using this notation. You :
should not need any alternative signs except in two of the above cases,

3. Construet derivation trees, as defined in section 1l-2, for

. the following character stringss
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a. 736 (unsigned integer)

be =507 (number)

Co 2m-7 (unsigned number)

de 1 (number)

4, Which nodes are initial and which are terminal in each of

the following graphs?

Ao
1,
/’ \“
21\>1;/ 3
be
1 2 3
’ 4 ’
v 4
7. 81
c.
> , I< Ié""""‘é—-——'
lr >-2 /3 >)+ 5 7

5« Consider the syntactic rule

<unsigned integer> x ::= <digit> 43 ¢ <unsigned

integer> z <digit> e

Assume that digits have their usual valucs ana? that th2 superseript
v is used for the value of a digit, Whet 10 the vonlue of the uns igned
integer 548217 under each of the followins scmartic rnles for un-

signed integers?
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ae <value> xV = dV; yV = 27 + ¥

be <value> xV - avV; ¥ = zV
co <value> x¥ = d¥; ¥ = e

doe  <value> xv . d¥; ¥ - zV - eV

6. Complex constants in FORTRAN are denoted by pairs of real
constants separated by a corma and enclosed in parentheses; thus
(2.0, 3,0) is the constant normally denoted by 2+3i (or in electrical
engineering, 2+3j). Assume that a def inition of <real number> has
already been given for FORTRAN real numbers, in which the super-
script v denntes the value of a real number., Write a syntax rule
for complex constants in this form, in terms of real numbers, and
tlen give a semantic rule which gives the value, in the usual sense,

of such a comp!ex number, again using the superseript ve

7. (a) How would we modify the syntactic rules presented in
section 1=1 in order to prohibit exponent parts from standing alone?
That is, we wish 1,5 and 1.0,,5 to be legal unsigned numbers, for
example, but not'o5 by itself.

(b) Suppose that we wished to remove the restriction, in sec-
tion 1-%, that a decimal poiat must be followed by at least one
digite Let us try to do this in a different way than is done in
the text, by defining

<decimal fraction> X t:= ¥.,'; y ::= '.! <unsigned integer> u

<value> xV = 05 ¥V = u'/exp(10, u™)

and leaving all other definitions unchanged. Show that this change
produces almost, but not quite exactly, the same effect as does the ‘
one given in the text.

(¢) Give semantic rules to go with the syntactic definitions

of non-zero digit, non-zero integer, and unsigned integer given in
| ' -40-



section 1-l, which express the clearly intended meaning of these

quantities in this context,

8. (a) Give a semantic rule, in terms of the others in this
chapter, which defines the length of an integer to be the same as
the length of the unsigned integer contaired in ite

(b) Using this ruley express as a semantic condition (enclosed
in parentheses as in section l-i) the statement that the length of
the integer in an exponent part must not exceed 2. (This is similar
to a condition found in some versi ons of FOKTRA No)

(¢) Give semantic rules, in terms of the others in this chap-
ter, which define the length of any quantity to be the number of
characters in it., (This rule conflicts with that of (a) above,)

(@) Using these rules, express as a semantic condition, as in
(b) above, the statement that no number (as <number> is defined) can

be too large to fit on a single 80=~column card.

9+ Give syntactic and semantic definitions, according to the
style illustrated in the text, for:

(2) Binary integers (conteining 1's and Ofs, optionally prcceded
R4 -).(b) Unsigned hexadecimal integers, using the hexadecimal digits
Oy 1y 24 34 4%y 5, 6, 7, 8, 9y Ay B, Cy Dy E;, and F,

(¢) Roman numerals (from 1 through 3,999),

10. Give derivation trees with all attributes attached, as at
the émd of section 1.5, for the following FORTRAN constructions as
defined in that section:

(a) =377B (integer)

(b) =7.12i=l (real number)

(¢) 41.7D0 (double preci:sion number )

(d) 183.4E10B (what is this?)
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CHAPTER TWO

X PRESSTITOUNS

2=1 Precedence

The class of n~rithmetic expressions such as A+B, TAU/BIsTA=GAMMAX 2 40

. and EXP(5.0~C08 ((G-H)XDNLTA), 205)/(4eO+LN(SIGMA)) is the prototype

for a rather loosely defined collection of classes of objects called

Qfgﬁfff%%ﬁﬁi’ An exrression is made up of QQﬁEiEQE? and operands, which

Lave various propertiecs depending on the kind of expressi on being

stw led, For arithmetic expressions, the operators are + - * / in

FORTAN, or + = x /4 in ALGOL (where real division / and integer di-

visinn + are distirguirhed from each other), or the like; parcnthe-

ses nre souetimes viewed as a special kind of operator. The opera:ids

are constants and variables; a function call (such as the use of :XP

nbove) or an expression in parentheses (such as (4 O+Li(SIGHA))) mnoy

also be viewed as an operand.

Most operators are either binary or wary. A binary operator

hi.s two arguments; thus / (for division) is a binary operator, siice

one quantity must be divided by another one. A binary operator is

normally written between its two operands; thus we write A/B or

(W+X)/(¥=7%) o * Unary o,er>tors have one argument; probably the most ¢

cormon use of a unary operator is the use of the minus sign to de-

note negatives. Thus =X is the negative of Xo A unary operator is

normally written before its rrgument., In thenry, there is nothing

to prevent expressions from being conrctr.cted with neary onerators,

-

¥ Sometimes, in computing, this rule is not followed, and we write, for
example, A B / instead of A/B. This is called Polish notation (seo
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for arbitrary n, and in fact thé name of a function of n arguments
1s very often regarded as an n=ary operator.

Let us now consider the problem of describing expressions in
BNF, For slmplicity, we use only the operators + and X, and we do
not allow the unary + (that is, the convention according to which
+ot may be used instead of o, for any operand ). Under these con=-
ditions, it is clear that an expression is an arbitrary seguence: qf
operands, separated by operators. Thls may be expressed in BNF as

follows:

<expression> ::= <operand> l <expression> <operator> <operand>
It might also be expmessed as

<expression> ::= <operand> [ <operand> <operator> <expression>

Using the first rule, the derivation tree of 2x5+3xl+ would be

expression
expression Operator operand :
expressfg;’ opg¥ator operand
expressiohf operator operand
operand M{//, y(////
+

while using the second rule, it would be
expression
N

operand operator expression

opera perator expression
operand operator expression
\ \ operand
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The trouble with these BNF rules may be seen when we start considering
the semantics. In the first case, the expression~2x543xh is made up
of the expression 2x5+3, the operator X, and the operand %, The
expression 2x5+3 has value 13, and if this is multiplied by 4%, the
answer is 52. In the second case, 2x5+3xl+ is made up of the operand
24 the operator X, and the expression 5+3k4; this last expression b
has value 17, and if this is multiplied by 2, the answer is 3%. This
is actually the way in which values are calculated in the language
APL, where this expression, in particular, would have the value 3l
in most languages, however, the value of 2X5+3x4 is 10+12, or 22,
Our nroblem is that we have not taken account, in our BNF rules, of
the conventions according tn which certain operations are performed
before otherse. In this case, the normal convention directs multipli-
cation to be performed before addition; so we would multiply 2 by 5y
obtaining 10, then 3 by 4, obtaining 12, and finally add the results
to get the value of 2X5+3X4- We cannot express this method of cal=~
culating values as a semantic rule which synthesizes the value'of

an expression from the values of the operand and subexpression which
it contains according to either of the above syntactic rules.

We say that the operator X has a greater grecedence than the
operator +. Whenever there are precedence rulesy one method of ex-
pressing them in BNF involves a different nonterminal for each level
of precedence, Consider an expression as avove, Just after all multi-
plications have taken place; we may then say that the expression is ‘

made up of terms, each of which is the result of some multiplication..

N,

In the example above, the terms are 2xX5 and 3x4%. Each term, in turn,
is made up of factors. What we do is to construct separate syntactic
definitions of expression, term, and factor. An expressiony in the

sense above (that is, where the only operators are + ami Xo with the

usual precedence) is a sequence of terms, separated by plus signs.
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A term is a sequence of factors separated by multiplication signs.
In our example, the factor is the primary expression type from which
all expressions are built upy but if, for example, we add the expo-
nentiation operator f.4 with the usual precedence rules -~ namely,
that all exponentiations are performed first, then all multiplica-
tions, and finally all additions, so that, for example, 2+5xL13x81
1s interpreted as 2+(5x(43)x8)+1 or 2563, with ¥]3 standing for 43
== then a factor would be considered as a sequence of primary ex-
pressions separated by exponentiation signs,

All these rules may be expressed recursively. We may write

<expression> :i= <term> | <expression> '+! <term>
<term> ::= <factor> f <term> tx! <factor>

for expressions involving only + and %3 a factor 1s then the same
as an operand, For expressions involving +, X, and ?, we add the rule

<factor> :i= <primary> | <factor> "M <primary>

This last rule is taken directly from ALGOL; here a primary (short
for "primary expression") is a variable, an unsigned number (recall
the discussion of this in section 1l=4+), a function reference (that
is4 the name of a function, followed optionally by a list of argu=-
ments in parentheses), or an arbitrary arithmetic expression enclosed
in parentheses.,

Other binary operators are subject to similar rules, Subtrac=-
tion 1is saild to have the same precedence as addition, according to
the normal rules of precedence, This means that as soon as all mule
tiplications, divisions, etec., are'performed, the additions and sub-
tractions are performed in their natural order, from left to right,
In particular, 15-4+3 is not 15-(4+3) or 8, but (15-=+)+3 or 1. This
affects the structure of our syntax rules if we wish later to add
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semantic rules to them, as before., We may write

<plus or minus> ::= t+? ,

<expression> ::= <term>' <expression> <plus or ninus:- <term>

but not - B
<erpression> ::= <term>‘ <term> <plus or minus> <expression> =

as may be seen by constructing the corresponding derivation tree

for 15-4+3; in the first case it is

eXpression

expression plus or minus term

d \
expression plus or minus term
: l
term

15 -
while in the second case it is -

expression

term plus or minus expression

‘ '\ i
term plus or minus expression
¥
gy term

+ 3

Thus in the second case 15-4+3 consists of the term 15, the "plus :
or minus" = , and the expression 4435 any semantic rule associated
with this syntactic rule would interpret 15-4+3 as 15-(4+3). Notice I
that this problem does not arise with addition; it would cause no

difficulty to replace our rule

<expression> ::= <term> { <expression> '+! <term>
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for expressions with + and X only by
<expression> ::= <term> ‘ <term> 1+?! <expression>

(since addition i1s associative).

In practice, ALGOL uses the slightly misleading term "“adding
operator" instead of "plus or minus." Similarly, "multiplying opera-
tor" covers multinlication and both kinds of divisiony and the ALGOL

syntactic rules for terms are

<nmultiplying operator> ::= 'xl’ !/'f 1ot

<term> ::= <factor>l <term> <multiplying operator> <factor>
The ALGOL rule for factors, involving exponentiation operators, namely
<factor> ::= <primary> | <factor> "' <primary>

has one slightly unnatural consequence, To see it, note that the

derivation tree of ¥1312 (for example), as a factor, is
factor

factor

TR

factor primary

/

primary uns igned number

unsigned number
decimal number

decimal number l unsigned integer
unsigned integer &/
unsigned integer i digit
& digit !
digit / \/
5 !
3 £ 2

In other words, 41312 is the factor 413, followed by f, followed by
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the primary 2; it is interpreted as (f3)12, and semantically its

value is thus 642 or 4096, Writing WI3T2 in ordinary exponential no-
tation without parentheses, however, one obtains h32, which is nor-
ma.1ly interpreted as h(32) =4 = 26214, To reflect this result in

a language such as ALGOL, we might write
<factor> :i:= <primary>] <primary> bf' <factor>

Further considerations of expression syntax, such as the
handling of unary operators, conditional expressions, and logical
or Boolean expressions, is postponed to section 2«5, Let us now turn

to the calculation of values of expressionse.
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2=2 State Vectors

The value of an expression which is the sum of two terms is
clearly, at least in simple casesy the sum of the values of the

terms. We might, therefore, write

<expression> g ::= <term> y '+! <term> y

<yal ue> ev = vv + wv

as long as we could ignore all other kinds of expressions., But this
semantic rule is lacking in one important sense: it does not express
the fact that the yalue of an expression (as contrasted with the
value of a number) 1s not a constant.

We can, of course, construet a class of expressions built up
from constants only. All we have to do is to restrict our notion of
primary expression in such a way that variables are not permitted.
This allows us to find the (constant) values of expressions such as
23+45/(6+4=1)=8 by semantic ‘rules resembling the one alove. Even if
variables are allowed, there are some situations in which a variable

has one and only one value in a given program. For example, the lines

TABLE DA 20F
LTABLE EQU 80

in BAL (IBM 360 Basic Assembler Language) mean: Reserve 20 full words
(80 bytes) of memory to hold a table called TABLE, and set the value

of the constant LTABIE (presumably, the length of the table) equal to
80, Under these eonditions, the BAL assembler (and, ultimately, the

linkage editor as well) will determine some start location for TABLE,
If this location is 1000 (decimal), then the expression TABLE+LTABLE-l
in the line

P8 IA 7 yTABIE+LTABIE )
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has constant value 1000+80=4 or 1076,

In most computing, however, the variables in an expression
change their values as the program proceeds. Every time an expres-
sion is evalunted, the current value of each variable must be taken,

We may say that the value of an expression is a function of the cur-

ay”

rent state of the cmputation. If the current state of the computa-

tion is denoted by ©4 then we may write

<expression> e ::= <term> y '+' <term> w

<value> eV(S) = vV(S) + w (3)

in place of the simplified rule above, That is: If S is the current
state, then the v !ue of the value-function eV, when a.plied to S,
is calclated by adding the values of the value-tunctions vV and wv.,
opplied to that same S, This is true whatever S may be,

Let us, first of all, note that things are not always this
simple. Suppose, for example, that the terms vy and y have side effects,
A side effect will be defined, for the moment, as anything which causes
one or more variables to change their values. In the process, the
current state of the computation is changed to a new state. Thus a
side effect may also be regarded as a function of the current state
of the computation, but its value is another state, rather than an
integer, real number, etc. (Side effects may arise from references
to functions, discussed in Chapter %.) Suppose that the terms y and w, -
in addition to values vV and w', have side effects vS and wS. That is,
if S is the current state, then v°(3) is the new state after the term: ;
Y is evaluated; in fact, if we first evaluate v and then w, our state )
changes from 3 to v°(S) and then to w*(+°(S)). It is reasonable to
define this change as the side effect of the expression e. Thus we
may write
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<expression> g ::= <term> y '+! <term> w
<slde effect> e3(8) = w*(vS(5))
<ralue> eV(S) = vW(S) + wW&S(s))

Note that the semantic rule for the value of an expression has also
been slightly altered. After ¥ is evaluated, the current state is
not S but v°(8), and thus wW(v*(5)), not simply w'(S), is the proper
value of w (if evaluation proceeds from left to right),

Now We ‘take up the question: What is the nature of S? What
kind of object is the current state of a computation? One way of
looking at S is as a function. If y is any variable, then S(v) is
the current value of y. Such a function is sometimes called a gon-
tept fupction, and S(v) is the (current) gontents of v. Another way
of regarding S is as a yector, that is, mathematically, an n-tuple
of the form

(kl, k2, coe)y kn)

Here there are presumed to he n varilables manipulated by the program
-= call them Xq9 eeoy Xy == and the current value of Xy is ki’
1<ig<ne (Whenn =2 or 3, such an n~tuple résembles the co-ordinate
specification of an ordinary wvector in the plane or in 3=-space.) We

might also write
Gy =Ty By = Kyp wvey Ty = k)

as a representation for S. This representation has the advantage that
1f the variables of the program are not called xl, ce0y X 5 We can

include their actual names in the vector specification. Thus
(I=12,J7=9’X=308, Y=OOO)

might specify the current state of a FORTRAN computation. Such a
. - ~5l-



vector is called a state vector. In the future, we shall refer to
MAAAA AN

the current state of any computation as a state vector; in represen-

ting it, we shall use the function form and the vector form inter-

changeably, since they are clearly equivalent,

This is perhaps a good time to review some elementary facts
about sets and functions, since these will be needed in the precise =
specification of stnte vectors. A gs&,is a collection of objects;
each of these is called a member of the set, or an element of the set.

WAANY AAAAAA.A

If x is a member of the set X, we say that x is jp X, and we write

X € Xo A %3333;29 from one set to another 1s a way of associating an
e¢lement of the second set with an element of the firste. If A and B
are two sets and f is a function from A to B, then we write f: A ~»B;
if a is an element of A, then f(a) 1s the element of B which f as-
sociates with ao For the functions of high-school algebra such as
£(x) - x° + 5% = 2y we may write f: R R, where R is the set of all

real numbers. For the state vector
S=(I=l2, J7=9,X=3.8,Y=0.0)

given above, we may write 53 A—> B (vhere S now denntes the corre-
sponiing content function), where I, J7, X, and Y are members of A,
and 12, 9, 3.8, and 0,0 are members of B,

If the number of elements in a set is finite, the set may be
crlled a einite set. Any finite set may be specified by listing its

elements, separated by commas, and enclosed in curly brackets f “Zo

Thus we may write

A=§I, J?, X, Y?

if we wish to specify the set A in the previous example as being the
set of exactly four elements I, J7, X, and Y. The set of all elements

with which a function associates values is called the gomain of the
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functions thus A is here the domain of S,

If P and Q are two sets, and every element of P is also an ele-
ment of Q, then we write P € Q, or P is contained In Qe If P< Q, we
may also write Q 2 P, or Q contains P, If both P< Q and P 2 Q, then
P and Q are the same set, and we write P = Q. The notation PC Q 1s
also used to express the fact that P is contained in Qs however, we
shall use PC ¢ to exclude the case that P = Q, That isy if P£ Q,
then PS Q and P # Q¢ If £ is a function from X to P, then f ecan also
be regarded as a function from X to Q, if P € Q. For example, P might
be the set

P = {12, 9, 3.8, 0.0%

and Q might be the set of all real numbers (including the integers)e.
The state vector S cited above is a function from A to P, but we
normally regard it as a function from A to Q -- that is4 as a func-
tion which assigns some integer or real numher %6 I, to J7, to Xy and
to Yo The set of all values of a function is called the range of the
funetion; in this case P is the range of S, For any function f: A > B,
if the range of f is B, we say that f is onke B; 1if the range of f is
merely contained in B, then f is into B, A set which is contained in
B is called a W of Bo

If Xl, X2, eeey Xn are any n sets, their cartesian producy
Xl X X2 X eee X Xn is the set of all ordered {1/;3\1}\9&9& of the form
(xl, X5y ceey X,)y Where X, € Xl’ X, € Xy9 eeey X, € X o If we write
Vx for the set of all legal values of the variable Xy then the car-
tesian product of all the Vx, for all variables x that we wish to
consider, is effectively the set of all legal state vectors involving

those variables,

-53-



2=3 Type Conversion

Let us now consider how to modify semantiec rules for expressions
in the presence of mixed-mode arithmetic. If A and B are real numbers,
I and J are integers, and S is the current state vector, then the "
current value of the expression A*B+I*J is not normally obtained .
simply by adding the current value to A*B to the current value of I*J .1
On most computers, we must perform Exgg wnyersion on I*J first, con-
verting it from integer form to real form before multiplying.

Types and type conversion are handled in fundamentally dif-
Terent ways in different programming languages. The method used by
ALGOL involves the introduction of a new technique of specifying se-
mantic attributes, and it is therefore postponed until the next sec-
tion. We shall now study several other ways of handling types,

let us first consider FORTRAN II, A variable name in FORTRAN
IT is of type integer if its starts with I, Jy Ky Ly, My or Ny and of

type real otherwise. We may represent this by

<integer letter> ::= tIt| tg1 | 1k} spe| 'M'§ BN
<real lotter> ::= tat] 11| 1ct] D1 [ 151 | ipe | 1ge (!H" 101
tpe ‘ Q| R | gt | rpe | sy | oy l lw’-ll ixr| eyr| eze
<alphanumeric character> ::= <real letter>‘ <integer 1etter>\ <digit
<identifier> x ::= <real letter>j y ::= <integer letter>;
Z 3:= <identifier> y <alphanumeric character> A
<type> x¥ = Leal; ¥ = Integer; 2% = b ’
<length> x" = 13 y' = 13 z0 = w? + 1

Note that the last of these four syntax rules is the only one which
has semantic rules attached. A syntax rule with no associated seman-

tic rules will be written, as above, in BNF without the modifications

involving labeling and replacing vertical lines by semicolons. Even
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if there are associated semantic rules, we use labeling only where
necessary; thus <real letter>, <integer letter>, and <alphanumeric
character> are unlabeled where they occur in the definition of
<identifier>. The rule for length 1s given in order that the length
of an identifier may be restricted by a semantic conditionj thus

writing
Wt < 6)

under the rule for <length> would force all identifiers to have
length less than or equal to 6.

By combining these rules with the FORTRAN rules of section 1-5,
we may introduce type as a semantic attribute of expressions, terms,

factors, and primary expressions. At one end, we have a rule such as

<primary> X ::= <unsigned integer> 1; y ::= <unsigned real

number> rs z ::= <identifier> y

<type> xt = integers yt

<value> xV = iV ¥V = pV; 2V(S) = S(v)

= reals zt = v¥

(We might also include other kinds of primary expressions, such as
subscripted variables, function references, and general expressions
in parenthesés; see also section 2-5,) At the other end, our rule

for expressions (for the moment without side effects, and composed

of two terms only, separated by a plus sign) might become

<expression> g ::= <term> y '+! <term> yw
<type> et = vt
wb = wt)

<value> eV(S) = vW(s) + w (S)

This rule forbids mixed mode arithmetic, as is done in FORTRAN II,

It is not quite as rigorous as it might be, because the plus sign is
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taken to stand for both real and integer addition. Let radd and ladd
stand for real addition and integer addition, respectively, as func-
tionss that is, radd(x, y). is the sum, in the usual sense, of the

real numbers x and y, while iadd(i, j) is the sum, in the usual sense,
of the integers i and j. (For an ideal language description, radd and ™

iadd would be operations on all real numbers and all integers re- B

spectively; for an actual language description, radd wuld be floating
point addition, with all of its attendant rounding, overflow, and
underflow character istics, while jadd would be 6né=word integer ade
dition.) If we know, in advance, that the type of a term must be
either real or integer, we may rewrite the above sementic rule for

the value of an expression as

<value> eV(s) = T(W(S), wW(S)), where f =
if v¥(S) = real then radd else iadd

(This is our first use of a conditional expression. Even to those
CAAAA A A, LA A AAAAAAN

unfa.?liar with ALGOL, the meaning of £ = if v'b (8) = réal then radd

else iadd should be obviousj it is the same as that of

{ radd if vt (8) = real
iadd otherwise

f =

but a hit easier to analyze by computer in various wayse.) If we wish
To permit mixed mode arithmetic between real amd integer quantities,
with type conversion in the usual way, we may introduce the function @
comb(a, t, by uy £, g), which crmbines the quantity a, of type t,

with the quantity b, of type ‘g (where t and u must be cither integer '
or real) according to the real operator f or the integer operator g, -
as the case may be. The semantic rule above would then be replaced by

<value> eV(S) = comb(v' (3), vt, W (S), wb, radd, iadd)
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where the formal definition of the comb function is

comb(a, ty by uy £y g) = If t = real then f(a, if u = real then

b clse float(b)) else If u = yeal then f(float(a), b) else g(a, b)

Here float(a) is the real number corresponding to the integer a.

Such rules for permitting or forbidding mixed mode arithmetic-
may be further refined by specifying, in a precise manner, the domain
of the state vectors S upon which various quantities depend. The
simplest approach is to specify that only those variables whose
values might affect an expression agpear in the domain to be deter-
mined. In fact, this domain may itself be made an attribute of an
expression, If A/B is a term, with associated domain §A, B} (that is,
the set consisting of the two elements A and B), and B/C is a term
with associated domain {B, C¢, then the domain to he associated with
the sum of these two terms, A/B+B/C, is clearly A, By C§ -~ that is,
the set of all elements which are in gither (or both) of the above
sets, or the union of these sets. If ¥ and Q are any two sets, the
union of P and Q is denoted by Pu Q. Thus in this case

<domain> ed = vd() wd

1s a reasonable semantic rule for domains, to be associated with the
syntactic rule for expressions above,

Now suppose S 1s a state vector whose domain is ed. We must be
able to "reduce" S to state vectors whose domains are v and wd re-
spectively. If the expression e is A/B+B/C, for example, then the
value-function eV is applicable to state vectors with A~y B-y and C=~
components, but the value-function vV associated with the term v =
(A/B) is applicable to state vectors having A- ana B-components only.
Therefore, the expressions eV(3) and v'(S) in the semantic rule tor

values are incompatible with each other. If S is the state vector
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$A=a, B=b, C=c¥, and S is the argument of eV, then the argument we
want for vV is clearly the state veetor §A=a, B=b}. In general,
viewing S as a content function with domain D, we want the function
8t with domain D', vhere D' <€ D (in this cose D' = jA, Bf and D =
$A, B, CZ) which satisfies S!(x) = S(x) for all x £ D', This is known

as the restriction of S to DY, ~and written SID'. Thus the semantic ruls
NANAANANNY

for values which forbids mixed mode arithmetic might be rewritten as

wralue> eV(8) = £V E|v), wWshd)), vhere £ =

if Vt (8) = real then radd elge irdd
wherecas the one which permits mixed mode might be written as
<value> eV (S) - comb(vv(Slvd), vt, wv(S\wd), wt, radd, iadd)

In either case, the type of an expression is also an attribute of it,

If we define the FOUTRAN c‘:gnverted-twme f\‘}y}g\i}pr}, ctype, as

ctype(t, u) = if t = integer and u = integer then intepcr else re-l

then

<type> et = ctype (vt, wb)

is the indicated semantic rule relating types of expressions and
types of terms, with superscript t in both cases. In general, ctype (t,
u) is the tvpe resulting from conversion, where t and u are the types
being converted.

