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Abstract

This paper discusses how optimization techniques can be used to

deal with various constraints occurring in the design of a feedback

system.

1. Introduction

In recent years there has been a considerable resurgence of

activity in the area of linear systems. As a result, it has been shown

[1, 2, 3] that, by using state feedback, poles of a linear system can be

assigned to desired values, and that by using both state feedback and pre-

compensation it is possible to obtain desired transfer functions [4, 5],

Furthermore, the decoupling problem has been largely resolved [6, 7, 8, 9]

and classical Bode-Nyquist type design techniques have been extended to

multi-input - multi-output systems [10, 11, 12]. The two main virtues of

this work are that it has revealed very powerful compensation configurations,

and that it enables us to utilize the accumulated experience with

single input - single output systems,while its two main shortcomings

are that it provides only very indirect guidance for the selection of

compensators to meet design specifications and that it does not permit

us to take into account hard constraints (e.g., energy and amplitude

limitations) and saturation effects.

In circuit and filter design, difficulties arising from hard

constraints and sophisticated specifications are frequently resolved by

using nonlinear programming techniques. Control system designers, however,

seem to make only very elementary use of these techniques. The reason

for this may be that the popular penalty function algorithms do not
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perform well in the context of control system design, and that most

control designers are not familiar with the more complex methods of

feasible directions, which, though slow, do not succumb to ridge

paralysis. The purpose of this note is purely tutorial: to

exhibit the flexibility of problem formulation which results from

the use of optimization techniques and to point out to designers a

few of the more suitable feasible directions algorithms. Almost all

of these nonlinear programming algorithms can be found in [13] or

in any other modern books on nonlinear programming. In addition, [13]

shows how these algorithms can be extended to control applications.

References [14-19] present a few optimal control algorithms in which

the author has some confidence because of personal experience. Of

course, these do not represent all the available algorithms for

optimal control. For an exhaustive survey of optimal control algorithms,

the reader is referred to [20].

2. Canonical Forms

For a design problem to be solvable by existing optimization algorithms,

it must be cast in the form of either a nonlinear programming problem

or of an optimal control problem. The following two canonical problems

are solvable by methods of feasible directions, such as those described

in [13, 14, 15, 16, 17].
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The first problem is:

min {f°(z)|f:,(z) <_ 0, j-1, 2, .., s; Wz - £} (1)

where fJ : R •* R for j ° 0, 1, 2, ..,s, are continuously

differentiable functions, W is a qx & matrix and %e Rq.

The second problem is:

min {1 h° (x(t),z(t),t) dt |

|^x(t) «h(x(£),z(t),t), te[tQ.t^; q0(x(tQ)) <0;

q1(x(t1)) < 0; qc(z(t» < 0} (2)

where h° : !Rn x (R yx R1 + R1 and h: Rn x Ry x R1 + Rn are

plecewise continuously differentiable, while the vector valued functions

qQ, q- and q are assumed to be continuously differentiable. Computation

and convergence are facilitated by choosing constraint functions with

convex components.

Thus,to solve a design problem by optimization algorithms, we must

write it in the form (1) or (2), show that the functions satisfy the

hypothesis stated, and, most Important, we must make sure that all the

quantities these algorithms utilize can be readily computed. These

quantities always include values of the functions and, usually, also

values of gradients. We shall now give a simple example to illustrate

the power of the suggested approach.
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3. Design of a State Feedback Compensator.

Suppose we are given a dynamical system described for small

signals by the equations

4r x(t) - Ax(t) + Bu(t) (3)
at

y(t) - Cx(t) (4)

where x(t) G Rn, u(t) € Rm, y(t) € !Rm and A, B, C are constant

matrices of appropriate dimensions. Suppose that we are also aware of

the fact that when signals become large, saturation effects set in, as

well as other nonlinearities, so that the large signal representation

of the system is of the form

^xCt) -h(x(t),u(t)) (5)

y(t) - g(x(t)) C6)

where,in the simplest case, h and g are plecewise linear functions, but,

in any event, h and g must be assumed to be plecewise continuously

differentiable. Now suppose that we wish to approximate the desired

output v(t), t € [0,T] (where T may be infinite) and that we wish to

use a linear state feedback law. As is customary in dealing with

linearizations, we assume that x(0) - 0. However, we may set x(0) 4 0

if we wish. To define this problem- as an optimization problem, we

must introduce a performance index and define our constraints, if any.

Thus, we set

u(t) - v(t) - Kx(t) (7)
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where K is an m x n matrix, to be computed so that (3) becomes

~ x(t) - (A - BK) x(t) + Bv(t) (8)

and (5) becomes

—-x(t) - h(x(t), v(t) - Kx(t)) (9)

Let k denote the 1 column of K, 1=1, 2, .., n, then it is sometimes

convenient to rewrite (9) in the expanded form

n

x(t) oh(x(t), v(t) -^x±(t) k±) (10)d_
dt

1=1

where x.(t) is the i component of x(t). Treating K as a vector

(k,, k„, .., k ), we introduce the cost function
l t n

f°(K) =\ \ "Q(t)[y(t) -v(t)]02 dt (11)♦I
where Q(t) is a continuous, symmetric, positive definite matrix whose

choice can be considered as a design parameter. The function f (•)

is differentiable,and one way of calculating the gradient of f (•) at K,

taking nonlinearities into account, is as follows.

