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Abstract

This paper deals with a partitioning strategy of sparse matrices.

In particular, the problem of transforming a non-singular matrix by

symmetric permutation to an optimal bordered Triangular Form is solved.

It is shown that the problem is equivalent to the determination of a

minimum essential set of a directed graph.

An efficient algorithm is given for finding minimum essential sets

of a digraph. The method depends on, as a preliminary step, graph

simplication using local information at a vertex. A circuit-generation

technique based on vertex elimination is then introduced. The

algorithm is illustrated with a complete example.
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1. INTRODUCTION

It is essential that, in solving a system of simultaneous linear

equations

Ax • b (1)

where A is a large nxn, nonslngular, sparse matrix, we take full advan

tage of the zero-nonzero structure of A in order to economize computer

storage and time. This is especially important if (1) is to be solved

many times with the sparsity structure of A remaining the same. Suppose

A is reducible, that is, it can be transformed into the Block Triangular

Form, by means of row and column permutations, as in (2),

PAQ (2)

where P and Q are permutation matrices, we may use block Gaussian elimi

nation on PAQ; and the original problem is reduced to that of solving a

set of subproblems of the form A± x± - t±. One of the advantages of

doing this is that fill-ins are generated only in the shaded area. In

addition, since the order of A± is usually much smaller than that of A,

so agood pivoting order within each block A± is easier to find. In this

paper, we are considering matrices which are irreducible, and our aim is

to transform the given matrix, by row and column permutations, to a form

which inherits the advantages of the Block Triangular Form. One obvious

extension of the Block Triangular Form is the bordered Block Triangular
Form in (3)
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PAQ (3)

Notice that A_- is a square Block Triangular submatrix. It is clear

that if we take pivots within the diagonal blocks, we have the same

advantages enjoyed by the Block Triangular Form. Thus if the shaded

areas are rather dense in nonzeros, the bordered Block Triangular Form

obviously represents a kind of optimal partition.

The problem we are facing is how to define an optimal bordered

Block Triangular Form. This is unlike the Block Triangular Form, which

is canonically unique [1] if we specify that each diagonal block corres

ponds to an irreducible matrix. Here we have some difficulty in specify

ing a more meaningful criterion of defining the diagonal blocks. It is

because of this difficulty that results in this area are rather scattered.

Tewarson [2] has discussed this form and indicated that an iterative

scheme had been proposed by Dickson [3]. Steward [4] studied a related

problem of tearing and Nathan et al. [5] indirectly attempted to solve

the problem.

In this paper, we shall confine ourself to a special case of the

bordered Block Triangular Form, namely: the bordered Triangular Form, i.e.

A11 in (3) is lower triangular. We shall farther make two assumptions,

namely: (i) we use symmetric permutations only, i.e. Q = PT, and (ii)

we assume that diagonal pivoting of A in any order is numerically stable.

Our aim is to find a permutation matrix P such that the number of the
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bordered columns in A-2 is aminimum. Thus, if we denote k(P) the

number of columns in A-„ corresponding to a permutation matrix P, we

need to find P such that

k(P) » min k(P) * km±n (4)

This formulation of the problem can be related to the problem of optimal

tearing of a large system with the dual objective of minimizing the

coupling of a torn system and simultaneously prescribing the form of

the principal part of the system being triangular. Thus the theory and

techniques to be described have applications in various large system

problems.

In Section 2, we show that the problem formulated above can be

stated precisely in terms of a graph associated with the given matrix

A. In Section 3, we present an algorithm for finding P. This amounts

to the determination of a minimum essential set of a directed graph de

fined by A. An efficient new algorithm which combines new techniques

and existing ones is given and illustrated with a complete example.

Section 4 indicates some possible extensions and generalizations.

2. RELATION BETWEEN A MATRIX AND A DIGRAPH (DIRECTED GRAPH)

We now turn to the problem of finding a permutation matrix P which

transforms A into an optimal bordered Triangular Form. We shall use a

graph-theorectic approach. We begin by introducing the following defini

tions and remarks.

A simple digraph, G » (X,E), consists of a set of vertices X, and
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aset of directed edges E= {(x^x.) Ix^x e X}. (x±,x )is an edge

directed from x to x . A (simple) directed path u(x,,x ) of length I

is an ordered set of (distinct) vertices:

y(xi,x )= {p-^Pj. •••*, P£+1}> such that

P1 =V PA+l = Xj' (pi'Pi+l) €E

1 — JL, £ j *.., X>»

A (simple) circuit of length Jt is a closed (simple) directed path of

length %with the initial and terminal vertices being identical. A

digraph is said to be cyclic (acyclic) if it has (does not have) circuits.

