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L.O. Chua and Y-F Lam

ABSTRACT

This paper represents a sequel to the recent work on algebraic n-ports

[1]. It relates the external representation of nonlinear n-ports in terms

of the constitutive relations of the internal elements composing the n-ports,

and the topological matrices defining the elements1 interconnection. Various

closure properties associated with interconnection of nonlinear 1-ports are

presented. The problem of synthesis leads naturally to a consideration of

canonic decomposition of nonlinear n-ports into basic building blocks. In

particular, every voltage-controlled (current-controlled) resistive 2-port

is shown to be realizable in a canonic form consisting of a series (parallel)

connection between a reciprocal nonlinear 2-port, and a new class of non

linear 2-ports called quasi-antireciprocal 2-ports. This basic result is

then generalized to allow the synthesis of a very large class of nonlinear

n-ports in terms of only two building blocks; namely, reciprocal n-ports and

quasi-antireciprocal n-ports. Moreover, the class of quasi-antireciprocal

n-ports is shown to be realizable in terms of only nonlinear resistive

1-ports, reciprocal 2-ports, and gyrators.
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I. INTRODUCTION

A theory of nonlinear n-ports has recently been presented strictly from

a "black box" approach [1]. In this paper, we "open" the box and express

the external black box characterizations of nonlinear algebraic n-ports in

terms of their internal constituents. This study is motivated by the ob

servation that most n-ports with n>2 do not represent intrinsic devices but

are often created conceptually or physically through an interconnection of

1-ports and 2-ports. Such "composite" n-ports have served as invaluable

tools for both analysis [2,3] and synthesis [4] purposes. Since any (n+1)-

terminal element can be considered as a grounded n-port and since any n-port

can be considered as a system of "n" controlled 1-ports — i.e., n 1-ports

with mutual couplings among the port variables — there is no loss of

generality in assuming that our n-ports consist of an interconnection of

only 1-ports and controlled 1-ports. We adopt this point of view in this

paper because each n-port can then be represented topologically by n separate

branches, thereby allowing standard graph-theoretic techniques to be brought

to bear.

In Section II, we consider the problem of expressing the external

representation of an n-port in terms of the constitutive relations of the

internal elements and the topological matrices defining the interconnection.

To understand why appropriate conditions must be imposed not only on the

nature of the elements nonlinearity, but also on the network topology,

To economize on symbols, the index "n" is used in a generic sense. Hence
two n-ports need not have the same number of ports. We will assume that
whenever necessary, our n-ports are provided with internal isolation trans
formers so that arbitrary interconnection among n-ports will not introduce
circulation currents.
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consider the following examples:

Example 1. This example illustrates the types of composite v-i characteristics

of a 1-port that could arise as a result of a simple series connection of

two 1-ports R1 and R2 as shown in Fig. 1. Observe that with only two seg

ments per v.-i curve, j - 1, 2, it is possible to obtain a composite

curve having self-intersections, branching segments, and a finite perimeter

as in (a), (b), and (c), respectively. More complicated v-i curves can be

obtained as in (d)-(f) with only three segments per v.-i curves, j = 1,2.

When interconnections of multiports are involved, the problem is even

more acute as indicated in Examples 2, 3, 4 and 5.

Example 2. The circuit in Fig. 2(a) consists of a 2-port N (in fact, a

current-controlled current source) and two 1-ports R. and R^ characterized

by the v-i curves shown in Figs. 2(b) and (c) . The composite v-i curve

shown in Fig. 2(d) consists of the union of a closed line segment and two

isolated points. It is easy to see that if we replace L by a short circuit,

the composite v-i curve would reduce to 3 isolated points; namely, (0,-1),

(0,0), and (0,1). If we also replace R. by an open circuit, the composite

v-i curve degenerates into one point at the origin and becomes a nullator

[4].

Example 3. The circuit in Fig. 3(a) consists of a 2-port N and three 1-ports.

With the v.-i curves shown in Figs. 3(b) and (c) for R and R^, the composite

v-i relationship covers an entire area, as shown in Fig. 3(d). In fact, if

we replace RA and Rc by short circuits, and IL by an open circuit, the

composite v-i relationship would cover the entire v-i plane and become a

norator [4].

Example 4. To show that any unicursal v-i curve [5] v = v(p), i = i(p),
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p £ R , including those with self-intersections and cusps, could be synthe

sized, we introduce a new linear 3-port N in Fig. 4(a)—called a unicursal

3-port—characterized by the hybrid matrix:

0 -1 0 vl

0 0 1 h
1 0 0

V3

If we connect two voltage-controlled resistors R and IL (characterized by

*A " 8A^VA^ and *B ™ 8B^VB^ re8Pectivelv) across ports 2 and 3 of N ,as

shown in Fig. 4(b), we obtain a 1-port with the composite v.-i curve i =

8A(p)f v-^ mgg(p). To show that the unicursal 3-port is nothing exotic,

we offer a simple realization using only a voltage-controlled voltage source

Nfl and a current-controlled voltage source N,, as shown in Fig. 4(c).

Example 5. To show that v-i curves more complicated than unicursal curves

could be realized, we introduce yet another linear 3-port in Fig. 5(a) —

called an intersection 3-port—characterized by: v. « v„ = v, and i. = -i- =

-i3- If we connect two 1-ports R. and R_ across ports 2 and 3 of an inter

section 3-port as in Fig. 5(b), then the composite v.-i. relationship of the

resulting 1-port is simply the point set intersection of the v-i curves of

RA and Rg. Some examples of v-i curves that can be realized with the in

tersection 3-port are shown in Figs. 5(c)-(e) where R. and R^ are connected

as in Fig. 5(b). Notice that in all cases, R. and R^ are unicursal resistors

which can be realized by a unicursal 3-port, a v-controlled resistor and an

2
i-controlled resistor. To show that even an intersection 3-port is not too

It has been shown in [6] that every voltage-controlled or current-current
1-port resistor can be realized by a linear 2-port called an LTC (linear
transformation converter) and an increasing 1-port resistor.
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exotic, we offer a simple realization in Fig. 5(f) using only three common

2-ports, namely: two voltage-controlled voltage sources N and N . and a
a c

current-controlled current source N, .
b

Observe that there exist an infinitely many distinct pairs of R and

Rg for realizing a prescribed v-i relationship. What is required is

merely that the point set intersection of the v-i characteristics of R

and R^ consists of only the points of the prescribed v..-!.. relationship,

no more and no less.

In Section III, we will be mainly concerned with the closure properties

of 1-port elements. That is, we are trying to answer the basic question:

3
"Does a composite 1-port resulting from an interconnection of 1-ports all

having property P also possess property P?" This question is of great im

portance in the qualitative analysis of nonlinear networks.

In Section IV, we introduce an important class of nonlinear n-ports—

called quasi-antireciprocal n-ports—which represents a generalization of

anti-reciprocal n-ports. It is shown that every i-controlled or v-controlled

nonlinear 2-port can be realized using only a reciprocal 2-port and a quasi-

antireciprocal 2-port. Properties of quasi-antireciprocal n-ports are in

vestigated. In addition, certain classes of nonlinear n-ports are shown

to be realizable by an appropriate interconnection of a reciprocal n-port

and a quasi-antireciprocal n-port.

Throughout this paper, we let R denote the Euclidean k-space and il»B

the usual Euclidean norm. Vectors are denoted by lower case letters and

matrices by upper case letters. A column vector x = [x-,x2,"",x ]e Rn

3
All networks considered in this paper are assumed to be connected and

non-separable.
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is partitioned into x=U^] if x& =[x^,-••,3^] eRk and ^ =[x^.
n-k

xk+2»** **xn^ e ^ .In addition, we let x denote the time-derivative of x,

Jf(x) denote the Jacobian matrix of a function f: Rn -* Rn at the point x

(when n=l, we use ff(x) instead of J (x)) and <•,• > denote the Euclidean

inner product.

In this paper, we will use the symbols v and i instead of £ and n as

used in [1] for general discussion even though most results are applicable to

algebraic n-ports. To distinguish results that are applicable to algebraic

n-ports from those that are applicable to n-port resistors only, we will

use the word "elements" for results associated with the former case4 and

the word "resistors" for results associated with the latter case.

II. EXPLICIT REPRESENTATION OF NONLINEAR N-PORTS VIA TOPOLOGICAL MATRICES

In this section, we will derive conditions which guarantee a "composite"

n-port resulting from an arbitrary interconnection of 1-ports and controlled

1-ports to possess a hybrid representation. Additional conditions will be

imposed to guarantee that the n-port is either increasing or non-decreasing [1].

The hybrid representations will be derived in explicit topological forms. Un

like the results presented in [7] which are valid only for reciprocal networks,

4
Throughout this paper, we assume that all charge variables and flux-linkage
variables at the initial time are zero. Under this assumption, any topological
equations which apply for resistive n-ports would also apply for algebraic n-
ports. Otherwise, appropriate constants of integration will have to be intro
duced.

The class of increasing n-ports is the appropriate generalization of 1-ports
characterized by a strictly monotonically increasing v-i curve. Similarly,
the class of non-decreasing n-ports is the generalization of 1-ports with a
monotone increasing v-i curve. It is important to observe that for n>l, the
class of increasing n-ports is a proper subset of homeomorphic n-ports [1].
The study of increasing n-ports is of basic importance because most results
involving strictly monotone increasing v-i curves have a natural generaliza
tion only for this class of n-ports but not for homeomorphic n-ports.
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our results in this section allow coupled elements, such as controlled

sources, and are therefore much more general.

