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1. Introduction.

In this paper we present a new algorithm, in the secant methods

family, for solving equations of the form g(z) » 0, where g : *\ •*• v\
3

is twice continuously differentiable and its Jacobian matrix — g(z)

is invertible. Under mild assumptions, our algorithm will converge to

a solution z, irrespective of whether the initial guess zQ is a good

approximation to z or not. After a few iterations, our algorithm

requires only two function evaluations per iteration and the iterates

i
T

z. which it constructs satisfy 0z± -zll £K6 nfor all i>iQ, K>0,
6 G (0,1), with t being the unique positive root of t - t - 1 » 0.

By (9.2.8) in [6], 1 < t < 2 and t + 1 as n •*• °°. Hence the efficiency

of our algorithm, n, defined as the ratio of rate (xn) to the number of

function evaluations per iteration, is seen to be Tn/2n, and hence

4- < n <— . We note that the efficiency of the Newton method is
2n n

2/(n +n) and hence that our method is considerably more efficient than

Newton's method, especially when n is large. The superiority of our

method is in fact even greater, because of the much smaller cost involved
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in matrix inversions.

The algorithm in this paper utilizes four ideas, represented by

the sequential secant methods of Wolfe [9] and Barnes [4], the results

for secant methods based on consistent approximations in Section 11.2 of

Ortega and Rheinboldt [6], the method of local variations of

Banitchouk, Petrov and Chemousko [3], and the convergence theory described

in Section 1.3 of Polak [7]. The result is a globally convergent

algorithm with the ideal rate of convergence of a sequential secant

method. We note that it is superior both to Newton's method, because

it is more efficient, and to the above mentioned secant methods because

it is stable and globally convergent and they are not. Among the

more interesting applications we foresee for our method is in the

solution of moderately well behaved, two point boundary value problems.

We have used it in this context and have found it to behave very well.

. 2. The Secant Method.

Let g : 1Rn -t 1R" be a twice continuously differentiable

function, whose Jacobian matrix will be denoted by G(z), i.e.,

G(z) = t— g(z). We shall need the following
9z

1. Assumptions:

(i) There is azQ elRn such that the set C(zQ) ={z|Bg(z)0 <Hg(zQ)B}

is compact.

(ii) The set C(zQ), above, contains at least one point z such that

g(z) - 0, and the number of points z€ C(zQ), such that g(z) « 0, is

finite.

(iii) Let S- {z e C(zQ)|g(z) - 0}, then there exist an L>0 and a

p>0 such that Hg(z') - G(z")" < L Hz' - z"tl Vz', z" € B(S,p), v ze s,

where
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B(z,p) -{z|Bz -.zl <p}.+

(iv) G(z) exists and is continuous for all z in an open set

containing C(zQ).

Under the assumptions stated, we will show that the algorithm

below will construct a sequence {z±} which converges superlinearly

to a point z satisfying g(z) = 0.

3. Algorithm.

Data; 6>0, ae (0, |), 3̂ (0,1), b>0(large), H>1, zQ e1^n,
H £ L(n) ; e. = jth column of nxn unit matrix, j = l,2,...,n.

Step 0: For m = l,2,...,n, set dm - em, d^ =- em; set i = 0,

'ja0>.Sa09Van9HBH.

Step 1: Compute g(z.).

Step 2: If j < 2n, set j » j + 1 and go to Step 3; else, set j - 1

and go to step 3.

Step 3: Set e. • min{6,v}.

Step 4; Compute g(z.+e.d.).

Step 5: If j <. n, replace S., the jth column of H, by

4. A± -~ [g(z1+eidj) - g(z±)]

else, replace h., the (j-n) column of H, by -A., to obtain a new

matrix (again denoted by H),

5. H=(h^ h2, ..., hJ-;L, (±)A±, h^+1, ..., h"n).

Step 6; If Wg(z±+e±& )%2 <tlg(Zi)ll2, set s-0, w«z± +e^,

+
This assumption is obviously redundant since it follows from the continuous
differentiability of G(») and assumption (iii). We state it simply for the
sake of convenience later.

L(n) is the space of real nxn matrices.
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and go to Step 7; else, set s a s + 1, w • z., and go to Step 7.

Step7: If H*1 exists* and OiT II _< b, set U± =H, compute

6. v=H"1 g(z±)

and go to Step 8; else, go to Step 12.