Let us now pass from FORTNANW to APL, in which a single variable
may have different types in the same jobe We may, for example, h:.a.ve’f
an assignment which sets the value of the variable A to be an array -
of 5 numbers, and later in the same job another assignment which sets
A to be a Y=by-lt double array, or a 3-by-5-by 2 triple array, or even

a character string. Under such conditions the type of an expression,
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as well as its value, is a2 function of the current gtate of the com-

e~ CNE b Sre———————————— O

putation. The APL expression A+B is valid when A and B are hoth ar-
rays (of the same dimensions), in which case A and B are added com-
ponentwise; but it is also valid when A is an array (of any dimen-
sions) and B is simply a number which is to be added to all components
of A, Thus we may define a converted-typc function, ctype, for APL,

with the sample wvalues

ctype (array(5,3), array(5,3)) = array(5,3)
ctype (scalar, array(5,3)) = array(5,3)

ctype (scalar, sealar) = scalar

Using this function, a syntactic rule for expressions and a semantic
rule for thoir types, modeled after the treatment of expressions in

APL, is

<expression> g ::= <term> t; b ::= <term> u <operator> g
<expression> ¢

<type> ab(s) = t(s); bi(S) = ctype (Wt (), et(s))

Heré the syntactic rule has taken account of the right-to-left scan
in the APL language (thus AXB+C means AX(B+C), for example),

In APL, the eurrent type of any variable may be determired from
its current value. This need not always be the casej for example, a |
variable may be taken, in some language, to have values which are
bit patterns in a computer word, and normally it is not possible to
tell whether such a bit pattern represents an integer or a floating-
point number. In such a case, the model may be altered in ecither of
two ways. We may associate with each variable v, such that our state
vectors all have v-components, another variable tv, the tyre of v,
and give t

v

the fact that the type of a variable is in this case just as much a
-59-
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variable quantity as the variable itself, The other method is to re-
gard the values of a variable as pairs of the form (type, value),
which are added, subtracted, etc.y to form other such pairss for
example, in ALGOL, (integer, 5) + (real, 7) = (real, 12).

Finally, 12t us consider type conversion in SNOBOL.* Here the
value of a variable is always a character string. If this string is
numeric -- that is, if it consists solely of digits, possibly pre-
ceded by a minus sign -- then the ar ithmetic operations +y =y ¥, and
/ are applicable to it, and, in addition, it is automatically con-
verted to one-word integer (rather than character string) form on
some computers, provided that it fits into a single word. This,y how-
ever,y is an internal, implementation-dependent conversiony and has
nothing to do with the formal definition of SNOBOL. In fact, SHOBOL
may be formally defined without any type conversion at alle. SHORBOL
has, however, another related characteristic which affects the for-
mal definition: any variable name may at any time be constructed by
a SVOBOL program and used; that is, the total collection of variable
names used by a given SNOBOL program cannot be determined -by simply
inspecting the statements of the program. Each such variable is as-
sumed to have the null string as its initial value, and there are
no restrictions on character strings which may be used as variable
nanes (although strings which do not sat isfy the rules for identifiers
must be referenced indirectly). Consequently, a state vector in SWNOBOL
must have a component for every possible variable name. Most of thesc
components are null, of course; in fa¢t, inh any given state vector,
only a finite number of variables will have string valuesz of nnn-zero:g

length, .

* The term "SNOBOL," throughout this book, will refer to SNOBOL Y.
-60-



2l Inherited Attri butes

The FORTRAY X, APL, and SNOBOE languages studied in the previous
gsection all have a common feature: they lack Ezgg dgg%ﬁaigéggg such
as REAL I, J (FCRTRAN IV) or real I, J (ALGOL) or DECLARE I, J FLOAT
DECIMAL (PL/I)e Such declarations require a fundamentally new method
of obtaining the values of semantic attribuies,

The process of synthesizing attributes which we introduced in
section 1-3 has the property that, if it is used exclusively, the
attributes of any string must all be derivable from the attributes
of its substrings. let us consider, for example, the string 12¥34+56,
This is an expression with two terms, 12%34 and 56. The attributes of
12*%34+56 which we have studied are synthesized from attributes of its
termso The term 12*3%4, in turn, has attributes synthesized from those
of its factors, in this case 12 and 3%. Going even one level further,
the length and value of 124 34, and 56 are derived from those of 1,
2, 35 44 5, and 6, all of which are substrings of 12*34+56, In most
languages, this causes no difficulty, because the value of 12*34+56
is intrinsic == nothing in the pgiven program other than this string
can alter its valueo. There are, however, a few exceptions. In the as-
sembly language of the PDP=-8 computer, for example, there is a
pseudo-operation which changes the normal number base from octal to
decimal. If the pseudo-operation does not appear in a program, then
12¥34+56, anywhere in that program, has the octal value 506, or the
decimal value 326; if the pseudo-operation does appear (once, at the
beginning ot the program), then 12¥34+56 has the decimal value 46k,
Thus the value of 12*34+56 cannot be determined from attributes of
its .substrings alone; that 1is, it cannot be an attribute of 12*%34+56

under a system in which all attributes are synthesized,
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The abnve is, admittedly, an unusual example; synthesis of
attributes is usually enough, where constants are concerned. But
the situation with respect to expressions containing declared vari-
ables is quite similar to this, and the difficulty it causes is even
more funidamental: we cannot tell whether a string is a properly
formed expression by looking at its substrings alonee. If the ex-~
pression

A*B+C
appears in a FORTRAN program containing the declaration
INT"GER Ay By C
then it is properly formed, whereas if the declaration were
LOGICAL Ay By C
then A*B+C would not be properly formed., If the declaration were
INTEGER A, C

and B were left as a real number, then A and C would both have to be
converted from integer to real form hefore being multiplied and added,
respectively. Thus we must find some new method of working with at-
tributes which allows declarations and other "remote" constructions
to affect theme

The simplest method, and the one which appears the most prac-~
tical, is the reverse of the synthesis operation, Let us consider a

typical syntax rule:
<alpha> ::= <beta>' <gamma> <delta>

A synthesized attribute of "alpha'" would be calculated from attri butes

of "beta," '"gamma," and "delta.," Now suppose that we hawve an attri-
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bute of "beta," of "gamma," or of "delta" which is calculated from
one or more of the attributes of "alpha." Such an attribute is said

to be inherited. If "beta" 1s defined by a syntax rule such as
<beta> ::= <epsilon>l <zeta>

then sui¢h an attribute may be further inheritedj that is, an attribute
of "epsilon" or of "zeta" may be determined from those of "heta."
Continuing the process in this way, it is clear that attri butes of
any nnonterminal occurring on a derivation tree may, in particular,

be inherited from the nonterminal at the [ of the tree. (The term
"inherited" arises from considering derivation trees as 1f they were
family trees, with the root of the tree as the father of the family
and the other nonterminals as the sons, grandsons, etc.). Or, to put
it another way, any substring y of a string x may inherit its attri-
butes from those of x, if it appears in the derivation trce of x.

Let us first indicate how the use of inherited attributes solves
the problem with declarations discussed above, All constants, ex-
pressions, and statements of a program P are substrings of P, and
appear in the derivation tree of P, One of the attributes of P is nor-
mally a 3&39 function, or some generalization thereof, If the variablas
of P are I, Jy K, A, and B, for example, where I, J, and K are integer
variables and A and B are real variables, amd t is the type function,
then

t(I) = integer t(X) = integer t(B) = real
t(J) = integer t(A) = real

The type function is a synthesized attribute of Pj it is determined
from all the type declarations that occur in Py and, in the case of
FORTRAN or PL/I, also from the names of undeclared variables which are

used in P and thereby receive default declarations -- by the "I, J, K,
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Ly My or N rule", for example. (How this is done is studied in
greater detail in Chapter 5.) This type function is then inherited
by each variable in the program. Strictly speaking, a variable in=-
herits the type function from the expression in which it is contained;
this expression in turn inherits the type function from the statement
in which it is contained, and so on up to the program level, In a -
block structure language, each block has its own type function; for
the moment, we shall regard this as an irrelevant complication, and
regard the terms "“program" and '"block" as synonymous,

The type of a variable is now determined from the type function
which is itc inherited attributee. Let us modify the simplified de-

finition of a primary from the preceding section:

<primary> X ::= <unsigned integer> i; y ::= <unsigned real

~ number> pr; z ::= <identifier> y
<type> xt = jntegers yt = reals; z% = Y (v)

<value> xV = i¥; yV = r¥;5 3V(s) = S(v)

The only change is in the definition of the type of an identifier
which is o primary. We have assumed that the type function associ-
ated with the primary z is denoted by zy; the value of this func=
tion, when applied to the identifier y itself as argument, is the
type of that identifier.

We must now give semantic conventions for denoting inherited
attributes such as z’ in the above rule. We shall denote inherited
attributes by superscripted letters, just as with synthesized at-
tributesy and ecach inherited attribute of a nonterminal has a name
which is enclosed in angle brackets, followed by the corresponding

superscript. For the rule above, we would write
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<primary> X ::= <unsigned integer> i; y ::= <unsigned real
number> pr3; z $:= <ldentifier> y
<type function>Y
<type> xt

<value> xV = iV; yV = rV¥; 2V(S) = S(v)

= integer; yU = real; z° = zV(v)

The name <type function>, and the supersecript y, constitute the only
information about type functions of primaries which is needed in the
definition of a primary. The calculation of this type function will

be carried out in a rule in which <primary> is used. For example, we

might write

<factor> x ::= <primary> p; ¥y ::= <factor> z "' <primary> g
<type function>

=xs 2 =y; =y

We have omitted all other semantic at tributes of factors to concen-
trate on what happens to type functions., A factor, as well as a pri-
mary, has a type functiony and the definition of this inherited at-
tribute of factors is of the same form as the corresponding definition
for primaries. The inherited attribute equation p¥ = x¥ defines the
type function of any primary which is a factor; the inherited at-
tribute equation ¢¥ = yy defines the type function of any primary
which appears in a factor on the right side of the exponentiation
symbol, In each case, the type function is the same as the one as-
soclated with the nonterminal next higher in the derivation trce.
The same is true for the recursive equation z¥ = y¥, which defines

the type function of a factor contained in another factor.
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2=5 General Expressions

Let us now take up where we left off at the end of seetion 2-3.

The syntax rule for a primary in ALGOL is

<primary> ::= <unsigned number> ’<Variable> \<function

designator>{ '(!' <arithmetic expression> 1)°?

We recall that unsigned numbers and variables are analogous, in that
cach can be prefixed with a unary operator (-3 and -A, for example).
Function desisnators are what in FORTRAN would be called function
calls -- a function name together with its arguments, if any, en-
closed in parentheses, such as sqrt(axa+bxb). The most important
device in this rule, however, is the treatment of any arithmetic
expression, enclosed in parentheses, as a primary. This rule alone
embodies all of the usual characteristics of parentheses as uscd for
grouping. Consider, for example, the expression 3X(8-(2-1))+5. The
value of 8=(2-1) is 7, and this is calculated by first evaluating 2-1
and then treating 8-(2-1) as if the value of 2=l were substituted for
ite Thus (2-1) is treated as a primary expression, just as if it were
the single character 1, Similarly, (8-(2-1)) is treated as if it were
the single character 7 in finding the value of 3xX(8-(2-1))+5, that is,
3X7+5 or 26,

Syntax rules for the unary 6perators + and = normally resemble .
the rules for integers and numbers given in scction l=l. Only a
slight alteration in these rules is needed if we wish to allow unary-i
operators to appear in sequence (such as ++5 or +-+18). For integersy

for example. instead of writing
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<integer> ::= <unsigned integer>’ '+! <unsigned
integer>, '-! <unsigned integer>

we write
<integer> ::= <unsigned integer> l'+' <integer> "-' <integer>

What precedence should we give unary operators, when compared
to the precedence of binary operitors? If the unary + and - are given
the highest precedencey so that they are performed before all binary
arithmetic operators, then a unary operator may immediately follow
a binary operator, so that 5+=l or 8=+7 are legal and have values
equal to 1 in each caseo, Neither this behavior nor the use of several
unary operators in succession, as above, is allowed in ALGOL, On the
other hand, if we were to give the unary + and = the lowest prece~
dence, then an expression like =5+4 would mean =(5#4) -~ since the
+ would be done first == rather than (=5)#+, which would be the nor-
mal algebraic meaning. The solution adopted in ALGOL is to give these
two unary operators the same precedence as normal addition and sube-
traction,y so that the ALGOL rule for simple arithmetic expressions

reads

<simple ar ithmetic expression> ::= <term>‘ <adding
operator> <term>' <simple ar ithmetic

expression> <adding operator> <term>

since both "adding operators,”" + and =, are both binary and unary.
Simple arithmetic expressions may then be combined, using %59 59337
and %%39, to form (general) arithmetic expressions according to the
rule
<arithmetic expression> ::= <simple ar ithmetic
expression> ‘ <if clause> <simple aithmetic

expression> 'else! <arithmetic expression>
Laann
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where an "if clause" is defined by
<if clanse> t:= 'if ' <Boolean expression:- 'then!
L%V AN~

A1l of these nles may now be augmented by semantic attributes. Ve
shall not, for the moment, give all the semantic a tributes required
by ALGOL, but shall confine ourselves to valucs and side effects of .
the type studied above, ignoring type conversion problems. Under these
conditions, primaries, factors, termsy and simple and general arith-

metic expressions may be described syntactically and semantically by

the following sirmplified rules:

<ading operator> p t:= ¥1+¥y m s:= tat

<binary function> pb = plus; mb = difference

<unary function> pu = idents m® = ne
v *’

<nultiplying operator> £ s:= Ix'; p = /¥ 3

o2 '*'

<binarv function> tP = times; P = rdiv; ib = idiv
<primary> W ::= <unsigred number> u; X ::= <variable: y;
¥ ::= <function designator:  f; z ::= 1(?' «arithmetic
expression> g ')!
<ralue> w(S) = w5 xV(S) = s(v); ¥y G) = £9(8); ZV(3)
= eV (S)
<side effect> w°(3) = S5 x3(38) = 83 y°(3) = £35(5);3
z°(3) = e5(8)
<factor> x ::= <primary> p; $:= ~factor~ z "' <primry g .
<value> xV(S) = p¥(S); yV(S) = exp(zV(S), q"(z%(S)) ’
<side ef Cect> x5(S) = p3(S); ¥ (5) = q%(z°(8))
<term> x ::= <factor> f3; y ::= <term> z <Qaultiplying
operator> g <factor> g
wwalue> xV(S) = £9(5); yV(S) = oP(2V(8), g¥(z°(%)))
<side effect> x°(3) = £3(8); ¥°(8) = £°(z°(8))
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<simple arithmetic expression> x ::= <term> E; ¥y ::= <adding
operator> a <term> u; z ::= <simple arithmetic |
expression> s <adding operator> b <term> y
<value> xV(S) = tV{8); yV(s) = a® WV (8)); 2zV(S) =
bP(sV(S), vW(s5(5))) ‘
<side effect> x°(S) = t3(8); y°(8) = u°(8); 25(5) =
v3(s°(3))
<if clause> i ::= ';g' <Boolean expression> b *then!
<value> 1V(S) = bV (3)
<side effect> 13(38) = b3(8)
<arithmetic expression> x ::= <simple ar ithmetiec expressi%n> 83
Y ::= <if clause> i <simple ar ithmetic ‘
expression> § '3&29' <arithmetic expression> g
<value> xV(S) = sV(s); yW(S) = if 17(s) then tV(1%(s))
else z'(1%(s))
<side effect> x5(5) = s5(s); y5(s) = if 17(S) then
t5(1°(5)) clse z5(18(3))

%

It is assumed, in the above rules, that plus, difference,. times,
rdiv, idiv, and exp are respectively the addition, subﬁraction,;mul—
tiplication, real division (fractional result), integer division (in-
teger result with remainder), and exponentiation functions of two real
variables, and that jident and neg are respectively the identity and
negation functions of one real variable (recalling that type conver-
sion is here being ignored)e. The symbol = denotes, as usual, that the
value of a function (in this case wY in the rule for the value of a
primary) does not depend on its argument. The value bV(S) of the Boolean
expression b is assumed to be el ther true or false, depending on S;
alsoy b is assumed to have a side effect bS(S),.

The calculation of the values and side ef fects of Boolean ex-

pressions in ALGOL is analogous to their calculation for ar ithmetic
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expressions, as above, Each of the Boolean operators has a dist inct
precedence; the unary operator not (<) has the highest precedence,
followed in order by and (A), or (v), implieg ¢3), and equivalence
(£). Recalling our discussion of the unary minus, we see that this
coavention allows for expressions such as aa+b and avab, where a and
b are Boolean variables. This is in contrast to the situation with
arithmetic expressions, where aX-b, for example, is not allowed, (If
ax=b means ax(=b), it is, of course, equivalent to -axh, which is
legal, whereas ap<b and saAb are clearly not equivalent.) Boolean
expressions may be formed using éf, Ehgg, and ?iig, Just like arith-

metic expressionsy and, in addition, two arithmetic expressions joine-

-

by a2 relation (such as ) form a Boolean expression. We give the AIGOL

syntactic rules for Boolean expressions, together with simplified se-

nantic rules resembling those above:

<relational operator> u ::= t<t

i

X ti= 20y vy 1= I

~ve

o’

I

<binary operator> u
b

o'

X

<relation> p ::= <simple arithmetic expression> x <relational

overator> g <simple arithmetic expression> y

.0

less
= notless; y = greater;

b=

1St

l#l

= notgreater; wP equals

2

b .

<value> r7(s) = o (x'(8), y'(5(s)))

<side effect> r3(S) = ¥ (x5(8))

<Boolean primary> %t ::= <logical value> uj; w ::= <variable> y3

X 3:= <function designator> f;

3 W 2=

no tequal

$:= <relation> 1

Z ::= '(' <Boolean expression> b !)!

<value> t7(S) = uV; wV(s) = S(v); xV(S) = £Y(3); yV(8) =

rV(s); zV(s) = bv(8)

<side effect> t5(S) = 85 w*(8) = 85 ¥°(8) = £5(5); y°(5)
= r5(8); 25(S) = v5(s)
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<Boolean secondary> g t::= <Boolean primary> p; £ ::= =t
<Boolean primary> g
<value> sV(s) = p¥(8); tV(5) = not(qV(c))
<side effect> s%(s) = p5(8); t5(8) = ¢°(5)
<Boolean factor> x ::= <Boolean secondary> g; ¥ ::= <Boolean
factor> Z 'A' <Boolean secondary> t
<value> xV(S) = sV(S); yV () = and (zV(S), tV(z3(5)))
<side effect> x5(8) = s5(); ¥5(s) = t3(2%(8))
<Boolean term> x ::= <Boolean factor> f£; y ::= <Bnolean
term> z 'v! <Boolean factor> g ‘
value> xV(S) = £'(8); yW(8) = or(zV(s), gv(z°(s)))
<side effect> x5(8) = £3(S); y3(S) = g5(=5(S))
<implication> x ::= <Boolean term> tj y ::= <implication> z
'3' <Boolean term> u
<value> X' (S) = tV(€); YV (S) = implies(zV(S), u’(z°(s)))
<side effect> x*(8) = t5(8); y*(8) = w®(z°(5))
<simple Boolean> x ::= <implication> 1; y ::= <slmple
Boolean> z '=' <implication> j
<value> xV(S) = 1V(S); yV(S) = equivalence(zV(s), 3 (z5(3)))
<side effect> x5(8) = 15(s); ¥°(8) = 35(z5(s))
<3oolean expression> x ::= <simple Boolean> g3 ¥y ::= <if
clause> i <simple Boolean> t telse! <Boolean
expression> z
<value> xV(3) = sV(s); yV(s) = &g 1V(S) then tV(1°(s))
elsg zV(15(5))
<side effect> x5(S) = s5(5); y°(S) = if 1V(S) then
t5(15(s)) glse z°(18(s))

In these rules, and, or, implies, and eguivalence are assumed

to be Boolean=valued functions of two Boolean values, defined in the
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usual way, while not(true) = Ealse and not(false) = true. Also, the
functions equal and less are defined by equal(x, y) = if x=y then
true elge false and less(x, y) = {f x<y then true else falge, while

greater (x, y) = less(y, x), notequal(x, y) = not(equal(x, y)), X
notless (x, y) = not(less(x, y)), and notgreater(x, y) = ggg(ggeate;(x,”
yv)), for any two real numbers X and y (recalling again that type con- -
version has been omitted). Where arithmetic expressions require the
definition of four nonterminals (primary, factor, term, simple arith-
metic expression) because of the three precedence levels, Boolean
expressions require these four plus two more (secondary, implica=-
tion), because there are five precedence levels for Boolean operators.,
A number of points about the combining of simple arithmetic and
Boolean expressions using if, then, and g&gg bear mentione. The ex-

rression following else, in each casey 1s a general expression, and,

in particular, may itself involve &;. Thus

if a>b then c else if d=e then f else g
J\ (V% VAV " VERRY v A L VS

is legal, whether c, f, and g are all arithmetic or all Boolean vari-
ables. The expression between then and %%ﬁg, however, is a gimple

expression; thus
%ﬁ a>b then if é=e ngg ¢c else f else g

is not legal, although we may make it so by introducing parentheses, thus:

if a>b then (if d=e then c else f) else g

NN

This is legal because any expression in parentheses is a primary,
and thus a factor, term, etc., and ultimately a simple arithmetic or’
Boolean expressione.

In the semantic rules involving \:i;vf, then, and else, we note that

the side effect of the if clause (or, equivalently, of the Boolean
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expression it contains) is taken regardless of whether the value

of the if clause is true or false; however, only one of the other
side effects is taken in any case. This corresponds to evaluating
either b or ¢ in the expression {f a then b elgse ¢, but not both.
The value of such an expression is calculated after the side effect
of a, but not after the side effect of b, even if the value of a

is false,
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NOTLS

Many of the syntax rules in this section are taken directly
from the ALGOL report [Naur et ale. 631,

Mich work has been done on the subject of precedence. If the
syntactic rules of a language satisfy certain restrictions [Floyd 63],'f
the language is called an operator precedence language, and there is
a simple syntax-checking algorithm for it. Floyd!s restrictions have
been relaxed, and the corresponding syntax-checking algorithms ex-
tended, in [Wirth and Weber 661 and further in [McKeeman 66]. An
excellent account of this work is given in [Feldman and Gries 6871

The state vector concept is fundamental to all work in pro-
gramming science. It has been rediscovered at least eight times,
[Podlovehenko 62] contains the first general account of state vectors
as content functions (in Russian, gostoyaniya pamyati or '"memory
states" ), although the specific abstract computer defined in [Kap=-
hengst 59) has Maschinenstellungen, or "machine states.," The term
"state vector" is introduced in [McCarthy 631, and the term "content
function" in [Elgot and Robinson 641, State vectors are called
"snapshots" in [Nawr 661, "the content of the store" in [Strachey 663,
and simply “"states" in [Maurer 661, Other writers use state vectors
without giving thew any special names; thus [Engeler 67] refers to
a sequence of elements of an "underlying set" (of values), each of
which is presumably the current value of a variable, while [Cooper 691
denotes by $L} the (current) set of values of the registers in a pro-. ;
gram schemeo The "composite objects" of the so-called Vienna Defini=- )
tion Language [Lucas and Walk 69] are generalizations of state vector;.

The idea that the value of an expression is a function of the
current state of the computation first appears in [McCarthy 631; here

the notation val(t, £) is used, where t is a term and § is the current
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state vector. In [Strachey 661, if € is an expression and ¢~ is the
content of the store (that is, the current state of the computation),
then R(€, T) is the current value of €, as it appears on the right
side of an assignment, while L(e, ¥) is its current address, if any,
which is its value when it appears on the left side. Some of our se-
mantic rules for expressions appear in simplified form in [Burstall
70); thus, if plus(e, e') is the expression which is the sum of the
expressions e and e?, and val(e, s) is the value of e, given the cur-
rent state s, then Burstall gives the equation val(plus(e, e!), s) =
val(e, s) + val(e?y, s), _
Inherited attributes are the principal contribution of Knuthts
paper mentioned earlier [Knuth 681, The algorithm given in this paper
to test whether a language definition involving synthesized and in-
herited attributes is inherently "circular" -- that is, whether the
process of calculating the attributes goes on indefinitely and does

not terminate -=- 1s incorrect and has been corrected in [Knuth 711.
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EXERCISES

1. Give the values of the expression 5%6-4+#3, subject to
the conditions that * denotes multiplication, ~ denotes subtraction,
and: |

(2) * and -~ have equal precedence,

(b) * has higher precedence than - ,

(c) = has higher precedence than * .
2e¢ Using the syntax rules

<expression> ::= <term>' <term> '+' <expression> ‘ <term> V-t
<expression>

<term> ::= <factor> \ <term> ¥*% <factor> ‘ <term> 1/' <factor>

<factor> s:= tat | 1Bt] 1ot | 1| e | e

give derivation trees for:
(2) A*¥BXC-D
(b) A-B/C-D
(c) A*B*C/DIE+F
(d) A+B+C/D/E+F

3¢ Let v(S) be the value of the expression 2*I+3*J=4 (in the
usual sense) when the current state vector is S. Find the value of
T(S) when S is: .
(a) I =12, B =6, I+ =7, T = 0%

(b)%l=12’3=6aK=7,L=025
() iA=2.5, AO = =205, I =0, J = O%
@) J1 =17, J=18%

%, How many different state vectors are there with 2% comporents,

each of which is capable of assuming 2P gistinct values? (Such state
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vectors might express the current state of the core memory of a

computer with an n-bit address field and b bits per full word.)