For a given (connected and nonseparable) network ^Al with m nodes and b

branches, let T be a spanning tree and L be the corresponding co-tree. Let

Tl be any subset of T; LI be the subset of L that form loops with elements

in Tl; T2 = T - Tl and L2 = L - LI, where the symbol "-" denotes set sub

traction. Let t, tl9 t2, A, A ,and % be correspondingly the number of

elements in T, Tl, T2, L, LI, and L2. Then t = t + t = m-1 and £ = I +

H2 = b - m+1. 3y numbering the branches of o\l in the order of LI, L2, Tl

and T2, we obtain the following topological equations [7-9]:6
v.

where

i «•
T

LI

v
L2J

Tl

1^2 J

-'Bn ° 11*11] *
B21 B22JIVtJ

-BTvT

^11 B21

>22J

LI

LL2

m B i
TL

(1)

(2)

(*•) B21' B21 an<^ B22 are toP°l°6ical submatrices of dimensions A xt., £„x t..
and £ x t„ respectively;

(ii) The superscript "t" of a matrix A indicates the transpose matrix of A;

(iii) zT1 =[Zl,zo,...,z0 ],zTO = [«. +rv+2.-.^], Zt1= f^+rV2'"*'Vt ]>'V*2 X2

ZT2 "[z£+t1+l,Z£+t1+2,'"'Zb]' ZL =[ZL1,ZL2]' ZT "[zTl,ZT2] and z=
[zL>zT] where the generic symbol z stands for either v or i.

Let ;Jy be an n-port resulting from an interconnection of 1-ports, i.e.

two-terminal elements. Since each port of ^\( can be considered as a branch

as far as network topology is concerned, we will call these branches port

For convenience, we simply use "0" to denote a zero matrix of appropriate
dimension.
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branches. Let (JvJ be the network consisting of the 1-ports inside ^Jy] and

the port branches of ^\) ,and let Q be the graph representing lAI. Then

Q ° Qd U 9 'wnere Q represents the set of n "external" port branches

of ^| and Q represents the set of "internal" 1-ports contained in ^1 .

We will write, for example, Q « L2 if the port branches consist of the set

of L2 elements associated with a particular tree T under consideration.

Due to the sign convention that we have adopted for ports and port-

branches as shown in Fig. 6, the port currents of (J\J are the negative of

the port-branch currents of Q of ^Jy), while the port voltages of (J\J are

equal to the port-branch voltages of Q of^\).

Let Z be a set of elements in cA) numbered from a to 3 inclusively.

Let xz - [xa,xa+1,---,x3], yz - [y^y^,•••.7J ,vz - l\>va+V" ' ,v^ and

iz - [ia,ia+1,»--,ie]; where [xz,yz] »]£[vz,iz] for some permutation matrix

£f described in [1], v. and i, are the port variables associated with the k
th

element in Z. We will say that the elements in Z can be represented by y_ e

y„(x„) if each element in Z, say the k element, can be represented by

yk = yk(VXa+l''''»V = *k(xZ} f0r k = «, a+l,.-«, 3

and yz(-) = [y^Oty^jO) ,'•" t^O)]- It is clear that if element k in Z

is not a controlled 1-port, then y. = Vi-OO*

Since the theorems to be presented in this section share a number of

common hypotheses, we have collected these conditions in Table 1 in order

to conserve space. Observe that each hypothesis is identified by a literal-

numeric code. Hence, rather than stating the entire hypothesis in a par-

Throughout Section II, we will use ^\j .to denote an n-port, -Jvl the cor
responding network, Q the graph of^\(, Q the port branches of o\ls and
Q the graph representing the elements inside qJ\J .
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ticular theorem, we simply state the corresponding identification code.

The symbols in Table 1 which have not been previously defined carry the

following meanings:

(i) k is a nonnegative integer;

(ii) L2a U L2b = L2, Lla U Lib = LI, T2a U T2b = T2 and Tla U Tib = Tl;

(iii) J^, ^2h9 Ala' ^lb' t2a' t2b' tl and tlb denote tlie number of elements in

L2a, L2b, Lla, Lib, T2a, T2b, Tla, Tib, respectively;

(iv) £d, psd, and upd stand for positive definite, positive semidefinite and

uniformly positive definite respectively.

Theorem la.

Suppose there exists a tree T such that Q = Tl U L2.

(H1) If Ll^j. and T2Ano hold» then lAI admits aC-hybrid representation,

(H2) If LlA/k)» T2A(k)» T2B and L1B hold, thent-Af admits aC-hybrid
representation and ^\J is nondecreasing.

(Ha) If LlA(k), T2A(k), Llc, T2C, MA and Mg are satisfied, then J\ ad-
mits a hybrid representation and <^\j is an increasing n port, where

n - tx + »2.

Proof. Let ip = [ipl>ip2] = 1'^,-t^] and vp = [vpl,vp2] = [v^.v^],

where i and v are the port-current and port-voltage vectors of ,Aj ,

respectively. Then (1) and (2) become:

8 m
Let S be a subset of R and A(x) be an nxn matrix. A(x) is positive definite
{positive semidefinite; uniformly positive definite} at x if zcA(x)z > 0
v z ^ 0 € Rn {zcA(x)z >_ 0 V z € Rn; there exists a constant c > 0 such that
zcA(x)z > dzB2 V zSR11}. A(-) is said to be positive definite {positive
semidefinite; uniformly positive definite} on S if A(x) is positive definite
{positive semidefinite; uniformly positive definite} for every x e S.
In addition, a function f: Rn ->- Rn is said to be non-decreasing {increas

ing, uniformly increasing} if a(xa,x,) = <f(x )-f(xb), x -xb > > 0 V xa, xb
GRn ( >0 V xa ^ xb 6 Rn ;there exists a positive constant c such that
a(xa,xb) <cHx^H2}.
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vn = -biivpi

VP2 " "B21VP1 " B22VT2

*P1 "-*uhl+B2tliP2
i = -B1" i
T2 22 P2

(3a)

(3b)

(3c)

(3d)

Substituting LlA(k) and (3a) into (3c); and T2A( and (3d) into (3b), we
obtain:

*pi =-bii£li-(-biivpi) +B2iiP2 *il1<vPr1P2)

VP2 ="B21VP1 - B22^T20<-B22iP2) ° ^P2(vPl'iP2)

(4a)

(4b)

That is, ^J admits a hybrid representation, given by (4).

To prove (H*), let [vpl>ip2] and [vpl,ip2] be any two distinct points
in R where n «• t, + *2> Then, we have:

"(Vpi.lpjSV^.^) -<
i*&T>i>1?2)-i$&h>in)

^2(vpl,ip2)-v|2(vpl,ip2)

V —V
PI PI

i -i'
P2 P2

" <-Bll[£I.l- (-BllvPl)-£Ll« <-BllvPl) 1̂ Pi-Pl >

+<B2ltiP2-iP2] 'vPl-vPi >" <B21[vPl-vPlJ '^2-42 >

+<-B22[vT2.(-B^ip2)-vT2.(-B|2ip2)],ip2-ip2 >

^^Ll'^ll'pi)-^!^-8!!^!^' [-BllVpr<-BllVPl>J >

+<vT,.(-B'ip,)-vT,.(-B' II,)], [-b' iD,-(-B^ II, )J >
T2 v 22 P2' T2 v 22 P2 22 P2 v 22 P2'

(5)

By assumptions T2g and Llc, «(vpl,ip2;vpl,ip2) >0? [vpl>ip2] and [vpl>ip2]
11 ^

in R . Hence ^Jy is a nondecreasing n-port.
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To prove (h\J , assumptions M and M^ imply that it is not possible to

have

B11VP1 • B11VP1 and B22iP2 " B22iP2

whenever [ip1»vp2] f ^pi'^J due t0 the maximal col1™11 rank requirements

of the matrices B. and B^. That is

"B11VP1 B v1
11VP1 "VP1

4
"vf

PI

.B22iP2.
*

?22±il.
whenever

LsJ i!
. P2.

(6)

Together, assumptions T2C> Llc and (6) imply that a(vp1»ip2ivpi»ip2) >°

V fvPl»iP2^ ** tvpl,:Lp2^ in R * Hence> u\l is an increasing n-port. Q.E.D

Theorem lb.

Suppose there exists a tree T such that Q = Tl U L2b.

b(H ) If T2A^k+1^, T2fi, LlA(k+1) and L2aA^k+1) hold, then J^f admits a
hybrid representation.

Proof. With ipl = -iT1> ip2 = -iL2b, vpl =vn and vp2 - vL2b> (1) and (2)

become:

where

VL1 = "B11VP1

VL2a = -B21aVPl ~ B22aVT2

VP2 " -B21bvPl " B22bvT2

hi = ~hlhl " B21a1L2a + B21biP2

T2 22a L2a °22b P2

'21
21a

B

and B
22

22a

'21b 22b

-11-
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and the partitioned matrices are of appropriate dimensions. Substituting

LI
A(k+1) and (7a) into (7d); T2

"A(k+1)

T2A(k+l) and ^7e) into ^7b^» we obtain:

hi • -BlAl°(-BllvPl> " B21a1L2a +B21biP2

VP2 " "B21bVPl " B22b'T2°(B22aiL2a " B22biP2>

WW " ~B21avPl " B22a*T2°<B22a1L2a-B22b1P2>
Z t s,

Let f: R2a x r 2^ r 2a be the Ck+1 function defined by

f(iL2a'-B22b1P2) *WW +B22aV(B22a±L2a-B22biP2)

and (7e) into (7c); and L2aLA(k+l) »

"B21aVPr

By assumptions T2B and L2aA(k+1) , ^±L2a^t2h±?2)/\^ is upd on R^
R . By a lemma in [10], there is a Ck+1 function g: R2axR2+R2a
defined by

*L2a " ^Vpr^aW
and g(*,«) satisfies the following:

8(f(iI,2a'-B22biP2)'-B22biP2> L2a

f(6(-B21aVPl'-B22b1P2)'-B2t2biP2) k"Wpr
Substituting (9b) into (8a) and (8b), we obtain:

*P1 ' -BU£Llo(-BllVPl>-B21a8(-B21aVPr-B22biP2) +^2 =^l^Pl'V

rP2 * -B22b;T2°(B22ag(-B21aVPl'-B22biP2)-B22biP2) " B21b'Plv- = vP2(vprip2)

(8a)

(8b)

(8c)

(9a)

2a

(9b)

(10a)

(10b)

Thus, <^| admits a hybrid representation given by (10).

