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1. Introduction

The one variable secant method, for the solution of equations,

has been known for a very long time as being computationally more

efficient than Newton's method. Among the extensions of this method to

n-dimensional problems, those proposed by Wolfe [8 ] and Barnes [2 ],

are among the most interesting ones, because, when they do converge,

they are computationally considerably more efficient than Newton's

method (see, for example, the discussion in [5 ]). However, as can be

seen from the counter examples quoted in [5 ], these methods may not

converge. More recently, Ritter [7 ] proposed a new algorithm for

function minimization, combining Goldstein's gradient method [3 ]

with a secant type method, which contains an angle test (between the

direction of descent and the gradient) to ensure convergence. This

angle test depends on a parameter that may be quite difficult to select

in advance. A bad selection results in the algorithm staying in the

gradient mode most, if not all the time.
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In this paper we present a new gradient-secant algorithm for

unconstrained optimization problems of the form min {f(z) | z £ IR }.

It differs from Ritter's method both in the fact that it does not use

an angle test and in the manner in which it updates the approximate

hessian. Roughly speaking, in solving a problem, this algorithm uses

Armijo gradient method iterations [ 1] until it reaches a region where the

Newton method is more efficient than the gradient method. Then it

switches over to a secant form of operation. Under the assumption that

f is continuously differentiable, we have shown that any accumulation

point z, of a sequence constructed by this algorithm, must be

stationary. Under the stronger hypothesis that f is twice continuously

differentiable and strictly convex, we were able to show that any

09

sequence {z,} constructed by our algorithm converges superlinearly
1 i«0

to the unique minimizer z of f(j), with rate Tn, where t^ is the unique

positive root oft -t -1 = 0, i.e. that for some 6 £(0,1) and

i
T

some R£(0,w), I z. -z I < R8n , i=0, 1, 2, .. . Both theoretical

considerations and our computational experiments indicate that this new

algorithm is considerably faster than the Newton method, and Lootsma

[4] reports that on many problems Newton's method is superior to

a number of conjugate direction and quasi-Newton methods. It is

therefore not unrealistic to hope that, as experience with the new method

accumulates, it will emerge as one of the most efficient methods for

the solution of certain classes of unconstrained optimization problems.
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2. The Secant Method.

Consider the problem

1. min{f(z) |ze lRn}

To begin, we shall make only the following minimal assumptions.

2. Assumptions; (a) f is continuously differentiable and, (b) f is bounded

from below. n

Throughout this paper, when we say that an algorithm is convergent,

we mean that every limit point z of a sequence it constructs in solving

(1) satisfiesV£(z) - 0.

The assumptions (2) will suffice to prove that the algorithm we are

about to state is convergent. We shall later show, under stronger

assumptions, that it converges superlinearly and establish a bound on

its rate of convergence.

We shall use the notation

3. g(z) = Vf(z), z G lRn.

4. Algorithm;

Data: 6>0, ae (0, |),3G(0,1), b>0(large)1",* >_ 2, zQ GIRn,
H a symmetric positive definite n x n matrix, e = j— column of n x n

unit matrix, j » 1, 2, .., n.

Step 0; Set i » 0, j - 0, p= 0, vQ * 6, H « H. Compute g(z ) and

set yQ a Hg(zQ) H•

Step 1; Compute g(z ). Stop if g(z.) » 0.

Step 2: If j < n, set j - j + 1 and go to step 3; else set j - 1 and

t The purpose of the constant b is to make the algorithm use a steepest
descent step whenever H^, the current approximation to the hessian of f(•)
is "too close" to being singular. A lower bound on b is b >^ 2 B H(z)"l 3
for all z which are local minimizers of f(«). In practice, setting
b « » does not appear to destroy the convergence of the algorithm.
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5.

go to step 3.

Step 3; Set e = min{6,v }.

Step 4: Compute g(z. + e± e ).

Step 5: Replace 5 , the j— column of H, by

Ai =e± t8(zi +ei V "g(zi)]
- t

to obtain a new matrix H, and set H. «• H.