5. (a) Give rules for function names in FORTRAN II, each of
which must start with a letter, must consist of letters and digifs
only, and mist end with the letter F. Any function name star-
ting with the letter X is of type %2E§§215 all other function names
are of type 53%}‘ (These rules were actually used in a very old
version of FORTRAN II.,) Give the type of each function name as a
semantic attribute of it,

(b) Give rules for identifiers in an assembly language, such
that each identifier must start with a letter and contain only
letters, numbers, and dollar signs. Give the type of each such
identifier as a semantic at tribute, having two values, i%%&&? and
Eﬁgf; every identifier containing at least one dollar sign has type

szstem, and all other identifiers have type user,
6e Consider the syntactie rule

<expression> g ::= <term> t; b ::= "+! <term> u; ¢ ::= V=¥
<term> y; 4 ::= <expression> y '+! <term> w3 g :i=

<expression> gz '-!' <term> x

Give semantic rules to be associated with this m le, for the seman-
tic attributes <value> and <type>, which

(a) forbid mixed mode,

(b) permit mixed mode,

in analogy with the semantic rules for values and types given with

the syntactic rule
<expression> g t:i= <term> ¥y '+! <term> y

in section 2=3,
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70 Which of the following situations reguire certain of the
semantic attributes to be inherited (not necessarily the ones listed)?
(2) The type of an identifier is to be an attribute of it
assume that type declarations are not allowed, but that an identifier
is of type integer if and only if its starts with any one of a certain

set of letters specified in the first statement of the given program..f

(b) Identifiers are as in FORTRAN II, and the type of an ex=
pression of the form IF b THEN x ELSE y is to be an attribute of it,
where x and y are not required to be of the same type,

(¢) The rank of an identifier is to be an attribute of it,
where by the rank we mean the number of subscripts (zero for a
non-subscripted variable), this rank to be determined by FORTRAN-style
DIMIHSION statements,

(d) An octal integer is defined, syntactically, to be an un-
signed integer (in the usual sense, as, for example, in section 1-1)
followed by the letter B, The value of an octal integer is to be an
at tribute of ite

(NOIE: In his paper on semantic & tributes, Knuth shows that
any syntactic and semantic definition involving both synthesized and
inherited attributes is equivalent to one involving synthesized at-
tributes only. However, the new attributes are not necessarily all
the same as the old ones. In the above problems, certain attributes
have been specified, and in some cases these attributes cannot be

defined unless certain inherited attributes are used.,)

8e Give semantic rules for type functions, according to the :
semantic conventions given in section 2-4, for the ar ithmetic ex=-
pressions and associated non-terminals (not those associated with

Boolean expressions) given in section 2-5,

9. Give derivation trees (syntax only) for the following arith-
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metic expressions. Use the syntax rules of section 2~5, cxcept that

the rule

<variable> s 'A', 'B" 'C'\ Int

is to be used instend of the rule for variables given in that section.

o

in

(a) AXBXC (term)

(b) A/BACXD (term)

(¢) AXB+C=D (simple arithmotic expression)
(d) A-BXCxD (arithmetic expression)

10. Give derivation trees for the following Boolean expressions,

pro blem 9 above:

(a) AABYCAD (Booiean term)
(b) AVBACVYD (implication)
(c) =7AAB (simple Boolean)

@) :Iv.g AvB then <C else DaE (Boolean expression)

-79-



CHAPTER THREE

STATEMENTS

3=1 Syntax of Statements

Syntactic rules for statements, in general, are much simpler

than syntactic rules for exmressions, As an example, we give a gene-

ral syntactic rule for aggignment statenents:

<assignment> ::= <variable> !:=! <expression>

There is not much more to assignment statements, syntactically, than
this. The symbol 3= may be replaced by = , as in FORTRAN or PL/I;
the variable may be allowed to be subseripted; and we may want to
dist inguish two kinds of expressions, such as arithmetic expressions
and Boolean expressions in ALGOL, Also, experimental languages have
been constructed in which the assigmment operator is treated much
like the other operators in an expression, and expressions take the
place of assignments, But in most practical cases, syntax rules for
assignments are simpley and, in particular, non-recursive,

yB%E&R%Q assignments, in which more than one assignment symbol
(normally 3= or =) is present, involve what are called left part
lists in ALGOL. The ALGOL assignment

A:=B:=C2=0,0

has At=B3=Ct= as its left part list; this is a sequence of left parts,
in this case three of them, A:= , B:= , and C3= , In extended versl ons

of FORTRAN, this would be written A=B=C=0,0, while in PL/I it would be
-80-
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A,ByC=0,0 . (The statement A=B=C in PL/I sets A equal to (B=C), that
is, to 1 if B=C and to O otherwise.) The ALGOL rule for left part
lists is

<left part list> ::= <left part>' <left part list> <left part>

where a left part is either a variable identifier or a procedure iden-

tifier followed by 3= , that is,

<deft part> ::= <variable identifier> t':=! ] <procedure
identifier> t:=?

(Here the procedure identifier is assumed to be the name of a pro=-
cedure which contains the given assignment statement, and refers to
the quantity which will be treated as the value of the procedure when
oxit is made.) An ALGOL assignment is now a left part list followed

by an expression, that is,

<assignment statement> ::= <left part list> <arithmetic

expression>| <left part list> <Boolean expression>

since two kinds of expression must be distinguished in ALGOL.
Transfer statements are of various kinds. Most languages have
a simple GO TO statement of the form

<GO TO statement> ::= 8GO TO ! <label>

or something similarj; in FORTRAN, <label> is replaced by <statement
number>, More complex GO TO statements involve the use of lists of

labels separated by commas, defined by
<label list> ::= <label>| <label list> ',! <label>

In ALGOL, instead of labels, we have here general designational ex-

pressions, which may, for example, be constructed using %ﬁ, then, and
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.eilw\sg. The label 1list is here called a gwitch list, and is used in
defining switch declarations such as syitch s := a, by ¢ where a,
by and ¢ are labelsj thus go %o s[1] would transfer control to ¢,
for example, if i were equal to 3, or g if 3 were equal to 1. The
ALGOL definition of a switch declaration is thus

<switch declaration> ::= 'switcg' <switeh
identifier> ':=' <switch list>

where switch lists are defined by

<switch list> ::= <designational expression>| <switch

list> t,! <designational expression>
and the general GO TO statement is simply
<go-to statement> ::= 'éo to! <designational expression>

In FORTRAN, however, the label list is part of the GO TO statement
itself. Here there are three kinds of GO TO statement == the simple
form discussed above and the assigned and computed GO TO statements,
definable syntactically by

<assigned GO TO statement> s:= 'GO TO ! <variable> !, (!
<label list> !)?

<computed GO TO statement> ::= 'GO TO (' <label list> !),!
<variable>

(The comma is sometimes omitted from the computed GO TO statement.)
Conditional statements are also of various kinds. In FORTRAN,
WNAAAAAAAAN
there is an arithmetic IF statement defined by

<arithmetic IF statement> ::= 'IF(! <arithmetic expression>
')? <statement number> !',! <statement

number> ',! <statement number>
-82-
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and a logical IF statement defined by

<logical IF statement> ::= '"IF(' <Boolean expression> t)!

<statement>

Strictly speaking, Boolean expressions are cal led logical expressions
in FORTRAN; also, the statement which appears as part of a logical

IF statement is somewhat restricted, and, in par ticular, cannot be

a DO statement or another IF statement, Analogous, although somewhat
weaker, restrictions exist in ALGOL. After the if clause (which, we
recall from scction 2«5, consists of the word §£, followed by a Boo=-
lean expression, followed by Egga) there may come any statement, ex-
cept that if it is another %f statement it must be cnclosed between
the words Eggég and SEQ (thus making it a compound statement of a
rather degenerate kind), while if it is a for statement it cannot be
followed by 3%3& unless it is so enclosed., After the word %%39’ if it
appears, may come any statement, including, of course, a compound
statement or block enclosed between the words Bsg%g and gggo The
ALGOL rule for if statements is simply

<if statement> ::= <if clause> <unconditional statement>

where an unconditional stitement may be a compound statement or block,
enclosed in begin and end, or a "basic statement" which may be an
assignment, go-to, or procedure statement -~ in other vords, just
about anything except another %& statement or a for statement. A
conditional statement may then be either an if statement, an if
statement followed by g&ﬁg and an arbitrary statement, or an if
clause followed by a for statement, (A1l of the above discussion
omits the treatment of labels, which is taken up in section lY=1,)
Iteration gEiEEESEEF differ depending on whether the iteration

is restricted to a regularly increasing sequence of values, or whether
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it is allowed to be more generale In FORTRAN, we may define DO
statements by the syntactie rule

<DO statement> ::= '™O! <statement number> <variable> I=!

<two or three expressions>
where "two or three expressions" is defined by

<two or three expressions> ::= <expression> ',! <expression> |

<expression> 'y ! <expression> t,! <expression>

In ALGOL, a 335 statement 1s a for clause followed by an arbitrary

statement, where for clauses are defined by
’ s e ] ':-_:' ] t
<for clause> :: agg <variable> <for list> 39

To restrict ALGOL iterations to approximately the scope of FORTRAN

iterations, one would define €2¥ lists by the rule

<for 1ist> ::= <arithmetic expression> 'step' <arithmetic

t t
expression> tuntil?! <arithmetic expression}

thus making them correspond roughly to the "two or three expressions"
of FORTRAN, as defined above, Actually, however, for lists are se=-
quences of 59; list elements, each of which may be of the above form,
of the "while" form (that is, an arithmetic expression, followed by
@3&%9, followed by a Boolean expression), or simply an expression.
(For special reasonsy the semantics of iteration is postponed: until
the chapter .on:programs and their effects,)

guhroutine cal ling statements are very easy to define syntac-
tically. In FC(RTRAN, a subroutine-is called by using the word CALL
followed by a subroutine reference; in ALGOLy even the word CALL is
omitted. The structure of subroutine references themselves will be

taken up at the end of gection 5?:.

'3



3=2 Semantics of Assignment

The effect of an assignment statement is to change the current
state of the computation to a new state, In the case of a simple
assignment without side effects, the new state is the same as the
old, except for the value of one variable, In general; however, this
need not be the caseo

We will treat the word %££23§, as it is used above, as a tech-
nical term meaning a function of the current state of some computa-
tion whose value is the next state, Thus if § is the set of all
possible states of a computation, then an effect ¢ is a function
from § to §; if S is the current state, then we write e(S) = se,
where S' is the next state. (Side effects are effects in this sense.)

How can we define an effect in a precise way? If ¢ is an ef-
fect and e(S) = S'y then we must describe how S' is obtained from S.
Regarding S' as a yector, we must be able to determine every compo-
nent of that vector in terms of the components of the vector S. Or,
to put it another way, regarding S% as a (content) function, we must
be able to determine S'(x), for gvery x in the domain of S', in terms
of the various values of S(x),.

In the simplest case, where the assignment a assigns the cur-

rent value of the expression g to the variable y, we may write

<assignment> a ::= <variable> y ':=! <expression> g
<effect> a®(s) = S, where S*'(v) = eV(S), St (z) =

S(z) for z # v

assuming that the assignment symbol := is used, The semantic rule
here defines S'(v) first, and then S'(z) for all z # v; thus it

gives a complete description of the new state S?! in terms of the old
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state S. It is assumed that the expression e has a value eV, which
i1s a function of S; this value becomes the new value of the variable
Vs while every other variable has the same value as it did before.
Let us now assume that the expression e has a side effect eS i
in addition to its value. In this case the new state vector a®(8) .
will be the same as the new state vector e®(S) produced by the side )
effect, except that the new value of v will be eV(S), just as it

was beforoce Thus in this case we may write

<assignment> a ::= <variable> y ':=' <expression> ¢
<effect> a®(8) = 81, where St(v) = eV (S), S!(z) =

S"(z) for z # v, where S" = o5(38)

Another level of complication 1n assignments arises when the
variable y may be subseripted. In this case the new state vector
will have one of its variables sét to the current value of the given
expression, as before; but which variable is set to this value de-
pends on the old state vectore. Consider, for example, the assignment
A(I-7) = A(I-6), where A is given in FORTRAN by DIMEI\BION.A(B)‘» If
@ is the effect of this assignment, and

5 =31 =9, A(1) = 2.5, A(2) = 5.0, A(3) = =12.5%

then ¢(S) = St, where

il

St =3I=9, A(l) = 2,5, A(2) = -12.5, A(3) = -12.5%
whereas 1f z
U=3%I=8, A1) = 2,5, A(2) = 5.0, A(3) = -12.52

then e(U) = U', where

Ut

il

2T = 8, A(1) = 5.0, A(2) = 5.0, A(3) = =12.52
e v
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Thus a variable occurring on the left side of an assignment will
have a new attribute giving the variable (that is, an element of
the domain of the state vectors under consideration) as a function
of the current statc vector. This is called the %Exgggg (L for left
side) of the variable. In the above example, if v2 is the L-value
of the variable v, then vl(S) is the variable A(2), while'vR(U) is
the variabhle A(1l). The relation between the L-value of a variable

and its ordinary value (sometimes called its R=value) is

vw(s) = sis))

where vV is the value, and v the Levalue, of the variable v. Un-

subseripted variables, of course, have constant L-values; that is,
their I~values do not deprnnd on the current state vectore
If the variable v hns an I~value vg, the assignment rule above

may be rewritten

<assignment> a ::= <variable> y ':=! <expression> g
<effect> a®(S) = S*, where S'(wE(s)) = e¥(8), 51(2)
= 8" (z) for z # vl(S), where S" = e5(8)

Further complications ensue if the left side may have a side effect.
In FORTRAN, as it was origiqally’defined, this cannot occur, bocause
subscripts are restricted to certain very simple forms. However, in
most languages allowing subscripted variables, including ALGOL, these
may includevfunction references as part of a subscript, and such
function references may have side effectse At this point there are
two plausible interpretations, each of which leads to its own semantic

rule, For example, consider the assigmment
ALF(3)] := F(8)

where F(I) = K + I, for a constant K which is incremented by one each
. =87~



time F is callede If K 1s initially set to 14 w¢ may interpret this
in either of the following ways:
(a) Calculate F(8), which is 9; then set A(5) = 9 (since X
has been incremented by 1 in calculating F(8), and therefore F(3) i

is now 5); or

vyt

(b) Caleulate F(3), which is 4, then set A(4) = 10 (since K
has been incremented by 1 in calculating F(3), and therefore F(8)
is now 10).

The first of these methods corresponds to our intuitive ideas
of calculating the value of the right side first, and then worrying
about the left side. It corresponds, in our terminology, to the

assignment rule

<assignment> g t:= <variable> y t:=! <expression> g
<effect> a®(S) = S%, where S'(vg(es(s))) = eV (S), St(z)
= S"(z) for z # vl(es(s)), where S" = v3(e®(8))

assuming that vS 1s the side effect of v. The second method corre-
sponds to our intuitive 1ldeas, at a lower level, that "when in doubt,
always do things from left to right"; it corresponds to the rule

<assignment> g ::= <variable> y V:=!' <expression> g
<effect> a®(S) = 8?, where S'(vE(S)) = g (v (s)), St (z)
= 8"(z) for z # vA(S), where S" = eS(v5(5))

In fact, the informsl semantic description of assignments given in
the ALGOL report specifies that the left side 1s to be evaluated ‘f
firsty, as we have done here.

Assignments, like expressions, are affected by type conversi on.
Even in languages (such as FORTRAN II) in which mixed mode in ex-
pressions is not permitted, 1t is almost always allowed to set the
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value of a variable of one type to the value of an expression of a
different type, after suitable conversion. The conversion function
to be used, of course, depends on the two types involved; in FORTRAN,

for example, we may define

ntef (real, real) = ident ntcf({nteger, real) = fix
ntef (real, integer) = float ntef (integer, integer) = ident

where ntef(vt, et) is the name of the type conversion function needed
to convert an expression-~value of type et to the type yt of the vari-
able on the left. (The fix function normally truncates its argument;
thus, for example, £ix(3.99) is 3, not %) In order to use such
functions with arguments, we shall use the convention, suggested by

the language LISP, according to which

app]y(f, xlq sosy xn)

f(xly seevy Xn)

Here £y of course, may itself be calculated by the use of another
function, such as ntef above. Using this convention, we may modify
the last rule above for assignment statements as follows, assuming

that vt and et give the type of v and the type of e respectively:

<assignment> a ::= <variable> y !:=! <expression> g
<effect> 2®(S) = Y, where stv()) = apply(ntcf(vt,

et), eV(WS(S)), 8t(z) = S"(z) for z # VQ(S), where
st = eS(v°(8))

We may also wish to replace et by et(S) in the above equation when
the type of an expression is in fact a function of the current state
vectoro, ALGOL, for example, does not outlaw expressions of the form
&; b then a else 1 where a is real and i 1s integer; the type of
such an expression obviously depends on the current value of b,

Let us now consider how to give semantic rules for multiple
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assignments. As before, we shall assume that all processing is car-

ried out from left to righte This statement must be made in the case
of multiple assignments even without side effects, as may be seen by
considering

Afi] = 1 = 1+1

in ALGOL, If the initial value of 1 is 5, then either A[5] or A[6]
is set to 6, depending upon whether processing proceeds from left
to right or right to left. (The same thing happens in PL/I with
A(I)yI=I+1 ,) Nor is it enough to say that the assignments are made
from left to right, because this would seem to imply, for example,
that both A[5] and A[L6] would be set to 6 in the assignment

Afi] = 1 = A[1i] := i+l

ani this is clearly not the case. What happens is that the gubseripts
are evaluated from left to right, to enable us to decide what cells
have their values changed; then the expression on the right is evalu-
ated, and its value placed in each of these cells. It follows that a
left part list, in the ALGOL sense, has associated with if a set of
L-values, rather than a single Imvalue. If this set is called p%,

for the left part list p, while ps is the side effect of p and pt the
type of p, one may give a semantic rule to go with the ALGOL syntactic .

rulé for assignment statements:

<assignment statement> x ::= <left part 1list> p <arithmetic
expression> a3 y s:= <lef t part list> g <Boolean
expression> b

<effect> x®(8) = st, where S'(z) = apply(ntcf(pt, at),

a¥(p°(8))) for z ¢ p°(S), S'(z) = §"(z) for z ¢ p*(S),
where S" = aS(p°(8)); y2(5) = 8!, where S'(z) =
apply(ntet(q®s B°), 87(q°(5))) for z & q%(s), S*(z)
= 8% (z) for z ¢ qﬁﬁ?}, where 8" = (g% (8))
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We note that in ALGOL a left part list must have a single type;

that isy multiple assignments such as

where g is real and J is an integer, are not permitted. Let us de=-
rive the attributes of left part lists from the corresponding attri-
butes for left parts. Remembering that processing takes place from

left to right, the rules may be written as follows:

<left part list> x ::= <left part> p; y ::= <left part
list> z <deft part> g
<type> x# =2 pt; yt = zt
(zF = o%)
<set of I~values> x%(5) = pl(s); y*(8) = 22() v $t(z° (6}
<side effect> x°(8) = p®(8); ¥°(S) = q5(2°(8))

Here it is assumed that left. parts have I=values, with superscript Q,
and side effects, with superscript s.

Our definition of ALGOL assignments is still not complete, be=
cause it fails to take into account the case in which the evaluation
of the expression on the right is never completed., This case will be

taken up in section =3,
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3=~3 Transfer Statements

We now pass to other kinds of statements besides assignment.
The logical IF statement whose syntax was given in section
3=l has an effect, much like the effect of an assignment statement,

which may be specified semantically as follows:

<logical IF statement> g ::= 'IF(' <Boolean
expression> b ')! <statement> t
<effect> s®(S) = if b(S) then t®(b°(S)) else H°(8)

Here it is assumed that the Boolean expression b has a value bV and
a side effect b°; we may replace b3(S) by S if no side effect is
presento If the statement t is an assignment statement, then t® is
its effecty as specified in the preceding section. E¥en if .t is mot
an assignment statement, however, it must, clearly, have an effect
in this sense,

The arithmetic IF statement given in section 3=l does not
change the values of any of the program variables. We may say that
it "does not have an effect"; but what we mean is that its effect
is the identity function ==~ that is, if g is such a statement amd
s® 1s its effect, then s®(S) = S. The arithmetic IF statement, how-
ever, also determines the statement number of the next statement as
a function of the current state vector. We could, if we wanted to,

make this into a semantic attribute as follows:

<IF statement> i ::= 'IF(' <arithmetic expression> g !)!?
<statement number> g !',' <statement
number> b 'y! <statement number> ¢

<next statement number> 1%(S) = if e'(S) < O then a

else if e"(S) = O then b glse c
-92-

!



Unfortunately, this type of rule does not extend to the logical IF
statement. Consider, for example, the statement IF (K=0) GO TO 25,
If the current state vector S specifies K -: 0 (that is, if S(X) = 0),
and if z is the attribute giving the next statement number, we may
write z(S) = 25, But what is z(S) if S(K) # 0? If statement number
23, for example, immediately follows this IF statement, then we might
write z(S) = 23. But it is not necessary, of course, for an ar bitrary
statement in FORTRAN to have a statement number at all,

Let the statements in a program be numpered in sequence from
1 throurh ne If a std ement is numbered k in this way -- that is, if
it is the kth statement in its program -- then we say that its 53323-
Ese& %33&5 is ko What we would like to associate with an IF statement
is an attribute giving the statement index of the next statement, as
a function of the current state of the computation. It should be clear
from the discussion nof the preceding chapter that this cannot be donc
without introducing inherited attributes. A statement, by itself,
contains no statement index informationj this can only bhe inheritecd
from the program of which that statement is a parte

There are two inherited at tributes which we need., First, given
a statement, we want to know its own statement index., Second, we
need a function which gives, for each statement number in the pro=-
gram (or, in other languages, tor each label), the corresponding
statement index. Using these, we may give syntactic and senantic rules

for a general FORTRAN IF statement as follows:

<IF statement> £ ::= YIF(! <arithmetic expression> g !')!?
<sta enent number> x '4! <statement number> y t,!
<statement number> z; g ::= 'IF(' <Boolean
expression> b *)' <statement> t
<statement index>*

<label function>®  _g3.
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<effect> £2(8) = e%(S); g%(8) = if bY(3) then t® (L5 (3))
else b3(S)

<exit index> £¥(5) = if eV(S) < O then f(x) else if

eV(S) = 0 then f2(y) else £3(z); g5(S) = 1f bY(S)
then t*(b°(S)) else gl + 1

The new attribute, "exit index," gives the statement index of the
next statement to be executed; we have assumed that the (more or
less arbitrary) statement ¢ has an exit index t¥ a8 well as an ef-
fect £, We have also assumed, as before, that the amithmetic ex-
pression e and the Boolean expre$sion b have values eV and bY
respectively and side effects e and b° re-
spectively. The inherited attribute equation t1 = gl sets the state-
ment index of t to be the same as that of g; it reflects the fact
that 1f a 'logi¢al IF statement 1s the kth statement of its program,
then the sbatement which it ¢ontains, being part of this kth state=
ment, can also be said to have statement index k.

We must now give rules for the effect and the exit index of
a more general statement. For simplicity, let us assume that there
are only three kinds of statements: assignments, IF statements, ~nd
GO TO statements. Then the general rule for statements may be drawn

up as follows:

<statement> x ::= <assignment statement> a3 y ::= <GO TO
statement> g3 z ::= <IF statement> j
<statement index>1
al = xi; gl = yi, 11 = 51
<label function>®
o = xB; g = yP; 18 = 2P

1y
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<effect> x0(S) = a®(8); y2(5) = g8(8); 28(8) = i®(s)
<exit index> x¥¥(S) = a¥(8); y¥(s) = g¥(s); 2¥(5) = 1%X(8)

This rule is typical of those in which one nonterminal is defined
syntactically as one of several other nonterminals, with no string
concatenation and no terminals in the syntactic rule. The synthesized
at tributes are often simply "passed up the tree" and the inherited
attri butes "passed down the tree," as here, That isy the value of
each synthesized attribute of the nontéerminal on the left is given
as the corresponding value of the samé attribute of each nonterminal
on the right; and the reverse is true for the inherited attributes,
(The statement index and the label function of & statement, of course,
must be furt her inherited from the program containing that statemeﬁt.
Rules for doing this are given in the following chapter.)

It remains to specify the effect 6f a GO TO statement and the
exit index of an assignment or GO TO statement, ormally, an assign-
meat statement exits to the following statement, that is, to the
statement whose index is one greater than its own. Thus by adding the

semantic rules

<statement index>i

<exit index> a*(8) = al+ g

to any definition of an assignment statement 8¢ We may supply the
definition of exit index needed in this case. (Again, this is in the
absence of the special type of side effect to be discussed in section

%-3.) A simple GO TO statement may be defined very easily as

<GO TO statement> g ::= %GO TO ! <statement number> p
<statement index>
<label function>®
<effect> g®(s) = 8
<exit index> g*(s) = g%(n)



In fact, if GO TO statements are restricted to this simple form,
we could eliminate the mention of their statement index and the
equation gi = yl in the inherited attribute equation list for
statement indices of a statement; also, we could eliminate the
effect of a GO TO statement and replace g2(S) by S in the rule

for the effect of a statement. Many languages, however, have more

complex forms of GO TO statements. For the assigned GO TO statement

whose syntax was given in section 3=~1, the label list gives a range
of values for the given voriable. This is now a label-valued vari-
able; its set of values (see the end of section 2=2) is a set of
labels. Such variables are set by ASSIGN statements, whose syntax

and semantics is

<ASSIGN statement> g ::= PASSIGN! <statement
number> n 'TO' <identifier> }
<effect> s®(s) = Sty where S'(1) = n, 8%(z) = 8(z) for
z #£1

The syntax and semantics of assigned GO TO stateaents is then

<assigned GO TO statement> g ::= 1GO TO! <variable> v ', (!
<label 1list> ¥)!¢
<effect> s%(s) = 8
<label function>*
<exit index> s*(S) = s?(S(v))

with the label function inherited as before.