Theorem lc.

Suppose there exists a tree T such that Q =L2.

Q.E.D,

-12-



(R1> If T1A(k+l)» T2A(k+l)' L1A(k+l)J L1D and NC are satisfied> then J|
k+1

has a C i-controiled representation,

(R2) If, in addition to the assumptions in (RJ, T2 holds, then ^
k+1 »

admits a C i-controlled representation and qW is nondecreasing.

(Ro) If, in addition to the assumptions in (R..), one of the following two

conditions holds:

(i) T2fi and 1-^ are satisfied

(ii) T2C and Mg are satisfied

Then oM is an increasing i-controlled n-port with a C representation

function.

Proof. In this case, we have ip = -iL2 and vp =v . Thus, (1) and (2)

become:

VL1 = -B11VT1 <lla>

VP = _B21VT1"B22VT2 <llb>

*T1 = BlliLrB21iP (llc>

*T2 = ""m1? <lld>

Substituting TlA(k+1) ,T2A(k+1) and (lid) into (lib) ;and UA(fcfl) and
(lla) into (lie), we obtain:

VP= "B2Al(iTl)_B22''T2',("B22iP) (12a)

hi =BlliU»(-BlAl(1Tl)>-BlliP <12b>
Rearranging (12b), we obtain:

f(iT1) 4VB^.C-B^C^)) =-B^ip (13a)

where f: R -»- R is clearly aC+ map and the Jacobian matrix of f(.) is9
9
We let lk denote the identity matrix of order k.
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Ji(iTi> • \+ BuJiu'<-Bu'Ti<1r1»BiiJ;T1^i> <13b>
k ^1 1 \r

Since J~ (•) is C and pd on R x, [J; (•)] exists and is C* and pd on
*1 Tl VT1
R [10]. Postmultiplying (13b) by [J- (•)] ,we obtain:

VT1

«hJ *^hJ^hi"'1

- [JvT1(1Tl> I"' +BllJiu'<-*l1'll<1Tl))B11 <Ua)
t.

It follows from TlA(k+1) and L1D that A(iT1) is pd and symmetric Vi eR1.
Since both Ad..) and J- ,. x „

Tl VT1^ Tl' are P symmetric, it follows from Lemma

4.2.5 of [11] that all eigenvalues of

A(iTl)Jvn(iTl> "Jf^ <14b>

are positive and real V i e R . Hence,

det Jj(iT1) >0 ViT1 €Rx (15)

Together, (15) and N imply that f: R1-»-R1isa Ck+1-diffeomorphic onto
A

mapping10 [12,13]. That is, there exists a unique Ck+1 function g: R 1 + RX

such that

10 M, ,„ „_ ,_ ^ , . , .k+1 ^ Z-

iT1 =g^-B^ip) (16)
t,

where g(«) is the inverse function of f(«) on R . Substituting (lb) into

(12a), we obtain:

«. - 1" . * f- A *a

(17)VP = -B2l'Tl"8,'(-B21iP)-B22'T20(-B221P) = *P(1P>

A function f: R -• R is said to be a C -diffeomorphic onto mapping on

R if its inverse function g: R •+ R exists and both f(') and g(») are

C onto functions on R .
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This proves (Ra).

Let lv-0) and hA') be two mappings from R into R , where n = !L > defined

by

hl(±P) " "B21^Tl°8°("B21iP) (18a)

h2(ip) A-B22vT2o(-B^ip) (18b)

Clearly, h-(*) and h2(») are C functions on R . Taking derivatives, we

obtain:

\(1P> •̂ l^sKl^VKlVsL ("a)

Jh2(ip) =B22JvT2°(-B221P)B22 <19b>
t

It follows from assumption T2fi that vT2(0 is nondecreasing on R and

J* (•) is psd on R [14,15]. Hence J, (•) is psd on Rn. That is, ho(0
VT2 n2 2
is nondecreasing on R [14,15].

To discuss h^O, let us first note that g°f(i ) = i and hence

V^Tl^f^T^ =1t ' Therefore» Jg(~B21iP) =[JfCiTx)]""1* with the relation-
ship of iT1 and -B21ip constrained by (13a) and (16). With the help of (14b),

further manipulations give:

JvT1<Sl>Y-B21±J)"J;il(1Tl)1Jf(1TI>l
-1

*V^ [A(iTl)JvT1(iTl)^'1
=A(iT1) =Ao(g(-B^ip)).

Since A(iT1) has been shown to be pd Vi^, Jy (g(-B21ip)) J. (-B^ip) is
n n

pd V ip£ R . Hence, J (•) is psd on R . Thus, h (•) is nondecreasing on
1 i

R . Consequently, v^(0 as defined in (11) is nondecreasing on Rn, and this

proves (R«).
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Suppose now the assumptions of (Ra) and condition (i) hold, then B*

is of maximal column rank. By Lemma 4.2.7 of [11] and the fact that

^T^(g(-B^ip))Jgo(-B^ip) is pd Vip GRn, Jh (.) l8 pd on Rn. Hence>
hx(.) is increasing on Rn [14,15]. It has been shown that h2(-) is non-
decreasing on Rn. Hence, va(0 is increasing on Rn.

On the other hand, if the assumptions of (Ra) and condition (ii) hold,

then h1(.) is nondecreasing by previous result and h2(«) is increasing on
.n a __„ ,b , „nR since, for any two distinct points ia and il in Rn, we have:p *p

<h2<i^>-h2(lbp)'ip-iP>
-<-B22[vT2.(-B*2iaJ -»n.(H.^)l, l*-ib >

"<^T20<-B2t2iP)-T2°(-B22ibp>- "^"<-»m4> >
-<vT2(i«2)-vT2(4),ia2-ib2> >0

The last inequality was due to the fact that a), v (•) is increasing on
t

R and b). the rank of B22 equals its number of columns by assumption M^,

and hence ia2 AB^ia j i££ AB^ip whenever ia *ip*. Consequently, v|(.)
is increasing on Rn. This proves (Ra). Q.E.D.

Remarks 1.

Several additional theorems analogous to Theorems la, b, and c can be

formulated to account for other combinations and interconnections of 1-ports

and controlled 1-ports. To conserve space, these results, including Theorems

la, b, and c, are summarized in Table 2. The interpretation of this table

For ease of reference, each assertion in Theorems la, b, and c, as well as.
those listed in Table 2, are identified with aliteral code e[3\ Rp) ,and G^',
j = a, b, c, d; i « 1, 2, 3, where the letters are chosen to correspond to
the hybrid (H), resistance (R) , or conductance (G) representation of the n-
port under consideration.
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11

is as follows: If there exists a tree T of ^ such that the assumptions

of a row in the left column are satisfied, then the conclusions of the cor

responding row in the center column are true. The symbols used under the

"assumptions" column are explained in Table 1. Those under the "conclusions"

column are explained in the rightmost column "Notations and Definitions" of

Table 2. Examples of this interpretation can be made by referring to Theorem

1. Note that we have further partitioned the submatrices of the fundamental

loop matrix B as follows:

lla

lib

" Pile Blld1- 21

21a

21b

B21c B21d 22

22a

22b

B22c B22d

where the partitioned matrices are of appropriate dimensions.

a b a
(ii) In Table 2, the proofs for cases (H ), (H ) and (R ) are shown in Theorem 1.

b a c
The proof for (R ) is similar to that of (R ). Case (R ) is a special case

of (Rb). Cases (Ga), (Gb) and (GC) are dual cases of (Ra), (Rb) and (Rc),
c d

respectively. The proofs for cases (H ) and (H ) are similar to the proofs

b a
for cases (H ) and (H ), respectively.

(iii) Concerning the norm conditions,

a. 12 2(a) NA is true if B22vT2(«) is a globally bounded mapping on R .

12
(b) N_ is true if either vTO(«) satisfies the norm condition and BoovrT,o(0 is

B L2 *2 . h
globally bounded; or J* (•) is upd on R and v «(•) is nondecreasing on R .

VL2 LZ
12 n n
A function f: R -*• R is said to be globally bounded if there exists a

constant c > 0 such that

sup If(x)B <_ c
x e Rn

The function f is said to satisfy the norm condition if

lim flf(x)H = ».
II xB -*• »
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t *1(c) Nc is true if Bu£ (•) is globally bounded on R .

(d) ND is true if either iT1(') satisfies the norm condition and B^ i (.) is

globally bounded; or J* (•) is upd on R and iT,(«) is non-decreasing on
o iT1 L±

R L.

(iv) It should be noted that the maximal column rank requirements in those

cases involving the increasing property of n-ports are necessary. These

conditions guarantee that the port-branches do not form loops or cutsets.

