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Consecutive Retrieval Information System

Ph.D. Dissertation Kapali P. E6waran Department of Electrical
Engineering and Computer Sciences

Chairman of Committee

ABSTRACT

The work reported here is in the nature of a general

.optimization problem applied to storage organization techniques.

We assume that we know in advance the set of queries Q regarding

a file F. The file F is to be stored on a "linear storage

medium" so that efficiency of retrieval is maximum and the storage

space required is minimum. A storage medium S is called "linear"

if the 8torage locations of S can be arranged linearly and the

access time between any two locations is an increasing function

of the distance between them. We analyse the existing file

organizations: sequential, index sequential, inverted and

multilist file organizations. We observe that though the efficiency

of retrieval in an inverted file organization is high, because of

unnecessary generality it is not high enough. Based on the

principle of inverted file organization, a query inverted file

organization (QIFO) is proposed. Let Q - {q , q ..., q } be

the family of queries regarding a file F. In a QIFO for Q w.r.t. F,

for each query q € Q all the records that are relevant to q are

stored in consecutive storage locations. If in a QIFO, each record is

~ i -



stored only once then the QIFO is called a Consecutive

Retrieval File Organization (CRFO) 15]. QIFO provides minimum

overall retrieval time for all queries and CRFO guarantees minimum

storage space in addition to minimum overall retrieval time. The

CR property is generalised to a set theoretic one. Let

q «= {q q , ..., q } be a family of finite, nonempty sets and

S « U {q }. Suppose there exists a one-to-one function f that
q< € Q

maps the elements of S into points in the real line R such that

for each set q € Q there is an interval I± containing images of

all elements € q but not images of any elements not in q^ Then

we say that Q is linearly orderable (L.O.). If we take each query

q 6 Q as a set of elements (a record corresponding to an

element), a query family Q has CR property iff the corresponding

family of sets Q has the L.O. property. We take a graph theoretic

approach to investigate the conditions under which Q has the L.O.

property. We establish a connection between the L.O. property of

Q, the intersection graph of Q [8] and an interval graph [8], [9].

We obtain necessary and sufficient conditions for Q to be linearly

orderable. We give an algorithm to find a linear ordering if

one exists and discuss the complexity of the algorithm. After

developing a CRFO on the assumption that the file and the family

of queries are time invariant, the problems of updating a CRFO are

taken up. Some nice results are developed. Several file

organizations that have similar structure as CRFO are introduced.

They are theoretically interesting and have practical importance.
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CHAPTER 1.

INTRODUCTION

Information retrieval is a means by which volumes of

information can be organized and handled in an efficient manner.

The storage and handling of such vast volumes of information by

conventional non-computerized methods has become in many cases a

formidable task. Computers are being used today to take over

information retrieval. They can perform millions of calculations

in a second, handle mountains of data and in many cases perform

more efficiently and accurately than humans.

Computerized information retrieval has become common in every

field of industry: research, engineering, finance, management,

marketing, manufacturing, inventory control and employee and

community relations. Hospitals maintain computerized histories of

medical records on all patients. Criminal investigation, census

and taxation are some of the governmental agencies in which

computerized information retrieval is prevalent. Space technology

is another field where pertinent facts must be readily available

in order to take split-second decisions. It can be safely concluded

that a computerized file organization is needed in many governmental,

social or industrial institutions that require complete, accurate

information immediately.

Along with the increase in speed of computers, there has been
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an increase in the volume and complexity of information to be

handled and there is a growing demand from the users to get the

information fast. This is particularly true in time-sharing

computer systems. The users in a time-sharing environment expect

the system to retrieve and respond with the information pertinent

to the questions asked as quickly as possible. The response time

and the amount of storage space depend on how the information is

organized in the computer.

Then, in order to use a computer properly for information

retrieval, it is important to acquire a good understanding of the

structural relationships present within the information (also

called data) and a good knowledge of how the data is going to be

used by the users. Usually the programmers or the system

analysts who design the organization for a file are not aware of

the needs of the users using the file. They provide too much

generality or too little.

A file is accessed by a user through queries. Suppose we

know in advance the queries the users are going to ask about a

particular file. We also know the answers to these queries. Let

the queries be equally probable. Using minimum storage space, is

there any file organization that guarantees minimum overall

retrieval time for all queries? The answer is in the affirmative.

We shall consider in detail such a file organization. First let

us introduce some terminology and the existing file structures.

• Z -



CHAPTER 2.

FILE ORGANIZATIONS

Generally speaking, the term "record" refers to a fact or an

e^ent or object of some kind. Consider the following sentence.

Sylvania can supply part number 300, which is a printed circuit

board, from their location at Palo Alto, California within 10

days at a cost of $20. If this is a fact, then this will be a

record. In order that facts may be stored, retrieved and updated

effectively in a computer, we need to put some structure to this

loosely stated word "record". If we look into our example more

closely, we can see that a structure is hidden in it. Sylvania

is a company that can supply part number 300 having printed

circuit board as its name from the location Palo Alto, California

within a period of 10 days at a cost of 20 dollars. The statement

assigns "values" to the "attributes": company, part number, name

of the part, location of the company, period of delivery and cost

of the part. Formally, a record is then a set of attribute-value

pairs. Our example thus becomes the record {(Name of the company,

Sylvania), (part number, 300), (name of part, printed circuit

board), (location of company, Palo Alto-California), (period of

delivery, 10 days), (cost of the part, 20 dollars)}. We note that

in our definition, we do not assign any particular position to any

element of the record. If on the other hand, we require that each

- 3 -



attribute-value pair in a record gets assigned a position defined

by a format, we have a formatted-record.

Considering our example, let the format be:

Name of company * 15A (i.e., 15 characters, alphanumeric, right

justified, blank filled) •* (symbol + denotes followed by) Part

number « 31 (3 digits, integer) •+ Name of part - '9A -»• Location of

company • 15A -»• Period of delivery • 21 -*• Cost of part « D6

(Decimal. The right most 2 digits constitute the cent part).

Our record then is "bbbbbbbSYLVANIA300P.C.BOARDPAL0ALTO-

CALIF10bb2000". b stands for the blank symbol.

A file is a finite collection of distinct records. Though

a good definition of a file should take into account the time-

varying aspect of the record collection (due to deletion and

addition of records), we shall not consider this in the definition.

This introduces unnecessary complications. We shall consider the

file to be invariant over a span of time. The updating problems

are considered separately in chapter 5. Strictly speaking, we do

not require that a file, when composed of formatted-records, have

a single fixed format for all the records in the file. We may have

a single global format for all the records in the file and for

the records which do not conform to the global format, local

formats may be used and stored as a part of the records themselves.

For simplicity, we shall consider the files as having a single

format for all its records. First, we shall give an example which

describes a file in its logical level.

Let each record of a file F have attributes A-, A9, ...» A^.
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Let V. be the set of values that A. can take. Then the file F
1 i

is a relation which is a subset of the product space V. * V„ *

.... x V and may be represented as a table [7]. This kind of

representation of a file is called a logical organization as

opposed to a storage organization which deals with the actual

storing of the file internally in the computer storage.

Example 2.1:Consider a file in which each record has the following

attributes: Part number, Supplier Name and Priority of the part.

Let the attribute part number take integer values from 100 to 999,

supplier name be any alphanumeric string up to 7 characters and

priority take any one of the three values, namely CRITICAL,

ESSENTIAL and ORDINARY. Figure 2.1 represents a file at the

logical level. Each row of the table corresponds to a record.

File Organization Techniques:

Any question that is asked by a user about a file which results

in accessing the file and retrieving information is called a query.

Given any file, we need to arrange the file on one or more storage

media so that the records pertinent to user queries may be

retrieved effectively. This arrangement is called the file

organization. File organization is storage organization. In this

section, v;e shall discuss a number of existing file organizations

and compare them. We will assume that the storage media on which

the file is to be stored are secondary storages like tape, drum or

disk. We shall use the file in example 2.1 to exemplify the various
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100 JONES ESSENTIAL

105 JOHN LO CRITICAL

100 FRISCH ESSENTIAL

110 BOSECH ORDINARY

105 DAD & SON CRITICAL

115 JONES CRITICAL

120 FRISCH CRITICAL

Figura 2.1. Representation of a File Tabular Form

(Relational Model).
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file organizations. The symbol * shall be used as a delimitter or

separator between the records of a file.

Sequential File Organization:

In a sequential file organization, the records of a file are

stored sequentially on the storage medium. To retrieve infor

mation, it is required to check the values of the' different

attributes of all records of the file till the desired record is

reached. Figure 2.2 gives the sequential file organization of the

file in example 2.1. For instance, to retrieve information about

part number 100 we need to search the whole file to find the

record with part number 100 and then retrieve the supplier name

and priority. If there is more than one such record, we may need

to retrieve all of them. In our example there are 2 records with

part number 100. Jones and Frisch are the suppliers and ESSENTIAL

is the priority of the part. If we are allowed to assume that the

user queries will be based on a specific attribute of the records

in the file, then in order to improve the efficiency of retrieval

we may (1) use a hash function and hash the value of the attribute

(called the key) and get the address where the record is to be

stored or (ii) order the records of the file on the value of that

attribute and instead of U6ing an exhaustive linear search, resort

to efficient search techniques like the binary search [2].

The >,ash coding scheme provides an easily computable function

f which maps a set of keys onto a set of address spaces. The

function is, in general, found by trial and error and may not be

one-to-one. When the function is many-to-one, more than one key

/-



STORAGE

MEDIUM

100bbbJONESESSENTIAL*105JOHNLObCRITICAL*100b

FRISCHESSENTIAL*110bBOSECHbORDINARY*105DAD&S

ONbCRITICAL*115bJONESbCRITICAL*120bFRISCHbCR

ITICAL*$

A

Figure 2.2. Sequential File Organization
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maps to the same address and this is referred to in literature as

collision. The collision may be resolved in a number of ways as

described in [2]. Apart from collision, the hash coding technique

suffers from the disadvantage that the available space for storage

must be known in advance. Thus, it does not allow for dynamic

growth of data.

When we know the attribute of interest, we can use some

ordering techniques to linearly order the records in the file and

use efficient searching schemes to retrieve information. For

example, our file will be as shown in figure 2.3 when it is ordered

on the attribute part number.

In the case of an ordered sequential file, the retrieval

program fails to operate correctly if we need to retrieve the reply

for a query based on an attribute other than the one on which

the records are sorted. To take care of this situation, we may

have two kinds of retrieval programs: one for the queries based

on the attribute on which the file is ordered and another for

queries based on other attributes. The latter program will be a

linear search. When we have two programs, naturally the complexity

of the retrieval system is increased.