Let G - (X,E) be a digraph and Y C x. The section graph G(Y) = {Y,E(Y)},

where E(Y) * {(x±,x) <= E|x±,x €Y}. SC Xis an essential set of

G * (X,E) if G(X-S) is acyclic. An essential set having the minimum

number of vertices is called a minimum essential set, and the cardinality

of a minimum essential set is called the index of the digraph.

For a matrix A with nonzero diagonal entries, we define an associated

diSraPh Q<A> as follows. Q(k) =(X,E), with |x| =n, the order of A,
and (x±,xj) e Eiff (if and only if) a +0 for i f j; i, j= 1, 2, •••,

n, where A » i\A» Similarly, the adjacency matrix B(G) = [b ] of a

digraph G » (X,E) is defined as an nxn matrix, where n = |x|, such that

bij *° iff (xi>xj) EE» ±* J» and bii =1» ia1» 2» •••» n- Tt is
obvious that Q(A) and g(PAPT) ,where Pis apermutation matrix, are
topologically identical. Likewise, A and B(Q(A)) are structurally the

same to within symmetric row and column permutations.
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Now deleting row i and column i from a matrix A with nonzero diagonal

can be interpreted as the deletion of x. and all edges incident with x

from Q(A). Since if the digraph Q(A) «G» (X,E) is cyclic, by delet

ing an essential set S, G(X-S) becomes acyclic. Therefore if we delete

rows and columns of matrix A corresponding to S, we have a submatrix

whose associated digraph is acyclic. Using the fact [6] that a matrix

is transformable, by row and column permutations, to a triangular form

if and only if the associated digraph is acyclic, we conclude that k . =
min

index of Q(A). Once a minimum essential set of Q(A) is found, the cor

responding rows and columns of A can be put in the bottom-most and right

most position to form the bordered Triangular Form. The appropriate per

mutation matrix is also determined immediately. Therefore the remaining

problem is to determine a minimum essential set of a digraph. We illus

trate the above idea with the following example.

Example 1

In Fig. 1(a), we have a matrix A of order seven. The associated

digraph Q(A) =G= (X,E) is shown in Fig. 1(b). From this digraph, we

can determine a minimum essential set S » {x ,x ,x }. The section graph

G(X-S) is shown in Fig. 1(c). G(X-S) is seen to be acyclic. By putting

columns and rows {1,5,7} corresponding to S last, and with some appropriate

permutations on the remaining rows and columns, we get PAPT which is in

bordered Triangular Form as shown in Fig. 1(d). The pertinent matrix P

is shown in Fig. 1(e).

3. THE MINIMUM ESSENTIAL SET ALGORITHM

The problem of finding a minimum essential set of a digraph has been
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treated mainly in connection with signal flow graphs [5], [7]-[9]. The

basic approach consists of two parts. The first part requires the genera

tion of all circuits. The second part is to form a covering table [10]

with columns and rows corresponding to all circuits and vertices pertinent

to the circuits, respectively. The table is then simplified and reduced

by some reduction rules similar to those used in minimization of switch

ing functions. If the table cannot be reduced any further with these

rules, column branching is used to obtain a minimum essential set [11].

Theoretically speaking, the problem can be considered solved. On the

other hand, the amount of work involved in both parts can be excessive

for certain graphs. Therefore much work needs to be done to increase

the efficiency of the algorithm. The following are the major steps of

our new algorithm.

MINIMUMS (Algorithm for Minimum Essential Set)

Step 1. Perform preliminary reduction on the digraph by means of a set

of topological rules. If graph is completely reduced, go to

Step 5.

Step 2. Generate all pertinent circuits of the reduced digraph.

Step 3. Construct a covering table and perform reduction on this table.

If the table is completely reduced, go to Step 5.

Step 4. Use column branching to determine a minimum essential set.

Step 5. End. °

Remarks

In step 1, topological rules in [12], [13] and our new rules are

used. These rules make use of "local information" of the digraph. In
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Step 2, we introduce a circuit generation algorithm based on the method

of llohn, Seshu and Auffnkamp in [14]. Further topological rules are

employed to keep the number of generated circuits small. Steps 3 and

4 are standard and we shall not persue in this paper. It will be clear

after Section 3.2 that part of the "covering table reduction" in Step 3

is carried out in Step 2.

Let us discuss Steps 1 and 2 in detail.