It is clear that if the port-branches form a loop or a cutset, then the

Jacobian matrix of the function describing the n-port in question will

always be singular. That is, the representation function of the n-port

can never be increasing on R . A case in point is as follows:

A

Example 6. Consider the 3-port ^1 shown in Fig. 7(a). The corresponding

graph Q is shown in Fig. 7(b). Let the tree T = {branches 4, 5 and 6}.

Hence the corresponding co-tree L = {branches 1, 2 and 3} = Q . Obviously

TA(k> anc^ TB are satisfied. Hence case (R-) implies that ^\ can be repre

sented by an i-controlled representation as

-1

V

Pi rA+r5 "r5 r4
i

pl

V

p2
B

"r5. r5+r6 r6
i

P2

V

p3
r4 r6 rp6 i

_P3_

Ri,

Since the matrix R defined above is singular, ^\J can not be an increasing

3-port. An examination of case (R~) shows that all conditions are satisfied

except the condition M_ since in this case
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-1 0 -1

T
-1 1 0

0 -1 -1

is of rank 2 and is not equal to the number of columns (which is 3 for this

example).

III. CLOSURE PROPERTIES

In [1], we have classified algebraic n-ports in terms of four dis

tinguishing properties: (1) constitutive relation (resistor, inductor,

capacitor, memristor, etc. (2) global mathematical property (parametrizable,

v-controlled, i-controlled, non-decreasing, increasing, uniformly increasing,

strongly uniformly increasing, proper, bijective, etc. (3) local mathematical

property (reciprocal and anti-reciprocal) and (4) circuit-theoretic property

(passive, active, lossless, and non-energic). Now suppose all internal

elements of a composite n-port (J^ are known to possess a given property,

say all of them are passive. A fundamental question to raise is whether the

composite n-port ^\) also possesses the passivity property. The answer in

this case is of course yes. However, not all properties are preserved under

arbitrary interconnections. Before we present some examples to illustrate

this point, let us define the notion of "closure" more precisely.

Definition 1. Closure Property

A property P is said to be closed relative to some prescribed internal

constraint K if any composite n-port ^ containing elements having property

P and satisfying the prescribed internal constraint K also possesses property

P. If no internal constraint is necessary, then the class of n-ports having

property P is said to be closed.
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It can be shown that passive n-ports are closed since arbitrary inter

connection of passive n-ports always result in another passive n-port.

However, the following examples show that most other classes of n-ports

are not closed.

Example 7. Examples illustrating non-closure properties
A

(a) Let ^V) be a 1-port resulting from a series connection of two

algebrais 1-ports; namely; a resistor and a capacitor as shown in Fig. 8(a).

The composite 1-port J^ is clearly not an algebraic n-port. Hence,

algebraic n-ports are not closed.

(b) Case (d) of Example 1 shows that v-controlled ri-ports are not closed.

(c) By taking the dual [16] of Example (b), we conclude that i-controlled

n-ports are not closed.

(d) Let jy be the 1-port shown in Fig. 8(b). Let R = 1Q and R = -lfi.

Then both R1 and R2 are proper 1-ports. However, J^J is not. Hence, proper

n-ports are not closed.

(e) Example (d) shows that homeomorphic n-ports are not closed.

(f) Example (d) shows that bijective n-ports are not closed.

(g) Let ^ be the 1-port as shown in Fig. 8(b) ,where R. and R2 are
defined as follows:

R^ ±1 = 3+ exp^) for v <0

= 5 - exp(-v1) for v.. >_ 0

R2: i2 « exp(v2) for v2 <0

= 2 - exp(-v2) for v >_ 0

It can be shown that both R and R. are C -increasing 1-ports. However
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13
the v-i relationship of ^\) is an empty set in the v-i plane. Hence,

increasing n-ports are not closed.

(h) Example (g) shows that non-decreasing n-ports are not closed.

14
(i) Example (g) shows that regular n-ports are not closed.

(j) Let JW be the 1-port shown in Fig. 8(b), with the characteristics

of R. and R0 shown in Figs. 8(c) and (d). It is clear that the resulting
1 2

v-i relationship of ^ is 1). An empty set (i.e. J\| is singular) if a<-1

and 2). A horizontal line (i.e. ^M is regular) if a = -1 as shown in Fig.

8(e). Hence, dense n-ports are not closed. To see that both R^ and R2 are

dense 1-ports, the following is a C -parametrizable description of R^

v(p) =Pl VPl e R1

i(p) =l-U+p^"1 for p2>.0

=(l-pp""1-! for p2 <0

2
where p = [p-,p0] e R . It can be shown easily that J, .Jp) is of rank 2

1 2 LVjiJ

V p€ R2.

(k) Let <J^| be the 1-port shown in Fig. 8(b), where the characteristics

of R and R? are shown in Figs. 8(f) and (g) . Then the v-i relationship of

JV| is shown in Fig. 8(h). Clearly both Rx and R2 are active but JV is

13 1A 1-port element characterized by an empty subset of V x I, where V = R
and I = Ri is called an empty resistor. Analytically, an empty resistor is
characterized by a constitutive relation f(i,v) = 0 where f: R1 * R1 -*• R1
is always positive or always negative. It has been shown in [11] that the
concept of an empty resistor is required to prove that 1-port resistors are
closed under an arbitrary interconnection, i.e., a 1-port resulting from
an arbitrary interconnection of 1-port resistors is a resistor. An empty
resistor is said to have a dimension [1] equal to -1, in accordance with
the dimension theory [17]. A similar statement can be made for an empty
inductor, capacitor, and memistor [18].

An n-port is said to be regular {singular, dense} if it has dimension
[1,19] equal to {less than, greater than} n.
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passive. Hence, active n-ports are not closed.

The preceding examples demonstrate that additional constraints must be

imposed in order for a composite n-port to preserve the common properties

shared by its internal elements. Some of these constraints pertaining to

increasing and non-deereasing n-ports are already formulated in Table 2.

In the remainder of this section, we will restrict our attention to the

formulation of closure property of composite 1-ports. Except for properties

1, 6, and 7, the generalization to composite n-ports where n > 1 is a much

more difficult problem.

Property 1. Closure Property for Similar-Kind 1-Ports15

Let -JV) be a 1-port resulting from an arbitrary interconnection of

1-port resistors {inductors, capacitors, memristors}. Then ^\f is also a

1-port resistor {inductor, capacitor, memristor}.

Proof. The proof of this property is rather straightforward and can be

found in [11].

Property 2. Closure Property for Non-decreasing 1-ports.

Let o\J be a network containing 1-port elements only. Suppose there

exists a tree T such that all its tree branch elements are i-controlled

and all its link elements are v-controlled. If the representation function

of each 1-port inc_A) is continuous and non-decreasing, then the driving-point
A A

characteristic of a 1-port ^\| {o\L}, created by a soldering-iron entry

across any two nodes {plier-type entry through any wire} in^\|, is i-con

trolled {v-controlled} and the representation function is continuous and

By a straightforward generalization of the proof of Property 1 [11], one
can show that the following is true: Let ^jbe an n-port (h >^ 1) resulting
from an arbitrary interconnections of 1-port resistors {inductors, capacitors,
memristors}. Then ^j is an n-port resistor {inductor, capacitor, memristor}.
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non-decreasing.

Proof. The proof of this property can be found in [20]. Some extensions

of this property are given in a recent paper by Desoer and Wu [21].

Property 3. Closure Property for Increasing 1-Ports.
a f

Let ^Jvl be a 1-port resulting from a series-parallel connection [16]
A

of increasing 1-ports. Then <JM is either an increasing 1-port with a

v-controlled or i-controlled representation, or is an empty resistor.

Proof. Follows from the graphical construction techniques presented in [16].

Property 4. Closure Property for Increasing and Proper 1-Ports.

Let oM be a network containing increasing and proper 1-ports only. Let
A

O^M be a 1-port created either by a soldering-iron entry across any two nodes

incAl» or by a plier-type entry through any wire ino\f. Then <^\| is increas

ing and proper.

Proof. The proof of this property follows from results in [20] and [22] and

is given in Appendix A.

Before we proceed to the discussion of uniformly increasing and strongly

uniformly increasing 1-ports [1], we would like to point out that strongly

uniformly increasing 1-ports are uniformly increasing while uniformly increas

ing 1-ports are increasing and proper. However, the converse statements are

A proper 1-port is represented by a function mapping from R onto R . An
increasing and proper 1-port is represented by an increasing function mapping
from R1 onto R1.

It can be shown easily that an increasing and proper 1-port can be described
both by i = g(v) and v = f(i), where f(-) and g(.) are inverse functions of
each other on Ri.
Conversely, if a 1-port admits a continuous v-controlled {i-controlled}

representation i = g(v) {v = f(i)} where g(.) {f(.)} is nondecreasing and
if the 1-port is also i-controlled {v-controlled}, then the 1-port is in
creasing and proper.

A C -uniformly increasing 1-port is represented by a function whose
derivative is always greater than a positive constant. A C^-strongly
uniformly increasing 1-port is represented by a function whose derivative
is always bounded by two finite positive constants.

-23-



not true as shown by the following examples:

Example 8.

(a) An example of an increasing proper 1-port which is not uniformly in

creasing.
A

Let J) be a 1-port represented by

v»f^i) -i(l +2iV1/4
Then fjU) =(1 +i2)/(l +2i2)"5/4. It can be shown that 1^(1)1 +-as
|i| •* * and f»(i) >0Vi6 R1. This implies that <_AI is increasing and

A

proper. However, ^V) is not uniformly increasing since

f[(±) ^Oas |l| -* -.

(b) An example of a uniformly increasing 1-port which is not strongly

uniformly increasing.