The most important disadvantage in the case of ordered

sequential file is maintaining the order while records are inserted

into the file. Even when a sequential file is not ordered, each

updating event generally may require relocation of many stored

records. For example, deletion of a record gives rise to the

problem of compacting the new file since the storage locations

-*i



Part // Supplier Name Priority of Part

100 JONES ESSENTIAL

100 FRISCH ESSENTIAL

105 JOHN LO CRITICAL

105 DAD & SON CRITICAL

110 BOSECH ORDINARY

115 JONES CRITICAL

120 FRISCH CRITICAL

Figure 2.3. File Ordered on Part Number
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of the deleted records will be wasted otherwise. In order that

the updating of the file will be flexible, we have the index

sequential file organization.

Index Sequential File Organization:

An index is assigned to each record of the file. We then

build a directory of index-address pairs. A pair (I,A_) means

that the record with index I is stored starting at address A .

There need not be any relation between indices and the addresses.

The records are stored randomly on the storage medium. The

directory may be stored sequentially, ordered or unordered. The

directory is shown as a two dimensional array in figure 2.4.

Accessing a record is now a two-step process. First, search the

directory and get the addresses of the records of interest and

then get the records themselves. Insertions and deletions are

made easier. When inserting records, there is no movement of

records involved. At worst, we may have to reorder the directory.

Storage space allocated to the directory is of course an overhead.

Inverted File Organization

One of the disadvantages of the sequential file organization

is that when a query is based on some attribute other than the

one used for ordering or hash coding, the file needs to be

searched exhaustively. In the case of an index sequential file,

the same thing holds if a query is based on an attribute not

related to the index. Hence, we need to make the directory of the

index sequential file organization more general. An organization
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3 A3

tZ A*
— 1A5
!_ As

lOObFRISCHESSENTIAL

A, 115bbJONESbCRITICAL
0 j

$ ( STORAGE

iMEDIUM

nObBOSECHbOKDINAIli !

A5 105DAD&SONbCRITICAL

A7 120bFRISCHbCRITICAL

Al lOObbJONESESSENTIAL

105JOHNLObCRITICAL

Figure 2.4. Index Sequential File Organization

Each record is assigned an unique index (an integer

between 1 and 7 in this case). There is no apparent

relation between locations A^, A2, ..., A?.



of such a kind is called an inverted file organization. An

entry in the directory is of the form "attribute, value of the

attribute, set of addresses of the records in which the attribute

has the value indicated". Records are stored randomly

in the storage medium. If there is no overlap of the set of

values that different attributes can take, we need not store the

attributes as a part of an entry in the directory. The inverted

file organization for our example is shown in figure 2.5. The

directory is shown as an one dimensional array. To answer a

query like "give the part numbers and the priorities of the parts

which are supplied by JONES", we search the directory for

supplier JONES and get addresses A. and Afi. We then do fetches

at addresses A., and A, to get the necessary information.

If the query is based on Boolean combination of many

attributes then the directory is searched once for each attribute.

Set operations like union, intersection corresponding to Boolean

operations "or" and "and" are performed on these attributes and

the records fetched. For example to answer the Boolean query "give

the part numbers of the parts that are ESSENTIAL and supplied by

JONES", we first search the directory for PRIORITY, ESSENTIAL and

obtain the set of addresses {A-,A„}. We next search the directory

for SUPPLIER, JONES and obtain {A^}. {^A^ n{A^} -{A^
is the set of addresses corresponding to the records that are

relevant to the query.

Clearly, the efficiency of retrieval is improved in an inverted

file organization. The directory consumes a large amount of

space. Further, the space requirement for each entry in the directory
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is not predictable - it shrinks and grows as the records are

inserted and deleted from the file. The multilist file organi

zation provides a solution to this problem.

Multilist File Organization

Instead of storing addresses of all records corresponding

to an attribute-value pair in the directory, we chain these

records as a list and store the address of the start of the list

in the directory. The successive records are obtained by means

of pointers. There is a list per each attribute-value pair

of interest and lists can intersect by having one or more records

in common. The terminology "multilist" stems from the fact that

a record may be (and in general is) a member of many lists. In

order to accomodate the pointers, the format of the records is

slightly changed. In a formatted file, each member or element of

the record is a "value-pointer" pair (see figure 2.6). In an

unformatted file, each element of the record is a three tuple,

"attribute, value and pointer to the next record in which the

attribute has this value".

In the example in figure 2.7, <f> indicates the null pointer

or end of list. To get the part numbers that are CRITICAL, we

first search the directory and get the address A?. The list of

parts that are CRITICAL starts with the address A?. By treading

through the list, we find that the rest of the records in the

list have the addresses A., Ag, and A_. We thus obtain the part

numbers 100, 105, 115, and 120.

The storage space required for multilist file organization is

~/S -



I

ON

I

Value of

Attribute A.

Pointer to the Next

Record in which A

Has the Same Value

Value of

Attribute A
1+1

Figure 2.6. Format of a Multilist File Organization. Each

element of a formatted record is a value-pointer pair.



r,STORAGE

MEDIUM
.

Part No., 100, Ax

Part No., 105, A2

Part No., 110, A4

Part No., 115, A6

Part No., 120, A?

Supplier, JONES, A

Supplier, FRISCH, A3

/
i

Priority, CRITICAL, A2

Priority, ORDINARY, A.
4

Priority, ESSENTIAL, A±

100A3bbJONESA6ESSENTIALA3

105A5bJOHNLO*bCRITICALA5

100<t>bFRISCHA7ESSENTIAL<j>

110<t>bBOSECH$bORDINARY<J>

105$DAD&SON$bCRITICALA.

115^bbJ0NES<fbCRITICALA.

120$bFRISCH4>bCRITICAL<J>

Figure 2.7. Multilist File Organization,
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about the same as inverted file organization. It is unfortunate

that these definitions of file organizations are not standard in

the literature. Our definitions conform more or less to those

found in [1], [2], [3] and [4].
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CHAPTER 3.

QUERY INVERTED AND CONSECUTIVE RETRIEVAL FILE ORGANIZATIONS

In chapter 2 we discussed the existing file organizations.

In this chapter we shall introduce a special kind of inverted

file organization called the query inverted file organization

and define consecutive retrieval file organization.

The attribute-value pair is commonly known as a field.

Normally, a field (or a combination of fields) of a given file

uniquely identifies each record of the file - i.e., there exists

a one-to-one onto function that maps the field onto a record of

the file. Such a field is called a primary field (or a discrim

inatory field) and the attribute of a primary field, a primary key.

Fields other than the primary field(s) are called data fields.

We haven't thus far spoken much about the storage medium

on which the file is stored. A storage medium, S, is called linear

if the storage locations of S can be arranged linearly and the

access time between any two storage locations is an Increasing

function of the distan.ce between them. Usually the distance is

directional. Another common name for such media is sequential-

access devices. Tapes, tracks of a disk, books in a library shelf,

shops in a street are examples of such devices. Further we shall

require that the storage device be one dimensional, i.e. the shelves

have only one deck, the shops have just one floor, etc. In other



words we are limiting "locality or proximity" of storage locations

to one dimension.

Suppose we are given, apriori, the set of queries Q that will

be asked by the users regarding the file. Then, how well can we

organize the file so that the overall time for retrieving the

relevant records for all queries is minimum? We also assume that

the queries belonging to Q are equally likely. One way to achieve

this is as follows: For each query q S Q, we store the records

pertinent to q. in consecutive storage locations. An entry in

the directory will consist of "the query, the starting and the end

addresses of the block of reply records for this query". The reply

records for each query is stored consecutively. This kind of file

organization is called the Query-Inverted File Organization. We

note the similarity between query inverted file organization and

inverted file organization. In the inverted file organization, an

entry in the directory consists of the attribute-value pair of inter

est (called the secondary indices), and addresses of records in

which the attribute has this particular value. In the query

inverted file organization, the secondary index corresponds to

a query. Further, in order to achieve minimum retrieval time, we

require that the records pertinent to a query be stored in

consecutive locations. If a record is pertinent to more than one

query, it may be stored more than once. If a record is stored

more than once, it is called redundant.

When the queries belonging to Q are based on a single value

of a primary key, each query has only one record as its reply.

- 20 -



Hence, in this case a sequential file organization is a query-

inverted file organization. If the queries are related to only

one value of a data field, say f., then all the records in which

the attribute of f takes this particular value can be stored in

consecutive storage locations. Such an inverted file organization

is a query inverted file organization and does not have any

redundant storage of records. However, if the queries relate to

more than one field (primary or data),or more than one value of a

single field, then records may have to be stored redundantly to

get a query inverted file organization.

Let us consider an example. We will consider the same file

as in example 2 of Chapter 2 (figure 3.1). Let the family of

queries Q be {q^q^q-} and be as follows:

(q.) Give the list of part numbers and suppliers of the parts

that are ESSENTIAL.

(q_) Give the list of part numbers and priorities of the parts

supplied by JONES.

(q«) Give the part numbers of the parts supplied by JONES that

are CRITICAL and supplied by FRISCH that are ESSENTIAL.

Reply to (q1) is the record set (r,,^}, to (q2) is the set

{r ,rfi} and to (q3), {r ,r6>. r1r3'6r1 *» a query inverted file

organization for this set of queries and replies. This is shown

in figure 3.2. An entry in the directory consists of a query,

beginning address of the reply block and end address of the reply

block. Note that the record r. is stored twice. There is no query

inverted file organization for this set of queries and replies

with no redundancy. Locations A.,A2, A3 and A4 are consecutive.

— .21 -



100 JONES ESSENTIAL

105 JOHN LO CRITICAL

100 FRISCH ESSENTIAL

110 BOSECH ORDINARY

105 DAD & SON CRITICAL

115 JONES CRITICAL

120 FRISCH CRITICAL

Figure 3.1.
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Directory

q^, A^9 A2

q2, A3, A4

q3, A2, A3

Ai ri

A2 r6

A3 r3

A4 rl

Figure 3.2. Query-Inverted File Organization. Note

that locations A., A«, A- and A4 are consecutive, r.

is a redundant record.
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Suppose that a query family Q is such that there exists a

one-to-one function f which maps the records belonging to the file

F into storage locations of a linear storage medium satisfying

(i) for each query q. € Q, there exists a sequence s of

consecutive storage locations containing all records pertinent

to q. and (ii) s does not contain any record not pertinent to

q^ We then say that the family of queries Q has the consecutive

retrieval property (CR property). A file organization having this

property is called a CR organization. It is a query inverted file

organization with no redundancy. The CR organization, then,

provides minimum overall retrieval time for all queries with no

redundancy. Let us consider the same file in the previous example

(figure 3.1). Let a family of queries Q be {q1tq2,q3»q^} and be as

follows:

(q.) Give the list of part numbers and suppliers of the parts

that are CRITICAL.