Step 6; If Hg(z.) B£ y » go the step 7; else set ^» z. go to step 15.
X. p A

Step 7; If HT exists and I L D <_b, compute

6. v± -H^1 g(«±)
and go to step 8; else set w = z. and go to step 15.

Step 8; If (v., g(z.) > < 0, go to step 9; else set w * z and go to

step 15.

Step 9: Set k * 0.

k
Step 10i Compute f(z. - 3 v).

Step 11; If

7. f(z± - 3kv±) - f(z±) <0
. s*

go to step 13; else go to step 12. ol)^1'

Step 12; If k < l9 set k » k + 1 and go to step 10; else*go to step 15.

k kStep 13; Compute g(z± - 3 v) . If g(2i - 3v±) = 0,

set z.,. • z. - 3 v. and stop,
i+l l i

Step 14; If

8. Ug(«± -3kv±)0 2<(1 -23^a) 0g^z^il 2,

set z1+1 -z± -3vi,A8et Yp+1 -ng^i*!*11 »set P"P+1* set i*i+1
t Note that since H differs from H nj in only one column,hT s H~

new old i new

can be obtained from H~,, by means of the standard updating formula.
old .
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and go to step 2; else set w » z. - 3 V. and go to step 15.

Step 15; Compute the smallest integer s > 0 such that

s s

9. f(z± -3 ig(z±)) -f(z±) <_ -3-1 aUg(z±) II2
si

and set y = z - 3 g(z.). • , ,}

Step 16; If f(y) < f(w), set z. - =» y,Aset i = i+1, and go to step 1;

else set z. - - w,4set i = i+1 and go to step 1. n

Since when g(z.) ^ 0, one can always find a finite s. such that (9.)

is satisfied, algorithm (4) is obviously well defined.

10. Theorem; Suppose that the assumptions (2) are satisfied and that

00

algorithm (4) has constructed an infinite sequence {z.} _. Then every

limit point z* of (z^^q satisfies g(z*) =0.

Proof; Suppose that z* is a limit point of {z.}, that g(z*) j 0 and that

z. + z* for i E K, with K an infinite subset of the positive integers.

Now there are two possibilities.

(i) There exists an infinite subset K! C K such that for all i G K',

either

8i
11* Zi+1 ° zi " e g(zi)

12.

or

zi+i= zi - B\

and

.k13. f(z± -3\) <Uz± -3ig(zi).

Since g(z*) ^ 0 and z± -* z* for iG K', it follows from the discussion in

r-5-



sec. 2.1 of [ 6] (see theorem 22 and algorithm 35) that there exists

a 6(z*) < 0 and an integer N such that

14. f(zi+1> - f(z±) ±.«(z*) <0 for all i^ N, iG K'.

But K' is an infinite subset, and {f(z.)}T . is a monotonically
i l^U

decreasing sequence, hence (14) contradicts the assumption that f(z) is

bounded from below. Thus, if (i) holds, then g(z*)'• 0.

The second possibility is

(ii) There exists an infinite subset K" C K such that

15. z±+1 =z± -3kv± for all iGK"

and

16. II g(zi+1)N 2<(1-23^) II g(z±) ll2for all i GK"

In this case the sequence {y } is infinite, monotonically decreasing and
P

bounded from below by zero. Hence y •*• Y* fl 0* Now, since whenever (15)

and (16) take place, Y^," "&(z±+y) " »for some integer p, and

Y >Hg(zj U2,y ,-Y <Y .,-U g(zJ U2 <-23^a II g(z.) II . Hence, since
'p — ° i ' p+1 p — p+1 i — x

z, •+ z* for i G K", and since g(») is continuous by assumption (2),

there exists an infinite subset K"1 of the positive integers such that

17. Y+1 -Y 1-3*a II g(z*) II2 for all pGK".

But (17) contradicts the fact that y_ -*" Y* ±. 0.