3.1 Step 1: Preliminary simplification

To begin, let us define the local information at vertex x of a di

graph G = (X,E) as the complete topological knowledge of the section

graph G({x) U Adj(x)), where Adj (x) - {y G x| (x,y) or (y,x) G e). Next

we define three types of local transformation at x for a digraph G = (X,E)

as:

Tl Deletion of vertex x:

Remove vertex x and its incident edges. The result is the section

graph G(X-{x}).

T2 Elimination of vertex x:

Delete vertex x and add new edges to the section graph G(X-{x}) in

the following way: we add (z,y) to G(X-{x}) iff (z,x) and (x,y) e e.

Note that if y = z, (z,z) is a self-loop.

T3 Deletion of an edge incident with x:

Remove (x,y) G e or (y,x) G E from G = (X,E) and form a new digraph

( X,E-{(x,y) or (y,x)}).

What Step 1 does is to make use of the local information at x G x

and then perform alternatively various local transformations at x. In

-8-



performing local transformations, we must keep track of the index of

the reduced graph. If, after a local transformation, the reduced graph

has the same index as the original graph, the transformation is called

index preserving. In the following, the conditional transformations

R2 to R5 are index preserving.

Rl: Delete vertex x when x has a self-loop. The reduced graph has an

index which is one less than the original.

R2: Eliminate vertex x when min(in-degree, out-degree of x) <_ 1.

R3: Eliminate vertex x when G({x} U Adj(x)) is a complete digraph, i.e.,

(p,q) and (q,p) G E for all p, q G {x} U Adj (x).

R4: Delete all edges incident at x except those forming doublets , if,

after removing those edges in the doublets, min(in-degree, out-degree

of x) - 0.

R5: Delete edge (y,x) G E if (y,z) G E whenever (x,z) G E. Likewise for

(x,y) G E.

Remarks

(i) Rl, R2 and R4 were introduced by Guardabassi [12]. They depend

only on the degree of x.

(ii) R3 and R5 are new, and they require the knowledge of the topology

of the section graph G(Adj(x)). The proofs that they are index preserving

are simple.

For R3, since G = G({x} U Adj(x)) is a complete digraph, we must

remove at least (k-1) vertices to break all circuits in G*, where k =

|{x} U Adj(x)|. Obviously, the set Adj(x) is the best choice of essen-

A doublet is a circuit of length two.
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tial vertices for G(X).

t
For R5, circuits through (y,x) and (x,z) are dominated by circuits

through (y,z). Other circuits through (y,x) are dominated by the doublets

at x. Thus, no circuits through (y,x) need be considered in determining

the index of the digraph. Hence, (y,x) can be deleted.

(iii) Each vertex deleted by Rl is a vertex in some minimum essential

set [12].

(iv) R1-R5 are by no means exhaustive as far as local-information

transformation is concerned. It is possible that more rules can be de

veloped by exploiting the local information.

Summarizing, in Step 1, we test all vertices in the digraph and its

transformed digraphs in order to perform local transformations whenever

the conditions in the topological rules R1-R5 are satisfied. Afterwards,

we will end up with a digraph to which the rules R1-R5 cannot be applied.

At this stage, we go to Step 2. Let us illustrate Step 1 by an example.

Example 2

Consider the digraph G = (X,E) in Fig. 1(b). Rules Rl, R2 and R4

fail to apply at any vertex. Using R5 at x,, we can delete (x-,x.) be

cause (x3,xx) and (»3,x5) are in E. Again, applying R5 at x ,we delete

(x2»x3)« At tnis stage the transformed digraph is shown in Fig. 2(a).

Now applying R2 at x3 and x^9 we get Fig. 2(b). By Rl, we delete x-.

The result is shown in Fig. 2(c). Using R2 at x0 and then R2 at x., we
J. ——— 6

get Fig. 2(d). By Rl, we delete x5 and x . Thus, G is completely re-

t
Circuit m is said to dominate circuit r\2 if Hi c il2« In other words,
if a vertex breaks n-,, it also breaks n2-
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duced and we get a minimum essential set S • {x.,x_,x_}.

3.2 Step 2: Generation of pertinent circuits

In this step, we generate all circuits of the reduced digraph that

are pertinent to the determination of the index. The algorithm is basic

ally a vertex elimination procedure [14]. Let us define the notion of

a labelled digraph. Let G « (X,E) be a digraph. The associated labelled

digraph 5 * (X,E) is topologically identical to G except that each

(x^x.) G E carries a label or weight {x.,x }which represents a path

of length one from x± to x. in G. The vertex elimination procedure is

essentially the same as that discussed in the previous section with the

following modification:

T4: Delete vertex x and add new edges to the section graph G(X-{x}) in

the following way: we add (z,y) to 6(X-{x}) iff (z,x) and (x,y) G £.