(q2) Give the list of part numbers and priorities of the parts

supplied by FRISCH.

(q3) Give the supplier names and priority of the part number 105.

(q4) What are the part numbers and priorities of the parts that

BOSECH and/or JONES supply.

Records r2,r5,r6'r7 are rePlle8 t0 ^i>» r3» r7 to ^» V r5
to (q3) and r^ r4» r^ to (q4). We need to find a CR file organi

zation for this set of queries and replies. r_ r, r. re r, r, r,
3725614

is such an organization. This is shown in figure 3.3. Locations

A. through A_ are consecutive.

Query inverted file organization is mentioned in reference
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Ai

A2

A3

A4

A5

A6

A7

q1# A2, A^
r3

^2' 1' 2 r7

q3> A3, A4 *2

q4* A5» A7 r5

/
Directory ^ r6

rl

r4

Figure 3.3. Consecutive Retrieval File Organization,

Locations A. through A- are consecutive. There is

no redundant record.
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[5] and consecutive retrieval file organization in references

[5] and [6].
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CHAPTER 4.

CONSECUTIVE RETRIEVAL FILE ORGANIZATION

AND LINEARLY ORDERABLE SETS

In this chapter we derive a number of results regarding

consecutive retrieval file organization and give necessary and suffi

cient conditions for a family of queries to be consecutively

retrievable with respect to the given set of reply records. We

shall first assume that the file is time invariant and develop

the results. Problems of updating a file with CR property is

considered in detail in Chapter 5.

Let Q = {q , q , ..., q } be a family of queries regarding

the file under discussion. We can consider each query q € Q as

a set of elements where each element corresponds to a record that

is pertinent q,. Queries q. and q. belonging to Q have some

pertinent records in common means that q. ^ q. + <J> when we consider

the queries as sets.

Hereafter Q will denote the family of sets {q1»q2>...,o) and

S the set U {q }• {a ,a2, ..., a ). q is finite and nonempty.
qA G Q

Elements belonging to the set (S-q.) are called foreign with

respect to (w.r.t.) q.. Suppose there exists a 1 - 1 function f

that maps the elements of S into points in the real line R such

that for each q. € Qt there exists an interval I. containing the

images of all elements G q but not images of any foreign elements
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w.r.t. qi# Then we say that the family Q possesses the property

of linear ordering or Q is linearly orderable. The intervals

II* *2* "••' Xm ma^ either °e open or closed. In the sequel, we

shall take consistently the intervals to be closed.

We say that (f; I ,I2, ..., I ) implies the linear ordering

property of the family Q to mean that the function f and the

intervals I., L I are such that f: U {q }H1 R
q±€Q *

and f(a.) € i± for Va e q± and f(a )£ 1± for Va £ q . The

following assertion is obvious:

Assertion: A family of queries Q is consecutively retrievable

iff the family of sets obtained when we consider each query in Q

as a set of elements of pertinent records is linearly orderable.

Section 1: Interval Graphs and Linearly Orderable Sets.

In this section we shall show the relation between interval

graphs [8] and the intersection graph [8] of a family of sets

that is linearly orderable.

Let Q • {q,, q_, ..., q } be a family of distinct, non-empty,
1 & m

finite sets. The intersection graph of Q is denoted by fl(Q) and is

defined as follows: for each set q. € Qt there exists a corresponding

node (q7\ € fi (Q) and vice versa and for 1 j J, Aq7\ is connected with

Example 4.1:

Let Q - (qr q2, q3, q4, q5>

- 2 $ -



where ^ - {a^ a4, a6> a?)

q2 " *al* a2* a5*

q3 - (ar a6, a?>

q4 * {al» V V V a5}

and q5 - {*2, a3, a5)

The intersection graph fl(Q) of Q is given in figure 4.1. ****

Let G be any undirected graph. If it is possible to assign to

each node /a^\ of G, adistinct interval Ii in the real line such

that I± overlaps with I iff nodes (a^\ and/a^N are connected,

then G is called an interval graph. The intervals may be open or

closed.

Example 4.2

The graph Q(Q) in example 4.1 is an interval graph.

Let lx - [0,4]

12 - [2,7]

13 - [-2.3]

14 - U.8]

15 • [5,7] where I ,1 <i < 5 corresponds to node /q> .****

From now onwards let Q denote a family of finite, non-empty,

distinct sets {q^ q2 q^} and S the set U {q } «.
q^Q

Ia., a2, •♦»» a }.
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Theorem 1:

If Q is linearly orderable, then fl(Q) is an interval graph.

Proof: Since Q is linearly orderable, there exists a 1 - 1

function f and Intervals I,, I„, ..., I where I. -
li m l

[ Min (f(a )), Max (f(a )) + 6.] and for 6. small enough

ape«>i p -Pe"i p * * • •
(f; I., I2, ..., I ) implies the linear ordering property of Q.

Note that the increment 6. is added to I. to take care of the

situation that q. may be a singleton. Then, I. overlaps with

ly j4 1, iff q± H q^ + $. But q± Hq^ 4 <f> iff q± and q^

are connected in n(Q). QED ****

Theorem 2:

If G is an interval graph, then there exists a family of sets

Q such that ft(Q) - G and Q is linearly orderable. In other words

every interval graph is an intersection graph is some family of

linearly orderable sets.

Proofi ^t {(5j)« (ft) (*C)) be the 8et of n°d«s of the interval
graph G and I- {1^, l2> ...tI }be a set of distinct intervals such that

interval I± corresponds to node (ft\. We shall assume that the intervals

are finite. If 1^ is an infinite interval, we can always choose a finite

.-.interval IJ of l± .„ch that I- overlaps with Xj iff I± 0Verlap8 with 2
l± may be replaced by I' in I.

Define i^ - Minimum of Interval I .

lmax • Maximum of interval I..
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We, now, define sets q^ q2, ... q .

For 1 < i < m, q. - (i . , i } u M |i < 1 < ± \
- - * i Bin' max' ^min1 min - Jmin - max'

u <J U < J < i >
Jmax' min — Jmax — max

81nce {1min» W +{W jmax}» U £ollowa tiiat *± * *} *or 14 }.
If (ft) and rf[\ are connected in G, then intervals I and I. overlap.

Then we have {1^. 1^, j^} c q, or (1^, i^, J^} Qq±. Since

Let Q" (q^ q2» ... q^. We first observe that G is fl(Q). Let

S"qU€ Q{qiK Note that the elements of Sare either minimum or maximum

of some interval € I.

We need to prove that Q has linear orderable property. Define

S . - Min(aJ and S - Max(a.). Let f be the identitymin &^es I max ^ e gi

function that maps S into points in [S . , S ]. We claim that
mm max

the function f and the set of intervals I imply that Q is linearly

orderable. To see this, assume to the contrary that f and I do

not imply the linear orderable property of Q. Then, there exists an

interval, say I., such that I contains the image of at least one

foreign element, say k, w.r.t. q., the set corresponding to I .

I. is [i . , 1 ]. Then k is such that 1 . < k < i . Since
1 * min' max min — — max

k € s, k is either 1. or 1 for some interval I , j 4 i. This
min max j

implies that I. overlaps I and k € q . Then from the definition

of q.»k is not foreign to q . Contradiction. QED ****

- J2-



Example 4.3;

Let qx - {b, c, g, h, a}

q2 - {a, e, d)

q3 - {h, a, e, d}

q4 - U, g, h, e, a)

and q5 - {e, d}

Let Q- (qlt q2, q3, q4> q^

The Intersection graph fl(Q) is shown in figure 4.2. n(Q) is an interval

graph. Let the intervals corresponding to the nodes be:

Ix " [1. 5]

V [5, 7]

13 - [4, 7]

14 " 12, 6]

15 • [6» 7]. Interval I. corresponds to node /*T\ for 1 < i < 5.

The intervals are represented pictorially in figure 4.3. The node that

an interval represents is given in parenthesis in the figure.

Define a function f:

f(b) - 1

f(c) - 2

- 3?-



Figure 4.2
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f(g) - 3

f(h) - 4

f(a) - 5 _

f(e) - 6 and f(d) - 7
>

The function f and the intervals I., I2> I-, I; and I imply that Q

is linearly orderable. The pre-image of 1 for i - 1, 2, ..., 7 is given

in parenthesis next to i in figure 4.3. ****

If G is any graph, then the complement of G, denoted by GC, is a

graph that has the same nodes as G with an edge connecting a pair of

distinct nodes in Gc iff that edge does not occur in G [8]. Let G be an

undirected graph defined by [V, R], where V is a finite non-empty set

of nodes of G and R is an irreflexlve relation on V such that for V (a.

QeV,i^»QRfi) lff (*i) is connected with (&\ in G.
An undirected graph [V, R] is transitive orientable iff there exists

a directed graph G- [V, R] such that for V fc\ , /T\ , (a?) € v,

if ©R ©then either © *©or © *© and © *©•
©* ©"* © *©' © *©iff there is ^edge from © tc
Q^ in C. In other words, it is possible to assign directions to
the edges of G such that G is transitive [10], A transitive

orientable graph is sometimes called a comparable graph [9J.

The following theorem is due to Gilmore and Hoffman and is given

here for the sake of completeness. The proof may be found in [9J.

Theorem 3;

A graph G is an interval graph iff every quadrilateral in G
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Kb) 2(c)

•I|((5))

~~3(g) m~

I4(®»

Figure 4.3

- J€>-

—13(®)
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5(o) 6(e) 7(d)
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has a diagonal and G is transitive orientable.

Pnuell et al. [10] give an algorithm to check if a graph is

transitive orientable.

Example 4.4;

Consider the graph in figure 4.2. We saw that it was an interval

graph. The quadrilaterals ((<^»(^»@»@)»((|[i'©,

©' ©>• (©» ©' ©' ©>' (©' ©» ©' ©}'
*^r)» ^' ^* (*sV have at leaflt onc dlagonal and the comPlement
of the graph is transitive orientable. See figure 4.4. ****

Section 2: Singleton Sets in a Family of Sets .

In this section we show that the singleton sets in a family of sets

do not Influence the linear ordering (L.O.) property of the family.