For the computed GO TO statement of section 3=1ly let us os=-
sume that the label list has as its attribute a label=valued func-
tion of integerse. Thus the label list

23, 2k, 259 99
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is associated with a function £ such that £(1) = 23, £(2) = 24, £(3)
= 25, and £f(&) = 99, The label list also has a length, which is in

this case W, If we denote the length of the label list a by a”, and
the associated function as above by af, we may formulate the syntax

and semantics of computed GO TO statements as

<computed GO TO statement> g ::= GO TO(' <label
list> a '),! <variable> v
<effect> s®(s) = 8
<label function>®
<exit index> s*(S) = A£ 1 < S(v) < a™ then af(s(v))
else error

It is assumed here that if we attempt to execute such a statement

at a time when its variable is not in bounds -~ that is, between 1
and the length of the label list, inclusive ~= a run-time error
should result. Some FORTRAN systems, on the other hand, allow the
program to proceed normally (without transferring) in this case, and
if we wanted our semantics to reflect this fact we would introduce
the statement index as an inherited at tribute and proceed as we did
with the exit index of an assignment statement.

A §2~33 statement in ALGOL involves a designational expression,
whose value is a function of the current state vector. A designa-
tional expression may also have a side effectj it is permitted, for
example, to go to ALf(1)] where A is a switch and f is an integer-
valued procedure which changes the value of some variable. Ignoring
side effects for the moment, we may give the syntax and semantics of

designational expressions as follows:
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<simple designational expression> x :i= <label> g3 y ::=
<switch designator> d; z s:= '(? <designational
expression> e
<label function>® .
4% = %5 ¢ = 2
<exit index> x*(8) = 2 (a); ¥*(S) = d*(8); Z*(8) = *(5)

<designational expression> X ::= <simple designational

'Y

expression> d3 y ::= <if clause> i <simple
designational expression> g 'else! <designational
expression> z

<label function>2

@@ = @3 12 = y?; o = yP; 22 = P

<exit index> x*(S) = d¥(s); y*(s) = if 1V(S) then
e*(s) else z*(8)

9& to statements may then be given simply by

<go~-to statement> g ::= %sgo Eg' <designational expression> e

<label function>®

e = g2 |

<effect> g®(8) = 8

<exit index> gX(8) = ¢X(S)

Note how the label function must be inherited through these defini-

tions in order to be applied at the point where a designational ex-

=

pression is ldentified as a particular label.
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3= Inpui-Qutput Statements

A simple input statement which reads a new value for the
varinable £ has an effect, in the sense defined above, since nfter
1t is executed the new state vector is different from the old onej
the value of X hns changed. This cffect, howevor, is not a function
of the values of the internal variables of the program, but rather
of the current state of the input tape, the input deck, or the
input medium in generale. A simple ontput statement which prints
out the valne of the varisble X has no effecet on the internal vari-
ables of the program; the new state of these vnriables is the some
as the old one. However, such a statement changes the eurrent state
of the output medium.

If we arc to include input-output stntements in the analysis
of the preceding section, we must give to cach such statement an
effect ond and exit index, as functions nf the current state wvoctor,
The exit index is obviousj such statements do not tr-sfer, and we
may thercfore do the same thing we did Tor zo«'rmeat Latements.
To define an effect, however, we shall have to make what may scen a

radical assumption: mathematically, we shall meke no distinction

between external and internal wvariables. Because of this, whon we

speak of the "current state of the computation," or the "current
state vector," as a content finection, we shall menn a functicn of
all varioble quantities involved in the computation -- input nnd
outpnt media and their positioning, as well as what rre ord wrily
called variables. The current state of the internal variables, the
current state of the input medin, and the current state of the output
media are thercfore merely rcsirictions of the total current state
of the computation to a particulnar subset of its domain as a con-

-
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The simplest input/output media are one-way. A onc-way input
mediumy such as a deck of cards or a paper tape to be read, may be
thought of as a variable whose values are gequenceg of data to be

read, If £t is such a variable, and (xl, Xpy ooy xn) is its current

value, then, after a read operation, its current value will be (x,

sly”

coey xn)e The piece of data denoted by Xq9 having been read, is no
longer part of the value of t; or, to put it another way, the se-
quence which is the current value of t consists of those items which
A one-way output medium, such as an output sheet or a paper tape be-
ing punched, may be considered as a variable whose values are sc-
quences of data which have thus far been outpute. If £t is such a va-
riable, and the item currently being output is x, then the current
value of £ is changed from (xl, cooy xn) to (x, Xy9 ooy X,) o

A sequential, two-way input-output medium, such as a tape used
to store intermediate results of a computation, cannot be represented
simply as a variable whose values are the sequences of information
which it currently contains. It is necessary also to know the posi-
tion of the reading and writing heads with respect to the tape; this
position varies, of curse, as the tape moves back and forth. Perhaps
the best way to model this situation is to consider the tape as an
array of records, each of which is treated as a variable., If there

are n records on the tape t, then t[1ll, ..., tLnl] are pn separate

variables, whose values are the possible contents of a given record; *
there is then also another variable ht’ representing the tape head k
for this particular tape, and its values are the variables t[1l, scoy
t[n] themselves (or, alternatively, the integers from 1 through n)e.

If the value of hy is tlkl, then tlkl is being read or written next.
We may obtain an alternate model of a one~way input medium by consi-

dering it as a special case of a two-way medium modeled in this waye
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As an example of input-output on one-way media, let us postu=-
late two variables, reader and printer, such that S(x;ggder) and
S(ngnter), for the state veetor Sy are respectively the current

AN
sequence of records waiting to be read and the current sequence of
records which have thus far been printed. For the moment, we shall

: also assume that each record consists of the value of a single varie

u'®

able. Simple READ and PRINT statements such as

READ X, Y, Q1
PRINT I1, I2, I3, Ik, IS

(taken from the language BASIC) may now be described as follows:

<HHAD statement> x ::= 'READ! <variable> y; y ::= <RUAD
statement> z 'y <variable> y
<cffect> x9(S) = SV, where if S(ES&QEI) = (xl, Xpy eees
xn) then S'(I\}g\%lv(\az') = (J<‘2, cerny xn), St (v) = zyy nd
St(z) = 8(z) for z # v, reader; ye () = 8, where if
z°(8) = 8" and 5" (ggader) = (xy5 X5y eeoy X,) then
S'(Bgeggg) = (Xpy ey xp)y Stw) = Xyy and S'(z) =
53" (z) for z # w, reader
<PLINT statement> x ::= VPRINT! <variable> y; y ::i= <PI'Ii&
statement> gz ',!' <variable> w
<effect> x®(3) = S, vhere if S(printer) = (X5 eeey %)
then S'(nggkg;) = (B(v), Xps eeey xn), St(z) = 5(z)
for z # printer; y®(S) = 8%, where if z®(S) = " amd
. S"(R?inter) = Cxl, eeey X ) then S'(printer) = (Sw),
Xys seey X,)s S'(z) = 8"(z) for z # pripter

In practice, of course, records do not correspond to valuecs of in-
teger and real variables; an input record, for example, may be con-

sidered as an input card, or a character on such a ccrd. IT we take
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the individual characters as records, and set aside (say) fifteen
characters for each integer or real variable, then we may replace

the start of the semantic rule for the effect of a READ stateneht by

<effect> xe (S) = S ’ where if S (readex) = (xl’ x2 9 ecey
xls’ x16’ ec ey ,xn) then S?¢ (W’ = (x16, TEX) xn) ’
St(v) = CCOHV(xl, x2, XYY xls), amd S{z) = S(z) for

z # v

and follow this by similar changes in the equation for y®(S). Here
cconvﬁxl, veoy xl5) is the integer, real number, etc., resulting
from character-code conversion, where the values of the fifteen
characters in the string representing that number are Xy9 eeey xlS’
respectively; thus, for example, in FORTRAN, cconv('3', !.!, 10!,
IEI, l+l, tol, l3l, ] t’ t t, J l, ] l’ t t’  { l’ ] l’ ] l) _—_3000.
Further complications may ensue if the number of characters which
represents a number is allowed to be variable, or if formatting is
allowedy these subjects are taken up in seetion = . |

The definition of the READ statement given above is deficient
in one other important respect: 1t does not indicate the effect when
there are no more cards to be read, If S(£S3g§r) = (xl) and S' is
the new state vector after reading, then S'(gggggg) is presumably
the null sequence of values; but nothing is said about what happens
when 86533233) is itself the null sequence, Diffe ent READ statcments
handle this case 1n different ways. Some set an end-of-file flog,
which 1s itself a wvariable. This variable can then be tested by an ;o
"1f end of file" statement., Some simply do nothing; thus if S(gaﬁig;) i
were the null sequence, we would have S!' = S, Finally, some are ’
equipped with a point to which to transfer on end of fileo In this
case, of course, the exit inde% of the READ statement will depend
upon whether S(Egggg;) is the null sequence, for the current state

vector Se -102-
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Let us now consider some statements which act upon a sequentinl
file called ALPHA, which may be implemented as a tape, drum, or disk
filey or the like. Iet the current length of the file ALPHA be nj we
therefore postulate n variables ALPHA[1], AL-HA[2], ..., ALPHALNI],
each of which holds a record of the file., As before, we assume that
the records corrcspond to values of variables, There is also a vari-
ahle pos..ALPHA, the Eosition m:;il’?%g o1 the file ALPHA, whose values
are O through n. For brevity, we shall now specify correspondences
between typical input-output statements on snch a file and assigrment
and conditional statements which explicitly iavolve the varinblos

ALPHATiJ, 1 < 1 < n, nnd posALPHA:

OPN FILE ALPHA POSALPHA = O
READ ALPHA, X pos JALPTA = pos JALPHA + 1, X =
ALPHA[pos oALPHA]

IF (E0F, ALPHA) THEN .40 IF poseALPHA > n THEN coo

WRITE ALPIA, X pos eALPHA = pos ALPHA + 1,
ALPHA[pos o ALPHA] = X

REWIND ALPHA pos ¢ALPHA = O

BACKSPACY ALPHA po s JALPHA

il

pos JALPHA - 1
N
POS JALPHA + N

POSTII'TON ALPHA, N pos JALPHA

J

POSITTON "ORWARD ALPHA, N pos ALPHA

]

il

POSI TION BACKWARD ALPHA,Il pos ALPHA pos ALPHA - N

It should be easy to see from these correspondences how syntactic
and semantic definitions of input-output statements o uld be con-
structed, since we already know how to make such definitions of as-
signment and conditinnal statementse We shall give two such con-

structions as exuamples:
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<READ statement> x ::= 'READ! <file name> n 'y' <variable> x
<effect> x®(S) = 81, where S'(n®) = s(@P) + 1, S¥(x) =
S(™(s @P) + 1)), S'(z) = 8(z) for z # nP, x
MWRITE statement> x ::= 'WRITE! <file name> n ',! <variable> x .
<effect> x8(S) = 8', where St(nP) = s(P) + 1,
st(n™(s (nP) + 1)) = 8(x), S!(z) = S(z) for z #
n(S () + 1), x

[ +
o

il

e

Here, if n is ALPHA, then nP is posecALPHA and n™(k) = ALPHA[kJ, for
each k > O, Note that we must write n"(S(nP) + 1) (or n®(S!(nP))),
rather than n®(S(nP)), in e h of the above rules, to express the

fact that pos ALPHA 1s considered as being incremented before it is

usedo

"
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3=5 Machine Inst.uctions

A1l of the analysis which we have carried out for commands in
algebraic languages has its analogue for instructions on digital
computers.,

The components of a state vector for a computer are fhe regi-
sters, the memory cells, and the input-output units as sugeested in
the previous section. The menory cells, of course, includs both ‘T O~
gram and data words. If, for a riven program, there exists a cone
stant association between varialhle names and addresses, there is m
diffienlty in viewing the ol=component of a state vector, for oxemple,
where ¥ is an address, as its v=component where v is 2 varinble whose
address is o, Program words or instruction words are ~lso stite vec-

'Y

tor components; if their values change during the execntion of a pro-
gram, we refer to that program as self=-modifying.

An instruction word in a computer hormally has an effect, much

VWA NANAA,

like the effect of a statement in an algebraic language, This offect
specifies the new state S' of all variables in the computor exeeont
for the program counter, given the old state S, It is usually inde-
pendent of where the instruction word is stored in memory, although
there are exceptions, as, for exampley in the case of a subrontine=-
calling instruction (since the return address depends on the instruc-
tion location). An instruection word also has an.s&g& address, which
is the analogue of the exit index of an algehraic language statoment,
This gives the value of the program o unter after the instruction is
executed, as a function of the current state vector, and, except in
the case of an unconditional transfer, is dependent also on the nd-
dress of the instruction word.,

Simple instructions on computers often have algebraic equiva-

lents, just as do simple input=-output commards. As an example, let us
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consider a highly simplified computer with a 16-~bit word, and one
instruction per word. The right-hand 12 bits in a word are the ade

dress field, and the left-hand 4 bits give the operation code, as

follows:
Operation Operation Mnemonic Algebraic

code (octal) equivalent
00 Halt H none
oL Load Y ID Y ac = Y
02 Load N IDI N ac = N
03 Add ¥ AD Y ac =ac +Y
o4 Add N ADI N ac =ac + N
05 Subtract Y SUY ac =ac - Y
06 Subtract N SUIL N ac =ac - N
07 Store Y | ST Y Y = ac
10 Left shift by N IS N ac = gg*zN
11 Right shift by N RS N ac = a0 /2N
12 Transfer TR L GOTO L
13 Transfer on + TP L IF ac 2 0GO TO L
1 Transfer on - T L IF a¢ < 0 GO TO L
15 | Increment INY Y=Y +1
16 Decrement DE Y Y=Y-1
17 Subroutine call caA L none

where a¢ is the 16~bit accumulator, N is the signed integer in the

address field, the letter I in the mnemonics specifies immediate ad- .

dressingy Y is the contents of the cell whose address is contained
in the address field, all shifts are arithmetic (that is, carry out
the indicated arithmetic operations properly in all cases), and L 1is

the contents of the address field, taken as representing the address
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of the instruction word to which transfer is made, Let us first give

an analogue of the syntactic and semantiec rules for statements of

section 3=-3:

<instruction> yw ::== <assignment instruction> aj; x ::= <transfer
instruction> t3 y ::= <subroutine call instruction> ¢;
gz = <halt instruction> h
<statement address:>d
ad = yd; £ = x%; ¢4 = yd; pd =
<label function>?®
a® = wl; £ = x5 e = ¥y 0t = AP
<effect> wo(S) = a®(B); x®(8) = t9(8); y@(8) = c®(9);
z°(s) = K8 ()
<exit address> wr(S) = a*(s); x*(S) = t¥(2); ¥*(S) = ¢*(8);
z%(8) = H°(S)

i

The statemént address and the exit address are ammlogous here to the
statement index and the exit index, respectively, in an algebraic
language description., This rule may be used regardless of whether
assembly language (mnemonics) or machine language (operation codes
in octal, binary, etc.) is being described. In assembly language,

we might describe the syntax of transfer instructions as

<transfer instruction> ::= <blanks> !TR! <blanks> <label> (
<blanks> 'TP! <blanks> <label>( <blanks> !TM!
<blanks> <label>

<blanks> ::= ' ' | <blanks> ! !

<label> ::= <letter> | <label> <letter> | <label> <diit>

whereas the syntax of transfer instructions in machine language

might be given as
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<transfer instruction> ::= '1010! <address> | *1011!
<address> { 11100' <address>

<address> ::= <bit> <bit> <bit> <bit> <bit> <bit> <bit>
<bit> <bit> <hit> <bit> «<hit>

<bit> s:= tOf | 11t

A syntactic and semantic rule for transfer instructions in assembly

language might be given as

<transfer instruction> x ::= <blanks> 'TR?! <blanks> <label> a;

¥ ::= <blanks> !TP! <blanks> <label> Db;
Z ::= <blanks> 'TN?! <blanks> <label> ¢

<statement address>d

<label function>®

<effect> x°(s) = 83 y°() =835 28(s) =5

<exit address> ¥X(S8) = ¥ (a); y*(S) = if S(ac) > O then
v2(b) else ¥& + 13 zX(S) = if S(ac) < O then z2(c)
g;gg_zd + 1

Similar rules may be given for machine language, except that here
there would be no label function, and we would write simply a, b,
and ¢ instead of ¥*(a), y*(b), and z>(c)s The values of the label
function, in either case, are addresses here, of course, rather than
statement indices. The constant 1 appearing in the semantic rule for
the exit address will be replaced, in a more general case, by the
number of words per instruction, which may be fractional; thus, if
there are two instructions per word, one of these (presumably the
one on the left) has some integer address ®, while the other has ad-'
dress o + 4.

It is easy to see the we could save space in our semantic de=-

seription by changing x®(S) = t%(S), in the rule for the effect of
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an instruction, by x®(S) == S in this casc, and eliminating entirely
the rule for the effect of a transfer instruction., The possibility
of this sort of abbreviation is one reason why we have divided up

the sixteen instruction types herc into four classes, rather than
giving sixteen alternatives in the syntactic rule for on iustruction,
Assignment instructions may profitably be further classified; we de-

fine them as follows:

<assignment instruction> x ::= <direct addrcssing instruction> dj
¥y ::= <immediate addressing instruction> i
<statement address>%
<label function>®
a2 = x5 1% = y°
<effect> x°(8) = a°(s); y°(s) = 1°(c)
<exit address> x¥(8) = x + 13 y¥(s) =yd + 1

Just as we could eliminate the effect in the previous rule, here wve
could climinate the exit address (and the statement address) by re-

d . 1l in the rule for the exit address of on in-

placing a~(S) by a
struction, Whether we do this or not, however, ﬁhere is no need for
the statement address to be inherited further than this, nor for the
exit address to be synthesized at any lower level, Thus the direct
and the immediate addressing instructions have only effects and label

functionse IFor the imnediate addressing instructions, for exannle,

we might write

'ADI'; x 3:= 'SUI'3 y ::= !'IS'; z ::= fRS!?

<immediate addressing operation code> ¥ ::= 'LDI'; W ::=

<operation> v°(S, n) = ny w°(S, n) = S(agc) + nj
x°(S, n) = S(ac) - n; y°(S, n) = S(ac)*2";
z°(, n) = S(ac)/2"
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<immediate addressing instruection> 1 ::= <blanks> <immediate
addressing operation code> ¢ <blanks> <address> a
<label function>®
<effect> 1°(8) = 8!, where St(ac) = ¢°(3, av¥), 5'(z) =

S(z) for z # ac

@y"

where the address a is assumed to have the value aVv. For the direct
addressing instructions, assuming that each state vector S has a

component S(a¥) for each value aV of each address g, we then write

<direct addressing operation code> u ::= 'ID'; y ::= 'AD';
W o= 'SU's x s:= ST y 2= PINt; gz ::= 'DE?
<operation> u®(8, v) = S(v); v°(S, v) = S(ac) + S(v);
wo (S, v) = S(ag) - s(v); x0(s, v) = S(x); yo°(S, v)
=8(v) +1; 22, v) =S(v) - 1

<register flag> u* = true; v° = true; W = true; &£ =

fakees v = falses 7 = fdlse
<direct addressing instruetion> g ::= <blanks> <direct
addressing operation code> ¢ <blanks> <address> a
<label function>®
<destination> d% = if o then ac else aV
<effect> d®(S) = S', where 81(d%) = (s, a’), st(z) =
S(z) for z # ad

The instruction words of most computers, of course, involve
more than two fieldse. instead of a simple address, as above, we have ‘
an address which is subject to index register modification, indirect ':
addressing, relative or paged addressing, and the like, The "desti=
nation" given above as a samantic attribute is then replaced by the

effectixe address, which is also a semantic attribute., We might write

<effective address> 15(3) = av + S ()
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for an instruction i whose addrecss field a has value aV and whose
index register field specification X corresponds to the index re=

gister x¥, or

<statement address>d
<effective address> i5(S) = if m" = O then a’ else
(1%/p)xp + av

for a scheme resembling that of the PDP=8 (omitting indirect ad-
dressing), with page size p, such that page-zero addressing or
current-page addressing is used depending on whether the valuc m'
of the address mode field m of the instruction is zero or one, A
single=level indirect addressing scheme with indexing may be de-

sceribed semantically by

<effective address> 1°(S) = if n¥ = O then y else
S (y=~(y/2%2)x2%), where y = a¥v + S(xF)

where z is.the number of bits in the address field and n’ is the
value of the indirect address field ni Multi-level indirect addres-
sing requires a recursive semantic rule, since it is possible for
the calculation of the effective address in this case to continue

indefinitely,
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The notion which we have called the effect of a command --
that is, a function from the old state of the computation into the
new state -= is one of the most frequently rediscovered notions in .
all of programming science. The name "effect" goes back to [McCar thy )
631, but the concept is found in [Elgot and Robinson 6é4%] and [Maurer
661 for machine instructions, [Park 68] in connection with data
structures, [Cooper 691 for program schemes, and [Scott 70] in a
general framework. .

A certain amount of our work on the semantics of assignment
statements is hinted at in [Strachey 661, [de Bakker 691, [Burstall
701, and [Igarashi 711, In particular, the concept of the Le~value
is due to.Strachey. In its oﬁiginal form, as noted explicitly in
[Park 68], Strachey's model involves a set of addresses, called
I~values, and a set of their possible contents, called R=-values}
the "content of the store" (what we have been calling the current
state) is a function from Levalues to R-values. Variable nanes, how=-
every are elements of still another set, and there is a mapping (some=-
times called the "environment") from this set to the Le-values, and
hence, through the content of the store, to the R=values, This model
allows storage allocation algorithms, such as those of ALGOL, to be
described as changes in the enviromment, Side effects of both left
and right sides of assignments are also treated in [Strachey 661,

The term "statement index" is due to the author. "Statement :j
numbers," which are statement indices in this sense, are treated in
[McCarthy 66]; but the term "statement number" has a different:meaning
in FORTRAN from its meaning in this paper. The use of the exit index

as an attribute of certain statements is foreshadowed in [Burstall 70].
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The treatment of input-ontpnt given here ins intreduced in
essential form in [Muwer 66]e. The idea that internal and external
variables ought not to be distinguished may appcar somewhat atortling,
since they secem to be so different from each other, The answer to
this argument is that an intepger wvariable and a card recader are
real 1y no mnore differcat from oach other than an integer verinble
and a renl variable -=- in cach case, we have two aquantities, cnch
of which varies (and thus hos a state vector connonent), but with
guite different nsets of valucso,

It was noted without comment in [MeCerthy 631 that stte vee-
tors are just ns apnliecable to the description of progroms o 7'i-
tal couputers as they are for programs in nlpgebhraice langv ni.
MeCrrthy was concerned mninly here with the latter cas-», herens
Br-hov 601, [Elrot and Robinson 641, [Maurer 661, [ i1 :0t 681, nud
[Wagner 681, among others, are concerned mainly w'th ‘igital com-
puters, and construct for them (semi=-formnlly by i#'wv and fominlly
by the others) state veetnrs and functions on them corresponding to

compitter instructions.
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EXIRC ISES

l. Give formal gyntactic rules to correspond to the following
informal specifications (suggested by the language BASIC): -
(2) An assignment statement has the form IET v=e , where v

is a variable and e is an expression.

*

(b) A conditional transfer statement has the form IF (e) TN
n , vhere e is an arithmetic expression and n is a line number,
(Note: Line numbers in BASIC are much like statement numbers in
FORTRAN, )

() A subroutine call statement has the form GOSUB P , where
P is the name of a subroutine.

(@) A NEXT statement consists of the word MNEXT followed by the
name of a variable. (This is used to terminate iterations; the vari-

able is the loop index of the iteration.)

2, Rewtibe the three syntactic rules given in section 2-1 for
assignment statements, left par? lists, and left parts in ALGOL in
such a way that the rule for left part lists disappears (in othor
words, .there are only assignment statanents and left parts) ond the

new rule for assignment statemenbts is equivalent to the old rule.

3o Suppose that assignments in a simple language are of the
form ¥ = p op D , where ¥ is a variable, p is a variable or a nunber,
and op is +, =, *, or /. Give syntactic and semantic rules for such
assignments in terms of variables and numbers &l one, without intro- -

-

ducing "expression" as a nonterminal,

4. How should the first syntactic and semantic rule in section
3=1 be extended to signify that no type conversion is to be permitted
(that is, vi=e is not allowed when v and e are of different types)?
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5e Consider the following alternative method of specifying
the semanties of an IF statecmente We employ a speecial word, geﬁf,
for semantic purposes. This word is defined to he the exit label
of any statement whenever it exits normally (that is, whenever it
does not transfer anywhere, but is followed by the next instruction
in sequence), The exit label now takes the place of the exit index
as a semantic attribute of statements; its value is always either
a label (in FORTRAN, a statement number) or the word next.

(a) Would this convention allow us to eliminate any of the
other attributes of statements?

(b) Rewrite the semantic rules for FORTRAN IF statements
given in section 3-3, using this convention.

(¢) Two semantic mules are given in section 3-3 which specify
the exit index of an arbitrary assignment statement which always
exits normally. What rule or rules would replace these if the above

convention were used?

6. Rewrite the Semantic rules for the last three nonterminals
defined in section 3-3 (simple designational expression, designa-
tional expression, and go=-to statement) under the assumption that
all of these have side effects, as do if clauses and switch desig=

nators (but not labels).

7+ Modify the definition of the file READ statement at the
end of section 3=l

(a) To test for end-of-file, and do nothing if the file is
actually positioned at the end. Assume that the length of the file
n is a semantic attribute of it, called n@,

(b) To set an end=-flag on end of file (and do nothing else
in this case). Assume that the end-flag of the file n is called nf.