Step 8 :. Set k • 0.

Step 9: Compute g(z±-& v).

Step 10: If

7. Og(zi-Bkv)ll2 <(l-23*a) 9g<z±>B2

set zi+1 m z± - 3 v,

v= 3kUvil, s= 0, i« i+1, and go to Step 2; else, go to Step 11.

Step 11; If k < £, set k = k + 1, and go to step 9, else, go to

Step 12.

Step 12: If s < 2n, go to Step 13; else, set s » 0, 6...» 6/2 and.go to

Step 13.

Step 13; If w « z^ go to step 2; else, set H - H, z -« oj,

i • i+1 and go to step 2.

In constructing the above algorithm, we thought of our problem

as being min{-|flg(z)B2|z ^!Rn}, rather than as that of finding azero
of g('). Our algorithm uses the method of local variations (see [7],p.43)

to construct approximations H. to the Jacobian G(z1) and to ensure that

the iterates z. proceed towards a zero of g(*). After a small number

t - -
Note that since H differs from H ,, by the jth column only, whenever

new old **•

H and H~,, exist, H~ can be computed according to the formula
new old new ^

fi"1 -n~}, +-~r- (e^H^.A.) c., where c. is the ith row of H~?",.
new old c.A. j old i j j »L old
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of iterations, the approximations H± become sufficiently good for the

algorithm to continue in secant mode. The test (7) is aminor modifi-

cation of the Armijo [2] step size rule for gradient methods and is

used to ensure convergence once the algorithm enters the secant mode

of operation. We shall now make the preceding statements precise.

8. Proposition: Suppose Assumptions (l(i), l(ii) and l(iv)) hold and

that the algorithm (3) has constructed the points z^, z^> •••» z^.

If g(z.) ^ 0, then, after at most a finite number of halvings of 6

in Step 12, the algorithm will construct a point z,^, with

«g(zi+1)« < »g(z±)l.

Proof: If H"1 exists and for k <. A (7) can be satisfied, then the

proposition follows directly. If either H does not exist and/or for k <_ I

(7) cannot be satisfied, then the algorithm becomes the method of

local variations, and the proposition follows from the fact that this

method jams up only at points z± satisfying G^) g(z^ - 0. (see [7],p.43).

9. Proposition: Suppose that the algorithm (3) has constructed an infinite

sequence {z.}" n. If there exists an infinite subset of the integers,

K, such that (7) is satisfied for all i G K, then g(z±) •>0asi + ».

Proof: The sequence {Hg(z )D } is, by construction, strictly mono-

tomically decreasing and bounded from below. Hence there exists a

Y* >. 0 such that Bg(z.)D -*• Y* as i + °°. Suppose that y* > Of then,

for any t > 0, there exists anN> 0 such that for all i e K, i >^ N,

10. Og(z.x1)U2 < (l-2B*a) «g(z,)U2
i+r

< (1-23*00 (Y*+t).
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Since t > 0 is arbitrary, it is clear that (10) contradicts the

2
convergence of Rg(z.)B to y* > 0.. Hence we must have y* " 0«

11. Proposition: Suppose that Assumptions (1(1), l(ii) and l(iv)) hold.

Suppose that algorithm (3) has constructed an infinite sequence

00

{z.}. 0 and that there exists an integer N such that for all i >. N,

either H. does not exist or the test (7) fails for k = 0,1,2,...A.

Then Hg(z.)B + 0 as i -*• ».

Proof: For i ,> N, the algorithm becomes the method for local variations.

Since C(z ) is compact, by the properties of the method of local variations

oo •*•

([7], p. 43), {z.}. 0 must have at least one accumulation point z

which satisfies |^-|llg(z)II2 => G(z)Tg(z) «0. Since G(z)"1
exists, by assumption, g(z) = 0. Hence, since {Dg(z )B }^q is a

monotonically decreasing, bounded sequence, we must have Hg(z.)tl -*• 0

as i -* °°.