The proof of the following two lemmas are obvious.

Lemma 1:

If Q is linearly orderable, then Q* C Q is linearly orderable.

Proof:

Since Q is linearly orderable, there exists a function f and in

tervals I., I0, ... I implying the L.O. property of Q.
x £ m

Let S' - U {q } where Qf C Q.
qj€Q' 3

• set of elements belonging to the sets in the

subfamily Q*.
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Now, define f1: f,(a1) - f(a1) Va± € s*

and l[ - It for ^ €Q»

f and {1^ |q1 <= Q') imply the L.O. property of Q\ qed ****

Lemma 2;

Let Q- {qx, q2, ... q^}, S- U {q }- {a^ a2, ... a^

and q. - (a } for 1 <^ J <_ n. Then Q is linearly orderable iff Q is

linearly orderable where Q - Q U {q }, i € {l, 2, ... n}.

Proofs If Q is linearly orderable then there exists a function f

and intervals 1^, I2, ... I such that they satisfy the

linearly orderable property of Q. Let T - [f(a.), f(a.) + 6 ]

for V q± € Q. For 6± small enough, I does not contain images

of any elements other than a±. Then f and {I.} U {IJq. € Q}

imply that Q is linearly orderable.

*". If Q is linearly orderable, then by Lemma 1, Q C q is

linearly orderable. QED ****

We can, therefore, assume that as far as linear ordering is

concerned, no set in Q is a singleton.

Section 3: Directed Semantic Graphs and Linearly Orderable Sets.

In this section, we derive a number of results regarding the

L.O. property of Q when fl(Q) is a complete graph. We establish
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necessary and sufficient conditions for Q to be linearly

orderable when fl(Q) is complete.

A graph G is complete iff every pair of distinct nodes of

G is joined by an edge in G; i.e. no more edge can be added to

G [8].

Lemma 3; If ft(Q) is complete and Q is linearly orderable, then

I- n <l± I* «>.
q±€Q

Proof: Let (f;I ,I2,...,Im) imply the linear ordering property

of Q. Since fl(Q) is complete, q H q 4 4 for 1 <_ 1, J <_ m.

This implies that I. H 1 4 4 and there exists an a. € S such

that f(a1;J )€ (i± ni^) for i, j-1, 2, ..., m.

We shall assume that all the intervals are finite (see proof

of theorem 2). Let I - [1 ,1 ] for 1 < i < m. Let I be
1 min max — — p

such that pmax - Min [J,™] and I. be such that
1 1. J 5. m

k , - Max [J . ]. We first observe that k . < p
min , ..'•'min min — rmax

For, if k . > p , intervals I and I. would not overlap which
mm max p k

would be a contradiction.

Sincc imin - kmin ^ W - pmax for V i" *' 2» " •m» a11 intervals
contain the subinterval [k . , p ] which is I Hi (see figure 4.5).

But, we know that the intersection of every pair of intervals contains the

Image of at least one element € s. Then there exists ana. ES such that
pK
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f(a ,) € I n i -• f(a ) belongs to all intervals I , I_, ..., I .
px p x px \ i. m

Since (f; I., I2, ..., I ) Imply the linearly orderable property

of Q, a . is not foreign to any set € Q, i.e. H q 4 $. QED ****

Define a directed semantic graph G - [V, R, I]. V is a

finite non-empty set of nodes. R is an irreflexlve relation on V

such that V a., a. € v, 1 4 j» a. R a. m there is an edge from
1 j * J

a. to a in G. R is the connectivity relation of G. I is a

subset of V. Nodes in I are called direction-changer nodes and

are denoted by an * mark in G. Nodes in (V-I) are non-direction-

changer nodes. {a.,a.} denotes the edge between a. and a., ignoring the

direction on the edge, (a.,a.) denotes the directed edge from node a. to

node a . A path in a directed semantic graph (DSG) G is a sequence of

distinct nodes aQ, a^ ..., a±, a1+1, ... a^ of G such that for 0 <. 1<k,

(a., a .) is an edge of G when in direct mode and (a1+1, a^ is an edge

of G when in reverse mode, where the modes are defined as follows: If a

path starts with a non-direction-changer node, then the mode is direct.

If it starts with a direction-changer-node, the mode is reverse. Whenever

a direction-changer node is reached from a non-direction-changer node, the

mode is switched. (If a direction-changer node is reached from a direction-

changer node, no change of mode occurs.) We shall enclose the sequence of

nodes defining a path in angle brackets, <and >. If P •(aQ, a^, ..., a^ >

is a path of G, then aQ is called the starting node of P, a^ the end node

of P and a., a2, ... \^ the Intermediate nodes of P. Note that

if I • $, then our definition of a path is the same as the usual defini

tion of a directed-path in a directed graph. Because of the presence of
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direction changer nodes in G, there is some semantics in the definitions

regarding G. Hence the name directed semantic graph.

.Example 4.5;

Consider the DSG, G, shown in figure 4.6.

We have V- {aQ> ar a2, a3> a4, ay a$t a?}

I- (a2, a5)

and R is the connectivity relation. <aQ, a ,a2 >,<a ,a,, a. >,

(V a3* a2 >»<a2» V V V a6 >»<a0* al» V a3' V a5» V a7 }»
<al* a2* a3* a4f a5» a0 > are 80B€ of the Patns in G. ****

A Hamlltonlan path in a directed semantic graph G is a path that

passes through all the nodes of G.

Example 4.6:

Consider the graph G in figure 4.6. G has only one Hamlltonlan path

which is <aQ, a^ a2> a3> a^, a5> a6> a? >.****

We now define the DSG of a family of sets Q. Let I = n q .
q qt eQi

Let R be an irreflective relation defined on S as follows: a. R a iff

14 jand for Vqfc € Q, a± € qfc * a € qfc. Note that R is transitive.

The DSG of Q is denoted by 5(Q) and is [Sf, R, I']. S1 is the set

of nodes of G(Q) and Is {(a^) , (ft\ ,..., (ft\ ,..., /T> }

where node /a^N corresponds to element a. € s and vice versa.

/aT) R /HT\ iff a. R a.. We use the same symbol R for a relation

between two elements of S and for the connectivity relation of

G(Q) since there is no confusion. I' is the set of direction-
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changer nodes of G(Q) with /a*N6 I» iff a € I,

Example 4.7

Let qx - {a2, a3>

q2 - {.lf a2, a3}

q3 - (a2, a3, mj

and qA - (a3, a^t a5>.

Let Q- {qx, q2» q3» q^}. Then, S - {a^ a2, a3> a^t a^

I- nq« - fa.J

R: aJL R a2» a R a3 i.e. qfc 3 {a^ ** qk 3 (a2> for Vqk € Q,

a2Ra3

a4Ra3

a» k a., a k a.

C(Q) - [S\ R, I'] where

• -{(5)-©'(5)' ©•©,andl'"{©K
R is the connectivity relation. G(Q) is given in figure 4.7. i(a^\ ,(a?),

^3)• (^'(^^(^•(^•C®!)* ©, (SJ\ > are Hamlltonian paths
in C(Q). ****
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Lenma 4; Let 6(Q) be the DSG of Q and h be any Hamlltonlan path In G(Q).

Then, there does not exist a subpath h* of h such that the starting

and end nodes of h* are direction-changer nodes and the intermediate

nodes are non-direction-changer nodes.

Proof: Let I - n q.. Assume to the contrary that there exists a sub-
q± €Q1

path h* of h-((*±)> C^+l)' •*,, (*j-lV fiY vhere (*i) and (*j
direction-changer- nodes and faTT^\. ^TIoV '"* C*\^-
a±f a. €iand a±+1, a. ^€(S-I), we have that C(^+J\ »(ajV and ((a^\ »
fa\) are edges of G(Q) and ((ajV (a^\) and ((a?)» (a^iV are not ed8es
of G(Q) (see figure 4.8).

In the subpath h', since there are no direction-changer nodes between

/1T\ and /SPN we should have either (1) edges C(a7\ ,(*a7j7\ )and ((a77\

(a"J\) or (ii) edges((a7^\, (a?\) and (/a?\, (\^0 • In either case,
ve have asituation that contradicts the earlier statement that ((^7)»

/HT^N) and ((a\» (*l^l\) are not ed8ea of G(Q). (JED ****

Corollary 1; Any Hamlltonlan path in the DSG of Q should have a

subpath of the form< fa}\9 (^l+i)' •••» r^-il' ^^ ^where

{V ai+i aj+i* aJ} ' l ' eq1'
Lenma 5: If there exists a Hamlltonlan path in G(Q), then

n q4 9* ♦ » *••«• there exists at least one direction changer node

in G(Q).

q±e Q

- Al-
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Proof: Suppose to the contrary that the set of direction-changer nodes

in G(Q) -+. Let h-<(£JJ\ ,(SJ\, .... (T\> be aHamlltonlan path of

C(Q>. Then ((g). (^)>. ((g), @). ... ((g). ® >"* -°n8
the edges of G(Q). Relation R is transitive. Then for 0 <. p <. n-1,

(/T\, (T\) is an edge of G(Q). This means that an €q^ for Vq^ €Q-

n q yt $. Contradiction. £ED ****

qj €?
The following theorem gives another necessary condition for the

existence of a Hamlltonlan path in G(Q).

Theorem 4: Let there exist aHamlltonlan path in G(Q), If S^ C S is a

set of incomparable elements (w.r.t. R), then |s.| <_2.

Proof: By contradiction. Suppose there exists aset S^ -(a^ a^, a^

of incomparable elements and Sx CS. S[ -{(T)•(*})•@ }l8 the set
of nodes of G(Q) that correspond to S^ Ut hbe aHamlltonlan path of

G(Q).

Let I - n q . Since all the elements of S are R- related with
q±€Q

the elements €I, we have S1 '1 I•♦,i.e. none of the nodes €S[ is a
direction-changer node. Without loss of generality, we shall assume

that in the Hamlltonlan path hof G(Q), (^precedes (S> and ^ precedes

By Lemma 4, in any Hamlltonlan path non-direction-changer nodes are

not present between any two direction-changer nodes. We then have only

the following cases for h:

Case (1) h passes through all the direction-changer nodes after leaving

*|S |denotes the cardinality of the set S^.



(5* Then(©'(vT))«(@)'@)) (($$* (j))area11
edges of G(Q). R is transitive. Thus we have that ( /*7\ • (**)) is an edge

of C(Q). But this is i*.ot possible since a and a. are not comparable

w.r.t. R.