Let ^\l be a 1-port represented by

v » f2(i) =1+1 for i < 0

= exp(i) for i >_ 0

It can be shown that f2(«) is C1 on R1, and f£(i) >_ 1 Vier1. Hence
if *^M is uniformly increasing. However JM is not strongly uniformly increas

ing since f'(i) is not bounded on R .

Property 5. Closure Property for Strongly Uniformly Increasing 1-Ports.

Let J( be a 1-port containing C strongly uniformly increasing

1-ports. Then J) is C strongly uniformly increasing, where k is a non-

negative integer.

A

Proof. Since (JV) contains only strongly uniformly Increasing 1-ports, each

element inside <_AI can have both a C v-controlled and a C i-controlled

representation with uniformly positive definite and bounded derivatives [1].

Clearly, the assumptions of case (G ) of Table 2 are satisfied with Tl being
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»/ k+1
the only port-branch. Hence (Jy) has a C v-controlled representation:

ip • yy *-BiAi°(-Biiy-B2>(-B2iy <2<»
k+1

where g(») is the inverse function of the C -diffeomorphic onto mapping

of

A

f^L2" " VL2V"L2' '"22VT2"V"22AL2' ~ ~°21VPf(iT9) = vT0(iT J + B„vTo(B;oiio) = -B v (21a)

%2
on R . Since v _(•) and v (•) are uniformly increasing with bounded

Jacobian matrices,

WhJ mJ;L2(iL2> +B22JvI2C(B221L2)B22 <21b>

is upd with bounded Jacobian matrix. This implies that J-(w) is upd with
g

bounded Jacobian matrix [23,24], where w = -B vp.

Since Bn is J^ x 1 and B21 is %2 x1 and the only port-branch Tl

must belong to at least one fundamental loop, we know that at least one of

these two matrices; namely, B ^ and B2 ,has rank 1. Taking derivative of

(20), we obtain:

£p(Vp) -bJ1J£li.(-B11vp)Bu +B^Ji-(-B21vp)B21
Since both J- (•) and J*(«) are upd matrices with bounded entries and

LI 8
either B.^ or B21 or both has a maximal column rank, i.e. one, ip(«) is upd

A

and bounded. That is, ^\) is strongly uniformly increasing. Note that, by

a theorem in [23,24], we can also write vp = vp(ip) where vp(.) is the in

verse function of i (•) defined in (20), and v (•) is also a Ck+1 uniformly

increasing function with bounded derivative on R . Q.E.D.

Due to some technical difficulties, we are unable to present a closure

property on uniformly increasing 1-ports. However, based on the works of

[21] and the preceding two properties, we conjecture that uniformly increas

ing 1-ports are closed.
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Property 6. Closure Property for Singular 1-Ports.14

Arbitrary interconnection of singular 1-ports is also singular.

Proof. Let JO be a1-port containing singular 1-ports only. Since each

element in jy is characterized either by an empty set (dimension = -1) or

by a set of isolated points (dimension = 0) on the v-i plane, the driving
A

point characteristic of JU contains at most a set of isolated points and

hence is singular. Q.E.D.

Property 7. Closure Properties for Passive, Lossless and Nonenergic 1-Ports.
A

Let ^A) be an n-port containing passive {lossless, nonenergic} 1-ports.

Then JVI is passive {lossless, nonenergic}.

Proof. Let ip - [i ,i ,•••,i ] and v. = [v ,v ,---,v ] be the port-
Pi P2 Pn p Px P2 Pn

current and port-voltage vectors, lfe and vfc be the k element's current and
A

voltage, k»l, 2, •••,b, where b is the total number of elements inside J\\.

Then Tellegen's Theorem [25] states

b

<ip»vp> =» £ vi (22a)
j-1 J J

If* <ip(t) ,vp(t) >dt-if £ VjCOijCOdt (22b)

Equation (22a) implies the closure of lossless and nonenergic 1-ports while

(22b) implies the closure of passive 1-ports. Q.E.D.

IV. DECOMPOSITION AND SYNTHESIS OF NONLINEAR N-PORTS

In [1], we have shown that every antireciprocal n-port with a hybrid

representation (including i-controlled and v-controlled representations)

can be described by y = Hx + c, where H is an nxn constant matrix, c an

n-vector and [x,y] = 23[v,i] for some 2n x 2n permutation matrix £. Hence,

140p. Cit.
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it is clear that the well-known result "Every linear n-port can be decomposed

into a reciprocal and an antireciprocal n-port" does not admit a nonlinear

generalization. In this section, we introduce a new class of n-ports which

permits a partial generalization of this result to nonlinear n-ports.

Definition 1. An n-port J\J with a C i-controlled representation v = f(i)

{a C v-controlled representation i = g(v)} is said to be quasi-antireciprocal

if Jf(i) {J (v)} can be written as:

Jf(i) = Jx(i) + J2(i)

{Jg(v) =Jx(v) + J2(v)}

(23a)

(23b)

where J^*) {J^-)} is a diagonal matrix and J2(«) {J2(')> is askew symmetric

matrix. Notice that the decomposition in (23) is unique. We will henceforth

call a matrix that admits the above decomposition a quasi-skew symmetric

matrix.

The motivation for introducing quasi-antireciprocal n-ports is partly

given by the next theorem.

Theorem 2.

Every 2-port J\l with aC i-controlled {v-controlled} representation

can be realized by a series {parallel} connection of a reciprocal 2-port
A

J[J and a quasi-antireciprocal 2-port J(j .

Proof. Since the proofs for both cases are similar, we will present the

i-controlled case only.

Let the desired 2-port (J\J be represented by

v =
fi(1i>V

f2(iri2)
= f(i) (24)
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where i =[i^i^. Let the quasi-antireciprocal 2-port JO be represented by

y s
gl(irI2)

s2C±v±2)
g(i) (25a)

and the reciprocal 2-port ^Jj be represented by

v »

. ..A A

h2(iri2)
h(i) (25b)

The problem is to find g(.) and h(.) of (25) such that when JJ and Jj
connected in series, as shown in Fig. 9, i.e., i, = L = i and i = i =

1 11 2 2

I2, the resulting 2-port is represented by (24).

are

Taking the Jacobian matrix of (24), we obtain:
^af^i) a^ar

Jf(i) 9il 9i2
3f2(i) 3f2(i)

Let

L. 9il 9i2-J

^l^ A 1
————— :c —

ML 2

9fx(i) 3f2(i) 3fx(i) 3f2(i)
3i. 3i.

Si- Si.
i=i

ag2(D A 3g;L(i) 3^(1) 3f2(i)
3i. 3i. 3i, 3i

1 J

(26a)

(26b)

MVV ° 2fl(Il'i2) " 2J t9f2^rz2)ail^dz2 +kl(il} (27a)
a2

il
g2(i1,i2) - - i J [3f1(z1,i2)/ai2]dz1 +I f2(iri2) +k2(I ) (27b)

where a± and a2 are arbitrary constants, k^-) and k2(«) are arbitrary
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functions of i- and i. respectively. Let the quasi-antireciprocal 2-port

{J\l be represented by (27). It remains to find the representation h(*) of
A

the reciprocal 2-port Jl/ . Let

3h1(i) A 3^(1)

3i.
3i.

ag^D

3i.

af1(i) agl(i)
(28a)

3i. 31.

i=i i=i

3h2(i) A 3f2(i)

3i. 31.

3g2(D

3i.

3f2(i) 3g2(i)
(28b)

3i. 31.
i=i i=i

From (28), we can certainly find h(«) (by integration). If the computed

h(») satisfies the following two equations

ahjU)
_______ — __

2
3i„

3f (i) 3f (i)
+ *

3i. 3i.

3h2(i) 3hx(i)

3i.
1 "~2

A

then ^JyJ is clearly reciprocal and it can be shown easily that

3i.

Jf(i) = J (i) +v£>

J i«i

i=i i=i

3f (i) 3f (i)
—± + —£

3i. 3i,

(29a)

(29b)

By an appropriate choice of the constants of integration in (28), we obtain

f(i) = g(i) + h(i)
i=i i=i

Hence, it suffices to compute h(') from (28) and show that the resulting

function satisfies (29). Integrating (28), we obtain:

h1(i1,i2) =i f^i^i,,) +\ j [M2{±vz2)/Zi^azfk^ij
? a2

, /i
h2(±v±2) =- J [3f1(z1,i2)/3i2]dz1 + | f2t±v±2) - k2(i2) (30b)
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By taking appropriate partial derivatives of the functions in (30) ,we

obtain (29) easily. This concludes the proof of Theorem 2. Q.E.D.

Example 8. An Example to Illustrate Theorem 2.

Suppose we want to realize a 2-port J[j defined by the following Ebers-

Moll equations:

±1 =A1[exp(Kv1)-l]-B1[exp(Kv2)-l] -f-^v.^)

i2 =-A^expOCv^-l] + B2[exp(Kv2)-l] -f2(vlfv2)

By Theorem 2, Jj can be realized by aparallel connection of aquasi-
antireciprocal 2-port J(J defined by (from (27)):

il "81(W °2AitexP(Kvi)-i] -\ B^expOCv^-l]

+yA^fexpOCv^-l] --| ~-[exp(Kv2)-l]

1 r - 1 B9-2[A^A^HexpGCv^-l] -| [Bx+ ^ ][exp(Kv2)-l]

1 \l2 =*2(W ="2[F" +A2]fexp(kv1)-1] +-| [B.^ B£] [exp(Kv2)-l]
A

and a reciprocal 2-port JU defined by (from (30)):

£1 =hl(VV =2IVVz11^^"^ - \ tV K2" Hexp(Kv2)-l]

i2 =h2(Vl,v2) - - i [- ^ +A2][exp(kVl)-l] +| [-BlVl+B2][exp(Kv2)-l]

Here, we have let k.^-) =0-k2(.). Notice that each 2-port (J/can be de-
-* A

composed into many distinct pairs of Jl/ and J[l .

