
 

 

 

 

 

 

 

 

 

Copyright © 1973, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



EXECUTION TIME REQUIREMENTS FOR

PROGRAMMED ENCRYPTION METHODS

by

Theodore D. Friedman and Lance J. Hoffman

Memorandum No. ERL-M378

1 June 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



EXECUTION TIME REQUIREMENTS FOR

PROGRAMMED ENCRYPTION METHODS

by

Theodore D. Friedman and Lance J. Hoffman

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT __

Although encryption has often been discussed as a means to protect

computer data, its costs are not well established. Five experiments were

conducted to measure the CPU time on a CDC 6400 required by additive

encryption methods programmed both in assembly language and in FORTRAN:

a "null transformation" to measure the time to move data without encryp

tion; encryption with a one-word key; encryption with a 125 word key;

double key encryption; and encryption using a pseudo-random key. The re

sults were analyzed for consistency over 100 runs, and the effects of

constant and intermittent errors were considered.

Timing rates for assembly language encryption ranged from 498,800

characters per second for pseudo-random key encryption to 2,092,000

characters per second for a one-word key encryption. The latter is almost

equivalent to the rate required simply to move data without encryption.

FORTRAN tests required two to four times as much CPU time. This paper in

troduces the idea of encryption time coefficient, the ratio of encryption

time to the time taken to move data without encryption.

KEY WORDS AND PHRASES; Encryption, security, privacy transformations,
protection, cryptography, cryptology.

CR CATEGORIES: 2il2, 2.43, 3.70, 3.81, 4.32, 4.39

Research sponsored by National Science Foundation Grant GJ-36475.



Introduction

Encryption methods have come to be recognized as a means of protect

ing sensitive computer data from disclosure during transmission to remote

locations or when stored on external file devices [1,2,3,4,5,6,7,8,9,10].

However the costs in computer time of encrypting data are not well

established. If special purpose equipment such as shift register key

generators [3,11] are used, it may be possible to encrypt data "on the

flyM during input/output operations, thereby eliminating all time over

head for the central processor. But in the absence of such equipment,

the transformations must be accomplished by the central processor, so

that a cost penalty is imposed.

The purpose of the study described here was to investigate the cost

in central processor execution time for encryption processes conducted

by certain programmed algorithms.

Data may be encrypted by a number of methods, such as substitution

alphabets, additive systems, transpositions, and "non-linear" [12] trans

formations. Of these, additive systems are undoubtedly the most suitable

for implementation by program when considered in terms of convenience,

speed of operation and efficient use of the central processor resources.

The additive transformations involve residue addition of the digits of a

key or set of keys to corresponding digits of the cleartext (untransformed)

data.

Additive systems may be distinguished according to the type of key

used. A one-word key is most convenient, but text encrypted by such a

key is not well protected. Longer periodic keys provide stronger encryp

tions, i.e., the resulting cryptotext is more resistant to analysis by an

unauthorized party. Double key encryption systems are similar to very

long single key systems while using less storage, but the double key systems

-2-



have been shown to be considerably weaker than corresponding single key

systems [13]. Finally, so-called "infinite key" systems have been pro

posed, in which one or more pseudo-random number generation algorithms

are used to provide a continually changing key [3,4,5]. Pseudo-random

systems offer very high security, but difficulties arise when data so

encrypted are retrieved from random access storage. To decrypt such

data, the proper section of the original pseudo-random key must be re-

derived, which may be so time-consuming a process as to be impracticable.

Thus, the various additive encryption schemes have distinct advantages

and shortcomings. Cost data for these processes would be valuable, but

little has been published at this time. Carroll and McLelland [5] re

ported that they encoded 37,000 bytes of data per second using a pseudo

random key sequence on a PDP-10/50 computer. Unfortunately this is the

only data they provided. Graff [14] investigated delays introduced by

encryption programmed on a Control Data 6400 during access to mechanical

storage media. In the case of access to disc storage, for example, he

reported that 1000 80-character records were encrypted by an 80-character

key in 1.07 seconds, and that the 1000 80-character records were encrypted

by a pseudo-random key in 2.62 seconds. It should be noted that these

results are highly specific to the mechanical media used. Conway, Maxwell,

and Morgan reported that they were able to encrypt "a 500 byte record on

a 370/155 in about 500 micro-seconds of CPU time" [15], but they do not

describe the type of encryption except that they used "standard crypto

graphic techniques," nor do they supply any details about the encryption

program.