Case (il) h passes through all the direction-changer nodes before

reaching fa\ . After an argument similar to that of case (1), we get

(/a"J\ , /a"?\ )which again contradicts the incomparability of a. and a .

Case (iii) h visits all the direction-changer nodes between (a7\ and

/3T\. After visiting /S7\ ,h needs to visit faT) and this is the same

as case (il) which leads to a contradiction.

By cases (1), (11) and (ill), we see that h can not visit all

fa\ ,•/S\ and /£\. Then h Is not a Hamlltonlan path which is a contra

diction. QED. ****

Corollary 2: For all a., a. € s, i f* J, a. and a. are incomparable

(w.r.t. R) only if in any Hamlltonlan path of G(Q), (a\ and (T\ exist

on the opposite sides of the subpath which passes through all the direc

tion-changer nodes. ****

The following lemma leads us to the connection between the linear

ordering property of a family Q and the existence of a Hamlltonlan path

in G(Q), when ft(Q) is complete.

Lemma 6: Let h • ((5) ©'(Qy •••• (2j)« (5)» •••' ©>
be a Hamlltonlan path of G(Q). If {a., a. } C q e Q then {a., a..,

X j — p 1 i+1

a±+2, ... aJ-lt a^ }C qp.
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Proof: Let I - n q . We have three situations.
q^Q1

(1) Both /a?\ and /aS are direction changer nodes. By Lemma 4, all

the nodes between (a\ and (a\ are also direction-changer nodes. Then

the elements corresponding to /aTT^\» fa+oV •••» (^4-1) DeI°n8 to I.
Hence the lemma.

(2) Both (a\ and ZaTNare not direction-changer nodes. For this situation,

we have the following possible cases similar to the ones we had in the

proof of theorem 4.

Case (i): h visits all the direction-changer nodes after leaving fa\

^^ ((5)'(Vl))' ((Q)»@)> <(g)» (g) )a" "^B °f
G(Q). Since (/a^ , (a\) - (a£ € qfc -» an € q^ for Vqk in Q), we have

V ai+l* "•' aj-l* aj e V

Case (ii): Let h visit all the direction-changer nodes before reaching

3PV A similar argument as in case (1) leads us to the conclusion that

V aj-i* •'•• Vl» ai € qp ,H|WI V aj € V

Case (ill): The direction-changer nodes are between /a> and /TN in h.

Let (&?\ and (&7?£\ he the starting and end nodes of the subpath of h

that consists only of the direction-changer nodes (by Lemma 4). Then

tJV .... (C), ..., (aX ..., (a^+J. .... ^)>
direction-changers

By case (1), all the elements that correspond to nodes between /a^\ and

®in h belong to q and by case (11), all the elements corresponding
p
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to nodes between Aa£+.+rs and /SN in h belong to q . The direction-

changer nodes correspond to the elements of I which is a subset of all

sets in Q. Hence we have the lemma.

(3) Either (su\ or /IN Is a direction-changer node. Suppose /ST\ is.

Let (*i+^ he the end node of the subpath of h that consists only of the

direction-changer nodes. Then the path h is <(a?\, ..., (S\, ...,

(*i+k)' Ci+k+i) (0» (5)}- By cafle (il) of (2)' {aj' aj-r ••'
ai+k+l* - qp' Wc know that *V ai+l» "•» ai+kJ - * - V Hence,
{V ai+r "••• aj-l» aj} -qp'

If (a^\ is a direction-changer node and /a7\ is not, a similar

argument as above can be applied and the lemma proved. QED.

Let us now state and prove the counterpart of Lemma 4.

Lemma 7: Let fl(Q) be complete and Q linearly orderable. Let

I- ^ q4 and (f; I ,I .., I ) impiy tne linearly orderable
q € Q x * ™

property of Q. Then there does not exist a, , a , a, such that
bed

ab, ad €Iand aQ €(S-I) and f(afi) is between f^) and f(a ).

Proof: Assume to the contrary that there exist such a, , a and a
d c d'

Since ac £ I, there exists aset q^Q such that a £q Since

tab» ac* - X» the interval I± corresponding to q± contains f(a.)
and f(ad). If f(a<.) is between f^) and f(ad), then 1± also contains
f(ac). But ac is foreign to q This means that (f; I,, I,, ..., I)

1 2 ID

does not imply the linearly orderable property of Q. Contradiction.

QED ****
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The theorem that follows gives the necessary and sufficient condi

tions for a family of sets Q whose intersection graph is complete to be

linearly orderable.

Theorem 5: Let fl(Q) be complete. Q Is linearly orderable iff there exists

a Hamlltonlan path in G(Q)

Proof: The sufficiency part of the theorem is easy to prove. We have

Q• (*!• q2» ••• qm) and S-{a^ a2, ... aR). Let hbe aHamlltonlan

path of G(Q). We can consider h as a n-tuple. Define a set of functions,

{k^, k^t ..., kn>, where k., 1 <i< n, maps any n-tuple to the ±t member

of the tuple, i.e. k± (<xx> x2, ..., x±9 .... xq> ) •= x^

Corresponding to Hamlltonlan path h, let fv be a 1-1 function that
n

maps S into R such that for Va. € S, fn(a.) • j where k. (h) • a . (Note

that f maps elements of S onto integers from 1 to n.)

Now, for Vq € Q, define I « [ Min (f (a )), Max (fu(a ))]

ap €qi P ap eqi h P
It can be observed that ^contains the images of all elements € q Further,

for 1 <^ 1 <^m, I. does not contain images of foreign elements w.r.t. q.. To

see this, suppose to the contrary that there exists an interval I contain

ing images of foreign element(s) w.r.t. q.. Then there exist a, , a ,
1

a ,..., a ,..., a ,a belonging to S with a /q and fu(a )
•2 Tc J ck 1 h V

between fh(ab) and fh(ad) and {a^ aj C q±. This by the definition of f

implies that kJis between(T) and /T) whlch contradlct8 Lenma 6. Hence

^h' *lf *2* '"* *v? ^"Ply tne linearly orderable property of Q.

How the necessity part of Theorem 5. By Lemma 3, we know that
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I • n q* i ♦• Let I • {a , a .-, ..., a .0}. There exist a
q € Q1 P P«. P+*

function f. and a set of intervals {I,, I«, ..., I } such that (f, ;
n i 2 m n

Ijt I2» ...t I ) imply the linearly orderable property of Q. For

all at, a^ € S, i4 J, either fh(a±) <f^) or f^) <fh(ai>.

Then we can^define a total ordering on the elements of S such

that a. precedes a. in the total ordering iff fu(a.) < f, (a,).
x j n i n j

By Lemma 7, there does not exist a. , a , a, such that a., a. € I

and ac € (S-I) and fh(ac) is between ^(a^) and fR(a ). Without loss

of generality we can then assume that f. is such that
n

W «W «- <W Kfh(Vi} ' - " VW * ••• *w
v , /

Images of elements € I

All the intervals contain the Images of elements belonging to I.

Hence, whenever an interval I contains f.(a.) it has to contain f (a ),
a n ± h 2

fh(a3), .... ^(a^). Then, ax €q± •> {^ a3, ... ap, ... a^} Cq±.
For, if any of the elements e {a2, a3, ..., a }is foreign to q ,we

will have acontradiction that (fh; 1^ I2> ..., I)does not establish

the L. 0. property of Q.

Thus we have a.Ra,, a.Ra., ... a. R a £. In particular,

(/a7\, (a})) is an edge of G(Q). By considering intervals that contain

f_(a2), f_(a«), ... f_(a.) and repeating the same argument as above,

we see that ((a^» (ST\) t((*3)» ("4)* •'"' ^C^p-l)' (S)* are am°n8
the edges of G(Q).
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A similar argument as above shows that ((a^j, (*_!\) ,(/a 7\,

(K^2?' *,,, ^Cap+i+l)"(*v+l)^ are al8° edges of G(Q)' Since the
relation R is symmetric for I, every pair of nodes belonging to I' -

^(an)* ^n+lV "•• (t»fiV *8 c°nnected and directed both ways. But

the nodes € I' are precisely the direction-changer nodes of G(Q). Hence

is a path of G(Q) which is Hamlltonlan. QED. ****

Example 4.8:

Let qx - (a2, a3, a^, a6>

q2 - {ar a2, a3. a6> a5>

q3 - Uv a3, a6)

and % " Ux, a2, a3, a4, a6>

Define Q - {qlt q2, q3, q^}

We have S- (a^ a2» a3» a^t a5> afi}

and I - n q - {a , a.)

*t €Q1 3 6

The intersection graph of Q is given in figure 4.9. we note that n(Q) is

complete. The DSG of Qis G(Q) -[S\ R, I'] where S1 - {(*])> (^2) *

(T\, (SJN, (a^S, (C)) *' " {(*3)» (^)} *nd Ris the connectivity
relation. G(Q) is given in figure 4.10. h"((a7) ,rtu) ,(a^j ,fa^ ,

a7\, (aTV is aHamlltonlan path of G(Q) and is shown in solid lines

in figure 4.10,

-yr



Figure 4.9
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Figure 4.10
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Define fR: *h(a4) -1as k^h) - (a

fh(a2) -2as k2(h) - fi

fh(a3) -3as k3(h) -(S,

fh(a6) -4as k4(h) - ft

fh(ax) -5 as k5(h) - (ax

and fh(a5) -6 as k6(h) - pi

We then define the intervals 1^ I2> I3 and 1^.

I -[ Min (f^)). Max (f^))]
ai€ql ai€ql

Similarly I2 - [2, 6], I3 - [3, 5] and I4 - [1, 5]. The intervals are

shown pictorially in figure 4.11. ****

Let P-<g), ©, .... @. ® •— ©> be â in G(Q)*
We say that each Qin P, for 1<1<k, has both left and right neighbors.
The left and right neighbor of Q are(g) and (g) respectively.
(£\ has only the right neighbor namely ©and g) has only the left
neighbor which is (T^\. The left neighbor of g) is said to be empty
and so is the right neighbor of ^SJV

Two paths ?x and P£ are equal (or non-distinct) iff the starting and
end nodes of P. are the starting and end nodes of P2 and for V(a^e ?x
such that (Q is not the starting node of P^ the left neighbor of g) in
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W
I2(q2)

Ko4) 2(o2) 3(o3) 4(o6) 5(o,) 6(0 5)

-—w—*

Figure 4.11
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P. • the left neighbor of (a7\in P2 and for V (a^)e Px such that /a?\ is

not the end node of P., the right neighbor of (a7Vn F, * the right neighbor

of ^a?)in P2.