12. Theorem: Suppose that assumptions (l(i), l(ii) and l(iv)) hold and
oo

that algorithm (3) has constructed an infinite sequence ^zHt^4=o*

Then J. + z as i .+ «, and z satisfies g(z) = 0.
l

Proof: First, it follows from Propositions (9) and (11) that g(z±) -*• 0
A 00

as i ->• »s and hence, that all accumulation points z of (z^^q must

be in the set {z|g(z) = 0}. By assumption, this set consists of a

finite number of points. Next, we must have

13. lim sup Hzi+1 - z±W -0

either because 6 -*• 0 as i •> » or because g(z.) > 0 as i •+ » (since
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flH"1! <_b, only, is allowed in the construction z±+1 =z± -3^± g(z±)).
Thus algorithm (3) satisfies the assumptions of theorem (1.3.66) in

00

[7] which yields that the sequence {a^^n. converges.

14. Lemma: Suppose that assumptions (l(i)-l(iv)) are satisfied and that
00 A

algorithm (3) has constructed a sequence {z.K^q with limit point z.

Then there exists an integer N >. 0 and an M > 0 such that for all

i > N,

i-n

15. OG(zi) -H±Q <mV Bz -zfl .
j=i

Proof: Since z. + z as i + », and e. •? min{v,6} in Step 3 (where

v = 3 Uh~ vO), it follows that there exists an integer N >_ 0 such

that e. < p/2 and Qz. - zll < p/2 for all i >. N. Here p is as in

(l(iii)). Now suppose that i >_ N and (without loss of generality) that

the ith column of H± is te(zi-k+£i-ke1^ ~ 8*zi-k^» where
i-k

k € {0,l,2,...,n-l}. Then, making use of (l(iii)) and the fact that

e. , < Hz, , - z, , ,H, we obtain that the magnitude of the difference
i-k — i-k i-k-1

between the jth columns of G(z.) and H. is

16. IcC.^.j -J- [8(zi.k+ci_ke;)) -8(^)1"

- • 1 [G(z±) - G(zi-k+tei-kej)]ejdtll
^o

1

<lI i«1- •1.k-t«1.k«J
J A

Idt
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1

•'0
k- + fc 'Vk - 2i-k-lB)dt

«Ld.±-^ +f i.^-a. +1 aZi_k_r^i).

The existence of a constant M satisfying (15) now follows from (16)

and the properties of norms on a Euclidean space.

17. Lemma: Suppose that all the assumptions (1) are satisfied, that

b >_ 20g(z) II for all ze s and that the algorithm (3) has constructed

a sequence {z^ issQ. Then there exists an integer N j^ 0 such that for

all i >_ N, the test in step 7 is satisfied, (7) is satisfied with k «= 0,

and step 13 is not reached by the algorithm, i.e., for all i >_ N,

18- »i+i-«1rH-1g<»1).

Proof: First, since g(») is twice continuously differentiable, we

note that

2
3

dz

J(^g(z)02) =G(z)TG(z) +W(z)

where W(z) is an nxn matrix, which is continuous in z, and which

satisfies W(z) = 0 for all zG (z|g(z) » 0}. Hence, if H~ exists,
—1 9

then expanding llg(z.-H. g(z.))ll to second order terms according to

the Taylor formula, we obtain,

19. 9g(zi-.H^1g(z1))»2 --IgO^)!!2 -2<G(z1)Tg(z1), H'Vz^ >
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-1_,_ *x„-l.+2( (l-8)«H;1g(zi), 0(«r.H;lg(«1))TG(»1-^ g(«t))H; g(«t) >

-1 /_ ss„-l+<H^1g(zi),W(zi-sH^g(zi))H^ g(z±) >)ds

-1To simplify the expressions in (19), let G±(s) -G(zi-sHi g^)) and
-1W±(s) =W(z±-sH^ g(z±)). Hence (19) becomes

i o 9/ <g(z.),G(z.)HT1g(z.)>20. llg(zi-H-1g(zi))ll2=Hg(zi)ll2 1-2 1[| V 1
\ llg(zi)ll

+ —

"8
—— \ (l-s)[llGi(s)H^1g(zi)H2 +<H~1g(zi),Wi(s)H^1g(zi) >]dsj

Now, since z. + z, it follows from (15) and the Perturbation Lemma (2.3.2)

in [6] that there exists an integer N1 such that for all i >.Nf,H.

exists and is bounded. Consequently, for s £ [0,1], W.(s) -»• 0 as i •*• »,

G. (s)hT -*• I as i •> », and G(z.)hT + I as i + », where I is the nxn

identity matrix. Therefore, given any a € (0, -r), it follows from (20)

that there exists an integer N >_ N* such that for all i >. N

21. Ug(zi-H^1g(zi))ll2 <(l-2a)(lg(z1)ll2,

i.e. the test (7) is satisfied with k » 0 for all i > N. The fact that step 13

is not reached for i >_ N is obvious. This completes our proof.