=115



Also give a syntactic and semantic definition of the OFEN FIIE

statenent in this case, assuming that this statement resets the

flag. (The values of the flag should be taken to be true and fals e.)
(¢) To transfer to a given point on end of file., In this case

the statement has the form READ (i, END=n), x where o is a file

«
.

namey n is a labely, and X is a variable name., If the file has reached

the end, transfer to nj otherwise, exit normally,

8. Give syntactic and semantic def initions of the REWIND,
the BACKSPACE, and the POSITION FORWARD statements defined in
section 3~lt, using the same conventions as are used there for the

definitions of the READ and WRITE statenents,

9. Give the changes that would have to be made in the syn
tactic deseriptions of

(a) immediate addressing operation codes,

(b) immediate addressing instructions,

(c) direct addressing operation codes,

(d) direct addressing instructions,
defined in section 3-5, so that machine language, rather than as-

sembly language, would be described,

10, Give a syntactic and semantic description of the sub-
routine call instruction described in section 3=54 assuming that
it stores the return aldress (that is, its own address plus 1) in
the address field of L and the operation code for a transfer in the

operation code field of L, and then transfers to L+l.
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CilAPTHER "0 JR

PROGT AITD

bel Progran sections and Ionbeled Staternents

A collection of atatements separated hy scumicolons (or other
similar asevarators) has varioan ¢oomon names, such as a compound
statencnt, n bluck, or simply a projram. In n»der nnt to conflict
vith aay ol the teridnaology of ALGOL, we hall call this =~ proiran

section, or simply » zectione We have Lhe immediate syntactie role

<section> :i:= 'f.,",te"tt’?fllfllltf" <section: t3' <:tntement.

By a stoteaent we here mean a possibly labeled staterent; thos ve
caaiot siaply use the syintax nad serntics of stotemeots fros Lie
noovions chapter.

In developing the semantics of program scctions, let ws Fiest
consider how label functions are to be calculated., Consider the r'ol-

lowing ALGOL program vwith statenent indices givens

Stnterent Tnlex Statement

2 i = O
3 H %g i=n then pgo to v;

-
L = S
e}

»®
(v}



This section calculates a™ by successive multiplication,y where g is
real and i is a positive integer. Syntactically, it consists of a
section (namely, the first six statements) followed by the semicolon
on the sixth statement, followed by the dummy statement v: .

The label function f which is to be associated with this sec-
tion satisfies f(u) =3 and £(v) = 7, This label function must then
be inherited by each statement of the sectiony for example, in order
to calculate the exit index of the sixth statement, we must know that
the statement index of the statenent labeled y is 3. We now make use
of another construction from elementary set theory: the definition
of a function as a get of ordered pairs. Let f: A->B be any function,
and consider the set of all constructions of the form (x, £(x)), for
all x ¢ Ao Bach (x, f(x)) is referred to as an grdered pair, and the
set of all these ordered pairs clearly specifies f completely and may
b> taken as a definition of f, In this way, we may build the theory
of sets on the primitive notions of set and ordered pair, rather than
set and function. (The alternative would be to define an ordered pair
as a function whose domain is §1, 2%; for the ordered pair f = (u, v),
we would have £(1) = u and £(2) = v.)

The advantage which we derive from considering a function as
a set of something arises from the operation of taking the union of

two sets. In our example, the label function f becomes the set

S(uy 3)y (v, 797

Let us now define the %333} %ﬁkﬁ% function of a statement, or of a
section, as consisting of those ordered pairs (x, £(x)) for which x is
a label of the given statement, or of some statement in the given :
sectione Thus the local label function of the section consisting of
the first six statements in our example 1s the set containing only

the ordered pair (u, 3); the local label function of the seventh
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statement contains only the pair (v, 7). The local label function
of the entire section, as a set of ordered pairs, is the union of

these two setsj thus we may write

<section> X ::= <statement> g3 y ::= <section> z '3!
<statement> %

<local label function> xP = sP; yP = zPy &P

Both zP and tb are sets of ordered pairs; in particular, tb may con-
tain more -than one ordered pair, since a single ALGOL statement may

have more than one labele Even in FORTRAN, where this is not allowed,
tb is still a set of either one ordered pair or nonee. The local label

function of a statement is then defined by

<statement> x ::= <unlabelled statement> uy; y ::= <label> g ':!
<statement> gz
«mmmMiMwﬂ
ul = x@; . yi

ocal label function> uP = ¢; yb = §(a, yi)z v 2P

where the statement index must be inherited from the section in which
the statement is contained. This process is particularly simple: we
define the number of statements in a section as a semantic attribute
of it, and then the statement index of the last statement in any sec-
tion 1s equal to the number of statements in that section. The seman-

tic rules

<number of statements> x® = 1; y"' =z + 1
si= 1; tl = N

may be added to the definition of a section given above to perform

this calculatione

The ordinary label function is obtained from the local label
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function of any section which appears as part of a higher-level rule

such as

) s ! int i ] ]
<block> begln <declarations> <section> tend

or

<compound statement> ::= 'pegin' <section> 'egg'

Taking the second of these as an example, we may define its label
function as the local label function of the section which it con-

tains; this section, then inherits that label function, as follows:

N ga= ¢ | S 3 t |
<bompoqnd statement> ¢ QR€$§~ <section> g %ag
<label function> ¢® = sP

52 = o2

By slightly extending the notion of an ihherited at tribute, we may

shorten this ‘definition by writing

3 s o — ' ' l ' '
<compound statement> ¢ ::= 'begin! <section> g %gg

g? = gP

Here the family-tree analogy breaks downj the section g "inherits"
its label function from itself! We will continue to use such rules,
however, and to refer to them as inherited attribute equations when-
ever the quantity on the left is an attribute of a quantity on the
right of the syntactic rule. Note that only sections which are di-
rectly part of compound statements and the like have their label
functions determined in this way. We certainly do not, for example,
want the label function of the section consisting of the first six
statements illustrated at the start of this section to contain only
the pair (w, 3); it must contain the pair (v, 7) as well,

There is another sort of semantic rule which it is important

to associate with compound statements and the like. Sets of ordered
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pairs can represent multi-valued, as well as single-valued, functions.
We would like the label function of a section to be single-valued;

in fact, it 'will be single=valued if and only if there are no dupli-
cate labels. A set S of ordered pairs represents a single-valued func-

tion i1f and only if the statement
(xy yJE€ S ard (xy z) € S implies y = z
1s true., We may add the semantic rule
(sP is single-valued)

to the definition of @ mpound statements above, We might also add

the semantic rule
(yP is single=valued)

to the definition of a statement; this would check for multiple
labels on a single statement, which is perhaps unnecessary since
there is no real ambiguity here. We do not, however, need to add any
further test of this kind to the definition of a section, since such
a test will always succeed if the corresponding test for compound
statements succeeds,

The device of treating functions as sets of ordered pairs has
many further uses in semantic rules., In FORTRAN, for example, vari-
ables need not be declared unless they are logical, complex, or
double precision, or unless their names violate the "I, J, K, L, M,
or N rule.," If we wish all state wvectors applicable to a given
FORTRAN program to involve the set of all variables of that program,
we must therefore associate with each statement a set of ordered
pairs (yn, type), or its equivalent; where yn is a variable name used
in the given statement and type is its type according to the "I, J,
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Ky Ly My or N rule," This may then be treated as a function from
variable names to types, and the sets of ordered pairs may be come
bined just as the pailrs for the label function are. We shall see in
Chapter 5 that most of the attributes of declarations are .of this -
kindj that is, they are functions of variable names, given by sets

of ordered pairs, which give their types, array dimenslons, and -

other such informatione
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What other semantic attributes do we want a program section
to have? For a section which is a straight-line program -~ that is,
one in which control always passes from each statement to the next,
without branching -- each individual statement has an effect which
transforms the current state vector, and by stringing these all to-
gether we obtain an effect for the entire sectione. This may be de-

noted by the rule

<section> x ::= <statement> 3; y ::= <section> z ';!
<statement> %

<effect> x°(S) = s°(8); y°(s) = t®(z8(8))

1l

assuming that s® and t® are the respective effects of the sections
s and t. In terms of still another elementary function=-theoretical
notion, y is the comgosition of t and z, and we may write y = t o 2z,
This notation is somewhat confusing in a programning context because
the effect of y is the effect of z followed by the effect of t, not
the other way aroundj thus-we would like to write y = z ¢ t, rather
than t o z. This can be done if we define f ¢ g, in general, as the
function h satisfying h(x) = g(£f(x)) (rather than f(g(x))). In what
follows, we shall not use either convention, but shall continue to
write semantic rules without using the composition operator.

Does the concept of effect make sense for a section which is
not a straight-line pro gram? Suppose that y is a section and S is a
state vector. Suppose further that y is "self-contained"; that is,
every label which is referenced in.the section is also defined in the
section, Let us consider the section as a program and run it; when
it reaches the end, there will be some current state vector S*, and

we set y°(S8) = S! where y© is the effect which we are defining for y.
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If the program never reaches the end -- that 1sy if 1t goes into an
endless loop =~ we leave y°(S) undefined. That is, the effect of ¥
i1sy in general, a partial m == a function which is undefined
for certain elements of its domain. We recall from section 2=2 that -
we may write f¢ X - Y even when the range of £ is not Y, but merely
a subset of Y. If the domain of £ is not X, but merely a subset of x,ll'
then f is called a partial function; if the domain of f is Xy then £
is a w&;\. function,

How can we determine the effect of a section from the effects
of its individual statements? We start by defining the 5»155?'3'5\1593
€unctign of a program section. Most computers have a "single=-step
button" or 1ts equivalent; if the computer is stopped and the
singie-step button is pushed, a single instruction will be executed,
namely the instruction whose code is in the memory word (or starts
at the memory byte) whose address 1s currently in the program counter,
At the same time, the program counter is modified in the way indicated
by the instruection which is executed, so that, by pushing the button
over and over, the operator can "step through" a program. The
single=step function of a program section is set up iIn an analogous
fashion. It is a function of one argument, and that argument is a
Baix of the form (S, k), where S is a state vector and k is a state-
ment index; and its walue is the next such pair, in execution order,

Any pair of the form (S, k) may be identified with a single
state vector T having all the components that 8 doesy plus a new
component corresponding to a program~gounter variable A\ whose values ‘.
are statement indices, Recalling the discussion at the end of Section;
2=29 let M be any set of variables and let M’ = M v A}, where )\ ¢ M.
Ird =0 V, and At =x'g;vvx, where V, 1s the set of all legal values

XM _
of the variable xy then there is a natural correspondence bstween Z‘
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and § x V,. Specifically, if S € 4 and k ¢ Vy, then the pair (s, k)
defines an element S' € ' whose A-component is k and whose other
components are the same as the corresponding ones of S. If \ 1s a
program counter, then V, is a set of indices (or addresses) of state=
ments of the given progranm,

A semantic rule for single-step functions may be given as followst

<section> x ::= <statement> g; y ::= <section> g 3!
<statement>
<qumber of statements> x? = 15 y® = 20 + 1
st=1;tl=pn
<single-step function> xP((S, 1)) -(se(S), éx(S));
yP((S, kX)) = zP((S,y k)) for 1 < k < z°,
yP (B, M) = (t%(s), t%(s))

il

Note that by writing yP((S, kX)) rather than yP(S, k), we define a
function of one argument (which is a pair), rather than two.

Now we are ready to define the gengxallized effeck of a pro-
gram section, from which we will easily obtain the effect, The gene=-

" ralized effect has the same form as:the single-step functions:.it’

has a single argument, which is a pair (S, k), and itsAvalue is also
a pair (S.', k*). If the section is started at the kth statement, and
the starting state vector 1s S, then, when the program terminates,
the final state vector will be S! and the final statement index will
be k', For programs using the statements we have defined thus far,

k! will always be one greater than the number of statements in the
program section (but see also the discussion in section l=3)e. The
generalized effect g may be defined in terms of the single-step func-
tion p, and the total number of statements j, by the equation

g((Sy X)) = i£ 1 < k < n hen g(p((S, Kk))) elss (Sy %)
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This 1is our first use of a recursive conditional expressionj
g is defined by expressing g(z), for a given z, in terms of g(z'),
where z' depends on z, Intuitively, the result g((S, k)) when the
program 1s started at the k~th statement, with current state wvector
S, is the same as the result g(p((S, k))) when the progrem is star-
ted at the statement with index k,;, with current state vector Sl’
where (Sqy ky) = p((S, k)) 1is the result of the first step of the
program when it is started at statement k with state vector S,

Recursive conditional expressions are the only expressions
enc¢ountered so far which give a partial function as their result.
If the given program section is an endless loop, or if, more general=~
ly, it runs endlessly when it is started at certain pairs (S, k) as
above, then the recursive conditional expression becomes a circular
expression -- it cannot itself be evaluated in a finite number of
steps. More importantly, a recursive conditional expression does not,
in itself, lead to any method of determining when it is properly de=-
fined and when it is not., Thus, when we use a semantic definition of
a programming language which involves such expressions, we can always
determine the effect of a program, so long as we know that it actually
has an effecty, but otherwise we cannot. Intuitively, this is quite
reasonable, It 1s easy, for example, to write a simple program to
search for counterexamples to Fermat's last theorem, or any number of
other unsolved problems in mathematics; we should not expect to be
able to determine whether such a program always loops endlessly by
means of simple algorithmic arguments. Moreover, by the elementary
theory of recursive functions, there are certain problems that are
not only unsolved but ynsolyable; and one of these is the pro blem of
determining, for an arbitrary recursive conditional expression,
whether it can be evaluated in a finite number of steps,.

Are there any programming languages in which the effect o a
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program may always be calculated without encountering any unsolvable
probléms?.For straight-line programs, this can always be donej but
straight«line programs are not very general. A much more important
class of programs of this type will be introduced in Chapter 6: those
programs for which it is possible to construet a proof of termination.
The importance of this elass of programs arises from the fact that, |
while in theory a programming language may be used to wrlte programs
for which it is not known whether they terminate, in practice this
is almost never done intentionally. Even when 1t is done intentionale-
ly, the fesulting program is often run under the control of an opera-
ting system which stops it automatically after a certain maximum time,
so that, whatever happens, we are only interested in the result of a
finite sequence of operations. By restrieting our analysis to programs
which are known to terminate, we are able to avoid the general prob-
lem of the existence of unsolvable questions,

Iet us give a semantic rule for the generalized effect of a

compound statementi

<compound statement> g $:= 'Qg§;g' <section> g '%gg'
<generalized effect> c&((S, k)) = 1£ 1 < k < s™ then
cB(sP((s, k))) else (s, k)
<effect> ¢®(S) = 8%, where (S%, k') = c¢B((S, 1)) for some k'

Here sP 1s the single-step function of s, while s® is the number of
statements of s; although in this case we will always have k! = s®
+ 1y that fact 1s not made use of. Notice that we have also assumed
that the program always starts at its first statement., This assump-
tion is tenable in ALGOL, but not in certain other languages, which
have ENTRY statements or the equivalentj an ENTRY statement (actually
a declaration, rather than an executable statement) defines a label

of a program to be an allowable starting point. In such a case, we
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may let such a declaration inherit the generalized effect of the

program in which it is contained; if the label function is also
inherited, we may write (for example)

<entry declaration> g $:= 'ENIRY? <label> aj y ::= <entry

declaration> Z ',' <label> h

<generalized effect>8

z8 = yB

<label function>®

<name function> x™ = §(a, £)} where £(S) = S! for
(5%, k') = xB((sy 22(a))); y® = 2 u {(b, £)}
where £(S) = S* for (s*, k') = yB((S, y2(b)))

The name function then assoclates names of programs with their cor-
responding effects; that isy 1f a 1s a label of a function appear ing
in an entry declaration, and m is the name function, then m(a) is the
effect of the given program when start=d at the label a. Such funce
tions and their generalizations are further studied in section 5=k,
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%~3 Multiple Exits and Escape

It is very common for a program section to have more than one
possible exit. In this case, we may determine ap exit index for the
section, in much the same way as we have determined the effect., Given
the starting state vector S, the value of the exit index e¢X(S) of the
section ¢ is the index of the statement to which transfer is ultie-
mately made after the given section is finished. Thus, in particular,

2 section has an effect and an exit index — Jjust as an individual
statement doege In fact, the appearance of a compound sﬁatement or
a block, or the calling of a subroutine, may be regarded exactly as
if it were the exécution of a single statement whose effect and exit
index are those of that compoﬁnd statement, block, or subroutinee.
The semantic rule for the ef fect of a c¢ompound statement as

given in section Y~2, namely

<effect> ¢®(S) = S?, where (S?, k') = ¢€((S, 1))

for some k?

needs only a very slight modification to produce a semantic rule

for the exit index of a compound statement:

<exit index> e¢*(S) = k*, where (5%, k') = ¢8((s, 1))

for some S?

Similar constructions may be used where entry declarations are
allowed,

Let us now see how the phenomenon of multiple exits affects
the semantics of a block structure language. We shall assume that
every statement in a program, including those in inner blocks, has
& distinct statement index, and that these are numbered from the
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beginning of the program, In an %\{ statement of the form 1v£ B 1339\,{' S,
the if clause (g B then) will be considered as a statement, and S
will be considered as another statement, or as several statements if
it i1s a compound statement or a block. The meaning of "?;.{ B 1\‘:/1\1/99" is
taken to be "if not B, then skip around S." Here is an example of a
program with statement indices specified:

STATEMENT STATEMENT
INDEX

integer 1y Jj, my nj Boolean matchs w} array All:nl, B[1l:ml;
matchi=true;
WA
1:=13
outer: %wf Al1] # 0 then

bogtn 311y

inner: if A[1)=B[j] then
m foundj

Je=3+13

1 9sm ghen

w inner end;

1e=1+13

1 1< ghen

m outers
matchzzgg\.‘!\.gg;

found s

gmgﬂg\omﬂmm:wmw

This routine exits with mateh = 1&1;\}\? if AC131=B[JJ#0 for any i and J,
1<1<n,1%5 J < m. Statements % through 9 constitute an ALGOL com-
pound statement with two exits; one to statement 10 (the normal exit)
and one to statement 1,

Recalling the syntactic and semantic definition of logical IF
statements in FORTRAN which was given at the beginning of section 3-3,

we may set up a similar definition for &E statements in ALGOL:
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<if statement> 1 s:= <If clause> ¢ <unconditional statement> y
<effect> 1°(S) = if eV(S) then u®(c3(S)) else cS(S)
<exit index> 1%(8) = Af ¢V(S) then w*(e®(s)) elge ¢*(s)

Here ¢¥ and ¢® are respectively the value and the side effect of the
1f clause ¢, that is, of the Boolean expression which it contains;

u® and u* are respectively the effect and the exit function of Yo

We can now see what happens when y is a compound statement or a
block. For example, in statement 3 above, uy is the entire compound
statement including statements 4 through 9, and 1ts effect and exit
'function are taken in the sense of the preceding discussion. If S

is any state vector, then w*(S) = 14 == that is, the compound state-
ment u exits to "found" =~ if there exists J, 1 < J < my such that

S (ihdieates AL1] = B[j], that 1s, S(A[S(1)1) = S(BIS(§)1); and uW*(S)
= 10 otherwise. Since the 1if clause ¢ = JA[1] # O} has no side effect,
that.isy ¢(38) =S, the exit index i* of the entire if statement is
therefore such that if S(ALS(1)1) # O then 1%(S) = w*(S) as above,
while étherwise 1%*(S) = 10, that is, the exit index of the if clause,
which is the index of the statement immediately following the if
statement,

In order to bring this about, we shall have to associate with
each compound statement or block in an ALGOL program, including the
outermost block, a get of statement indices of statements in that
block, Thus, in our example,.thb outermost block involves statements
1y 2y 3, 30,713, 12, 13, and 1%, plus the compound.statemsnt whose
Index is % and which contains statements 4, 5, 6, 79 84 and 9, The
computation performed by a block is taken as ending when any transfer
is made to a statement outside that block. Thus the rule for come
pound statements at the end of section 4=2 is replaced by
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<compound statement> ¢ := 'bogin' <section> g ‘tend!

<statement index>t

sl = ol

<number of statements> ¢ = gi

<generalized effect> c8((S, k)) = if ol Skg ol + g7
ghen o8(sP((s, k))) elge (5, k)

<effect> ¢®(S) = S?, where (S', k') = ¢B((5, cl))
for some k!

<exit index> ¢*(8) = k%, where (57, k') = oB((s, ol))

for some S!?
where a section is now defined by

<section> X $:= <statement> g; y s:= <section> z '3

<statement>

<number of statements> x® = g yn =20 + t°

<statement index>1

gl = xl; g1 -y, ¢l =yt . 0 |

<single~step function> xP((S, 1)) = (s®(s), s*(s))3
¥P((S, k) = 2P((S, k)) for 1 5 k g 2
yP((sy ¥™) = (t%(3), t5(s))

Since,y in this rule, a “"statement" may itself be compound, it has,
as an attrl bute, a "number of statanentsy" with supersoript nj.This
is ,the numbsr of "statements which it .containsg.if it 13 a compound
statement or blocks it is 1 for an assignment statement; and it is
one more than the number of statements in Sy, for a statement of the
type {R{ B Q}g}_‘; Se

When an ALGOL program contains a procedwre used as a function,
the procedure may or may not exit normally. Consider the following

program with statement indices specified:
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STATEMENT STATEMENT
INDEX
integer J, k; integer procedure g(i); integer ij

NANVNSAAAA
eggég J:=3+10;
g:=73
I 1=2 then
gotom
end g3
Js=31
ki=g(1l)+g(2)+g(3)3
€8V§9 done;
m: outreal(fleat(j));

done

NV 0O NN N WM FW

[
o

This program section starts at statement number 6. Since the value of
g{i) is always 7, g(1) + g(2) + g(3) would seem to be equal to 213
but in fact the evaluation of this expression is never complected be=
cause we transfer to m when 1=2, that is, when evaluating g(2). Thus
the output funetion outreal(float(j)) is performed, and the number
2340 is printed out, because § is initialized to 3 and is incremented
twice, once in evaluating g(l) and once in evaluating g(2).

The procedure g has two exits; one to statement 5 (the normal
exit) and one to statement 9. We say that g escapes 1f it Jjumps to
statement 9, Thus g will have three associated state vector functions:
a valuey which in this case is always 7 (and is independent of the
state vector); an effect, which here is always to inecrease j by 10
(that is, it is the effect of the statement js=j+10); and an exit
index, If S(1) = 2, for the statevvector Se then x(S) = 9, where x 1is
the exit index; if S(1) # 2, so that g exits normally, we will set
x(S) equal to a special keyword, 5335%3, to denote this fact. The

affect and the exit index of g, of course, are determined in the man-
-133-



ner described at the beginning of this section.

The possibility of escape affects all of the semantiec rules
for assignments, expressions, terms, factors, and primary expressions,
Consider, for example, the simplified rule for expressions with side
effects given in section 2-3% |

<expression> g 1:= <term> y *+! <term> y
<side effect> e2(S) = w?(v?(s))
<value> e¥(s) = vW(8) + w (v3(5))

If escape is allowed, this rule becomes

<expression> @ = <term> ¥y '+! <term> y
<exit index> e*(S) = 4£ v*(S) # normal then v*(S) else

v (v?(5))
<side effect> e(s) = if v*(S) # normal then v3(S) else
W (v3(8))

<value> eV(S) = 1f e®(s) # gormal then none else
vV(s) + wW(v?(s))

Here the superscripts x, s, and v are presumed to have the same

meanings for terms as for expressions. If y escapes, then the side

effect of y#¢ 1s simply the side effect of y, assuming that evalua-

tion takes place from left to right, Otherwise, whether y escapes

or noty 1t 1s the result of combining the side effects of y and Y.