Let f be a 1-1 function that maps S into R. We know that f

totally (linearly) orders the elements of S such that V a.,

a^ € S, i+ j, a± procedes a iff f(a±) <f(a ). Let the linear

ordering defined by f be 0. If there exist intervals I , I ,

..., Im such that (f; I2 1^) implies that Q has the L.O.

property, then we say that the linear ordering 0 implies the

L.O. property of Q. The following assertion is stronger than

theorem 5, but the proof is essentially the same.

Theorem 6: Every distinct linear ordering of the elements € S, which

implies the L.O. property of Q, corresponds to a distinct Hamiltonian

path in G(Q) and vice versa when 0(Q) is complete.

Proof: In the proof of the necessity part of theorem 5, we observe that

the function fh defines a linear ordering, say 0, of the elements of S.

We found a Hamiltonian path in G(Q) that corresponded to 0.

Lftt *fh,; Ii* X2* *"• lv? 8atlafy tne L.O. property of Q and f f
h

be different from fh. ffaf then gives atotal ordering 0» different from

0. Applying the same arguments as in theorem 5, we get a Hamiltonian

path h1 corresponding to 0'. h1 is different from h.

In the proof of the only-if part of theorem 5, we defined a function

fh and intervals 1^ I2, .... i^ corresponding to aHamiltonian path h of

G(Q) such that (fh; 1^ I2> .... i^) implied the L.O. property of

Q. Any other Hamiltonian path h1 would have resulted in a function
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fh»' fhf * fh' and a set of intervals IJ, l£, ..., I« such that

(fnt» I{» X2» •••t Im) implied the L.O. property of Q. Since

fn and fn, are distinct, the linear orderings defined by them

are distinct. QED. ****

Leama 8; Ifh-<Q, (a^\ (SJ\, (a^\, ...t/T\> is aHamiltonian
path in G(Q), then h -<(C).(Q\. •--•G^.'GS fit U

-6t-
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also a Hamiltonian path of G(Q).

Proof: Since there exists a Hamiltonian path in G(Q), by Lemma 5

I • n q* ^ ♦• 'By the direction changing property of the nodes cor-

*1 €Q Rresponding to I and by Lemma 4, we have that h is a Hamlltonlan path of

C(Q). ****

Corollary 3: Let fi(Q) be complete. Then Q is linearly orderable

iff there exist at least two Hamlltonlan paths In G(Q).

Section 4: Union of Two Linearly Orderable Families Whose

Intersection Graphs are Complete.

In the sequel, (^ and Q2 denote two families of sets. Q nq need

not be empty. G(QX) and G(Q2) represent the DSG of Q. and Q respectively

Sx denotes the set U {q } and S9 the set U {q }. § indicates

qi€Ql qi€«2
(s1us2).

Lemma 9: Let Q. U Q be a family of linearly orderable sets and

«(QX)> 0(Q2> °e complete. Let I»S nS2 and fbe a function

that defines a linear ordering of the elements € § such that

(Q, u Q2) has L.O. property. Then there does not exist a ,a.,



a^ such that a € (S-I) and {a., a.) C I and f(a ) is between
J P * J ~ P

f(a±) and f(aj).

Proof: By contradiction. Suppose that there exist such a , a and a .
Pi J

Without loss of generality, we shall assume that f(a.) < f(a ) < f(aj.
1 P J

Since (Qx U Q2)i8 linearly orderable ,by Lemma 1Q and Q are linear

ly orderable. Then by Lemma 3, I - nq * fand I, - nq / a.
«±C<£ qi£Q2

Aa a , a. € s., there exist sets q , q, € q, such that a, G q and a. 6 q^
* J •*• cdi icjd

h - qc «ld h £ qd-

•Case W a± € ly Tnen the interval I* corresponding to q contains
^(ajL), f(a^) and hence f(ap). Since the linear ordering defined by f
linearly orders sets in (^ U q2> a is not foreign to q .

Case (il) a € I By the same arguments as in case (1), we have a € q
J P c

Case (ill) If a^ a £ I then there exists an element a € I such

that either f(a£) < f(a±) or f(a±) < f(a£). In either case,

a € qc or q^. For, if a is foreign to both q and q., we will

have a contradiction that f does not linear order (C) U Q ).

By cases (1), (il) and (ill), we see that there exists a

qi € ^1 8Uch tnat ap e qi* Tnu8» a« € si# Bv similar arguments,
we can prove that a € S0. This means that a e S, n s • I,

P * p 1 2

Contradiction. QED. ****

Lemma 10: Let Q1 U q2 be a family of linearly orderable sets and

IHQj), n(Q2) be complete. Let I« S± H S2 + <fr, Sx or Sr Let f

define a linear ordering of the elements € § implying the L.O.
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property of the sets in (Q. U Q ). Let a and a, be such
X C C K

that f(ac) - Min f(ajL) and f(afc) - Max f(a ).
a£ € I a. 6 I

Then

(i) for V a± € (s^I) either f<a±) <f(ac) or f(a )>f(a^

i.e. there does not exist ap, aq €E (s^I) 8uch that f(a }<f(a )and
f(aq) > f(ak).

(il) Va± e (Sl-I), f(ai) <f(ac) ♦ Vflj €(s2-I), f(flj) >f(ak)

Proof: We shall prove the lemma by contradiction.

Part (i) Let us suppose to the contrary that there exist

a ,a e (S^I) such that f(a )< f(a£) and f(a ) >f(0. By

Lemma 1 and Lemma 3, we have that I. • H q ^ <j>. It is

easily observed that I. H (S--I) - <J> and I« H (S--I) » <fr.

Further since a , a does not belong to any set in Q and

since the linear ordering defined by f implies the L.O. property

of Q U Q we have that, for all a, e so, f(a ) < f(a.) < f(a ).
A —t J l p j q

Thus we have:

«-This interval contains images of all elements € S^

... <f(ap)< %< f(ac) < -— <H\>/ •• KfCV *
images of elements € I

(By Lemma 9)

Now, there exist q., q. € Q such that q. 3 {a } U I and

q, 2 *a }U ly Since I O (S2»I) - $, the interval corresponding

to q or the interval corresponding to q contains images of

elements € (S2-I) which are foreign to all sets in Q.. This means

that the linear ordering defined by f does not imply L.O. property
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of (Qx U Q2) which is a contradiction"

Part (il) •». We have f(a±) < f(afi) for V a± G (S^I). Assume to

the contrary that there exists an a. € (S2-I) such that f(a.) < f(a.).

By Lemma 9, f(a ) <f(ac). Since a is foreign to all sets

containing elements € (S-I), we have f(a ) < Min (f(a )). There
J a € Sn r

* 1

exist aset q± € Q2 8uch that q^faJU^, As q n (S-I) - $,

f(a ) < Min (f(a„)) for V a0 € I Now~consider any set
ar6Sl

5 € Q2 such that q 2 t\) U 1i* Tne interval corresponding

to q contains the images of elements G (S.-I) which are foreign

to all sets in Q2> This leads to a contradiction.

*•. The same arguments as above direct us to the conclusion that if for

Va € (S2-I), f(a )>f(ak), then for Va € (S^I), f(a^) <f(ac).

QED ****

Let h^ and h2 be Hamiltonian paths in G(Q.) and G(Q7) respectively.

Let I - S^ n s2. We see that h. induces a subpath in the set of nodes

that correspond to I in G(QX). The starting and end nodes of this subpath

are nodes that correspond to some elements in I and the subpath contains

all the nodes which correspond to the elements € I. Let h* denote this

subpath. Similarly h2 is the subpath Induced by h in the set of nodes

that correspond to I in G(Q2). We say that the Hamiltonian paths

hx and h2 are consistent (l^ - h2) iff exactly one of the following holds:

(i) Sx n s2 - I-*

(11) h^ •h2 and the left neighbour of the starting node of h* is empty

in h^ or h2 and the right neighbour of the end node of h^ is empty in h.
or h2.
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Example 4.9: Consider the following Hamiltonian paths h. and

v Let hi -(©• ©• ©• ©• 6)> and h2_<© • ©
© •©•©•©>

S1 - (ax, a2, a3, a^, a5)

S2 - {a3, a4, a5, a6, ay, ag>

I- Sx n s2 - {a3, a4, a5>

hJ"<(sa)- (*> (^ -h2

The starting node of h, • (a^ and the end node of h^ « /S^\ . The left

neighbour of (a"TNis empty in h2 and the right neighbour of /a^\ is empty

in h.. Hence h. - lu. ****

Theorem 7: Let n(Q.) and n(Qj be complete. If Q. U q has L.O,

property, then there exist Hamiltonian paths h in G(Q ) and h„

in G(Q2) such that h and h are consistent.

Proof:

By Lemma 1, Q. and Q2 have L.O. property. Since ft(Q-) and

(2(Q2) are also complete, by Theorem 5 there exist Hamiltonian

paths in G(Q-) and in G(Q2).

Case (i): I • S, H s, • ^. Any Hamiltonian path in G(Q.) is

consistent with any Hamiltonian path in G(Q„).

Caae (ii): I + $. Let f be a function that defines a linear

ordering of the elements G S Implying the L.O. property of

Q1 U Q We have the following situations:
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(1) I- S2, i.e. S2 C sx and S- S±

Define ^(a^ • f(a±) V a^, E s±

W - f(ai> V ai e ?2

Clearly, f defines a linear ordering, say 0., of the elements

€ S- that establishes the L.O. property of Q . So does fy

w.r.t. Q2» Let the linear ordering defined by f. be 0 . Since

f2(ai> " fi(ai) for V a± € S2, we have that, for V a ,a, G S2,

a£ precedes afc in 02 iff a precedes a, in 0.. By Lemma 9,

there does not exist an a € (S.-S.) and a , a, € S0 such that
p 1 *. c d Z

fx(a ) is in between ^(a^ and f1(a<i). Hence, if ^ and ru

are Hamiltonian paths in G(Q-) and G(Q2) corresponding to 0

and 02 respectively (see proof of Theorem 5), then h2 «h* mh*.
The left neighbor of the starting node of h2 and the right neighbor

of the end node of h2 are both empty. Then h- ~ h«.

(£)_ I• Sj, l,e, Sj C S2< The proof is similar to that of (1), above.

131 It $or Sx or S2- Let I«{a^ a2, ..., a^}. Without loss of

generality, we can let f be such that f(a^ < f(a2) < ... < f(a.). By Lemma

10, we can assume without any loss in generality that for V a. € (s.-I),

f(a±) <f(ax) and V a± e (S2-I), f(a±) >f(ak).