Definition 2. A C v-controlled {i-controlled} n-port J(l is said to be

(i) in the class ^^q if Jv can be decomposed into areciprocal i-controlled

{v-controlled} n-port and a quasi-antireciprocal i-controlled {v-controlled}

n-port.

-30-



(ii) separable if ^A/ can be represented by

n n

vi - E fik(ik) {±Jl ° 2 8lk(V} J » i, 2, ..., n
J k«l JK K J k=l Jk k

(iii) simply coupled if (_A) can be represented by

where i= i±v±2, •••, i_] and v= [v1,v2, •••, v ].

Lemma 1.

(i) Every separable n-port is simply coupled.

(ii) Every simply coupled n-port is in the class oA/-__-.
R+Q

Proof. Statement (i) is obvious. We shall prove the i-controlled case of

Statement (ii) only.

hetijyj be represented by

n

Vj =k?x WV J=1» 2, ..., n.

For each j > k = 1, 2, •••, n, let us define the following:
i

(31)

18

[3£kj(zf1j>/3ijidzk (32a)

vvy =-1V [8wv91^+1 vvv (32b)
a

J

h

[3fkj(vV/3Vdzk (33a)
ak

1.

VW =I f J t9£3k<»3.1k)/alkld»j +I VVV (33b)
18

It doesn't matter whether one chooses j>k, or k>j. The resulting
decompositions may not be identical, but lemma 1 remains valid in either
case. Observe that (32) and (33) are modeled after (27) and (30) with
kx(.) Ak2(-) - 0.
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LI

'j " E Sjk^j'V for j=1, 2, ..♦, n (34)

n

V ° E ^Ir^'^ +^(W f0r J » 1. 2. •••» n (35)
k=l

k^j

'j ^Vj^^Jj^j^

where a Mai»ao» ♦••» a ] is a constant n-vector.

•» A

Let <^flj be an n-port represented by (34) and let _y\) be an n-port represented
•*» A

by (35). It is clear that Jv is quasi-antireciprocal and JVf is reciprocal.

Furthermore, if we connect <_A| and<_A| in series, the result is the desired

n-port (^\| prescribed by (31). Q.E.D.

Remarks 2.

It has been shown in [26] that nonlinear systems with prescribed singu

larities can be realized by the following canonical form:

xx " gx(x2)

_2 - f2(x2)g2(x3) + h2(x2)

x T-f ..(x -)g n(x)+h -(x -)
n-1 n-1 n-1 °n-l n n-1 n-1'

x - f (x )g (x,) + h (x )
n n n n 1 n n'

This system can be synthesized by connecting n linear capacitors across a

simply-coupled resistive n-port characterized by the above equations (with

x. and x. replaced by v and i , respectively). It follows that a nonlinear

network with prescribed singularities can always be synthesized with a

reciprocal and a quasi-anti-reciprocal n-port and n linear capacitors.

Since a very large class of nonlinear n-ports can be decomposed into
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a reciprocal and a quasi-antireciprocal n-port, the problem of synthesizing

n-ports belonging to the class o\L__- reduces to that of synthesizing a re-
K+Q

ciprocal and a quasi-antireciprocal n-port. This observation motivates the

following study on the structure and realization of quasi-antireciprocal n-

ports.

Lemma 2. Properties of Representation Functions of Quasi-antireciprocal

n-Ports.

Let f=[f1,f2> •••, fQ]: Rn -*• Rn be aC2 map such that Jf(x) =
Jx(x) + J2(x), where x= [x^x^ •••, xn], J^x) is diagonal and J (x) is

an n*n skew-symmetric matrix. Then

(i) 3f.(x)/3xk is a function of x and x, only for all

j t k - 1, 2, .-., n (36a)

(ii) 3f (x)/3x can be written as:

n

3f (x)/3x = £ h. (x.,x.) j = 1, 2, -., n (36b)ijW/axj- EV^V j-i,

(iii) f (x) can be written as:

n

f.(x) = £ fik(xi'\) J= 1, 2, •••, n (37)
k=l J J

Proof. Let A(x) = [a±j(x)] =Jf(x), i.e., a (x) = 3f±(x)/3x

V i, j = 1, 2, ••-, n. Since f(.) is C on Rn, we have:

3x~~ [aik(x)] = 3x7 [a±1<*>] Vi, j, k = 1, 2, ••., n (38)
j He J

By hypothesis, we have:

aij(x) =" aji(x) Vi^j=1, 2, •••, n (39)

Assume i 4 j 4 k. By repeated use of (38) and (39), we obtain:
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3^ [aik<x>l ""1_J Ki(x)] ""3^ t\jWl • aJ£ i«Jkwi (*0a)

~J [aik<*>J -^ !•«<»)] ""3^ la31Wl ="a^ I-3k«] (««»)
Equation (40) implies that a .(x) is independent of x. for i 4 j 4 k = 1,

2, •••, n. Consequently a k(x) depends (at most) on x and x^ only V j 4

k = 1, 2, •••, n. Hence, (i) is true.

Let k = i in (38), we obtain:

i^I'_«'--S- [*««*>] (41)
Equation (41) holds for all i, j = 1, 2, •••, n. Assume i 4 j. Since

a..(x) is a function of x. and x, only, we conclude that 3[a .(x)]/3x. is

also a function of x. and x only; namely,

n

ai±(x) - £ hik^xi,xk^ Vi= 1, 2, •••, n.
k=»l

This proves (ii).

19 n
Since Vf (x) is always a state function [27,1] on R , we have [28]:

n rl 3f.(tx)
f4(x) = E I -^ hrdt <42>J k=l J0 Sxj^

Substituting (36) into (42), we obtain:

f,(x) -
k

•t i=l

n /-l

E I aik(t3Vtxk)xkdt
iMi Jo J J

h (tx ,tx±)x dt (43)

Let S be a convex subset of Rn. A C1 function h: S ->• Rn is said to be
a state function on S if J.(x) is symmetric for all x £ S.
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For each j 4 k = 1, 2, •••, n, let

Vxj-h) kI [Vtxj-^kK +hjk(txj.t\>*J]dt (44a)
and for each j = 1, 2, •••, n, let

f..(x.,x,) - f h..(tx,,tx,)x.dt (44b)
33 3 j J0 JJ j J J

Substituting (44) into (43) , we obtain (37). This completes the proof of

Lemma 2. Q.E.D.

In view of Lemma 2, we have the following theorem on the structure

of quasi-antireciprocal n-ports.

Theorem 3.

Let J\l be a quasi-antireciprocal n-port with a C v-controlled {i-con

trolled} representation i - g(v) {v~f(i)}. Then _A/ can be realized by an

appropriate parallel {series} connection of n(n-l)/2 quasi-antireciprocal

2 2 2
C v-controlled {i-controlled} 2-ports and n C v-controlled {C i-controlled}

1-ports.

Proof. Since the proofs for both cases are similar, we will consider the v-

controlled case only.

In view of Lemma 2, we can write g - [g1,g2, •••, g ] as follows:

n

gj(v) = £ gjk(Vj,vk) j«1, 2, •", n (45)

2 2 iwhere gfc(x^ >xfc) are C functions on R . Letjv.. be a 2-port described

by:

'jw'VvV (46a)

*k<j>= «kj(W (46b)

where j>k= 1, 2, •••, n. Since 3g (v)/3vk =- 3gk(v)/3v. Vk j» j = 1,

-35-



2, •••, n, (45) implies

!!_____ =. !!__v_l W)
3v, 3v, v J

2
Hence, _A/.W is a quasi-antireciprocal 2-port with a C conductance repre

sentation as given by (46). This is true for all j > k = 1, 2, •••, n.

That is, there are n(n-l)/2 of them. For convenience, let us label the

two ports of Jd' as follows: the port defined by (46a) is called the j(k)

port and the port defined by (46b) is called the k(j) port. In addition,

let U\l denote the 1-port described by

W"8JJ(VV J-l. 2. -.» (48)

Then^^A is a v-controlled 1-port. Let ^J be the n-port obtained by con

necting in parallel across each port, say port k, the following:

(i) port k(j) of JU for j = k+1, k+2, •••, n

(ii) port k(j) of-A^. for j=1, 2, •••, k-1
(iii) the 1-port J{l.

where j = 1, 2, •••, n. Fig. 10 shows how these connections are made in

the case when n ~ 4. Hence, we have

n n

h m2 HcU) =5 «kjcW =8k(v)
where i , v, are the port current and port voltage at port k of^v • That

is> _A/ is represented by i = g(v) . Hence ,J[j and _AI are equivalent. This

completes the proof of Theorem 3. Q.E.D.

Remarks 3.

In view of Theorem 3, the problem of realizing a quasi-antireciprocal

n-port is reduced to that of realizing quasi-antireciprocal 2-ports. It

can be shown that a quasi-antireciprocal 2-port can be synthesized by
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(a) a cascade connection of a reciprocal 2-port and a gyrator.

(b) a cascade connection of a reciprocal 2-port and an NIC.

(c) an appropriate connection of a reciprocal 2-port and a controlled

source.

We will establish the validity of remarks 3 for the case of i-controlled

2-ports only. The case of v-controlled 2-ports can be established by duality

Suppose we wish to realize a 2-port J[l represented by

Vl = S_(iri2)

v2 = g2(i1,i2)

(49a)

(49b)

where ag^^/a^ --ag^l^i^/a^ V i±v±2] eR2, i.e., J, is
quasi-antireciprocal.