Hence we must have g(z*) « 0. n

The following result is a direct consequence of theorem (10).

18 Corollary; Algorithm (4) is convergent whenever problem (1) satisfies
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the assumptions (2). n

The following corollary can be deduced from theorem (10) ,which

implies that g(z )+ 0 as i + • and hence that zi+1 - z± -*• 0 as i -> »,

and theorem (1.3.66) in [ 6],

00

19. Corollary: Suppose that the sequence {z.}iss0 described in theorem

(10) is compact and that the function f(») has only a finite number

of stationary points, then there exists a z* G IR such that z. •*• z*

and g(z*) =0. a

We are now ready to establish the rate of convergence of algorithm

(4). For this purpose we shall need to assume the following.

20. Assumption: The function f is (a) three times continuously differentiable

and, (b) strictly convex. n

Note that under assumption (20), the level sets of f(») are

compact and there exists only one point z ( the minimizer of f(z)

over IR ), which satisfies g(z) « 0. Hence, by theorem (10) and

corollary (19), whenever assumption (20) is satisfied, any sequence

00

{z } - constructed by algorithm (4) converges to the unique mini-

mizer z of f(•) .

21. Lemma; Suppose that assumption (20) is satisfied and that algorithm (4)

00 /\

has constructed an infinite sequence {z.}. ~ converging to z, the

minimizer of f(«). Then there exists 0 < M < » such that

i-n

22. II H(zt) -H± H<_ M^ II z -zII for i-0, 1, 2,
j-i

where H is as defined in the algorithm and
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23. H(z) =^|^- ,zG IRn.
3z

Proof; Since (20) (b) is satisfied, the level set

C(zQ) = {z |f(z) <_ f(z )} is compact and convex and hence, since (20) (a) is

satisfied, there exists a Lipshitz constant L < » such that for all

x, y G C(zQ),

24. H H(x) - H(y) l<llx-yl

(Note that i^^^Q is contained in C(zQ)). Now, without loss of

generality, suppose that the jth column of H.(j G {1, 2, ..., n}) is

25. •—— [g(z±_k + e±_k e)- g(z±_k)]» where kG {0, 1, 2, .., n-1}.
i-k " ~ J

Then, making use of (24), of the mean value theorem, and the fact that

e, , < II zJ , - z, , i II by construction, we obtain that the magnitude
i-k — i-k i-k-l J

of the difference between the j— columns of H(z±) and H± satisfies

26. II H(z.) e -J-- [g(Zi_k +£±_k e)-g(.±_k)] I
J i-k

1

( [H(z±) -H(zi-k+t £i-kej)] ej dt

zi-k "'Ei-k ej "dt

1l) (I z±- ^l+t II Zl.k- ^Ddt
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<L(ii «± - i ii +f i Zl_k - i i +1 a ij^-ii)
The existence of a constant M satisfying (22) now follows from (26)

and the triangle inequality for norms, used in conjunction with the

addition and subtraction of terms in the right hand side of ( 6). n

27. Lemma; Suppose that assumption (20) is satisfied, that b •> 2 II H(z)~

and that the algorithm (4) has constructed a sequence {z.}. n.

Then there exists an integer N such that for all i ^ N,

,-1

28.

z i+1 - Zi "Hi 8(zi}'

Proof; First, since z -»- z, the global minimizer of f(«)> and (22)

holds, it follows from the perturbation Lemma (2.3.2) in [ 5] that

there exists an integer N1 such that for all i ^ N' H~ exists and is

positive definite and II H~ D <_ b. Hence, for all i^N', the test in

step 8of the algorithm, i.e., <vt, g(z±) >« -<H*1 g(zt), g(z±) ><0,
is satisfied for all i j^ N1 and hence the computation proceeds to step 9.