Now, define f , f :

fl(ai) ' f(ai} V ai € Sl

f2U±) - f(a±) V a± e s2
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Clearly, f and f2 define iinear orderings, say 01 and 02» of the

elements belonging to S_ and S2 respectively such that the L.O.

property of Q. and Q2 are implied. Let h1 and h2 be the Hamiltonian

paths corresponding to 0. and 02 in G(QX) and G(Q2) respectively

(see the proof of Theorem 5). Then h »< /a!\ ,(a^\ , ...» (\\ )•h2.

a~J\ is the starting node of h and its left neighbor is

empty in h«. The right neighbor of /aTY , the end node of h_, is

empty in h . We thus have h. * h_. QED ****

Section 5: Union of Linearly Orderable Families whose Intersection

Graphs are Complete.

Let Q * {Q.,Q2,...,0 } be a set of families of sets with Q n Q not

necessarily empty. For 1 <_ 1 <_m, let fi(Q.) be complete and S denote the

set U {q.}. 5 indicates Us • {a.,a2,...,a }. Let h ,h_, ...,
qj€Qi w «

h be pair-wise consistent Hamiltonian paths in G(Q.), G(Q ), ..., G(Q )

respectively where, for 1 ^ 1 <^m, G(Q ) is the DSG of Q . Define a

directed graph C(Q) = [S?,R]. S' is the set of nodes of G(Q) and is

{(a^)* fin)* •••» (*j) »•••» (**\) where node fa*}corresponds to element

a. € § and vice versa. (a7\ R (T\ iff there exists aHamiltonian path

t^, 1<k<.m, in which (aA precedes /a^ . /aA RQTS •(^)»^)) is
an edge of 5(Q). G(Q) is called a Partial Order (P.O.) graph of Q cor

responding to Q., Q, (^.

An undirected path or simply a path in a directed graph G is a

sequence of distinct nodes (a?) ,(tTj\ ,..., (a?\ such that for

1-1, 2, ..., (k-1), {(Q ,(a^\ }are edges of G. Note that we
ignore the direction of the edges in G. A connected-directed graph
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is a directed graph in which there is a path between every pair

of distinct nodes. A component G' of a directed graph G is a sub

graph of G such that G' is a connected-directed graph and is not

properly contained in any other connected-directed subgraph of G.

A directed path in a directed graph G is a sequence of distinct

nodes a. , a2 , ...» a such that for 1 _< i£k-l, (a.,a. .)

are edges of G. A Hamiltonian path in a directed graph G is a

directed path that passes through all the nodes of G.

If P -< a , a2 , ..., a ) is a path in G and (a, ,a ) is

also an edge of G, then P is also a directed cycle. We can

distinguish by context whether by P, we mean a directed path or

a directed cycle. If G does not have any directed cycles, then G

Is called acyclic. The length of a cycle Is the number of nodes

in the cycle. All these definitions are more or less standard in

graph theory and may be found in [8], [11] or [12].

Example 4.10: Consider the directed graph G in Figure 4.12. It has two

components. If R is the connectivity relation of G, then the

components are [((a?) »(S) »@ .Q )» R] and K(2)»(a7)h
R]. ((aT) » (a^\ , /a"T)) is adirected cycle of G and is of

length 3. ****

Let G be an undirected graph. G., G2, ..., G be a set of

complete subgraphs of G(i.e. G., G2, ..., G are subgraphs of G

and are complete) such that every node and edge of G is in at

least one of them. Then G la said to be covered by G-, G-, ..., Gn.

This is exemplified in example 4.11. We are now ready to prove

a major result concerning the L.O. property of an arbitrary

in
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Figure 4.12
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family of sets.

Theorem 8: Let G., G2, ..., G be a set of complete subgraphs

of n(Q) that cover n(Q). Let Q. C Q be such that G. - U(^±)

for 1 £ 1 £ m. Q has L.O. property iff there exists a P.O.

graph G(Q) corresponding to Q., Q , ..., 0 and any G(Q)

acyclic.

Proof: The if-part of the theorem: We first show that there

exists a P.O. graph fi(Q) of Q. Let G(Q.) be the DSG of Q .

If G(Q ) does not have a Hamiltonian path, then by theorem 5,

the sets in Q are not linearly orderable. By Lemma 1, this

implies that Q does not have L.O. property which is a contra

diction. Hence, every one of G(Q.), 1 • 1, 2, ..., m, has a

Hamiltonian path. If G(Q.) and G(Q ), 1 + j, does not have

Hamiltonian paths that are consistent, then by theorem 7,

^1 ^ ^\ **oes not P088ess tne linear ordering property. Again

by Lemma 1, this means that sets in Q are not linearly orderable

which is not true. Hence there exist Hamiltonian paths h ,

h2 hm in C(Q1), G(Q2) ®^V 8Uch that they are

pair-wise consistent, i.e., a G(Q) exists.

Suppose to the contrary that there exists a G(Q) containing directed

cycles. Let C- (aS, /a^\, .... /S> ,(a^\, ..., (a\ be adirected

cycle of minimum length in S(Q). Since h., h_, .... h are pair-wise
x z m

consistent, length of C + 2. Then, let the length of C^ 3. We have

Si * U tq,}forl<i<aandS- U S.. Either ( fa\ , (T\)
qj€QJ l<i<n v3^ \j)

°r *(*l)' (S)^ ±S an Cd8e °f ®^ * there exlsts a s *11P1m» such
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that S ^ (a.,a.}. Since C is of minimum length, there docs not exist a
p — i j

S , 1 <. p <. m, such that S contains more than 2 elements that correspond

to nodes in C (see figure 4.13). Hence without loss in generality, we

can assume that a±, ai+1 € s± for 1 <. i<. (k-1) and a^, al € Sfc.

Since Q has L.O. property, there exists a function f that

defines a linear ordering of the elements € § implying the

L.O. property of Q. Now, consider n(Qj). Since alta2, ...,

a ,a1+2, ..., a^ are foreign to all sets in Q± and a^

a € S., f(a ) is not between f(a±) and *(ai+1> for £- 1, 2a

..., i-1, i+2, ..., k. (This can be seen by similar arguments

as in Lemma 9.)

Applying the above contention to nCQ^ * aCQ2)» •••? ^tQ^)

and fl(Qk), we get the contradiction that f(a2), f(a3), f(a^),

.... f^.i) are between f(a^ and fCak), and f(a2), fCa3),
f(a,), ..., f(a, ,) are not between f(afc) and f(ax). Thus, Q

has L.O. property «* G(Q) exists and any G(Q) is acyclic.

To prove the sufficiency of the conditions, we shall show

how*to construct for any family Q satisfying the conditions, a

function f and a set of intervals Implying that Q is linearly

orderable.

Let C. 5 , ..., G be the components of G(Q). Define function f:

(i) for V /a^\, (Sj) €gk' 1lk -P* f(ai} <f(aj} iff thGre
exists adirected path from/a?) to/ST\ . (ii) for V a± € G^

and V a, € G., k < £, f(a.) < f(a.). Since G(Q) is acyclic, such a func-
j t i 3

tion exists. For each q. € Q, define I » [ Min f(a), Max f(a )J
1 * aPe*i P aPG«i P
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Interval I contains the images of all elements e q .
To see that I does not contain images of any foreign elements

w.r.t. qit we suppose to the contrary that it does and show that it

leads to a contradiction. Let there exist V ade V \* ac2
a e (S-q ) such that for 1 < k < j, f(a ) is between f(a.) and f(aj.Cj i - - ^ -b d
Further let a, , a. be such that there does not exist an a G q and

f(a ) is between f(a.) and f(a.). Without loss in generality, we can

assume that f(a.) <f(a )<•••< f(a )< f(a,). Then, </a\ /a^\)

is an edge of G(Q) and /a""\is the right neighbor of (aT\ in some Hamil

tonian path h , used to define G(Q).

q. belongs to at least one complete subgraph, say G , that was

chosen to cover fl(Q). Let Q. be such that fi(Q«) ° G and h. be the

Hamiltonian path in G(Q ) that was used in the definition of

5(Q). If /a?) precedes (a?) in h,then ((IT) ,/a> )will be

an edge of G(Q) and hence fa?\ , /a\ , ..., /a\ , ..., /a~\ ,
^ LV ^y o)

aT) will be a directed cycle of Gtftf which is not possible.

Hence, let (a?) precede /Tj\ in h£. Since a is foreign to q,by

Lemma 6 ^T\ is not between /a?\ and /a"J\ in h. Hence h f h.
The right neighbor of /a|\ is not empty in both h and h . The right

neighbor of faj\ in h «(^"X which is not the right neighbor of /aj\

in h. since /^TNprecedes /S\~"in h and (^a^N. is not between /aT\ and

a"J\ in h . This leads us to the contradiction that h. and h are not

consistent. qed. ***i

Example 4.11:

Let q± - <V V V

q2- {»2» V V V
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q3 ' {V a3' a4}

q4 " tn4* V a6}

q5 - {aA, a5, a6, b^

a - {b . b }
q6 lV V

q7 - U?, a8>

and qg = {a7» a^

Let Q- {qx, q2» q3, qA, q5> q6» q?. qgh

fl(Q) is given in figure 4.14. Let R be the connectivity relation of o(Q)

LetGi- "(ft. ($. (^)hR]

c2-"©' fib- (Q •(^}'R)

G3-[{(^» (^)}»RJ

and GA - [{(q^\, (q>)}, R]

G., G2, G-, G, are complete subgraphs of fl(Q) that cover ft(Q)« We have

Qx * (q^ q2» q3>» Q2 " ^2» *>3» <V *5*» Q3 • ^5* %) and Q4 * ^7' <V
C(QX), G(Q2), G(Q3) and G(Q4) are given in figurea 4.15. 4.16. 4.17 and

4.18 respectively.

hi-<($' (S)- <S>- ($• <£)>

'a"*©* ©• ©• ©• ©• (S>:
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'a"'©' <§)' ©'©•©>

h«-<(S)' (S)'^

h1, h2, h^, h^ are pair wise consistent Hamlltonlan paths in G(Q.), G(QJ,

G(Q3) and G(Q^) respectively. Let 1^, h2> h3 and h, define G(Q). See

figure 4.19. For the sake of clarity, we have not shown in Fig. 4.19 all
the edges of G(Q) which is directed-cycle free. Hence Q has the L.O.

property. Let R be the connectivity relation of 5(Q). We note that

there are two components of S(Q), namely 5. and <L where G. - [((aT\,

©' ©' (5)' ©' ©• <S>' 0>, R]andft2- [{(g), (g),
^)). ft]. Let fbe: f(ax) -1, f(a2) -2, f(a3) -3, f(a4) -4,
f(a5) - 5, f(a6) -6, f(b^ - 7, f(b2) - 8, f(afi) -9, f(a?) - 10 and

f(a^) - 11. The intervals corresponding to q., 1 < i < 8 are shown in

figure 4.20. From Figure 4.20 the L.O. property of Q is evident. ****

Lemma 11: Let Gx and G2 be complete subgraphs of n(Q) such that

G1 and G2 cover ft(Q). Let Qx £ Q, Q2 £Qbe *uch that ft(Q1) -G

and $KQ2) - G2» Let h1 and h2 be consistent Hamiltonian paths

in G(QX) and G(Q2). Then G(Q) defined by t^ and h is acyclic.