(1) Solve (5) for u(t) = v(t) - Kx(t) and compute y(t) for t € [0,T]

(ii) Solve the adjoint equation
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~p(t) - - |j- [h(x(t),v-Rx(t)]Tp(t)

+[|f (x(t))]T Q(t)2 [y(t)-v(t)], t € [0,T]

p(T) =» 0 (12)

(ill) Compute V, f(K) according to the formula
Ki

c nVk fV)--* [|| (x(t),v(t) -^xi(t)ki)]Tp(t) dt. (13)
1 ^0 l i«l

We can now examine what constraints can be introduced. First,

suppose that there are limitations on the gains k... These can be

expressed as

|k±. | <. y±.t 1- 1, 2, ..., m, j» 1, 2, ..., n, (14)

i.e., k±J - y £ 0, - k±J - y £ 0.

Then we may have an energy constraint of the form

lQe(t) u(t,K)02 dt £E (15)

where Q (t) is a continuous,symmetric, positive definite matrix and

u(t,K) - v(t) - Kx(t).

The gradients of Vf, (K) can be calculated in a manner similar

to the one used for V. f (K).
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Next, we have the requirement that the resulting small signal

model is stable, which can be expressed by the inequality

f2(K) -\ i|.tCA-BK>j2 dt ± st (16)ffI.'*

where H-IL is the Frobenius norm of a matrix (i.e., fl(d..)0_ = > d..)
F ij F £^ ij

and S is a large number which can be used to control the stability

margin of the linearized system (8), (4). Let I., be an m x n matrix such

that its ij element is 1 and all other elements are zero. Then

±- .tC^K) ..t.t<*-K)BIy (17)

and hence

^- f2(K) -£ j-V^U ^^^U* <">
ct,3 0

thwhere [ ]^. is the ij element of the bracketed matrix. Thus,
2
f (K) is differentiable ,and hence can be included as a constraint

function.

Finally, we may wish to impose a model matching type constraint

on the transfer function of the linearized system (8), (4). Thus, let

fin practice, the upper limit of integration is not infinite but an
adequately large number. 0 f» . T ,
// Alternatively, set f2(K) -\ Qp(K)S2 with POO =\ et(A-HK)et(A-HK) dt.

TJ0
Then, (see p. 65 of [21]) P(K) satisfies P(K)(A-BK) ¥ (A-BK)P(K) +1 = 0.
This relationship can be used to calculate both P(K) and its partial
derivatives.
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H,(s) be an m x n desired transfer function, then we can require that

I
U

f3(K) -| IIC(ja)I -(A-BK))"1 B-Hd (ju>)02du) <x (19)
0

where t is a tolerance factor and II •11-. is extended to complex valued
c

matrices according to Hd.J » 2^ d . d* ,where * denotes the
3 F i,j J 3

•a

complex conjugate. To calculate the partial derivatives of f (K) we

need the fact that

t|—C(JWI-(A-BK))"1B
9kij

--C(ja)I-(ArBK))"1 BIij(jUI-(A-BK))"1B (20)

The rest of the calculation is obvious.

Assuming that the transfer function H,(s) can be obtained for
a

some feedback law KQ, i.e., H^s) =» C(sI-(A-BK()))'1B, an initial value
for Sin (16) can be S»100f2(KQ).

At this stage, it should be pointed out that the criterion (11) is

by far not the only one that can be used in the design. For example,

we may set

f°(K) =amax Hy(t)-v(t)tl + 3t +yI llQ(t) (y(t)-v(t) II2 dt (21)
tei JQ

where a >. 0, 0 >^ 0, y > 0, I - [0,T] and t is a rise time criterion,
— r '

e.g., it is the first time t such that lly(t) -v(t)ll _< ~ Hv(t)H.
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In the case where f (K) is defined as in (21), it is no longer

possible to obtain analytic expressions for its partial derivatives.

However, these can be approximated numerically and algorithms such

as the ones described in [18, 19] can be applied. These algorithms

automatically set the precision for the numerical differentiation.

Obviously, in this case computation will be more expensive than with

the simpler cost (11). Note that since y(t) is calculated as a

numerical sequence as part of the integration process, the calculation

of f (K) is not particularly encumbered by the two seemingly difficult

terms in (21).

To apply methods of feasible directions to a problem such as (1),

it is necessary to calculate a feasible starting point first.

Although these algorithms include a subprocedure for finding such a

point, it may be preferable in our case to start instead with a

compensator KQ calculated by techniques such as those described in

[1, 2, 3].

4. Conclusion

The example in the preceeding section demonstrates

the flexibility in design which results from the use of optimization

techniques. It should be clear by now that if we had wished, we

could have allowed K to be a function of time. This would result

in an optimal control problem of the form (2). In this case, however,

constraints such as (19) would be meaningless. Also, it is possible to

approach in the same manner, time varying systems. The gradient

formulas for this case can be developed by following the pattern set

in Section 3. Finally, it should be clear that state feedback is not
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the only configuration which can be optimized. Any fixed configuration,

dynamic linear compensator can be optimized provided that it is specified

by a reasonable number of parameters (say, up to 50).

In conclusion, to apply the optimization approach to system design,

(i) one selects a finite parameter configuration to optimize, (ii) one

selects a cost function f and constraint functions, f , f , ..., f10

and (iii) one applies an optimization algorithm to calculate the required

parameters. If upon simulation one discovers that the behavior of the

system does not correspond to one's intuitive idea of good performance, then

one modifies the cost function or constraints and one starts over again.

In the end, as in any other approach, this empirical part simply

cannot be avoided.

It is hoped that this note will help clarify the extent to which

optimization methods apply to feedback system design.
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