Garrison and Ramamoorthy [16] investigated encryption on a Control

Data 6600 computer using a variety of schemes. Using a one-word key

-3-



additive system, their report indicates that 5760 bits were encoded in

.002 seconds. When a non-repreating key was used, 480 bits were encoded

in .002 seconds. However, their presentation is marred by use of unde

fined parameters and ambiguous descriptions.

Nature of the Experiments

The present study was undertaken to provide more extensive, useful,

and replicable data on the cost of encryption. The decryption process

is identical to the encryption process. Therefore the cost of decryption

is equal to the cost of encryption.

The CPU time required for encryption of a section of text by several

different additive systems was measured. Cleartext was entered in alpha

betic form from cards. Encryption consisted of addition modulo two of

the binary representation of the text with the corresponding bits of the

key. To avoid extraneous influences, the entire encryption process was

conducted in main core memory.

The experiments for the study were programmed in assembly language

and also in FORTRAN and were run on the Control Data Corporation 6400

computer at the University of California, Berkeley, under normal load

conditions using the CALIDOSCOPE operating system. Five tests were made:

1. A null transformation in which the test data were simply moved

from one location to another without transformation. This pro

vided a base for comparing the execution time overhead imposed

by the different encryption transformations.

2. One-word key encryption, in which a constant key, one 60-bit

word long, was added modulo two ("exclusive or") to each 60

bit word of data.

-4-



3. Long key encryption, in which a periodic key 125 words long

was added modulo two to each successive 125 words of data.

4. Double key encryption, in which two periodic keys, 125 and

123 words long, were added modulo two to the cleartext.

The result is in some ways similar to encryption by a single

key of length equal to the product of the two key lengths,

namely 125x123 = 15,375 words.

5. Pseudo-random key encryption, in which a continually chang

ing key was provided by the standard FORTRAN pseudo-random

number algorithm.

It should be noted that in these tests, the addition process is

actually accomplished by a single computer instruction. Differences in

time requirements result from different amounts of "housekeeping" needed

to produce the proper key, to prepare the data and key for addition, and

to control iteration of the associated program loops. In effect, the

purpose of these tests was to compare overheads imposed by the housekeep

ing of the different transformations.

For example, the one-word key method would be expected to take less

time than the long key method because in the former case, the same key

word encrypts every word of data, while in the latter case, iteration con

trol must select a new one-word key segment for each new word of data.

Results

The objective was to determine the time required to carry out each

of the encryption processes. It would have been convenient to measure

the exact time required to encrypt a single word of data. However due

to the lack of precision of the computer clock and because the clock

readout process itself introduced a certain delay, measurements instead

-5-



were made of the time required to encrypt long consecutive segments of

data. Encryption of a word of data was expected to require a few micro

seconds on the 6400, and since the readout clock is callibrated in milli

seconds, it was decided that at least 20,000 words should be processed

between clock readings.

The results of the assembly language routines are considered first,

and are summarized in Table I. The elapsed time was measured for pro

cessing 20,000 words of text by each of the five transformations. The

average null transformation, representing the time required to execute

one iteration of a loop to copy data from one location to another, was

4.76 micro-seconds. Encryption by a one-word key required an average of

4.78 micro-seconds per word* The assembly code for these two tests

differed by only a single machine instruction: a register transfer in

the null transformation test was replaced by a logical difference instruc

tion. Since both instructions require the same execution time in the

6400, the time of both tests was almost identical.

The long key encryption required 8.2 micro-seconds and the double

key encryption required 12.56 micro-seconds per word. The additional time

in these cases is attributable to the more complicated algorithms required.

The pseudo-random key encryption required 20.05 micro-seconds per word,

which can be accounted for by the need to generate a 60-bit random number

for each word of data. The pseudo-random number generation algorithm was

based on the FORTRAN function RANF. Since the 6400 lacks direct 60-bit

multiplication, two separate multiply operations were required per data

word. Then by means of masking the shifting, a 60-bit random number was

constructed. This additional processing certainly required more time

-6-



than would be necessary if 60-bit pseudo-random numbers could have been

generated directly.

Constant Errors

To interpret the results, the contributions of extraneous factors

must be distinguished from the time required by the encryption processes

themselves. Among these factors are delays introduced by execution of

the clock readout program, and by initialization and termination pro

cesses of iteration loops. In order to isolate the effect of these in

fluences, runs were made using blocks of data of varying sizes. Five runs

were made in which the length of the message block was varied from 4000

to 20,000 words. In all cases, the processing time per word showed non-

systematic variation of less than 0.3ys as the number of words increased,

indicating that the constant contribution from clock readout delay and

loop initialization and termination control was not significant.