(a) Consider the circuit In Fig. 11(a). The problem is 1). To find the

representation of j\JR so that the composite 2-port has the characteristics
represented by (49), and 2). To show that J(jR is reciprocal.

With the references shown in Fig. 11(a), we find that if v3 - g (i ,-v.)

and i^ -- g2(_3,-v^), then the composite 2-port ^ty is represented by (49).

Hence, J[j is represented by

= h(i3,v4) =
lVWj

«i<W

.-62(i3,-v4)

Note that 3h4(i3,vA)/3i3 =-3h3(i3,v4)/3v4 V[i^] eR2. Hence, J,R
is reciprocal [1].

(b) Consider the circuit in Fig. 11(b). With the references defined in

Fig. 11(b), we can show that if^ is represented by

w-v

Lg2(i3,-i4)j
= h(i3,i4) (50)
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then the overall 2-portj\j is represented by (49). In addition, the Jacobi

matrix J^i^i^,) is symmetric. Hence _Ai is reciprocal [1].

(c) Consider the circuit in Fig. 11(c). It is clear that if_A/'R is repre

sented by (50), then_A/ is represented by (49). From (b),:AL is reciprocal.
R

Remarks 4.

It follows from Remarks 3 that every v-controlled or i-controlled

2-port can be realized by two reciprocal nonlinear 2-ports and a

non-reciprocal linear 2-port. Moreover, it follows from case (b) of

Remarks 3 that the two reciprocal nonlinear 2-ports can be combined into

one equivalent reciprocal nonlinear 2-port. Similarly, every nonlinear

n-port belonging to the class lAL+q can be realized by two reciprocal

nonlinear n-porte and a non-reciprocal linear n-port.

an

V. CONCLUDING REMARKS

The representation of composite nonlinear n-ports in explicit topological

form as presented in Section II constitutes only the first step toward the

formulation of a unified theory of nonlinear n-ports. The numerous criteria

summarized in Table 2 could serve as the vital link toward a systematic

study of dynamic nonlinear networks where the dynamic elements are extracted

as "loads" across a resistive n-port. The closure properties presented in

Section III and the decomposition theorems derived in Section IV could serve

as a foundation for the synthesis of nonlinear n-ports. Since not all n-ports

(n > 2) can be decomposed into a reciprocal and a quasi-antireciprocal n-ports,

we close this paper by posing the following unsolved fundamental problem:

Characterize the class _A/(?) of nonlinear n-ports such that every resistive

n-port (n > 2) can be decomposed into a reciprocal n-port and a member of

J/(-?).
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APPENDIX A

Proof of Closure Property 4. Let v and i be the port voltage and port

current of the created 1-port ^M , respectively.

Suppose ,^\j is created by a plier-type entry through a wire in .J(l as

shown in Figs. 12(a) and (b). Since^v contains only increasing and proper

1-ports, any tree T of _A/ will satisfy the assumptions of Property 2. Hence

,J\J is v-controlled and the representation function i = g(v) is continuous

and non-decreasing.

Let _AJ be the network obtained from _j\| by terminating the only port

of uA) witn a current source as shown in Fig. 12(c). Since ^/ is created

by a plier type entry, there is a loop in_A! containing the port current

source. By i-shift theorem [16,20], the port current source is shifted

through that loop of J\l containing the port current source. The composite

elements (containing the original 1-port in parallel with the shifted current

source) in the loop is still increasing and proper, and the port voltage v is

equal to the algebraic sum of the voltages of the elements in the loop. Let

o^IS be the network resulting from the i-shift transformation. Then all

elements in ^' are increasing and proper. Hence, _A/__ has a unique solu

tion [20,22], That is, for each value of the port current source, there

corresponds uniquely a value of the port voltage. Hence, ^{j is i-controlled.

This means that (J\j is both i-controlled and v-controlled. Hence _A/ is

proper and increasing.

Suppose now the 1-port (jty is created by soldering-iron entry across

two nodes IvnjV as shown in Figs. 12(d) and (e). Since _A/ contains only in-

creasing and proper 1-ports, by Property 2, ^j is i-controlled and the

representation function is continuous and non-decreasing. Let_yl/_ be the
E
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network obtained by terminating the only port of J[j with a voltage source

as shown in Fig. 12(f). Since we can always choose a tree T which contains

the port-voltage source for.^y' and that all other elements int^A/' are proper

and increasing, it follows from a theorem in [20] that,jty has a unique so

lution. That is, for each value of the port voltage source, there corres-

ponds a unique port current for J(J . Hence _A/ is also v-controlled. This

implies that _Ai is increasing and proper and our conclusion follows. Q.E.D.
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LIST OF FIGURE CAPTIONS

Fig. 1. Examples illustrating the complex nature of the composite v-i

curve corresponding to two resistors with rather simple v.-i

curves in series.

Fig. 2. An example showing simple interconnection of nonlinear resistors

with a current-controlled current source could lead to a composite

v-i relationship consisting of line segments and isolated points.

Fig. 3. ,An example showing simple interconnection of nonlinear resistors

with a current-controlled current source could lead to a composite

v-i relationship consisting of subsets of points having a finite

area.

Fig. 4. An example of a unicursal 3-port and its circuit realization in

terms of two controlled sources.

Fig. 5. An example of an intersection 3-port and the arbitrary composite

v-i relationships that could be realized in terms of two nonlinear

resistors and three controlled sources.

Fig. 6. An illustration of an n-port J\J and its associated network^'.

Fig. 7. A3-port JJ and its associated network graph Q with T={4,5,6}

and L= {1,2,3} =Q .

Fig. 8. Examples for illustrating the non-closure property of various n-

ports.

Fig. 9. A canonic current-controlled 2-port synthesis method consisting

of a series connection of a reciprocal 2-port and a quasi-antirecip

rocal 2-port.

Fig. 10. Example illustrating the synthesis of a quasi-antireciprocal voltage-

controlled 4-port in terms of nonlinear 1-ports and quasi-anti-
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reciprocal 2-ports.

Fig. 11. Synthesis of a quasi-antireciprocal 2-port in terms of a reciprocal

2-port and a gyrator, an NIC, or a controlled source.

Fig. 12. An illustration of various 1-ports created via soldering iron or

plier entry.
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Table 1. Collection of Hypotheses for the "Assumption Column" in Table 2.

* Hypochusis

I
!"AW

T1

K

••CM-1)

B(k+1)

j'^ACkfl)

"'Hk)

T2bB

lA(k)

b

SMc

t N,

Statement of the Hypothesis

S c2 k
T2j vT2 - vT2(iT2) where v^i K - R la C ,

T2
(•) is nondecreasing on R .

(•) is increasing on R
T2

J^ (•) ia psti and symmetric ou R
VT2

I z

^2: hi ' £L2(VL2> Where £L2: R2*R2*
• 2

and J? (•) is pd and symnetric on R .
T.2

L2: v. „ «=» v.L2 'L2(iL2) ;** 'L2
2

and J* (•) is pd on R .
VL2

where vT„: R2•* R2is cf0*1'

"« vL2a "*U.<W "he" V a'*" *̂ ',Tlb
I

is Ck+1 and J- (•) is upd on R 2a.
VL2a

/* \ ..v^>„ * . d 2b ^ p 2b
"T2b •TZb'HCZb' ""*" 'T2b "

is Ck.

2bv_2. (•) is nondecreasing on R

T: vT -v^) where vT: RC +RC is Ck.

v_(*) is nondecreasing on R .

v (•) is increasing on R .

B.. has rank t..

B-. has rank t..

B_ has rank t.
T

li» lvt2 +B22;I2 .(B^fru))l
'"L2* *

"» lvL2<iL2)+B22^T2°<B22iL2>1liL2l -«

Hypothesis

LI
AGO

LI.

LI,

LI,

Statement of the Hypothesis

L1S lLl " ^Ll^Ll* whoreiLl! * X- * Xl« Ck.
1i .(•) is nondecreasing on R

!..(•) is increasing on R

J» (•) is psd and symmetric on R .
Hi

T1A(k+D JT1: VT1 "VT1(1T1) Where VT1: RX;RXis Ck+1
and J« (*) is pd and symmetric on R .

vT1

Scrf-D T1: hi " Si^n* wh*re ^r r'1 -r'1 is Ck+1
and J? (•) is pd on R .

*T1

tlb Clb:ib: !„,. - £_,. <v_t.) where !_.. : R - RA(k+1) iXD- xTlb *TU>^TIbJ Tib

t.

U9
A(k)

Llf

*A(k)

"d

h

"f

is Ck+1 and J* (•) is upd on R lb.
HDlb

T_U. < m 4 frr "\ wVio-ro i : R R
"Lla "Lla' Lla' Lla

is C .

la
£ (•) is nondecreasing on R

L: iL « :L(v.) where i_: R" •+ R is C

i.(•) is nondecreasing on R .

iT(*) is increasing on R .
1*

6 . has rank £-.

3-. has rank l^'

B_ has rank I.

lim li^-B^L •(-B11viri (!„.,))
Tl 11 LI x 11 Tlv Tl'

ll_J *'Si'

"* ,iTl(vTl)-BLlU0(-BllVTl>l
Tl



Table 2. Conditions for the Existence of Various Honlinear n-Port Representations Via Topological Matrices

Cases Assumptions

gp - Tl UL2 and

(HI> T2A(k) +UA(k)

Qp - Tl UL2 and

2A(k) ' ~A(k)

T2B + UB

9f- Tl U L2 and

<HS> T2A(k) +UA(k) +T2C

+ UC+MA + ME

Conclusions

^\J has a C hybrid

representation

Si -*Zi**n*n> <"•>
vp2 -^^.y

Jy has a <T hybrid

representation (a )

and (J\ is nondecreasing.