Since the multiplier of Ug(z )U2in the right hand side of (20) goes

to zero as i -*- °°, it is clear that Hg(z.)H •+ 0 superlinearly. However,

we can make the following, stronger statement as well.
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22. Theorem: Suppose that all the assumptions (1) hold and that algorithm

(3) has constructed a sequence {z.}. fl converging to the point

x' U|g(2) = 0}., Then

1/ 1
23. 0 < lim sup Hz - zO ±/Tn < 1,

i-**» ±

where x is the unique positive root of the equation t - t -1=0

(i.e., the R-order of algorithm (3) is Tn> where R-order is defined by

(9.2.5) in [6]).

Proof: Let N be such that lemmas (14) and (17) hold. Then, for all

i > N we have

24- zi+i =zi - HI1g<zi>

and hence, since g(z) « 0, for all i >. N,

25. Ilzi+1 - zll =H(2i-z) - H^1(g(zi) - g(z))

C1
< II \ (I-H*1G(z+s(z±-z)))(zi-z)dsl

0

1

(H^GCz+sCz^zyOds Hz^zl

< HhT1!! sup Dh. - G(z+s(z.-z))0 Bz.-zB.
1 a e [o,i] ± ±

Since for i >_ N.IIh"1!! £b, and by (l(iii))

llG(z+s(zi-z)) - G(z1)U <L (l-s^Hlz^zll, s G [0,1], it follows from

(25) ~that for i >. N,
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26. Dz - zl <b (l^-GCs^I +L izi-JB)azi - zl.

Finally, making use of (15), we obtain that there exist constants

Yj > 0, j = 0,1,2,...,n-l, such that

n

27. Oz..r - z
l+l

Our theorem now follows directly from theorem (9.2.9) in [6].

3. Applications

One of the more promising applications of the secant method

described in Section 2 is in the solution of boundary value problems

of the form

28. |j x(t) =h(x(t),t) t€[tQ,tf]

29. g0(x(tQ)) = 0, gf(x(tf)) - 0

where gQ, g- and h :TR xIn -* 1R are twice continuously differentiable
2

3 9
in x, and h(x,t), ~ h(x,t), —r h(x,t) are all continuous (or at least

3x 3x2
piecewise continuous) in t. In addition, we assume that

30. g(z) e

g0(z)

g (x(t.,z))
f r

maps TR into M and G(z) = -r— g(z) is nonsingular in a suitable

ball in TR . In (30), x(t-,z) denotes the solution of (28) at t a t-,

obtained from the initial condition x(tQ) • z. Since g(z) and G(z)

are quite expensive to calculate, it is clear that (28), (29) represents

a class of problems in which a good secant method could do considerably

better than Newton's method.
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In our nemerical experiments with reasonably well behaved problems

of the form (28), (29), we have initialized 6at 6=0.2 max |zj| and

we have found that the algorithm would pass the test (7) after a very

small number of iterations (often, i < 3). We have also found, as

expected, that the total computing time needed to reach Bg(z )ll £ 10

was much smaller with our secant method than with Newton's method.

Conclusion

A limited amount of numerical experimentation indicates that

algorithm (3) is a highly efficient method for solving equations in

several variables. In application to boundary value problems, it is

subject to the same difficulties as the Newton method, whenever these

difficulties are caused by the ill-conditioning of the Jacobian

matrix G(z). In the case of Newton's method, it is sometimes possible

to reduce this ill-conditioning by means of a nonlinear transformation

such as the one due to Abramov [1]. It remains to be seen whether

it is possible to graft Abramov1s procedure onto a secant method such

as ours without destroying its efficiency and without creating

unreasonable storage demands.

Finally, it should be pointed out that when used for solving

boundary value problems, to obtain greater efficiency, the method

should be modified so as to determine adaptically the required

integration precision at each iteration. A general theory indicating

how this is to be performed is given in Appendix A of [7], while two

specific examples can be found in [5] and [8].
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