Of course, if y escapes, then y#y is said to escape to the same .

plage; otherwise y+#y escapes only if ¥ does., Here by "y escapes"

we mean "the exit index of y is not ggﬂrg\a}." It should alsoc be clear

that y+ has a value if and only if it does not escape,
S:lmzlitar;'wchanges may be made-in other rules rfer expressions,.and

in rules for terms and factors. For a primary expression, we must de-

termine its value, side effect, and exit index. Just as the side ef-
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fect of most kinds of primary expression is the identity -- that is,
e(S) = Sy where e is the side effect == so the exit index of most
kinds of primary expression 1s always normal. In AILGOL, the only
cases where 1t can be anything other than W are functlon re-~
ferences, as g(2) in the example abovej expressions enclosed in pae
rentheses; and parameters called by name, to be discussed in section
5 -l

Again, consider the rule for assignments with side effects

given in sectlon 3=2:

<assignment> g $:= <variable> y ':=' <expression> ¢
<effect> a®(S) = SY, where S'(v) = e¥(s), 8% (z) =

8"(z) for z # v, where S" = e°(s)
In the presence of expressions which may escape, this becomes

<assignment> g 3:= <variable> y !i=! <expression> ¢
<effect> a®(s) = Af e*(S) # normal then e®(S) elge
S?, where St(v) = eY(S), S'(z) = S"(z) for
z # v, where S" = e3(8)

If e escapes, the effect of the assignment 1s precisely the side
effect of e; the variable y is not changed (unless it is changed
by that side effect)., Later in section 3-2, a more general rule
1s given, assuming that the variable v has an L-velue v and a
slde effect v° of its own, and that evaluation is as in ALGOLs

<assignment> g ::= <variable> y !:=' <expression> g
<effect> a®(s) = s?, where st(v&(s)) = eV(v®(s)), S'(2)
= 8"(z) for z # vi(s), where s" = e3(v°(s))

Assuming that the left side or the right side, or bothy might pos-

sibly escape, this rule becomes
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<assignment> g ::= <variable> y ':=! <expression> g

<effect> a®(S) = if v*(S) # pormal then v®(S) else if
e*X(v3(s)) # normal then e®(v®(s)) elge S?', where
st(v8(s)) = e"(¥*(8)), S*(z) = 8" (2) for = # vi(5),
where 8" = ¢*(v3(S))

<exit index> a*(S) = If v*(S) # normal then v*(S) glse

if e*(v¥(s)) # pormal then e*(v®(5)) glse a™ + 1
<statement index>R

Allowance for the possibility of escape must also be made, for exam-
pley in evaluation of subseripts. If ale, e?] 1s an array reference,
vhere e and el are expressions, then e is normally eval=-

uated first, followed by e's If e escapes, then so does ale, e®l; 1if

e does not escape, then e' may escape,
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heli Iteration Statements

The‘ orlginal purpose of iteration statements (DO in FORTRAN
and PL/I, for in ALGOL, PERFORM in COBOL, etce) was to repeat a
statement, or a group of statements, a certain number of times, If
the number of iterations is constant, and the statement always exits
normally, the effect of such an iteration statement is easy to define.
For example, if A is a simple assignment statement with effect e,
then the effect £ of ({85 i:=1 3333 1 until 3 do A) satisfies £(S)
= e(e(e(S))) for each state vector S, provided that i is not refe-
renced in the assignment A,

If A 1s a general command, with an effect g and an exit index
Xy we must distinguish normal exit of A from abnormal exit. Consider
the followling sequence:

at ki=g(1);

m: ni=J3

where the function g may escape to my as in the preceding section,
It is clear that the exit index of statement g 1s constant, since it
always exits to statement m. However, if we precede these two state~-
ments by

533 13=1 step 1 until 3 do

then we must distinguish normal exit to m and escape to m through g(i),
because in the former case 1iteration proceeds, while in the latter
case it does not., Let us do this by defining x(S) = normal whenever

8 exits normally, where x is the exit index of the statement a, Then
the effect e! and the exit index x? of ({2; 13=1 gtep 1 until 3 do A)
may be defined by

e?(S) = AL x(S) # normn then e(S) else if x(e(S)) # normal

then e(e(s)) else e(e(e(5)))
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x%(S) = if x(S) # normal then x(S) elge if x(e(S)) # normal
then x(e(s)) olse x(e(e(s))) |

where @ and X, respectively, are the effect and the exit index of A,
As before, it 1s assumed that A makes no reference to 1. -
Under this last condition, we may define the ef fect p® and the

-

exit index pX of the more general iteration

P = (for is=el gtep p until ¥ do A)

where % p, and ¥ are integer constants and § > 0y by a recursive
oquation as followse Let e and x be as before, and assume that x(S)

= normal when A exits normally. Let
WRAAAS .
q = (for fo=gt+p step p until ¥ do A)

and let the effect and the exit index of q be q® and ¢® respectivelye
We assume the same conditions on p* and ¢* as we do on xj that is,

for example, q*(S) = normal whenever q exits normally. The semantics
of p may now be def ined in terms of the semantics of q (and A) as

follows:

p®(s8) = if of > ¥ then S else if x(5) # normal thep e(s)
else q®(e(s))

PH(S) = AL o > ¥ than formad alse if x(S) # pprmal then
x(S) elga q*(e(s))

These rules do not work if (S 03 we must replace o > ¥ by o< Yo
In facty for general F, we may write

p®(S) = 4L B(1 =) < O then S alge AL x(S) # normal
then e(S) else q®(e(s))

p(8) = 1f (¥ ~ &) < O then normal else if x(S) # normal
thep x(8) else q*(e(s))
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since the general condition for terminating the iteration is that
¥ « ¢ and | have opposite signs (and theredre treir product is
negative), Clearly, if 3(¥ =) = 0 -= that is, f=00r X =Y ==
iteration shnuld continue., The slightly cumbersome property of
ALGOL-étyle iteration illustrated above has given rise to separate
statements, in che language PASCAL, for iterating with g > 0 and
with £ < O. (FORTRAN simply requires 3 > 0 at all times,)

What happens 1f the statement A does, in fact, make reference
to A? This will happeny in particular, in any loop which traverses
a subscripted array. One solution is to replace 3, throughout the
right sides of the rules given awwve, by e'(S), where e! iz the ef-
fect of the as.ignment 1:=i (which always exit:c normally, since
1s still being regarded as an integer constant). Difficulties arice,
however, if i may be changed by A. What is the effect of the itera=-
tion

£3£ 13=]1 step 1 until 3 39 i:=1a]

Does it iterate three times, or doés it keep going indefinitely?
According to the above definition, it iterates three times; but most
compilers for existing languages would not implement this specifica-
tion. It is possible, of course, to make such behavior illegzl, and,
in fact, although almost all iterated statements in actual programs
make reference to the loop index, or controlled variable (1 in this
case), very few of them ghange the loop index,

Let us now consider what would be involved in casting the abtove
equations in the form of semantic rules. If we wished to define the
effect and the exit iindex of p, as above, we would first have to de-
fine the source string g as an attribute of pe. This introduces a new
level of complexity into our definitions; and we still have not re-
laxed the condition that &, B, and ¥ are constants. In the ALGOL re-
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port, 1t is suggested that the best way to define an iteration state=
ment is to regard it as a collection of statements which explicitly
initialize, increment, and test the loop index. In our terminology,
we should set up a program gection for each element of a for-list,
and then define the effect and the exit index of an iteration as the

H

effect and the exit index, respectively, of the carresponding section.
We shall now indicate how this may be done for ALGOL.

Our first task i1s to make the effect and the exit index of the
statement to be iterated, and also the controlled variable, into in=-
herited attributes of each element of the for-list. By do ing this we
may calculate an effect and an exit index for each such element, which
is effectively the result of iterating only as far as that element
specifies, The offect and the exit index of the entire for statement
are then determined from those of the for-list elements by effectively
taking these in sequence. Our syntactic and semantic rules for

forelists are thus

<for list> X :i=m <for list element> u; y ::= <for

1ist> z 'y* <for list element> y

<eontrolled variable>®

W = x®5 8 =y v =S

<iterated effect>®

uf = xf; af = yf; v = §f

<iterated exit index>%

ut = xY 2=y v 0

<effect> x°(8) = u”(8); y°(8) = 4L 2°(S) # pormal
then z°(s) elge v°(z°(s))

<exit index> x*(3) = w*(8)3 y*(3) = Lf #°(5) #
normal then z"(S) glse v¥(z°(s))
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We are here assuming that the controlled variable is a simple varie
able, and 1s not a parameter called by name; otherwise we would have
to inherit jtg effect and exit index as well, The semanticé of a
for~statement may then be given by

<for statement> f :3= 'for! <variable> y !':=? <for
list> 3 'do' <statement> g

1¢=v
1f = g
L.

<effect> £2(s) = 12(3)
<exit index> £X(s) = 1*(8)

The syntactic rule here ignores labelled for-statements, and defines
a for-statement directly in terms of a for=list, without the inter=-
mediate nonterminal <for c¢lause> as given in the ALGOL report,

It remains to specify the effect and exit index of each type
of for=list element, For a simple arithmetic expression, no program
section needs to be defined; the effect of this kind of element is
simply the effect of assigning this expression to the controlled vari-
able, followed by the effect of the iterated statement, where this
intuitive deseription must be modified in the usual way to account
for possible escape, If this were the only type of for-list element,
we could write

<for list element> x :1= <arithmetic expression> ¢
<controlled variable>®
<iterated effect>®
<iterated exit index>0
<effect> x8(S) = If ¢*(S) # normal then ¢5(3) else xF(s?),
where 8%(x%) = e¢'(S), S5'(z) = S"(z) for z # x°,

with s" = ¢3(s)
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<exit index> x*(S) = ¢*(s)

Here we are assuming that the expression ¢ has the value ¢V, the
side effect ¢%, and the exit index e*, and that no type conversion .

takes place (the. type conversion tules heare wonuld ‘be exactly the
same as those for the assignment statements).

LE

Foreach .of the other two kinds of for-list elanent, we cone
struct & program section as directed in the ALGOL report itself.
For an element of the form A sgep B until Cy where S 1s the state=

\NANAAA
ment_ to be iterated and V is the econtrolled variable, the ALGOL re-
port gives this section as

V = Aj
Lls if (V<C)xsign(B)>0 then go to element exhausteds
statement Sj
V = V + Bs
go to Llj |

whereas for an element of the form E while F, the section is given as

13s V 3= Bj

1f -F then go to element exhausted;
statement S;

go to 133
NAANN"
Hore 7Fy of course, means "not F." N

Our semantic rules for elements of a for-list are now construc-;‘,
ted as follows., First we define the effect and the exlt index of .
each of the statements above, in accordance with the rules for as-
signments, go-to statements, and if statements. We then define a
single-step function (sée section 4«2) applicable to pairs (S, 1),

where 1 < 1 < 4. (We may regard V t= V + B and wu in the first
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section above as a single statement, so that each of these sections
consists of four statements.) The effect and the exit index of the
for-list élement are then defined by a recursive rule which makes

reference to this single-step function, as 1s done at the end of

section 4=2,
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%<5 Multiple Use of Nameg

The concept of block strusture in programming languages, in
which each block has its own declarations, has given rise to the
concept of several variables with the same name, eech associated
with a different block level. In modeling this situation by a cole
lection of state vector functions, a problem arises as to the pro=-
per specification of the domain of a state veetor. Must our state
vectors have components for different variables with the same name?
If soy we must find a way to identify such variables uniquely.

There are several different solutions to this problem., In the
first place, there are certain situations in which it is not, in
fact, necessary ever to consider state vectors with more.' than one
=component, for a given variable name X, In particular, this will
be true in the absence of procedures. Consider a block structure
language in which variable names may be re-used inside each block,
but there are no procedure callse In this case, there is within each
block a unique variable with a given name which may be referenced or
changed, Thus the state vectors in an innermost block have only one
W~component for each ®«y and an innermost bloek has an effect and an
exit index which involve those state vectors. We may now eonstruct
from these an effect and an exit index which may be used at the next
lower block level. This new effect and exit index involve state vectors
which are valld at that hleck levelj that is, the d~-component , for
each {{; references that variable named of whose scope’ includes that
block level, even though o may have been redefined at the inner block
level. The inner block 1is now treated as a single statement with the
new effect and exit index, and, continuing inductively, we see that
the state vectors in any bleck of the program may be taken to have

only one ({~component for each .
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In order to derive the effect o' and the exit index x'at the
outer block level from the effect ¢ and the exit index x at the
inner block level, we go through a two-stage processe. Let M'be the
set of all variables whose scope includes the ocuter block level
(defined at that level or at further outer levels), Let M* be the
set of all variables defined at the inner levelj then M = M’y M*
is the set of all variables whose scope includes the inner level,
Let § = T0 Vv, and let §* = T“vx, then & 1s the domain of e and of
x, while X’ is the domain of e' and of x'. The first step is to
eliminate the variables defined at the inner level, Let M' = M= M*3
that is, M" consists of all those variables whose séOpe includes
the outer level and which were not redefined at the inner level.
We then wish to construct e” and x" with domain §" = V  For
each S ¢ 3, we may form its restriction to M', or SlM"; this 1is an

element of §", Our definitions of e" and x" are then
e" (8| M) = (e(s))|m X (S[M') = x(S)

In order for e" and x" to be well-defined in this way, it must bs
true, for each S19 S2 &€ X, that

1f S, |M" = S,|M  then (e(s;)|M" = (e(5,))|¥" and x(8)) = x(s,)

That isy the final values of any yarlables not defined in the bloek,
and the exi¥, must not depend on initial values of any variables de-
fined in fhe blocke This, of course, is due to the fact that entering
a block in which variables are defined does not, in itself, set these
variables to any values (even default values, such as zero, although
concelvably a block structure language could be deseribed in which
default values were assigned in this way). These facts about a bloek

must be proved correct as part of the proof of correctness of the blocke.
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To derive e' and x' from e" and x", we simply specify that
the values of any variables whose names are re~used in the inner
block cannot change during the execution of that block. Thus the

rules are

(e*(S1))| 1" = e"(S? M), @'(z) = 2 for z ¢ My xt(S?) = x"(SY M)

In general, this, again, is true only in the absence of procedures.

To see this, consider the following ALGOL programs

begin integer ki

ANAAN, SNV

W loop(loopflag)s Boolean loopflags
begin ki=k+l; loopflagimfalses

?;,f k < 10 then loopflagi=ztrue @)g loops

ki=1g
begin integer kj Boolean x3 ks=ljg
ad ki=k + kj

loop(x); if x then go to aj
outinteger (k) end;
outinteger (k) end

The output here consists of the numbers 1024 (that is, 210) and 11,
The program manipulates two variables named k at the same time; de=-
noting the outer k by « and the inner k by [: the statement k:=k + k
always sets p a 2y and the statement loop(x) sats w = o+ 1le The ef-
fect of loop(x) involves state vectors without «£=-components, and it *
1s possible to calculate an effect for the inner loop which likewise .
involves state vectors without X-components. However, in the ealcula-"
tion of the effect of the inner loop by considering the effects of

its individual statements, the state vectors involved must have both
®=components and g-components.

In the absence of recursive procedures, this problem may be
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solved with only a slight increase in complexity. If each block has

a unique name, the domain of each state vector, instead of being
simply a set of variable names, is now a set of pairs (bn, yn),

where bn is a block name and yn is a variable name defined in the
corresponding blocke If the names of blocks are not unique, or (more
commonly) if some of the blocks do not have names, we assign to each
block in the program a 2*22¥ %2§£§~9i’ analogous to the statement index
defined earlier; that is, if a block b has index k4 then b is the k=th
block in its program. Pairs (bi, yn) are now used in place of the
pairs (bny yn)e With each block we may associate as a semantic ate
tribute, not only its own block index, but the sequence of indices

of all blocks in which 1t is contained, working outward and ending
with the index of the outermost block (normally 1l). Each statement

now inherits the sequence associated with the block in which it is
contained, and this sequence is further inherited by the expression

or expressions in this & atement and ultimately by each variable in
the statement, It is now easy to determine, for the variable name yp,
which pair (bj, yn) represents it: we simply look at the sequence of
indices b} which we have inherited, and pick the first one for which
there exists a pair (bl, yn) for this particular yn. This corresponds

to taking the 1nnermost possible definition of a variable name.
Somewhat the same solution may be applied if the concepts of

local and global variables are usedy as in FORTRAN, Here we have no
blocks, but we have main programs, funé¢tions, and subroutines, each

of which may use variable names that need be unique only within it-
self, This time, since each function and each subroutine has a name,
the pairs may be of the form (pn, yn), where pn is a program name

(a special name, such as $MAIN, in the case of the presumably unique
main program) and yn is a variable name which is local to that program.

In the absence of global variables, the name of each program is ine
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herited as an attribute of each variable in that program, and used
as the first element of the pair (pp, wn).

Global variables in FORTRAN arise in three ways. The mathems=~
tically simplest system, available only in extended versions of
FORTRAN, uses ENTRY and EXTERNAL declaratious. We have seen in S6Cw=
tion 4=2 :how an BNTRY declaration may be used to specify a FORTRAN
program with multiple entry points, but, in some FORTRAN systems,
it may be used to specify global variables as well. An EXTERNAL dee
claration specifies that reference to a certain variable name in
the program containing that declaration refers to its definition in
some other program as a global variahle (with an ENTRY declaration).
From the viewpoint of syntactic and semantic descriptiony there is
no difference between the two declarations, although for implemen=-
tation purposes the variables declared in ENTRY declarations in a
program normally occupy memory addresses next to the instruction
words of that program. We set up a special name ($GLOBAL, for exam-
ple) as the "program name" of all global variables given el ther by
ENTRY or by EXTERNAL declarations,

When .glebal jvdriahles are defined using blank gommon, each one
will be assigned a gommon variable i",nwd&’f’ If X 1s the k-th common
variable in a program, then o has common variable index k., All state
vectors involving such a variable have a ke~componenty rather than an
X=component, because, by the definition of blank common, the decla-
ration of common variables defines their position (that 1s, the co;nmon
variable index) only. If P 1s the k~th common variable in a subroutine
of the above programy then y and p are considered to be the same
variable. (This would happen, for example, if the program contained
the statement COMMON X, ALPHA, Y and the subroutine the statement
COMMON X, BETA, Y with no other GOMMON statements in either program,)

A variable ¢ defined in labeled common, in a common block called by
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is similarly represented in state vectors by a (b, k)-component,
where k is its common variable index relative to the block b; that
isy o 1s the k~th varilable to be defined in the block b,

Again, all of this analysis is in the absence of recursive
subroutiness; these, of course, are not allowed in FORTRAN. If sube-
routines are allowed to be recursive, there may be different vari<
ables with the same name at various recursion levels, There are se-
veral possible treatments of state vectors in this case, all of which
seem either more cumbersome or more indirect than the treatments we
have analyzed thus far. We may give our state vectors (gs, yn)=
components, where yn 1s a variable name and g3 is the current con-
tents of the stack (that is, the general-purpose stack used in im-
plementing the language). We may give our vectors yp-components in
which the value of each variable is a sequence of values of all cur=-
rently active variables with the name yne. A third solution is to ime
pose an intermedlate stage in the form of an infinite sequence of
"generalized addresses" 899 83y eeoj @ state vector in our sense is
then the composition of a mapping L of variables into generalized
addresses and a mapping C of generalized addresses into their cur=-
rent contents or values. Entry to a block or procedure, whether re-
cursive or not, corresponds to a change in the current mapping L.
This construction models the usual implementation of block=structure
languages; its apparent disadvantage is that, if it is used, such
statements as the fact that a block or procedure always does the
same thing, regardless of the current contents of the stack, must be
proved instead of being "built in" to the description of the language.

Further discussion is given in section 5-5,
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NOTES

Recursive conditional expressions play a central role in
MeCarthy's theory of computation [MeCarthy 63]. In fact, MeCarthy
shows that a computation theory may be built up entirely in terns
of recursive functions, inecluding recursive conditional expressions,
without any of the usual mechanisms of assignment and transfer of
controls Roughly speaking, a conventional program P with p state=-
ments may be replaced by p functions of all the variables of Py
each of which 1s defined as its successor (or as various of its
successors, depending upon a conditional expression) with the same
arguments, except that the argument corresponding to the assigned
variable, if any, is replaced by the expression assigned, Using fl
to stand for "undefined" (which is taken as a third truth-value, in
addition to true and false), a typical FORTRAN program is expressed
in this theory roughly as followss

INTEGER FUNCTION GCD(My N) ged(my n) = p?(n, 2y my n)

72 I=M p?(1y §, my n) = p8(my J, my n)
8 J=N p8(1, § my n) = p1(4y ny m, n)
1l IF (I-J) 24 4, 3 pl{i, J, my n) = 1,; 1«3<0
2 J=J a1 g‘%&: 3: ':: n) % %(?:%%? m, n)
GOTO1 p2(1, jy my n) = p1(i, j=i, m, n)
3 I=1I=J pP3(1y Jy my n) = pl(i=J, Jy my n)
GO TO 1 p4(iy §y my n) = 1
4 GCD = I
RET RN
END

The definition of ged(my n) given above 1s equivalent to the ususl

definition of the greatest common divisor if m>0 and n>0, and core
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,®

responds quite closely to the given FORTRAN program. Of course,
although none of the functions pl, p2, p3, bk, p?y or p8 calls
itself, the entire collection of functions is ultimately re=-
cursivej for example, pl calls p2 and p3, both of which call pl,

Our derivation of the generalized effect from the single=-step
function is similar to the construction of the so-called "tail
function" [Mazurkiewicz 71]. The tail function corresponds to the
generalized effecty and the transition function from which it arises
corregponds to the single~step function.

The material on multiple exits and escape is new, so far as
can be determined, The observation that the multiple use of names
does not make 1t necessary to assign unique names to variables in
a bloek structure language unless procedure calls are allowed is
likewise new (see, for example, [Burstall 70] for the "unique name"
approach). The subject of iteration, at least in this author's
opinion, seems to have been avoided, up to now, more because of its
intrinsic cumbersomeness than due to any logical difficulty. Several
people have experimented with formalizing the "while" type of
for=list element; notice that the "step=until" type redices to the
other two types, for we can always replace A §Egg B until C by
Ay A+B yhile (C~A)xsign(B) < O, For an alternate approach to itera=-
tiony using the FORTRAN DO statement, see [Maurer 72],

Generalized addresses, as suggested at the end of section 4=5,
are introduced in [Strachey 661, The concept of the state vector as
a composition of two mappings, the set of generalized addresses for-
ming the range of the first and the domain of the second, appears
explicitly in [Park 68] and also in [Kaplan 681,
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EXERCISES

1, How might the syntactic rule
<sectlon> ::1= <statement> ‘ <gsection> !'3? <statement>

given at the beginning of section 4=1, be altered (using semantic
rules and semantiec restrictions) in order to describe a language
which does not use semicolons, but rather uses one statement per
card as in FORTRAN (assume no continuation eards), and in which a
card consists of
(a) a (< 72) characters follewed by a carriage return character?
(b) exactly 72 characters, with possible trailing blanks?

2+ The syntactic rule
<blanks> s3= 8 ¢ | <blanks> ? ¢

in a language in which blanks are to be ignored, such as FORTRAN,
may be altered to |

<blanks> = ¥ ¢ l <carriage return character> 9,? ’ <blanks>
' '_<blanks> <ecarriage return character> !.!

to denote the fact that a carriage return character followed by a
period is likewise to be ignored., Thus a period in column 1 effective-
ly serves as a continuation character. Give analogous rules for the
cases in which

(a) the continuation character, a period, is in the 72nd
column of the (72-column) card before the continuation cards

(b) continuation 1s as in FORTRAN, with any nons=blank charac=
ter in column 6 signifying a continuation card.
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30 Let £3 J 3 °J be an arbitrary single-step function, where
Y = L, Vx with M = M u {M, and let P be an element of V . Treating
\ as a program counter whose values are statement indices, P is thus
such a statement index. Give explicit rules, in terms of f, for the
effect and exit index of the statement with statement index P, The
effect should be a function es £ = A, where { = l\;‘Vx; the exit index
should be a function x: {—V,.

4, Give a semantic rule involving a recursive conditional

expression for the WHILE statement, defined syntactically as follows:

<WHIIE statement> ::= 'WHILE' <Boolean expression> 'DO?!
<statement>

Assume that the Boolean expression has a value, .but no side effect,
and that both the WHILE statement and the statement it contains have
an effect but always exit normallye. The intuitive meaning of WHIIE b
DO g 1s: if b 1s true, then stop; otherwise, do g and then loop back
to test again if b is true,

5e (a) Modify the :syntactic and gemantic rules given for 1f
statements in section 4«3 to take account of statement indices as in
the example programs of that sectionj that is, the statement index
‘of the g‘ statement and of the statement it contains must be properly
set upo, How does this affect the semantic rule given in section Wl
for the number of statements in a program section?

(b) Modify these rules further, to include statements of the
form 1f B then U else V, where B is a Boolean expression and U and
V are statements. Note that either U or V, or both, may be labeled,
and thaty if U is labeled and transfer is made to it, U is executed
and ftransfer is then made around V., This transfer may in all cases

be taken as the semanties of the word else (as a complete statement),
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6. Modify the rules for
(a) factors,
(b) if clauses,
(¢) arithmetic expressions,
(d) Boolean terms,
given in section 2~5, to allow for the possibility of escapes

7. The requirement, suggested in section 24, that the value
of any exit index should be the special word pormal whenever exit is
made in the normal manner, necessitates changes in certain of the
rules which we have studied. Discuss the changes, if any, which would
be indicated in the rule for the exit index of

(a) a general FORTRAN IF statement,

(b) an assignment statement,

(e) a W statement in ALGOL,

as given in section 3-3,

8o Iteration in assembly language is often aided by means of
special instructions., Give syntactic and semantic rules, in the con=-
text of the assembly language of section 3-5, for the instruction

LOOP I

which decrements I by 1 and skips the next instruction (which is
presumably a transfer back to the beginning of the loop) if I £ O
after the decrementing operation. (The FDP=10 instruction SOSIE -
Subtract One and Skip if less or Equal to zero =~ does this, among
other things.)

9, Consider the statement made in section L4=5 that the final
values of any variables not defined in a hlock must not depend on
initial values of any variables defined in the block. Dees this im-
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ply that every variable defined in a block must be set to some walue
before it 1s used == that is, must appear on the left side of an as-
signment (in execution order, and assuming no side effects) before

it may appear on the right? Why or why not?

10, Consider the statement made in section Y=5 that it is not
necessary, in the absence of procedures, to consider state vectors
with more than one ¥-component, for a given variable name X. When
ALGOL-style procedures are present, we showed here that this state=
ment no longer holds; but our example involves an ALGOL convention
not present in FORTRAN == namely, the ability, within any block, to
use quantities declared not only in that block but also in any outer
block, Thus, in the example, we called loop(x) from inside the inner
block, although the loop procedure was defined at the outer level.
Suppose now that the FORTRAN style of subroutine cal 1ing is used.
Since FORTRAN does not use recursive subroutines, it is possible to
arrange a program and its subroutines in order, in such a way that
any program calls only programs before it in order (or only programs
after it in order), Under these conditions, is it possible, as we
have done in the absence of procedures, to use state vectors with

only one )-component for each variable name X?
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CHAPTER FIVE

DECLARATIONS

5=-1 Iype Declarations

The purpose of declarations in a program is normally to state
certain properties of identifiers in that program, In our terminology,
the declarations determine the environment, which is considered as a
set of ordered pairs., Each declaration contributes certain ordered
pairs as its 15833} w@m. The union of all the local environe-
ments is the environment of the program, which is then inherited by
each statement in the programe These relations are expressed by the
following simplified description of programs in which declarations and

executable statements are separated by semicolons:

<set of declarations> x 3:= <declaration> dj; y :i= <set of
declarations> z !;! <declaration> g
<local environment> x% = d%; y% = 2% o2
<program> p ::= <set of declarations> g <set of statements> }
v = a2
<set of statements> x s:= <statement> g; y t1:= <set of
statements> z ';' <statement> §
<environment>Y

s =23 =9tV =y

It 1s further assumed that the enviromment is inherited by the come

ponents of a statement -- the expressions, factors, terms, and pri-
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mary expressions, and ultimately by the variable names, This is ne=
cessary in order to determine all properties of a variable name which
will be used in the synthesis of values of expressions, effects of
statementsy and so on,

The semantie rule W = a® in the definition of a program given
above is still another variation on the concept of an inherited ate
tribute. The set of statements b is here inheriting its environment
from its "brother," the set of declarations éo Like the rule for the
label function of a compound statement given in section 4-1, this

rule may be replaced by two conventional "father-to-son" rules, namely

<local environment> p% = aZ

v = p?