<^M has a CT hybrid

representation (o ) and

^AJ is an increasing n-port.

gp -Tl UUb and 1^ has aC**1 hybrid

+"Vk+l) + T2B

Qp - Tla UU and

(H) UA0*1) +T2A(k+l)

+ TlbA(k+l) +"»

representation:

hi " Sl^Pl'W

VP2 " VP2(vPl*1P2)
(«b)

Jl has a d**1 hybrid

representation

*pj a *T»1 'VD1 »*m)Tlv P1»TP2'

-c
<aC)

Vp2 » vp2^vpi'1P2)

ip - UP1.ip2J, vp - lvpl,vp2], ipi - -iT1, ip2

VP1 VT1* P2 L2

n»t1 + £2

%&?vhJ *"biAi°<-biivpi +B2CiS2>
v^(vpltip2) A-Bnvpi -B22vT2o(-B^ip2)

~hl>

1. ip - £4pi.4Fal. vp - [vpi.vp2]. lpl - - in, ^ =-i^,

VP1 ' VT1* VP2 Ub

n " 'l + *2b

"^Pl'W " -Bn£Ll°(-BllVPl>-B21ag<-B21aVPrB22bS2>

vj2(vpl,ip2> £-»21bvpl-B22bvT2.(Bj2ag(-a21avpi>aJ2bip2»
*2a^ A2a k+1

Where g: R x R -• r is the C function such that

«<f<*l2.'Bl2bS2>-BLbS2> A±L2.«
f(8(-B21aVPrB22b1P2)»B22b1P2) A"B21aVPl
and f: R 2a xR2* R 2a is a C^1 function defined by

f<1L2a'B22biP2) " VL2a(1L2a> + B22a^T2°<-B22aiL2a-B22biP2)

• 'B21avPl

1. ip - [lprlp2]. vp - Ivpl,vp2], ipl - -iTla, 1^ « i^,

'PI vTla* VP2 'L2

n " Cla + £2

£?1(VP1»1P2) B-Bnc£Lr^BllcVPrBlld8(-B2tld1P2'-BllcVPl))
vj2(vpi,ip2) &-B21cvpl-B21dg(-B^ldip2,-Bncvpl)

-B22vT2o(B^ip2)
lb 1 lb _k+l

where g: R x R x + r w i8 the (T function such that

g(f(vTlb,-BUcvpl),-Bllcvpl) Avnb

f<8<-B2tldiP2'-BllcvPl).-BilcVPl> fi -B21diP2
andf: R x R + R x is a C function defined by

A *
f(vTlb»-BllcVpP " W^W-^iAi-C-HTlb^Tlb'-llc^l^^llc^rBndVTj,,)'

(o )

<ab)

-3
21c

(aC)

~B2idip:d



'ttj)

vb. I and

'!(CJ>

Qp =Tl UT2a ULib UL2

and

Llawi „ + T2b,
A(k) 'A(k)

Q - Tl UT2a ULib UL2

LlaA(k) +T2bA(k)
f LiaB+T2bB

gp - Tl and

T2A(k+l) + T2D + L2A(k+l)

j l+L1A(k+l)+NA

kcj)

KG*)

ffy

i«6

%)

g - Tl and

"2A(k+l)+ T2D +L2A(k+l)

+ l1a/i^.i\ + LI, + MAA(k+1) B A

gp - Tl and

T2A(k+l) +T2D + L2A(k+l)

+ L1A(k+l) + NA + elther

(Llj +ly or (Llc + MA)

Op -T1
T2

and

A(k+1) + T2B + L2B(k+l)

l+UA(k+l)+NB

9p « Tl and

T2A(k+l) + T2B + L2B(k+l)

+ L1A(k+l) + UB + NB

l_l

gp -Tl and

T2A(k+l) + T2B + L2B(k+l)

+ L1A(k+l) + NB + either
(L1B + Mjj) or (Llc + MA)

J\\has aC hybrid

representation

1P1 " 1Pl(vPl,vP2,1P3,iP4)

ip2 -^2(vri-vP2'1P3'1P4) <ad)

VP3 " VP3<VP1,VP2,1P3,1PA)

VP4 ' vP4(vPl,vr2,1P3,iP4)

1/ ktJVJ bas a C hybrid

representation (a ) and ^\j

is a nondecreasing n-port.

(^Ajhas a (; v-controlled

representation

i, -i|(vp) <6a)

J
k+1

has a C v-controlled

representation (6a) and ^M is

nondecreasing.

(J^ has a (; v-controlled

representation (6a) and ^\j is

an increasing n-port.

.k+1(_\f bas a C v-controlled

representation

i - £b(v )ip VV (6b)

;_AI has a (i v-controlled

representation (8 ) and -Jvl is

nondecreasing.

Je+1(^ has a C v-controlled

representation (8 ) and ^\l is

an increasing n-port.

PI' P2* P3* P4J IvPl'VP2'VP3'VP4j> hi' "Si

ip2- "^a^PS - •±Llb,iP4 " _iL2,VPl " VT1,VP2 = VT2a'

VP3 " VLlb,VP4 ' VL2

2. n - tL f t2a + iXb + l2

3. ^1(Vp1.vp2.lp3.ip4) A-BjlaiLla« (BllaVPl> + BllbiP3

+ B21iP4

£P2(vPl»VP2'1P3'iP4) " ~B22ch* A

^p3(Vp1,Vp2,ip3,ip4) A-BUbvpl
(a)

Vp4(Vp1,vp2,lp3,ip4) * -B21vprB22cvp2-B22dvT2bo(-B^dip4;

P 7E1' P Tl

2. n " t.

3. ^V 4-Bll£Lie(-BllVP>-B21iL2^(-B21VP^ (8a)

h h
where g: R •*• R is the inverse function of

k+1 -. A2 l2
the C -di££eomorphic oato uuippiug Z: 5. »• Ii bj

f<VU> • VL2 +^Tl-^nhW ' -B2lV

1. ip- -iT1, vp - v^

2. n - t.

3. W 4 -Bll£Ll°<-BllV-B2l8°(-B21VP> (eb)

A2 A2
where g: R -»• R is the inverse function of a

(f" -diffeomorphic onto mapping f: R -*• R defined

by

l<1L2>^L2(1L2>+B22V<B22iL2>



(Gj) Op- T and

UA(k)

gp - T and
«91

W> + LB

<«5>
gp - T and

LA(k) +H +MC

(•?

<♦

<R?)

(Rj)

(R2>

<"5>

(R?)

(19

CR^)

Qp - L2 and

UA(k+l) +"B +^ACk+l)
+ KA(k+l) + »C

Op'"

LI

and

'Vk+l) +"d +T1A(k+l)

+ T2A(k+l) + T2B » HC
gp - L2 and

L1A(k+l) +L1D +T1A(k+l)

+ T2A(k+l) + NC + either
(T2

LI

B ' "D' "r K""C r *V

L2 and

A(k+1) +Lh + T1B(k+l)

+ T2A(k+l) + ND

gp - L2 and
L1A(k+l) +hh +TVk+l)

+T2A(k+l) +T2B + ND

gp - U and
LiA(k+l) +"l +T1B(k+l)
+ T2A(k+l) +% + •"*•*
(T2, + ttj or (T2„ + HJ

gp - L and

A(k)

Qp - Land

A(k) + TB

yp • L and

TA(k) + TB +"F

^ has a (T v-controlled
representation

h "£?<V <ec)

;J(| has a CT v-controlled
representation (fic) and J\j
is nondecreasing.

^AJ has a (T v-controlled
representation (8C) and o\J
is an increasing n-port.

„k+l(JMhas a C i-controlled
representation

vp - vjdp) (y*)

v^VJhas a C i-controlled
representation (y*) and ^
is nondecreasing.

J\i has a Cr i-controlled
representation (y*) and (_A1
is an increasing n-port.

(JUhas a (T i-controlled

b,

representation
-b

rPvp - Vp(ip) (y )

(JDhas a <; i-controlled
representation (y ) and J\j
is nondecreasing.

<^/\jhas a <; i-controlled

representation (y ) and <J\j
is an increasing n-port.

ii k
^Ajhas a C i-controlled

representation

cvp - v£(iD) (Yc)

(JV) has a C i-controlled

representation (y ) and o\!

is nondecreasing.

if k(./\J has a C i-controlled

representation (y ) end.^Jy

is an increasing n-port.

1. ip - -iT, vp - vT

2. n - t

3. £pc<V * -btV("Vp> (BC)

l" *P " "JL2» VP " VL2

2. n « £,

3. v*(ip) --B21vn«>8-(-B^ip)-B22vT2o(-Bj2ip) (Y3)

where g: R •*• R is the Inverse function of the C

h h
diffeomorphic onto mapping f: R •> R defined by

*<*!!> * hi -»lliLl-<-»uSl<1tl»

X- S ""^ VP " VL2

2. n - £„

3. vb(ip) A-B21I«(-B^ip)-B22vT2o(-B^ip) (Yb)

- Cl Cl
where g: R -*• k is the inverse function of the

CT -diffeomorphic onto mapping f: R •* R

defined by

f(»n) »^v - bJ1£u«(-b11(vt1).

1. i_ a —i .V "Va. ip iL, Vp vL

2. n - I

3. v^Cip) A-BTvTo(-B^ip) (YC)

__
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