Then a label {z,« ••,x,* ••,y} is assigned to this new edge, where

{z,»»«,x}, {x,«».,y} are the labels of (z,x) and (x,y), respectively.

If y = z, (z,z) is a self-loop with a label defined in the same way.

In other words, the new edge (z,y) in the elimination graph G = (X-{x},

Ex s EU ^a11 added edges} -{all deleted edges}) represents a directed

path in G from z to y via x. Repeated use of T4 will eventually eliminate

all vertices of G. It should be noted that in each elimination graph.,

there may be some parallel edges. For simplicity, we do not differentiate

these parallel edges. In case of ambiguity, we append a subscript to

the edge. To identify a particular edge, we use a bar over it. The

following is a direct consequence of the procedure T4.

Proposition

Each self-loop in each elimination graph corresponds to a circuit in
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G, and vice versa. a

Since by the vertex elimination procedure, all circuits are generated

It is obvious that some of the circuits are dominated by others. To

reduce the number of dominated circuits, we do the following. Let G^ =

(X*>E*) be some elimination digraph as obtained after eliminating X-X^

from G «• (X,E). Suppose we want to eliminate x G x^ next. Before doing

this, we perform at x, transformation T3, namely, deletion of edge inci

dent with x. We want to know under what conditions will T3 be index

preserving. The following are some index preserving rules.

R6: For every yG Adj(x), delete all edges (y,x) and (x,y) G £^ when-

ever there is a simple doublet {y,x} in G^. When this rule is

applied, we record the simple doublet {y,x} and store it as a column

in the "covering table".

R7: For every y G Adj(x), delete all edges (x,y) G g except (x^y), when

ever there is an edge (x,y) G e^ with a simple label.

R8: For every yG Adj(x), delete all edges (x,y) G g^ whenever there is

an edge (x,y) G g^ whose label is a subset of those of the deleted

edges (x,y). Similarly for all edges (y,x) G £^.

R9: For every yG Adj(x), delete all edges (y,x) G |^ whenever there is

an edge (x,y) G g^ with a simple label. When this rule is applied,

we record all the doublets with each constituent edges (xTy) and

(y,x), and store them as columns in the "covering table".

Remarks

(i) By rules R6-R9, we perform T3 at a vertex x before eliminating

*

A doublet in a labelled digraph is simple if the label of each constitu
ent edge contains only two vertices.

t
A label is simple if it contains only two vertices.
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it by T4. In general, this checks the propagation of circuits.

(ii) R6-R9 should be applied in the order indicated. Otherwise,

if we apply R9 first, say, we may record some circuits which are dominated

by simple doublets.

(iii) It is easy to show that R6-R9 are index preserving.

For R6: It is clear that circuits through deleted edges are domin

ated by the simple doublet {y,x}.

For R7 and R8: Again, circuits through the deleted edges are domin

ated by circuits through (x,y).

For R9: Circuits through each deleted edge (y,x) are dominated by

circuits through (x,y) and the deleted edge (y,x).

The complete algorithm for generating circuits pertinent to the

determination of the index of a digraph G = (X,E) is as follows.

CIRCUIT (Algorithm for generating pertinent circuits)

Step 1 Let G = (X,E) ,X= {*1.x2*x3»""»xn}

Define labelled digraphs

h m(Xl'V " <X'g)-

Step 2 Set i • 1.

Step 3 Consider G±. Remove self-loops at x G x . Record and store

these loops as columns in the covering table. If i = n, go to
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Step 7.

Step 4 Perform T3 at x. using rules R6-R9. Record and store circuits

as appropriate.

Step 5 Perform vertex elimination T4 at x., and form the elimination

graph G±+1.

Step 6 Set i = i+1, go to Step 3.

Step 7 End.

Let us illustrate this algorithm by an example.

Example 3

Consider the digraph in Fig. 1(b). The corresponding digraph G- =

(X^i^) is shown in Fig. 3(a). All labels in (^ are simple. For the sake

of clarity, only some labels are shown. Consider x-, it does not have any

self-loops. Rule R6 applies, so we delete the two simple doublets {x.,x2}

and {x^x^} at x1 and store them in the set Q of circuits. On eliminat

ing x1 using T4, we get the elimination graph (?2 in Fig. 3(b). Note

that in G2, we introduce anew edge (x^,x )with a label {x^x-.x.}.