Intermittent Errors

In addition to constant factors distorting the time measurements,

variable delays may also occur. In particular, when a clock readout is

requested by an active job on the 6400 CPU, a flag is set to notify the

operating system of the request. But the operating system, which runs in

a separate peripheral processor, may not respond immediately, and indeed

the delay period may reach a millisecond before the operating system

reports the current clock reading to the requesting program.

Furthermore, jobs on the CPU are swapped at least three times per

second, so that after about 0.3 seconds of execution, a job is removed

from the CPU and all parameters are recorded. In recording the clock

-7-



parameter, some error is likely, which in turn would further distort

measurement of the process being timed.

To determine the range of these variable errors, 100 separate tests

were made encrypting the same 20,000 word text. The mean totals and

standard deviations of the 100 runs were calculated, as well as the mean

averages for encrypting a single word. If we assume that the variable

errors followed a normal distribution, we can determine the confidence

interval for the time measurements using the t-distribution. The prob

ability is .95 that the true mean time falls within the range M + 1.98 a,

where M is the sample mean and a is the sample standard deviation. In

the case of the null encryption, M = 0.09526 and a = .0009962 seconds.

Thus, there is a probability of .95 that the actual time required by the

null encryption falls with the range 0.09526 + (1.98 x .0009962 = .0020)

seconds. Hence the time for processing a single word by the null encryp-

tinon can be determined to be 1/20,000th of this figure, or 4.76 + .10ys.

Similarly, the time to encrypt a word of data using the one-word key is

4.78 + .llys, using the long key is 8.25 + .llys, using the double key is

12.56 + ,14ys, and using the pseudo-random key is 20.05 + .15ys. All

these figures have a confidence level of 95%.

Comparison with FORTRAN Results

The encryption routines were also programmed in FORTRAN for purposes

of comparison. 6400 FORTRAN, however, lacks the exclusive-or function,

which is the heart, so to speak, of additive encryption. The function

might be realized by the Boolean equivalence,

x © y = (x *y) v (£ - y).

-8-



But the corresponding FORTRAN expression,

(X .AND. Y) .OR. (.NOT. X .AND. .NOT. Y),

is particularly inefficient, requiring five in-line function invocations.

Therefore it was judged not to be suitable for a test of processing time

requirements, and instead an assembly language enclusive-or subroutine

called LG01XR was used.

The same series of tests were conducted using the FORTRAN routines

as had been run in assembly language. The times required by the FORTRAN

processes were about two to four times greater than required by corre

sponding assembly language processes. The FORTRAN results are summarized

in Table II, and the relationships of the time requirements for FORTRAN

and assembly code are indicated in Fig. 1.

Encryption Time Coefficient

In order to provide a more or less machine-independent measure of

the time penalty imposed by encryption methods, an encryption time coef

ficient is introduced, defined to be the ratio of the time required

to encrypt data versus the time required simply to fetch and store those

data without modification (the null transformation). One word key encryp

tion in assembly language has an encryption time coefficient of 1.00, in

dicating that there is practically no time penalty imposed by this method,

The worst assembly language case, pseudo-random key encryption, has a

coefficient of 4.21, indicating that it is about four times slower than

simply fetching and storing. The coefficients are significantly higher

for the FORTRAN routines, ranging from 2.68 for one-word key encryption

to 9.96 for pseudo-random key encryption. FORTRAN encryption is thus

not only slower in absolute terms than assembly language encryption, but

-9-



the ratio of encryption to simply moving data in FORTRAN is proportionally

greater than in assembly language.

Conclusion

The time taken to encrypt 20,000 words of data by four additive

methods on a Control Data 6400 computer was measured using assembly

language and FORTRAN routines. Standard deviations were computed for

100 runs by each method, and from this the range of error at the 95% con

fidence level was calculated. The time required for selecting and fetch

ing the cleartext data and for storing the cryptotext was separately

measured (the "null encryption"), and was then compared with the times

required by each encryption method. The following time requirements were

determined for the assembly language routines: one-word key encryption

required 4.78 + .llys per word or 2,092,000 characters/second, long key

encryption required 8.25 + .llys per word or 1,212,100 characters/second,

double key encryption required 12.56 + .14ys per word or 796,200 characters/

second, pseudo-random key encryption required 20.05 + .15ys per word or

498,800 characters/second. The same processes required about two to four

times more time when programmed in FORTRAN.

Acknowledgement

We are indebted to Professor L. A. Jaeckel of the Statistics

Department, University of California, Berkeley, for his helpful suggestions

regarding statistical methodology.