Next, applying the second order Taylor expansion, we obtain (with

Vi s Hi 8(z±))

f(z± -H^1 g(Zi)) -f(z±) -
1

-<g(z±), H± g(z±) >+J(1-t) (H"1 g(z±), H(zi-tv1) H^1 g(Zi) >dt
0

1

--<g(Zl), H"1 g(Zl) >+f(1-t) [(H'1 g(Zl), H(z) H"1 g(z±) >
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+(H^1 g(zi),(H(zi-t v±) -H(z)) H"1 g(ZjL) >]dt

—1 —1 A —1
Hence, since v. = H. g(z.) •> 0 as i + «> (because H. -»• H(z)

and g(z ) •* 0 causing H(z. - v.) - H(z) + 0 uniformly for t G [0,1]

as i + °°), and since H(z) H. •+ I, the unit matrix, as i •+ », it follows

from (28) that there is an integer N" ^ N' such that

29. f(z± -H"1 g(z±)) -f(Z;L) <0for all i>.N",

i.e. the test in step 11 of the algorithm is satisfied with k » 0 for all

i >_N".

i ")
Finally, consider •=• 0 g(z)H . Since f is three times continuously

differentiable,

2

30. A? (~ II g(z)H 2) -H(z)T H(z) +W(z)
9zZ Z

where W(z) is a continuous nxn matrix which satisfies W(z) = 0. Hence,

1 9for all i^N", expanding II g(zjL-H~ g(zi))U to second order terms

according to the Taylor formula, we obtain

31. II g(zi"H^1 g(zi))H 2=II g(z±)D 2- 2<H(z±)T g(zi), H"1 g(z±) >

1

+2f (1-t) KH^1 g(z±), H(zrt v±)T HCi^ty^) H"1 g(z±) >

+<H~1 g(z±), W(z±-tvi) H*1 g(Zl) >]dt,

.-1Where v± - H*1 g(z±). Setting H^t) » H(z±-tv1) and W±(t) - W(z±-tvi) ,

t G [0,1], (31) yields
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32. Ug(zi-v±) II2 « II g(z±) 1-2

-1< g(z±), H(z±) H~x g(z±) >

ag(z±) o2

1

+, , \ ,2 ( at) iV« ^ «<-i>'2 +« g(z±) A J

<H~X g(z±), W^t) H*1 g(z±) > dt

Since v + 0 as i -»• » and z.+zas i ->• °°, W.(t) + 0 as i •»• »,

uniformly in t G [0,1] and similarly, H. (t) H~ •*• I as i -*• », uniformly in

t G [0,1]. Hence the term in the right hand side of (32), multiplied

by U g(z.) U tends to zero as i •*• » and therefore there exists an integer

N'" >_ N" such that the test (8) is satisfied for k = 0 for all i >_ N"' .

Now, since g(z.) •> 0 as i •+ «, there exists an integer N >_ Nm at

which the test in step 6, viz. Jg(z.) 0 <_ y will be satisfied. Then,
It

for all i^N, z.,- * z. - H~ g(z.) ,which completes our proof. «

33. Theorem; Suppose that assumption (20) is satisfied and that algorithm

00

(4) has constructed a sequence {z.} _. Then

34. 0 < lim sup II z, - z
i-x»

i/t;
n

< 1,

where t is the unique positive root of the equation t - t - 1 s 0

and z is the unique minimizer of f(«) (i.e., the R-order of algorithm (4)

is x , where R-order is defined by (9.2.5) in [5]).

Proof; Let N be an integer such that for all i >^ N

-11-



35• Zi+1 =Zi -^ «<«i>

By Lemma (27), such an N exists. Then since H(») is Lipshitz

continuous on C(zQ), for all i^N (since g(z) = 0)

36. 0z±+1 -z II - H(Zi-£) -H^1(g(zi)-g(z))II

1

1II ((I-H^1 H(z+t (Zi-z)) (z±-z) dtl

ij1-!1 (Hi-H(z+t(zi-z))ll Dz± -z lldt

1

([II n±-U(z±) II + UH(z±) -H(z+t(z±-£))U ] llz±-zll )dt< HH"1 Hf

1

<ah"1 ni [Ih±-h<z±) II +Lt II z±-z II]H z±-z lldt,

where L is the Lipshitz constant for H(») on C(zQ). Now making use of

Lemma (22) and the fact that HH~ 0 is bounded for i>^ N

(since H~ •> H(z) ) , we conclude from (36) that there exists constants

X ^ 0, j = 0, 1, 2, .., n-1, such that for all i >_ N

37. II z1+1-zll <ll .±-*ll£V zi-j-z,L
j»0
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The desired result now follows from ( 7) and theorem (9.2.9) in [5 ].