Labels of all other remaining edges are the same as in G.. From G«, we

eliminate x^ right away because rules R6-R9 do not apply at x«. Sim

ilarly, we eliminate x and form G, which is shown in Fig. 3(c). At

x^,, R7 applies, so we delete (x6,x4) whose label is {x,,x ,x ,x,}.

Eliminating x^, we get G5 in Fig. 3(d). At x ,R6 applies, so we delete

(x5,x7) and (*7»x5) and store the circuit {x ,x }in Q,. R8 again applies

at x5, so we delete (x6,x5) because its label {x6,x2,x ,x } is a superset

of that of (xfi,x5) . Next R9 applies at x ,so delete (x,,x-) and
a a

(x6,x5) and store the circuits {x5,x6,x2} and {x5,x6,x,}. After this

sequence of transformation at x , G becomes G* in Fig. 3(e). On elimin-
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X5* X6' X7' we 8et two more circuits ^x2»x6,x7^ and {xltx,tx6>x_}. Thus
altogether we have

J{x1,x2}, {x1,x3}, {x5,x7}, {x2,x5,x6}

^•XA>X5»Xg}» ^X9'X6*X7 ^X1,XA»XA»X7J

We complete this section by illustrating Steps 3 and 4 in MINIMUMS

briefly with Example 3. We construct a covering table with columns n
j

and rows x corresponding to circuits in C and vertices in X respectively,

and we mark with a cross X in column n. and row x if x € n . This is

shown in Fig 4. Using column branching, we will get a minimum essential

set {x1,x5,x7} which is the same as obtained in Example 2.

4. CONCLUSION

The algorithm of finding a minimum essential set in the previous section

could still be ineffective in dealing with a very large general graph.

Like many other practical problems, [16], what is needed is an efficient algor-

ithm which does not aim at the global minimum but rather gives a good

feasible solution. In this connection, a useful concept to employ is

the minimal essential set. A minimal essential set is defined as an

essential set in which no proper subset is also essential. In a forth

coming paper, methods for generating minimal essential set will be given.

The results obtained for the bordered Triangular Form can be gener

alized and made applicable for the transformation of a matrix to the

bordered Block Triangular Form. Using some criteria, we may identify

the set of vertices corresponding to each diagonal block of A-. in eq. (3).

By merging vertices in the same block to a single vertex and deleting all
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self-loops, we get a condensed graph [6]. The problem is then reduced

to finding a minimum or minimal essential set of the condensed graph.

Usually, the criteria of defining a block is problem-oriented. For

example, if the entries of some rows and columns in A varies in the

course of computation while others remain constant, it is obvious that

we would put these rows and columns in the same block.

Another example is in the calculation of pole and zero of a trans

fer function of a linear time invariant network using the tableau ap

proach [15]. Suppose the linear network has an (A,B,C,d) system repre

sentation, then the poles of the network is given by the zeros of det(sl-

A) = det U, where U has the form

. fP Q
U -

LR I sl-1
(5)

U is obtained from a tableau whose rows corresponds to the Ohm's Laws,

Kirchhoff's Laws and differential equations describing the network. It

is shown in [15] that P can be put into a block triangular form. Each

diagonal block corresponds to a subnetwork containing the same type of

elements, for example, resistors. Thus, for this specific problem, we

have a meaningful criterion of defining diagonal blocks.

In conclusion, in this paper we have related the problem of finding

an optimal bordered Triangular Form by symmetric permutation of a given

matrix to the problem of finding a minimum essential set of an associated

digraph. We have also introduced an efficient algorithm in generating a

minimum essential set of a digraph. A still open question is to generalize

the problem to include nonsymmetric permutations in the transformation.
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The question is then what is the graph-theoretic interpretation of k
win

and how is it determined?
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Fig. 1. Illustrations for Example 1: (a) the given matrix, A, (b) the

associated digraph Q(A) AG«(X,E), (c) the section graph G(X-S),
(d) the bordered Triangular Form, (e) the permutation matrix P.
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Wg. 2. Illustrations for Example 2: asuccession of reduced digraphs.



. . ."6
(d)

edge

(x5,x6)

(x6>x5)o

(x6,x5)b

edge
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{5,6}
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abel

{6,2,5}
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{6,4,5}

Fig. 3. Illustrations for Example 3: generation of

circuits, (a) G^ (D) ^9 (c) G4> (d) G ,(e) G»



^1 ^2 Vi % % ^6 ^7

xl X X X

x2 X X X

x3 X

X4 X X

x5 - X X X

x6 X X X X

x7 X X X

Fig. 4. A covering table for the example,
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