-10-



REFERENCES

1. Peterson, H. E., and Turn, R., "System Implications of Information

Privacy," Proc. AFIPS 1967 SJCC, vol. 30, AFIPS Press, Montvale,

N. J., pp. 291-300.

2. Skatrud, R. C, "The Application of Cryptographic Techniques to Data

Processing," Proc. AFIPS 1969 FJCC, vol. 35, AFIPS Press, Montvale,

N. J., pp. 111-117.

3. Baran, Paul, "On Distributed Communications: IX Security, Secrecy and

Tamper-Free Considerations," Doc. RM-3765-PR, RAND Corp., Santa Monica,

Ca., 1964.

4. Turn, R., and Shapiro, N. Z., "Privacy and Security in Databank

Systems: Measures of Effectiness, Costs, and Protecter-Intruder

Interactions," Proc. AFIPS 1972 FJCC, vol. 41, pp. 435-444.

5. Carroll, J. M., and McLelland, P. M., "Fast 'Infinite-key1 Privacy

Transformations For Resource-Sharing Systems," Proc. AFIPS 1970

FJCC, vol. 37, pp. 223-230.

6. Hoffman, Lance J., "The Formulary Model For Access Control," Proc.

AFIPS 1971 FJCC, vol. 39, AFIPS Press, pp. 587-601.

7. Hoffman, Lance J. (ed.), Security and Privacy in Computer Systems,

Wiley, 1973 (contains references 1-6).

8. Van Tassel, D., Computer Security Management, Prentice-Hall, Englewood

Cliffs, N. J., 1972.

9. Turn, R., "Privacy Transformations for Databank Systems," Proc. 1973

National Computer Conference.

10. Feistel, Horst, "Cryptography and Computer Privacy," Scientific American,

vol. 228, no. 5, May, 1973.

-11-



11. Golomb, S., Shift Register Sequences, Modern Algebra Series, Holden-

Day, 1967.

12. Feistel, H., Notz, W. A., Smith, J. L., "Cryptographic Techniques

For Machine to Machine Data Communications," IBM Corp., Yorktown

Heights, N. Y., RC 3663, December, 1971.

13. Tuckerman, Bryant, "A Study of the Vigenere-Vernam Single and

Multiple Loop Enciphering Systems, "IBM Corp., Yorktown Heights,

N. Y., RC 2879, May, 1970.

14. Graff, C., "Costs of Privacy Transformation Using the Formulary

Method For Access Control," Research Project For MS Program, Dept.

of Electrical Engineering and Computer Sciences, University of

California, Berkeley, 1972.

15. Conway, R., Maxwell, W., and Morgan, H., "Selective Security

Capabilities in ASAP—A File Management System," Proc. AFIPS, 1972

SJCC, vol. 41, pp. 1181-1185.

16. Garrison, W. A., and Ramamoorthy, C. V., "Privacy and Security in

Data Banks," Technical Memo. No. 24, Electronics Research Center,

University of Texas, Austin, Texas, 1970.

-12-



TABLE I (Assembly Language Routines)

Time per word
(95% confidence level)

Approximate Data Rate
(Based on 10 characters
per word)

Encryption Time Coefficient
(Ratio of encryption
time to null tranformation time)

Null Tranformation 4.76 + .10ys 2,100,800 chars/sec 1.00

One Word Key 4.78 + .11 2,092,000 1.00

Long Key 8.25 + .11 1,212,100 1.73

Double Key 12.56 + .14 796,200 2.64

Pseudo-Random Key 20.05 + .15 498,800 4.21

Null Transformation

One Word Key

Long Key

Double Key

Pseudo-Random Key

CPU time required by CDC 6400 to encrypt data using assembly language routines

TABLE II (FORTRAN Routines)

Time per word

8.42 + .07ys

22.55 + .10

33.95 + .12

55.55 + .12

83.86 + .14

Approximate Data
Rate

1,187,600 chars/sec

443,500

294,600

180,000

119,200

Encryption Time
Coefficient

CPU time required by CDC 6400 to encrypt data using FORTRAN routines



Characters /Second

2,000,000 -

1,500,000

1,000,000 -

500,000 -

~

- 2,092,000

1-443,500

10
One-Word

Key

- 1,212,100

-294,600

Double

Key

CDC 6400 ENCRYPTION SPEEDS

r 796,200

Assembly Language

FORTRAN

- 498,800

-119,200

Pseudo-Random

Key


	Copyright notice 1973
	ERL-378