38. Corollary; Under the conditions in theorem (33) , any sequence iz±\nQ

constructed by algorithm (4) satisfies

l/T1
39. lim sup Dg(zi)ll n<1.

i-x»

40. lim sup [f(z±) - f(z)] < 1
i-x»

Proof; Since g(z) = 0,

41. I' g(z±) II » II I H(zi+t(z±-z)) (z±-z) dt

<[f II H(zi+t(zi-£)) II dt]H z± - z

<^ Q II z.-z

where Q » sup {0 H(z) II | z G c(z )}. Relation (39) now follows from

(41) , (34) and the fact that Q •»• 1 as i + »,

Next, again since g(z) ° 0,
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1

42. f(z±) -f(z) =f(l-t)<(zi-z),H(z+t(zi-z)) (Zi-z)>dt$
0

1

d-t) q i zt - z n2 dt

where Q is an upper bound on the eigenvalues of H(z) for z G C(z.).

1 - 1/2Tn
Relation (40) now follows from (42) , (34) and the fact that (y Q) "•" 1

as i + °°. This completes our proof. n

We note that the only time we made use of the assumption that f(«)

was three times continuously differentiable and strictly convex was in

the proof of lemma (27). At this point is is easy to show that lemma (27)

can also be proved under the weaker assumption that f(«) is only twice

continuously differentiable strictly convex and (24) holds. Thus suppose that

{z.}.„n is any sequence such that z -»- z as !-»•«> and that

v = z - H"1 gCzJ for all i > N, where N is such that HT exists
J i+1 i i i — x

for all i >_N. Then (37) applies and yields

n

43 il y - z U<II z. - z II V* II z. . - z H, for all i >N
-^i+l — i lm^ i-j

j=0

Now, by the mean value theorem, since g(z) = 0,

.1

44. II g(yi+1) II < fII H(y±+1 +s(y1+1 -z)U ds II yi+1 -z
0
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1 Q nyi+1-z

<_ QDz±-S Î Uzi-j-z -»
j=0

where Q is as in (41).

Now,

45. 0z±-z UUg(Zi) II ^(z±-Z, g(z±)>

1

I (z.-z, H(z.+s (z.-z) (z -z)> ds

0

>.Q II z±-z 02 ,

where Q is as in (42). Hence for all i ^ N

46. Ug(Zi) II >Q II z^-z II

and therefore (44) yields

n

47• "8(W °ill8(zi) °{^ 2 "Zi-j'Z "} f°r a11 1-*
joO*

n

Since / J z±-a~* H+ 0 as i-• «> ,we conclude that there exists an
j«=0

integer N >_ N such that

II g(yi+1) 'I2 1(l-2o0£) II g(z±) II2 for alli>N
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and hence that lemma (27) holds under the weaker assumption that f is

only twice continuously differentiable and strictly convex.

Conclusion

We have presented in this paper an efficient method for unconstrained

minimization. It should be clear from the development that the

assumptions used to establish rate of convergence can be relaxed from a

global statement to a local one, i.e. as holding in a convex neighborhood

of a local minimum. It is also clear that one can construct several

other variants of the algorithm as, for example, by substituting a

conjugate directions method for the gradient method in the algorithm.

In some applications these alternative, more complex versions may be

preferred over the simplest one presented in this paper. As long as one

substitutes for the Armijo gradient method any other convergent minimi

zation method, the convergence and rate of convergence theorems, presented

in this paper, remain valid.
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