In a language in which the only declarations are type declara-
tions, the environment may be cast in the form of a tzpe {22?t1°Q'
as studied in section 2=, If this function is called t, then t(x)
is the type of the variable x. The type function for ALGOL type
declarations (ignoring the use of own for the moment) may be con=-

structed by using the following rules:

<type> p s3:= '{gﬂ.'; 1 s:= Yinteger'; b ::= ']\3/\0/3\193.11'
<type set> rt real 1* - Integer; bt = {tzgg, false?

<type declaration> 4 :i= <type> £ <type list> x

e

xt = ¢t

<type function> a% = x%

<type list> x ::= <simple variable> y; y ::= <simple
variable> y *y' <type list> gz

<type set>t

2o gt
<type fuaction> x% = (v, x¥)2; ¥% = $(u, yt)g v z%
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Thus, in particular, the type declaration

mtegeg XJ., x5, zeta

would have as its type function the set of pairs

3(x1, integer), (x5, integer), (zeta, lg&ggg:)}

We have made a distinction here between the keywords 5&3& and integer,
which appear Iin ALGOL programs, and the sets real and jpteger, which
are sets of all allowable real numbers and integers respectively.
These sets may be defined in different ways, of coursey for implemen=-
tations on different actual computers. Note that type lists in-
volve "simple varlables" which are, in particular, not subseripted
variableso

When a language contains other declarations, we might try to
set up a separate function, like the type functiony for each kind of
information to be attached to a variable name. This, however, would
mean that each of these functions would have to be a separate ine
herited attribute, It is somewhat simpler to have a single function
of two arguments, of which the second is a special keyword descri=-
bing the kind of infom ation being passed, This is the function which
we shall, from now on,y call the environment, In the case of type in~
formationy we shall use the special keyword €§23° Thus for the example

&5&53\1: Xl, x5, zeta

of a type declaration given above, Instead of a type function t with
t(x1) = t(x5) = t(zeta) = integer, we wish to construct an environ-

ment y with y(xl, type) = y(x5, gxgg) = y(zeta, type) = integer. This
means that the set of ordered pairs we wish to construct becomes

§((x1,§zgg),;g§gggg), ((xS,Ezgi),gggggg;), ((zeta,gzgg),ggxegex)§
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and the construction may be made by giving a semantic rule for a

local environment, rather than a type function, as follows:

<local environment> x% = {((v, type), xt)}; y% =
1((w, type), yt)§ v 22

Strictly speaking, if the local environment is z, we now have z((v,
type)) = t, rather than z(v, Ezgﬁ) t, where v is a variable of type t.
The type function, or the type information in the local envie
ronment, determines the set of all state vectors which forms the do-
main of the functions giving the value, effect, exit index, etc., of

various nonterminals in the language. If t is the type funection and
S 1is in the set of state vectors we wish to determine, then 3 has the
same domain as t, and S(x), for each variable x, 1s a member of the
set t(x)e The set of all state vectors having this property will be
called the state vector domain tP of the type function t. Thus

(W )

= 783 domain(S) == domain(t) and S(x) £ t(x) for all x € domain(t)}

If the nonterminal x (say) has the associated type function xt, we
shall denote the state vector domain of xt by xtD. (Recall the dise
cussion in section 1=3; if t? were denoted by Dt’ and xt by t <! then

Y

would have to be denoted by Dt s Involving two subscript levels,)
We shall use yD for the state vector domain of a more general envi-
ronment y, with the understanding that yD depends only upon the type

information in y; thus

¥° = {St domain(s) = §xt y(x, type) is defined?
and S(x) = y(x, type) for all x € domain(s)s

In all of the semantic rules which have been presented so far,

the domain of the state vector functions which are semantic a tributes
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has been left understood. If we wish to specify this domain, we may,
in the interest of brevity, include it within the parentheses which
enclose the first usage of a state vector in that domaing the stat e
vector symbol (normally S) then being followed by € (is a member of).

Consider, for example, the first semantiec rule involving state vectors

given in section 2-3:

<expression> ¢ :i= <term> y '+! <term> y
<value> eV(S) = v (S) + w'(S)

Suppose now that an expression also has an environment, which is,

as usual, an inherited attribute. Then we might write

<expression> g $i= <term> y '+? <term> y
<environment>Y
wW=eV;wW =¥
<value> eV(s € &) = v9(S) + wV(s)

By writing eV(S € e¥P), rather than simply eV(S), we are def ining
the domein of eV as e’>, The state vector symbol S may then be used,
as usual, In the remainder of the semantiec rule.

We have assumed throughout this section that our language is
such that all declarations precede all executable statements. In some
languages, this does not holdj declarations and executable statements
may be mixed (and in fact the word "statement" often becomes a more
geheral term, so that a declaration is also ecalled a statement). In

such a casey the following general rules may be used:
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<program> y $:= <declaratlon> d; x ::= <executable
statement> g5 y ::= <program> p ';' <declaration> @3
Z 33= <program> g '3' <executable statement> t
<environment>Y
sV =p; 0 =y ¥ = V=
<local environment> w® = d%; x2 =43 ¥ = 0% v e2; 2% = ¢%
<complete program> ::= <program> p '%ag'

pY = p?

Here it is assumed, as before, that d% is the set of pairs associlated
with d. The nonterminal <complete program> used here involves an
%egf%gggff, a standard technilque often used with syntactie rulese.

The end-marker here 1is sgg, and it is assumed that no other rule in
the description of this language involves gago If this 1s true, and
the string S is a complete program, then no initial substring of S is
a complete program., That is, if the characters of S, in order, are
cl, ceey Cpy then the string consisting of Cyy ecey Cpy for k < n,
cannot be a complete program unless k = n. This property of languages
is very convenient for the purposes of compllers and other translators
which work on a program from left to rightj if the property does not
holdy such a translator might very easily "stop too o on" and trans-

late only part of the source program,
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5-2 Array Declarations

In a language in which array dimensions are always integer
constants, each element of each array may be thought of as belonging
to the domain of the type function, as defined above. Thus for an
array in FORTRAN given by DIMENSION A(3), there are three real varie
ables, A(1), A(2), and A(3); if ¢ is the type function, then t(A(1))
=tA2)) = t(A(3)) = ml. We may construct a simple rule for such
array declarations as follows:

<array declaration> d s:= 'DIMENSION! <¥variable> y !(?
<integer> 1 ') |
<type function> & = i(concat(v, t(e, k, 0)®, v¥)s
1<kgiv:

It i3 assumed here that the integer i has value 1Y, and that the
variable v has type vt, which is in this case 1ts default type
(%ﬂﬁﬁﬁﬁf if v begins with I, J, K, L, M, or N, and rgal otherwise).

We have introduced here still another way of giving a semantic
rule, Instead of specifying the set d” by listing all its elements,
or by an operation such as intersection, union, or cartesian product,
we have specified it here as the image of a function. If X is any set
and £ is any function whose domaln is X, then

ff(x)z x ¢ X%

stands for the set of all elements f(x) for all x € X. The definition
of 4% above is effectively of this kindj the set X is the set of all
integers between 1 and the wvalue of 1, inclusive, while £(i), for the
integer 1, is the ordered pair (A(i), t); for the array A of type t.
The function conoat(slg coey sn) is defined as the string formed

by concatenating the strings sl, veey Spe Its appearance in the above
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rule is a slight abuse of notation, since k is an integer, not a
string, In fact, we do not need to use the concatenation function
if we agree that the ordered pair (A, 1), rather than the string
'A(1)ty be in the domain of the type function for each i. Our rule

for the type function of an array declaration would then read
<type function> & = ((v, k)y v®)1 1 <k < 1V}

In the case of DIMENSION A(3), the type function would thus be the

set of pairs

-

{((A, 1)9 I\:\G,é;), ((Ay 2), 1\:\9_;\_3-1), ((A’ 3)9 Zggg;l)?

Generalization of these rules to multidimensional arrays,
and to array declarations with specified types, is immediate. The
second element of each pair (A, k), where A 1s the array name, is
now itself an n-tuple of integers, for n-dimensionzl arrayse. If b
is the list of subscript bounds for a given array, we shall demote
the set of all such n-tuples which are legal for that array by bY.

The rule for array declarations now becomes

<array declaration> d 1:= <type> t <variable> y '(?
<subscript bound list> p #)?
<type function> d% = 5((vy k), t¥): k¢ b2

The method of definition of 4% is essentially the same here as it
was before; the second element of each pair ((A, k), t) is now the
set of values of the given type %, rather than being determined by
the variable name y.

To derive bY from by we may use a semantic rule involving car-
tesian products, If the subseript bound list is a list of integers
separated by commas, giving the upper bounds, while the lower bounds

are always 1 (as, for example, in FORTRAN), the rule becomes
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<subseript bound 1list> x 3:= <integer> 43 y ::= <subseript
bound 1ist> g 'y' <integer> §
<set of netuples> x" = fks 1 <k g 145 y% = 3% x
tkt 1<k g 3"

Here, as before, 1V and Jv are the respective values of the integers

i and jo This semantic rule involves still another method of specie~ =
fying a sety namely the set of all quantities satisfying a certain
propertye If X is a set and P 1s a property of elements of X, then

$x € X: P(x)}

stands for the set of all elements of X which have the property Pe
In the above rule, strictly speaking, we should write §k ¢ integers:
1 < k < v¢, rather than simply ks 1 < k < v}y where v is either 1V
or 3§V and where integer, as before, is the set of all allowable in-
tegers,

We may generalize the above rule for subseript bound lists to
make them look like bound pair lists in ALGOL, although still re~
stricting them to be integer constants rather than expressions:

<subseript bound 1ist> x ::= <integer> a ?:' <integer> hj
Y 3:= <subscript bound list> gz *,! <integer> ¢
'3 <integer> g
@¥.< vv)
eV < a%)
<set of n=tuples> x% = 3ks: a¥ < k < bzs y@ = 2% X
Jk: oV <k < dV¢

Note still another use of semantic restrictions, this time to insure
that each lower bound is not greater than the corresponding upper bound,
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Array declarations may be further generalized to allow several
arrays to be declared at once, Just as type declarations may declare
the type of several variables at once. ALGOL involves another kind
of generalization: if several arrays have the same bounds, then the
bounds need not be specified except for the last of these arrayse
Thus, for example, |

real array a, b, e¢[1:100]

has the same meaning as

real array all:100], b(1:100], ¢[1:100]

vhich in turn has the same meaning as
real array all:100]1; real array bl1:100]; regl array c[1:100]

-~ that is, 1t declares three arrays, a, by and ¢, each containing
100 real numbers, In fact the word gggg‘may be omitted from such a
declaration in ALGOLg so that we could have written simply

array a, by ¢[1:100]

in the first place, Syntactic and semantic rules to cover these

generalizations may be given as follows:

<array declaration> x 3:= 'grray! <array list> g; y ::=
<type> % '%ggay' <array 1list> b
<type function> x% = a%; y% = b?
a® = rea1; ¥ = ¥
<z ray list> x ::= <array segment> 33 y ::= <array
list> z 'y <array segment>
<type set>t

t t, ,t t

8® = x°; 2% = y¥; t¥ =yt

<type function> x% = s%; y% = 2% y t2
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<array segment> x ::= <array identifier> 1 <subscript bound
1ist> B; ¥ 3:= <array identifier> j ',' <array
segment> gz
<type set>t
s = yt
<set of n-tuples> x% = b%; y9 = z%
<type function> 3% = §((1, k), x°)1 k € 2O} ¥ =

2% v §((J, k)y ¥¥)1 k € 293

where subseript bound lists are as defined above,

When a subscripted variable is ysed, the semantic rules for its
value depend upon the form of the semantic rules for its declaration.
In ALGOL, we may write

<varlable> ¥y ::= <simple variable> g; y ::= <subsoripted
variable> y
<Ivalue> vl = sQ; wR = ul
<value> vW(s) = s(wvl(s)); w(s) = swl(s))

using the relation between values and I=values given in section 3«2,
This makes it necessary to define only Levalues, and not ordinary
values, of simple and subscripted variables., The Levalue of a simple
variable, of course, is the varlable itselfj this is a constant funce
tion of the state vector, The I=value of a subscripted variable de=-
pends on the evaluation of the subscripts, which in turn depends on
the state vector. Let us assume that each subscript 1ist (that

1sy each sequence of subscripts, separated by commas) has as a semane-
tic attribute an n-tuple of integer values which is a function of the
state vector. Such an attribute might be defined, for example (in the

absence of side effects, and assuming no type conversion) by
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<subsecript list> x ::= <subscript expression> g; y ::=
<subseript list> z 'y! <subscript expression> %
<n=tuple of values> x'(S) = sV(S); y'(S) =
concat(zV(S), t,%, tV(s))
<subscript expression> g s:= <arithmetic expression> a
<value> sV(S) = av(s)
(at(S) S integer)

t is the type of the arithmetic expression a. (In the pre-

where a
sence of side effects, we would normally, as we have done before,
assume that evaluation takes place from left to righte) Subscripted

variables may now be defined by

<subscripted varilable> g ::= <array identifier> g '[°?
<subscript list> ¢ ']
<I~value> s¥(s) = concat(a, 'C*, t’(s), '11)

The 5%55 of an identifier is thg number of subseripts that
should follow it, By including rank information as part of the en=
vironment, we may make semantic restrictions which insure that the
number of subscripts in any use of an array name agrees with the
number of subscripts appearing at the time it was defined, We sim=-
ply add to the definition of array segments, given above, the scman-

tic rules

<rank> x¥ = b ¥ = T
<local enviromment> x? = §((1, rank), x*)}; y* =
22 %((J’ Iv'f}hn,\l_(), f)%

where b? 1s the length (defined in the obvious mammer) of the sube
seript bound list b; 1f this local environment is synthesized and in-
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herited in the manner described in the previous section, then we
may include the semantic restriction

(s¥(ay rank) = t7)

'on the rule above for subsecripted variables, where s¥ 1s the envie
rontent of the subscripted variable s and t® is the length of the
subseript list t. We may also.include the restriction

(v (1, vank) = 0)

on the rule for the unsubseripted varlable v which is being defined
as the ldentifier 1, To complete the picture, we may then include
rank as well as type information in the local environment of such an
unsubseripted variable, giving the rank of such a variable as zeroe
Thése rules assure :us. that no variable namé ¢an occur in a brogram in
both subseripted and unsubscripted formy and that every subseripted
varlable must be declared as suche

Can semantic restrictions similar to those above be imposed
to Insure that subseripts never go out of range? Except for constant
subseripts, the answer is noy even when the subscript bounds are con=-
stant. The problem is that we have no way of knowing, in general,
vhether a given variable will stay in bounds, If the subseript bounds
are constant, we may define a subset of state vectors for whieh the
subseripts are in range as the domain of state vector functions in-
volving subscripted variables. This device may be extended to handle
the case'in‘khich the subscript bounds may be variable: we associlate
with each array name two new variables, a lower bound varilable and
an upper bound variable (only the latter is needed, of course, if the
lower bound must be constant, as in FORTRAN), The values of these
variables are always the current bounds, and, since these variables
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have state vector components, we may, just as before, determine a

set of state vectors for which the subseripts are all in range --

a state vector being in that set if it specifies bounds which it then
satisfies, |
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=3 Initiallzing Declarations

We now pass to a kind of declaration which is not found in
ALGOL, although it is found in FORTRAN and in PL/I: the declaration
which imparts initial values to certain variables. In FORTRAN, this
is called the DATA declaratione Thus

DATA P, Q, R/soO’ -700, 300/

gives the initial value of P as 5.0, of Q as =7¢0y and of R as 3,0, In
PL/I, the same initial values would be given to the same variables by

DECLARE P INITIAL (5.0); Q INITIAL (~7,0), R INITIAL (3.0)

If every variable in a program is given an initial value in
this way, the result is an initial state vector 80; the final state
vector is then e(So), where e 1s the effect of the programe. In ome
languages, and under some operating systems, any variable which is
not declared to have an initial value 1is given one by default. Thus,
in SNOBOL, the initial value of every variable is taken to be the
null string of charactersj while many operating systems clear the
data area before execution, that is, they set all cells in this
area to zeros, In such a case there is always a single initial state
vectory whether initializing declarations are present or note

How should the initial state vector be defined in case the
program variables are not all given initial values? One solution
is to introduce a mew value, "undefined," often denoted by f. When
{l 4ppears as an angument of any function, the value of that func-
tion is taken to be.ﬂ.; in particular, L+ n =R, len =Jly and so
on, for every n. The initial value of any variable is now defined
to be Sl whenever it is not defined otherwise. Thus we have an inie-
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tial state vector, some or all of whose components may be §!; cer=
tain components of the final state wvector, of course, may then con=-
celvably also be Jo, However, normally this does not matter, as long
as the undefined components do not represent output of the program,
We may note that the use of JL is often indicated in other situations;
for example, it is the k-component of e(S) where e is the effect of
any ALGOL statement beginning gg; kt= and S 1s any state vector
for which this statement exits normally, since in that case the ALGOL
report specifies that the value of k 1s undefined after a normal exit,.

If the introduction of f seems unnatural, we may choose, in-
stead, to deal with a collection of possible initial state vectors.
Let M be the set of all variables of the program, and let M* C M be
the set of all those variables which are initialized either by de-
fault or by the use of initializing declarations., Let e be the effect
of the given program, as before, and let S0 be a particular initial
state vector, that is, one which assigns to each variable in M* its
gilven 1initial valuee If S 1s any other initial state vector, that is,
if S agrees with Sy on M', then it is reasonable to demand that e(S)
must agree with eGSO) on some other set M'< M, which usually, although
not necessarily, consists of the output variables of the program;
that is,

S| = 55[M) = (eENM = (elsy)) M)

This equation may be made into a semantic restriction on any proe-
gramming language, provided that e, SO, M'y and M" are appropriate
semantic attributes., We have already discussed the effect e of a pro-
gram as a semantic attribute of 1t; the set M" may be determined in a
straightforward manner, for example by reference to the kinds of

output statements occurring in the given program. It remains for the
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initializing declarations to specify SO and M® as semantic attributes,
(We note that, in the case of the for statement above, its effect
will be a multi=yalued function if we carry through the philosophy
described above, avoiding the use of flo)

We shall determine a sémantic attri bute of programs which may
be called the Ml initial state mr‘ It is a state vector
whose domain is M'y, and which i3 given by semantic rules as a set of
ordered palrs. Any state vector of the program whose restriction td
M® is the partial initial state vector, as determined in this way,
may then be taken as SO‘ In the case of the DATA declaration ih
FORTRAN, or its equivalent in PL/I, which were introduced at the
beginning of this section, the set of pairs

$(Py 5.0), (@, =700), (Ry 3,0)%

would correspond to the partial initial state vectore Our first task
is to associate a function y with each list of values, such that w(i)
is the value of the i~th element of the list. Thus for the list

5¢0y 70y 3060

we would have v(l) = 5,0y v(2) = 7.0y and ¥(3) = 3¢0. In the simple
case in which each value is a single constant, v may be defined by

<list of values> x ::= <constant> g; y :3= <list of
values> z %3! <constant> 4
<ength> x* = 13 Y = 22 + 1
<value function> x¥ = §(1, ¢¥)%; ¥ = z¥ v $G+%, aV)3

where ¢V and dV are the respective values of ¢ and d. Value func-
tionsy like most of the other functions we have introduced as seman=-

tic attributes, are given as sets of ordered pairs.
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DATA declarations in FORTRAN also permit elements of the form
n*y to appear ina list of values, where n 1s a positive integer and
v 1s any constant; the meaning of this construction is "repeat v, n

timeso" To allow such elements, we might write

<list of values- w $:= <constant> a; x ::=
<integer> j '*! <constant> b; y ::= <list of
values> U 'y!' <constant> ¢; z ::= <list of
values.> ¥ 'y! <integar> § '** <constant> ¢
<dength> wl == 15 x7 = 1V ¢ = ult + 1; 20 = v « gV
<value function> w¥ = {(1, aV)}; xV = $(x, bV): 1 < Xk
<15y =u v 6 MY 2 v o

s(ky aV): v < k < 272
The DATA declaration itself is now defined by

<DATA declaration> d :i3= 'DATA' <1ist of var iables> x /!
<list of values-> y /!
<partial initial state vector> aP = xP

x'V= YV

x* =y
where a list of variables, in the simplest case, is given by

<list of variables> x i:= <identifier> i; y ::= <list of
variables> z 4! <identifier> J
<length> x = 13 y* - 20 + 1
<list of values>?
<partial initial state vector> xP = 7(1, xv(l))§;
¥YP = 2Py (5, YO}

We have required here, by the sanantic restriction (x = y?), that the
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length of the 1list of values be the same as that of the list of
varlables. This restriction may be generalized to x® < y@ without
further altering the semantic rule,.

The rule for a list of variables may be generalized to permit
implied looping, so that, for example, the statement

DATA (A(I), I=1,100)/100%07

may be used to set the variables A{1l) through A(100) to zero. The
generalized rule must be accompanied by a rather subtle semantic
restriction: we w uld like to be able to replace A(I), in the above
example, by A(I+l), by A(I, I), or even simply by I, but not by
A(I, J); that is, we do not want the statement

DATA (A(I, J), I=1,100)/100%0/

to be legal (since this is merely a declaration and the value of J
would be unspecified), We may obtain the names aof the variables which
should appear in the partial initial state vector by finding the
L=values of the variable which appears, applied to state vectors in
which the component corresponding to the implied loop index s1ccéss-
ively assumes all integer values batween the given lower and upper
bound. The semantic restriction mentioned above is then the state-
ment that the Levalues of this variable applied to any two state vac~
tors are the same whenever those staté vectors have the same loop
index component. Assuming that a variable v (whether simple or sube
scripted) always has an IL=value vﬂ, a rule for lists of variables may .
then be given as
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<1list of variables> y ::= <identifier> ¢j x s:= !(?

<variable> g 'y' <identifier> 1 '=' <integer> g
'y? <integer> g ")'; y :: - <list of variablos> y ',?
<identifier> d; z ::= <list of variables> y ?,(!
<variable> b 'y' <identifier> J '=?! <integer> t
', <Integer> £ ')!?

<length> wt = 1; x® =o' - sV + 1; y1 = u® + 1;
20 = v+ V-tV 41

(s <e)

(t < f)

<1ist of values>V |

<partial initial state vector> wP = $(c, W' (1))};
xP = {(ax(Sk), x" (k=s+1)): s £ k £ e}y where Sk(i)
=k yP = wPyu 1@, Y5 2P = VP U 10y,
z' (vi+k=t+1)): t < k < £3, where S (3) =k

(s <s()=s'(1) gesal@s) =als)

6 <s() =857 < £ 2pls) = bhisn)

This rule may easily be generalized to DATA declarations such as
DATA (A(I), B(I), I=1,99,2)/100%0/

in which two or more variables may appear before the loop index,
and in which the step size may be greater than l, We note that a
list of variables is also used, for exampley in a FORTRAN READ state~

ment such as
READ (54 22) (A(I), B(I)y I=1,99,2)

but here the semantics is slightly differenty in particular, the
semantic restriction made above 1s not applicable in this case,
since a READ statement is executable and makes reference to current
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5-% Procedures and Parameters

There are two general forms of syntactic rules describing the
interaction between a program and its subroutines. In the first, as
exemplified by FORTRAN, prograims are-grouped :into "collections of
programs" which may be defined simply by

<collection of programs> :i= <program>1 <collection of
programs> <program>

The end of a collection of programs is normally an end-of-file card
or something similar., In the second form, as exemplified by ALGOL,
there 1s a hierarchical structure of procedures, There is an outer-
most procedure, and every procedure é&xcept the outermost is subore
dinate to some other procedure. Both these forms may be combined in
the description of a single language, as in PL/I,

A program has an effecty which we wish to associate with the
name of that program. In the simplest case, we have a function from
procedure names into effects. This function is an attribute of any
collection of programsy and 1s inherited by each program in the cole
lection and ultimately by each expression in such a program. When an
expression contains a function reference, the value of that reference,
as a semantic attribute of it, is determined ag a function of the
state vector by evaluating the effect, as determined by the function
described above, and then applying the resulting state vector to the
function name as a veriable. The effect itself becomes the side ef=
fect of the function reference, In a more geheral casey we can have
a second function from procedure names into exit indieésssand this'-
may be referenced to find the exit Index of the:given-fimetion reference.
(This extends the philosophy expressed at the beginning of section l=3.)
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In line with the discussion in section 5-1, we shall include
both of the above functions as part of the environment. If y is the
environment, then y(n, eﬁ%@) will be the efrect of the procedure
with name n, and y(n, %};) will be the exit index of that procedure,
The contribution to the environment which is made by a single sube-

routine 1s then specified by a rule such as

<subroutine> g ::= 'SUBROUTINE! <subroutine name> p <body> b
<local environment> s% = b% u §((n, effect), b®),
AN A

((n, exit), b*)¢

where b® and b* are, respectively, the effect and the exit index of
the budy b of the subroutine, and b% is the local environment of the
body, including type, rank, a1 d other information contributed by de-
clarations in the subroutine. If we agree to use the superseript z
for the local environment of a main program and of a function, as
well as a subroutine, the synthesis of the local environment and the

inheriting of the global environment may be given by rules such as

<complete collection of programs> ::= <collection of
programs> ¢ <end marker>
ey = ¢Z
<collection of programs> x ::= <program> p; y &=
<collection of programs> z <program> g
<local environment> x% = p2%; y% = z% q2
<environment>Y
RS A o
<program> X 3:= <main program> m; Y $:= <function> f;
Z ::= <subroutine> g
<local environment> x% = m%; y% = £%; 2% = g3
<environment:¥
m=x; Y =y, oY =Y
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In ALGOL, there is, as we have seen, a separate environment
for each block., Procedure declarations in ALGOL are treated on the
same basls as any other declaration. The collection of all the de-
clarations in a block, together with the word begin at the beginning .
of the blocky 1s cal led the block head., Its syntax and semanties are

<block head> x ::= 'begin'® <declaration> d; y ::= <block
head> z ';' <declaration> ¢
<local environment> x% = d%; y% = z% v e%

where declarations are described by

<declaration> y t:= <type declaration> t; x ::= <array
declaration> a; ¥ $:= <switch declaration> g;
Z 33= <procedure declaration> p '

<local environment> w® = t%; x% = a%; y2 = g% z% = p?

The local environment p® of the procedure declaration p consists
of pairs of the type ((n, Qg‘gg}:), e) and ((n, exit), x), just as
the local enviromment t% of the type declaration t, for example,
consl sts of pairs of the type ((n, Em), t)e

Let us now turn our attention to parameters. A forms] para-
meter in a program is somewhat like a variable of that programg in
particular, it has a state vector component. However, when a formal
parameter 1s used as a primary expression, its semantics are not the
same as the semantics of an ordinary variable, unless the par ameter
is called by value, If the parameter is csl led by namey in the ALGOL
sense, then, as a primary expression, it may have a side ef fecty in
facty 1t must have a side effect if the corresponding actual para-
meter does. Likewlse, if the corresponding actual parameter makes

any abnormal exit, then the formal parameter must be considered as
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making an abnormal exit as well.

We shall model this behavior, semantieally, by altering the
form of the yalues of formal parameters, Whon a formal.parameter is
called by value, its values will be taken to be the values of the
corresponding actual parameter, When a formal parameter is called
by namey howevery its value is an n=tuple, consisting of all of its
necessary semantic attributese If it appears as a primary expression,
its vrlue is an ordered triple (uy ¢y x)y where u is its I=value as
studled in section 3-2, e 15 its effect, and x is its exit indexe
The ordinary value is then obtained from the Levnlue in the manner
described 1n scction 3-2. This ordered triple of staote vector func-
tions determines the semanties of the formal parameter as a primary
expressione

It is also, of course, possible for a formal parameter to be
¢cnlled by location, as in FORTHAN. Cnll by loeation does not lead to
side cffccts or escape, but it must be treated differently from call
by valueo We shall consider the values of parameters called by loca=
tion to be variables, that is, clements of the démain of the state
vector functions under consideratione When such a parameter is used,
the corresponding component of the current state vector becomes its
I~valuey from which the ordinary value is obtained just as beforee

An actual parameter ccalled by valiie as in ALGOL 1s evaluated
once and for all, just prior to the subrouti ne or function ecalle There
are other slightly different forms of c¢all by value; for example, one
of the FORTRAN compilers for the IBM 360 allows the user to call any
parameter by value, but this value is returned at the ecnd of the sube-
routinees Thus 1f 9 is the nctual parameter and g thn formal parameter,
the compiler effectively sets F=x at the start of the subroutiie ==

but it also sets x¥=f at the end »f the sudbroutine. (This eliminates
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the most important disadvantage of call by value in ALGOL, namely
that a parameter called by value does not have the intended effect
if it 1s used on the left side of the assignment symbol.)

The correspondence between actual and formal parameters may
be treated as assigning the formal parame er to the actual one,y no
matter how the parameters are called, If they are called by value,
the new value of the formal parameter becomes the value of the actual
parameteres For call by location, the new value of the formal para-
meter 1s the act ual parameter itself (as a variable)., If that vari-
able is subseripted, the new value 1s that variable which results
from evaluat ing the subscriptsand taking the element of the array
with integer subscripts as found by evaluation. For call by name,
the new value of the formal parameter 1s the n=tuple, as described
abovey of semantic attributes of the corresponding actual parameter.
This assignment of formal to actual parameters may be considered as
an executable statement which 1s executed just before the given sube
routine is called (and, in the case of IBM 360 FORTRAN mentioned
above,y another executable statement executed afterwards). Like any
executable statements, these may have abnormal exits, as, for exam-
ple, when an actual parameter called by value is an expression in-

volving a function which escapes,
In order to distinguish between parameters caslled in different

ways, and between parameters and other variablesy we may introduce

a new keyword, pon (for "parameter cal ling method"), analogous to
type and ranke If v is any variable and y is the environment, then
y(¥s pem) shall be pame, log, or value for v called respectively by

- namey by location, or by valus, or none if v is not a parameter. A
simplified rule for primary expressions, omitting all stxh expressions
other than simple variables, may then be given as
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<primary> p ::= <variable> ¥
<environment>Y
W
wvalue> p¥(s) = s@wl(s))
<slde effect> pS (S) - v3 ()
<exit index> p~(S) = v<(S)
<variable> ¥ ::= <simple variable. g
<environment>Y
<I=value> v4(3) = if vWis, pem) = pame then u(s), where
S(s) = (uy ey x), else if vy(s, pem) = loc then 5(s)
clse s
<side effect> v®(S) = if wW(s, pem) = ngme then e(S),
vhere S(s) = (uy e, x), else S
<exit index> v (5) = if W (s, pem) == pame then x(S),

where S(s) = (u, ey x), else normal

-\,\ AL

The parameter calling method i-lormation is introduced into the en-
vironment in a strdightforward manner, Any formal.parameter v gives rise
to the ordered pair ((v, pem)y loe) in FORTRAN, or ((v, pem),y name )
in ALGOL. Any formal parameter ¥ occurring on the value list in ALGOL
(that is, following the keyword v 1ue) gives rise, in addition, to the
ordered pair ((v, pem), value), and the corresponding pair ((v, pem) s
r&%ng) is removed from the loeal envirenment. Any ordinary variable v in
elither FORTRAN or ALGOL gives rise to the pair ((v, pem), none),

The effect and the exit index of a procedurs with parameters
are functions of the list of actual parameters. When such a procedure
is called, a list of actual parameters will be giveny and to this list
we apply these two functions, obtaining the effect and the exit index
of the procedure calle When a procedure is defined, it has an of fect
and an exit index which do not depend on actual parameters, but which
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involve the values of formal parameters, This effect and exit index
are combined with those of the operations which initialize each
formal parameter to the corresponding actual parameter; these lat-
ter operations, of course, are themselves functions of the actual
parameter list. The result will be an effect and exit index of

the procedure as applied to its own environment, and this must then N
be altered, as it 1s for blocks, to produce the effect and exit index
of the procedure as applied to the environment of each procedure call,
Note that initialization of a parameter called by name must always
exit normally, whereas initialization of a parameter called by value
involves evaluation of the corresponding actual parameter and there-
fore may not exlt normally., Even if the procedure does nothing what-

soever, it may, in such a casey exit abnormally,
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5-5 Storage Mappings

In some languages, it is possible to treat declarations as if
they were executable statements, This is particularly true in block
structure languages if we take into account the usual method of im-
plementing such languages on computers, At any given time during exe-
cution of a program in such a language, the first k locations in
memory, for some k, will be in use, When we enter a block, we encoun=-
ter varlous declarations. Each of these requires the allocation of,
let us say, Jj new cells of storage, and these are normally cells k+l
through k+j. The implementation will involve a variable (let us call
it SIZE) whose value at any given time is the total number of cells
in use at that time., In this case, the value of SIZE should be k+j
after the declaration, where it was K before the declaration, Thus
we may think of executing any declaration by increasing the value of
SIZE by the number of calls which that declaration requires,

It is expected, in addition, that executing a declaration will
change the current assignment of program variables to storage cells,
This assignment is called the storage TﬁREiE%i it is a function from
variables to cells, If the value of SIZE is k, a declaration alloca-
ting j new cells will augment the current storage mapping so that it
maps certain variable names into the cell numbers k+l1 through k+j.
Each cell has a current value at any time, and the function from cells
to their current values is called the content 35 the storee The cur-
rent value of any variable, in this situation, is found by reference
to both the current storage mapping and the current content of the
storeo. If M is the set of all variables of the program, C the set of
all storage cells, and V the set of all possible values, then the
current storage mapping is a function «: M= C and the current content
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of the store is a function 7t C >V, while the current valwe of any
variable x € M 1s o (o(x)).

Entry into a block and exit from a block, in this situation,
must also be treated as executable statements, When we exit from a
block through its ggg statementy SIZE must be decreased by the amount
of space allocated for that block. This amount may change fzom one
entry into the block to another, particularly if the block contains
array declarations with variable array boundse The amount of space
allocated for any block is thus the value of a second program varie
able (let us call it BSIZE). Every time a declaration is éxecuted,
SIZE and BSIZE are both increased, and by the same amount. In addie
tion, BSIZE must be initialized to zero at the beginning af the block,
which makes entry into any block executable as welle At the beginning
of the outermost block, both SIZE and BSIZE are initialized to zero.

When exit is made from two or more blocks in succession, SIZE
must be decreased by the sum of several quantities, all of which are
essential components of the current state of the computation, If we
are inside several blocks, the value of BSIZE for each of these blocks
must be stacked, Experience with block structure languages shows that
only one stack 1s necessary, and we may treat it as a variable whose
values are sequences of those things that are currently stacked. Such
a sequence may be null, in which case we denote the value of the stack
by nil. If the stack is called STACK, the effect of pushing down X is
given by

e(S) = Sty where S%(z) = S(z) for z # STACK
and S*(STACK) = if S(STAXK) = (xl, Xy
seey X,) then (X, Xy9 KXoy ecoy x,) else (X)

In the "else" casey of course, it is assumed that S(STACK) = pnil.
The effect of popping up X is then given by
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e(S) = 5', where S*(z) = 5(z) for z # X, STACK, and
S'(X) = x.l’ S'(STACK) = (x2, eeey xn),
where S(STACK) = (xl, x29 XXX xn)

and this operation 1s undefined if S(STACK) = pnil.

Using this concept of stacking, we may now define the effects
of the operations associated with a blocke We assume that the cure
rent storage mapping 1s a variable, SMAP, whose value is a set of
pairs. That portion of the current storage mapping which represents
a contribution from the declarations in the current bloeck will be
given as another variable, BMAP, of the same form as SMAP, The value
of BMAP or of SMAP may be denoted by nil if it is the null set of
pairs. In the absence of multiple use of names, the ef fects of en=
try into a block, of a typical declaration, and of normal exit from
a block may be deseribed as follows:

Begin: push BMAP; BMAP3=nil]; push BSIZE; BSIZE:=0

integer x: SIZE:=SIZE+1; SMAP:=SMAP y %(x, S(SIZE))?;
BSIZE3=BSIZE+1; BMAP:=BMAP U §(x, S(SIZE))?

End: SJZE =S IZE=BSIZE§ pop BSIZE; MAP:=MAP=-BMAP
(where the minus sign denotes the difference
of sets of pairs, that is, removal of all
palrs in BMAP from those in MAP); pop BMAP

If multiple use of names is permitted, we may remove from SMAP any
pair which conflicts with a newly inserted pair at the time of in-
sertion (that is, when executing a declaration) and add this pair
to another set of pairs called UMAP (U for "unused"). The operat ion
MAP3=MAP-BMAP now becomes MAP:=(MAP=-BMAP) y UMAP, When we begin a
block, we push UMAP and set it to nil; when we end a block, we pop

UMAP, Care must be taken, of course, to pop quantities in reverse
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order from the order in which they were pushed,

The effect of an abnorma] exit from a block depends upon the
block level of the exit point. An exit from a block by going to the
next outer block level is treated exactly as a normal exit; the -
effect (as outlined above) then becomes a part of the side effect of
the conditional or unconditional transfer. If transfer is made to a v
point which 1s n block levels outside the current level, this must
be treated as p normal exits in succession, from innermost to outer-
mosto. ALGOL dées not allow transfer into a block, but where this is
allowed (as, for example, in the algebraic language CPL) it is treated
as a succession of entries into blocks, from outermost to innermost,
or as a single entry into a block for a transfer into the block level
Immediately inside the current one.

Executable statements, in the :presence of a storage mapping,
have effects much like those they would have otherwise. If the current
storage mapping is ¥, the new storage mapping is x', the current con-
tent of the store 1s T, and the new content of the store is vy we
may write e(w, T) = (x?, v?), where e is the effect of an executable
statement, In ALGOL, it is always assumed ﬁhat X? = oy unless the
executable statement transfers to an outer block level., Even if the
execution of the statement involves evaluation of an expression which
contains a function reference that changes the storage mapping, nor-
mal exit from the referenced function 1s expected to reset the storage
mapping to what it was before the reference is made, In PL/I, on the
other hand, there is a function called ALLOCATE, which may be called e
at any time, and whose purpose is effectively to augment the current
storage mappingj there is then another function, called FREE, which
undoes what ALLOCATE does.

The idea that block entry and exit, as well as declarations,

should be executable is quite well known to those who design come
-186-



)

pilers and interpreters for block structure languages. It is well
known, for example, that whereas GO TO o{ in FORTRAN may be compiled
into a single unconditional transfer instructiony the corresponding
statement in ALGOL is true only if d is at the current block level,
If it is not, the object code must handle exit from one or more block
levels, We have preferred, however, to view this aspect of block
structure languages as basically concerned with the implementation
(although it is not implementation-dependent, since at least every
known implementation must take account of it). Thus, in the semantic
models we have constructed, we have sought to avoid treating block
entry and exit as being executable, In fact, as we have seen, this
1s possible if each block 1s regarded as if it were a single state=
ment, which has an effect and an exit index. Under these conditions,
it is not necessary to introduce a storage mapping into the model,
However, if a storage mapping is introduced, and if we are willing
to accept the consequences of doing so (that is, treating block entry
and exit, and declarations, as executable statements in the manner
suggested above), it becomes easier for us to model cer tain advanced
features of block structure languages, as will now be described,

In ALGOL, arrays are permitted to have dimensions (that is,
lower and upper subseript bounds) which are variable, and which may,

in facty change during a single run., Consider the following program:

begin integer k, 13 ininteger(k); %5 k=0 then go to done;
Eﬁé&f ;Qpegex array allskls

for 13=1 gtep 1 until k do ininteger(alil);

sort(ay k);

for i:=1 step 1 until k do outinteger (afil) ends

done: %eg
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This program reads in, sorts, and writes out one or more collections
of integers, each of which is preceded by its length. The procedures
ininteger (x) and outinteger (x) respectively read and write the in-
. teger xy while the procedure sort(a, k) sorts the array a of length k,
Suppose now that we denote by e the effect of the sort procedure, What
collection of state vectors constitutes the domain and range of e?
If we write e(S) = S%, then S and S! must have an alil-component for
each 1y 1 < 1 < k. However, since the varidus .eollections of: intggers
may have different lengths, corresponding to different values of k,
it i1s not clear how to specify, once and for ally a set of state
vectors upon which the effect e acts., One solution is to require all
such state vectors to have an alil-component for gvery integer i, and
to require further that the alil-component have the valwe {2 (see sec-
tion 5-3) whenever 1 is currently out of range, However, this slight
subterfuge must then be repeated for every other such arrayo, If a
storage mapping is used, the execution of the declaration %e&gggg
array all:k] causes k cells to be allocated in storage. These cells
may be different for different entrances to the block, even if arrays
wlth variable bounds are not declared in the block, if sud arrays
are declared in some outer blocke The content of the store, in this
situation, is always a mapping from the set C of storage locations to
the set V of values,

Sharing of(temporary storage 13 explicitly specified as part
of the model if a storage mapping is used. Suppose that two subrou=~
tines (procedures) are cdl ledy and each of these involves temporary
variables. It 1s customary, in implementations of block structure
languages, for these temporary variables to occupy the same positions
in memory. (To be truly temporary, such variables must not, in ALGOL,

be declared as owne) In our semantic models, we have not taken account
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of this sharing, If a storage mapping is used, however, then, when
the first subroutine is entered, certain cells are allocated, and
when exit ¥ made from that subroutine, these cells are releasede.
When the second subroutine is entered, the same cells are allocated
again. Of course, they may be allocated in different wayss they may
now contain real numbers, for example, where previously they con=~
tained Boolean quantities or integers. In the storage-mapping model,
the set of values must be a universal set, which contains anything
that could conceivably be a value of somethinge

Multiple use of names may also be handled "cleanly" using a
storage mapping, even in the presence of recursion. Whenever a name
i1s re-used, whether it was previously used in a different block or
procedure or recursively in the same procedure, the preceding use
of the name 1is ef fectively st acked. If the re-use is recursive, this
can happen to an arbitrary number of recursion levels, Similarly,
upon exlt from a procedure, whether this exit reduces the recursion
level or not, the preceding use of each name re-used in that pro=

cedure is recovered from the stacks
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Notes

The semantics of declarations are discussed briefly in [Strachey
66] and in [Burstall 701, The .term “enviromment" is used in [Landin &
641y in a slightly different sense than we use ibj an environment,
in Landin's sense, includes value information, that isy it 1s more .
like a state vector than like our concept of environment, In the
Vienna method, the type, rank, parameter calling method, and so on,
of a variable are attributes (in the PL/I sense) of that variable,
but the {current) value is also. No distinction is made in the Vienna
method between attributes that change (such as the current value) and
attributes that normally do not (such as the rank), In APbj,in fact, "
the :rank of a var:l.able'ca_n".change .28 a program runs,

O term "state vector domain" is reminiscent of the "domain
of interpretation of a program scheme" as studied in [Rutledge &4]
and in [Luckhams Park and Paterson 70], and the input, program, and
output domains of [Manna 69]. The word "domain" unfortunately has
two meanings in mathematics; we use it here in its first meaning, as
(apparently) synonymous with "set" (compare also "alphabet" and “"uni-
verse" ) rather than as the specific set of all first elements of the
set of ordeéred pairs specifying a function, that isy the set of all
x for which f(x) is defined (for the domain of f).

Arrays may be thought of as single variables whose values are
sequences of elanents; we have preferred to think of them as sequences
of variables. Our treatment of initializing declarations seems rather :°
obvious, but the subject seems to have exeited little interest, al-
though such declarations are mentioned in passing in [Strachey 661,
The use of a speclal symbol to denote "undefined" 1s part of MeCarthy's
theory of computation, and appears, for example, in [McCarthy 651.-
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A partial function which may be extended to a total function by
defining 1t as f? (or "undefined®) on a recursively definable set
acts more like a total functiony from the viewponint of mathematical
logic, than like a partisal function (an example of such a function
is the effect of a statement which makes reference to a subscripte.i
variable)o Procedures and parameters are treated axiomatically in
[Hoare 71]; they are also mentioned in [Strachey 661, in which our
"eall by location" is referred to as "eal 1 by reference,”

The concept of a storage mapplng, and the use of state vectars
which are mappings from a set of variables through a sct of 1ocations
to a set of values, has been studied by quite a number of peoplee
It appears first, informally, in [Strachey 661, and more explicitly
in [Park 681, where the state of a computation is defined to be a
pair 42, C>; here { maps the currently legal expressions (among which
are the variables) into some set of locations, while C maps each lo-
cation into its current value, Similarly, [Kaplan 68] def ines the
program state vector of a program T to be the ordered pair (M, %),

M maps program variables into the positive integers and £ maps po=-
sitive integers into values. The "unique names" of [Burstall 70] also

bear a certain resemblance to an intermediate set of locations.
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EXERCISES

1. In COBOL, the type of a variable is called its bicture.
The picture is a string of characters, each of which is either 9
Xy or Z (and possibly others, which we shal 1 ignore for the moment),
If the length of this string is 3, the length of each value of the
given variable must be n, and each character in such a value must
be numeric, alphanumeric, or alphabetic if the corresponding char-
acter of the pieture is respectively 9, Xy or Z, Thus, for example,
if the picture of D is 'XX99Z', then 'AB12J%, 'Y511Y!, and '2256A!
are legal values of Dy but 'GH248®, *CLOWD!', and 'TR2' are not.

Let us introduce picture infomation into the environment of
a variable by using the keywords picture (analogous to type) and
lengthe If v is a variable and y is the environment, then y(v, length)
should be the length of the picture of v, and, if y(v, length) = n,
then y(v, picture, 1)y for 1 < 1 < ny should be the get of all these
¢har acters which are allowable as the 1=th character of v. .

Variables may be given pictures by a SIZE clause (SIZE IS ny
where n is an integer giving the length of the picture), a CILASS

clause (CLASS IS NUMERIC, CLASS IS ALPHANUMERIC, or CLASS IS ALPHABETIC,

in each case specifying all characters of the picture to be respective~
ly 9y Xy or Z), or a PICTURE clause (PICTURE IS s, where s is a cha=-
racter string to be used as the picture), Formulate syntactic and se-
mantic rules which specify the picture information to be included in
the local environment in each of the above cases. The word IS may al-
ways be omitted from any of the above clauses. Make the simplifying
assumption that either PICTURE alone, or both SIZE and CLASS (in that
order), must be specified,
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2 Consider the simplified COBOL syntactie rule

<ADD statement> g ::= 'ADD ' <variable> g ' TO ¢
<variable> b ' GIVING * <variable> ¢

Herey for exampley ADD X TO Y GIVING Z sets Z equal to the sum of
X and Yo Let s¥(v, length) and s¥(v, picture, 1) be as defined in
problem 1 above, where v is any of a, by and c,

(a) Formulate a semantic restriction on piétures which assures
that no alphabetic char acters can ever be added in the above rule,

(b) Formulate a semantic restriction which insures that the
plcture of the variable ¢ can never be too short to hold the result,
(Note: This restriction is relaxed in actual COBOL systems; overflow
is held to be a run=~time error,)

(¢) In part (b) above, what happens if ADD is replaced by
MULTIPLY? By DIVIDE?

(d) Consider the simplified COBOL syntactie rule

<MOVE statement> g ::= 'MOVE ! <variable> g ' TO ' <varisble> b

which is such that MOVE X 70 Y sets the new value of Y equal to the
value of Xo Using the terminology above, formulate a semantiec restric-
tion which insures that the new value of Y will always conform to the
picture of Y, (Note that 1t should be allowed, for example, to mow a
numeric quantity into an alphanumeric character position, but not

vice versa,)

3e Generalize the rule for subseript lists given in section
5-24 80 as to allow side effec ts, escapey and real subscripts which

are converted to integer form by truncation.

4o Suppose that we wish to regard array names as var iables whose

values are sequences, For example, if A i1s given in FORTRAN by
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DIMENSION A(l%), the values of A are to be sequm ces (v19 Voy V3 vh),
where vy is the current value of A(1) for 1 < i < b, Each such se=-
quence may be regarded as a function f with domain 31, 24 3, #?,

where f(1) = vy for each 1,

o

(a) Formulate a semantic rule to accompany the first syntactic
rule of section 5-24 which defines the type of the variable v to be Ny
the set of all functions f as outlined above.

(b) same as (a) above, with the second semantic rule of section
5=2 (for multiple arrays). The set of n-tuples of the subseript bound
list should here be the domain of the functions corresponding to the
determined sequences.

(¢) Formulate a semantic rule for the value (not the L=value)
of a subscripted variable involving a general subseript list,y as de~
fined in section 5-2, in accordance with (b) above.

(d) If the values of array names are sequences, it is necessary
to treat assignments to unsubseripted variables and assignments to

subscripted variables in different ways. In words, explain vhy,

5. Explain the extensions which would have to be made to the
syntactic and semantic rules for machine instructions given in sec-
tion 3-5 in order to take into account space=reserving and initlali-

zing declarations of the forms

k BSS p
kK DATA p

where k 1s a label and n is an integer. The first of these reserves
acells (for an array requiring p words, for example); the second

'

reserves one cell and gives it the initial value pn.

6. It is quite common, in the study of programming languages,

to regard variables as having properties such as type and rank, and
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then to regard the wvalue of a variable as a property of it in the
same sense that its type and rnnk are, Suppose that in our formula-
tion of the environment y of a variable v we used the keyword g%%Eg,
so that y(v, wq) is the value of ve What would this imply about v?
Could we use this for the values of all variables?

7. Suppose that the function f(x, y) is defined by if x # O
then output(y). Suppose that we now call f as a procedure by writing
£(0, g(x)), where g(x) is a function which outputs x. When £(0, g(x))
is called, will x be output or not? (Note: The answer to this ques-
tion depends on whether x and y are called by value, by location, or

by name. Discusse)

8. The following parameter calling method, which we shall re-
fer to as delayed call by yalue, has becn proposede. At the start of
any procedure, a Tlag is set to zero, corresponding to each paranmeter
called in this manner; the value of the actual parameter is not cale
culated. Ify in the body of the procedure, the value of the pnrameter
is necded, the flag is tested. If it is zero, the value of the formal
parameter.is set to the value of the acturl parameter, and the flag
is set to one. If it is one, the value of the formal prrameter has
presumably already been calculated in this manner, and hence it is
simply retrievede.

(a) How does this proposed method affect the answer to the
preceding question?

(b) Discuss the speed of the proposed method as compared with
that of calling by name,

9. Suppose that a stack is represented by an array called STACK
of size n, together with a single variable LSTACK whose value is the
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eurrent length of the stack, which is an integer between 0 and n
inclusive, Under these conditions, describe the effect of pushing X
and the effect of popping X, Also describe their exit index, given
that exit is to be made to STACKERROR if pushing down causes stack

v

overflow or if an attempt is made to pop an empty stack; otherwise

exit is normale, Assume that the 8tatemernt index of STACKERROR is lo

L%

10, (a) Extend the specification given in section 5-5 of the
effect of the declaration integer X to integer arrays, including
multiple arrays. Assume that each variable or array is given by a
separate declaration.

(b) In the treatment of declarations as executable statements,
are any speclal difficulties caused by the fact that a variable name
may be re-used with change in rank (for example, that it may be a
two-dimensional array name inside an inner block, and a one-dimensional
array name outside that block)? Explaine

W
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