Proof; Suppose that G(Q) is not acyclic. Let C- (a\ ,

(Ft)' "*' (^ be acvcle of minimum length in G(Q). First, we observe
that the length of C ^ 3. This can be seen by arguments similar to the

ones in Theorem 8. If the length of C is 2, then((a\ , (ST\),

((a^\, (a]\) are edges of G(Q). This Implies that (aT\ precedes /a7\ in

h2(h1) and /£N precedes /S?\ in h.OO. We then have a contradiction

that h1 and h2 are not consistent. If the length of C is 3, then in h.OO
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Figure 4.17
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raS\ precedes fa?\ and rar\ , and fa?\ precedes fa~\ . In

h-OO, (aT\ precedes (a?) . This also leads to the

contradiction that h is not consistent with h.. QED ****

Theorem 9: If G. and G2 are complete subgraphs of n(Q) such

that G1 and G2 cover n(Q), then Q possesses the L.O. property

iff there exist consistent Hamiltonian paths in G(Q.) and G(Q2)

where (^ C q, q2 C q and JHQ^ - G^ n(Q2) - G^

Proof: The necessity is theorem 7. If there exist consistent

Hamiltonian paths in G(Q-) and G(QJ, then there exists a G(Q).

By Lemma 11, G(Q) is acyclic. Then, by Theorem 8, Q has the

L.O. property. Thus we have the sufficiency. QED ****

Based on the fact that every pair of Hamiltonian paths used in the

definition of a P.O. graph C(Q) of Q is consistent, we have the following

lemma.

Lemma 13: There exists a directed path between every pair of nodes in each

component of G(Q) - (i.e.if /a7\and /TJ\ are two nodes belonging to the

same component in 5(Q) then there is a path from Sa\ to /a^\ or from ^aTj

to(5) •>

Proof: Let G(Q) - [S', R]. Assume to the contrary that the

lemma is untrue. Then, there exists a component G. of G(Q) and

nodes (a^) ,fa^ t(a^\ in Gfc such that (a?) andfa^ are not

comparable w.r.t. R and either

(i) (/a^ ,g) ), (/a^ ,/T\ )are edges of G(Q) or
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(ii) (fa^ ,(a^) ), (/T\ ,/a~j\ )are edges of G(Q).

Case (i): fa^\ and /T\ are not R-related and ( (a?) , /Tj )

((*?) , /S"\ ) are edges of G,. Then /a?) precedes (a\ in

some Hamiltonian path h and 4T\ precedes fa\ is some other

Hamiltonian path h when h and h are among the Hamiltonian
t It

paths used to define G(Q). Then, since the left neighbor of

/a"\ is not empty in h and h and (a?) i fa\ ,we are led to

the contradiction that h and h« are not consistent.

Case (ii): fap)and (a^\ are not R-related and (/^.(a?) )and

((^)»(aT) ) are edges of G,. By similar arguments as in case (i),

we get the same contradiction. QED ****

Lemma 14: Let G be a directed graph satisfying that there exists

a directed path between every pair of nodes of G. If G is acyclic,

then there exists one and only one Hamiltonian path in G.

Proof: First, we observe that there exists a single node s in G

with no edge directed to it and a single node t with no edge

directed from it [12]. s is called the source and t the sink.

Let S1 • {s}. We delete from G the node s and the edges leading

from it and obtain the graph G.

Let S. be the set of sources in G. Suppose to the contrary that

there exist distinct nodes 1, J belonging to S?. Since G is acyclic, the

path between i and j does not include s. Hence, there is a path between

i and j in G. This implies that one of (i,j) is not a source which is a

r-» -



contradiction. We know that there is at least one source in G

(See [12], page 64.) Hence |s |- 1. Let S2 - {£}. Note that

the path between s and I is from s to I in G. Assume to the

contrary that there exists an intermediate node k in the path

from 8 to I in G. Then there is a path from k to I in G. This

contradicts the fact that I is the source in G. Hence (S,£) is an edge in

G.

By repeating this argument for 1 <_ 1 < n, we get the disjoint singleton

sets S. such that for 1 <j <n if S B {p} and S.+1 (q), then (p,q) is an

edge of G. S • {t} and there is no edge directed from t. This means that.

there is a path from s to t including all the nodes in G which is Hamiltonian.

Let H be a Hamiltonian path in G. Since G is acyclic, for all nodes

1, j in G, i precedes j in H implies that i precedes j in any directed

path passing through i and j. This fact establishes the uniqueness of H^.

QED ****

From lemmas 13 and 14 the following theorem is Immediate.

Theorem 10: There exists one and only one Hamiltonian path in every com

ponent of G(Q), if G(Q) is acyclic. ****

We now present an algorithm to obtain a function f and a set of in

tervals (I1,I2,...,Im> such that (f; I^I^... ,IQ) implies the L.O.

property of Q.

Algorithm (Al>:

(i) Obtain a P.O. graph G(Q) of Q. If there does not exist a G(Q)

or if G(Q) is not acyclic, Q does not possess the property of linear

ordering.
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(ii) Let S., G2, ..., 6 be the components of G(Q). Get the Hamil-
P

tonian paths H,, H„, ..., H in G., G0, ..., G .
1 Z p i z p

(ill) Define function f: (1) V /a^\ e 6^, /a\ € Gr> k<r, f(a±) <

(flj) and (2) V^, /a^\ €Gk, 1^j, 1<kip, f(a±) <f(aj) iff ^
precedes /a?\ in H,.

(iv) V q. 6 Q, define I. - [ Min f(a.), Max f(a )]
1 * aj6qi i aj6qi J

Theorem Us The function and the intervals defined by the above algorithm

imply'that the sets in the family Q are linearly orderable.

Proof: By Theorem 10 , H-, H , ...» H exist. The rest of the proof is the

same as the proof of the sufficiency part of Theorem 8. ****

Section 6. Complexity:

We have given necessary and sufficient conditions for a family o.

sets Q to have the property of linear ordering. We also gave an

algorithm. The problem may also be formulated as a property of a

matrix. Let M be an nxm matrix whose rows correspond to the n

elements of S and whose columns correspond to the m rows of the

sets in the family Q. M. • 1 if a € q and is zero otherwise.

The linear ordering property of Q can be stated as a property of M.

If there exist a permutation of the rows of M for which the "ones"

in every column of M are in consecutive positions, then Q has the

L.O. property. The "consecutive-one property" of a 0-1 matrix has

been studied by mathematicians for special cases. The most general

solution of this problem is given by Fulkerson and Gross [13]. On

having written this thesis, the author became aware*of this.

Their approach is not graph theoretic. They also do not treat the
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problem from the information retrieval point of view [5].

In our solution there were five specific steps:

step (i): Find G. , G2, ..., G, so that G. for 1 < i < k are

complete subgraphs of n(Q) and G-, G2, ..., G, cover fl(Q).

step (ii): See if each one of the subfamilies corresponding to these

subgraphs has the L.O. property.

step (ill): Find consistent Hamiltonian paths in the directed

semantic graphs of these subfamilies. Define the partial order

graph G(Q).

step (iv): Check if G(Q) is acyclic.

steo (v): Find Hamiltonian paths in every component of G(Q).

For each edge (/6^\ ,fq^\ ) of n(Q), define G±. to be the

subgraph tf(57) »(^ )» R] where R is the connectivity relation of

fl(Q). Then the subgraphs corresponding to all the edges of Q(Q)

are complete and cover Q(Q) . Hence, step (i) of the procedure

does not require any work. In order to find a Hamiltonian path in

the DSG G(Q) of Q whose intersection graph is complete, we

partition the set of non-direction-changer nodes into P and P2

so that if (a7) €P (P )then /a^ is not comparable to any node

in P (P ). Existence of such a partition is evident from theorem 4

and Corollary 2. If h-<(a^\ ,Q ,..., (a^ ,..., /a^\ ,..., 4T\ >
is a Hamiltonian path of G(Q), then (i) h consists of all the nodes

of G(Q) and (ii) if (a\ precedes /a^N in hand ^)»(J) GPl (P2)'
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then degree of /a7\ is less than or equal to (greater than or

equal to) the degree of /£7\ . Degree of a node (a}\ is the number

of edges incident on (aT) [8]. Hence to get aHamiltonian path in

a DSG (8tep(ii)), all that is required is to sort the nodes of P

and P« on their degree. This is of complexity 0(n log n)

where n is the number of nodes of the DSG. Step'(ill) is

the most difficult one. Step (iv) is of complexity 0(n ) where n is

the number of nodes of G(Q) when we use the depth-first-

search technique [14]. We use the depth-first-search technique

and see if the number of strong components of G(Q) is equal to

the number of nodes of G(Q). Finding a Hamiltonian path in a

component of G(Q) is same as finding a longest or critical path

in the component which is acyclic. This needs 0(n ) steps where

n is again the number of nodes of G(Q).

Though we have not established the complexity of our

algorithm, we have included this discussion to throw some light

on the amount of work involved at each step of the procedure.
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CHAPTER 5.

UPDATING A CR FILE ORGANIZATION

In Chapter 4 we assumed that the file is time invariant and

obtained necessary and sufficient conditions for a query family

Q to be consecutively retrievable with respect to a file F. We

also got an algorithm to find a CR file organization for Q w.r.t.

F. Let CR(F,Q) be a CR file organization for the family Q w.r.t.

F. In this chapter, we shall consider the problem of updating

CR(F,Q).

First let us introduce some notations. If A and B are two

sets then in the sequel we shall let A-B denote the set of

elements belonging to A and not to B. If q. is a query in the

family Q and if P(q.) is the set of reply records for q 'for

simplicity of notation, we shall let q denote p(q.). It should

be clear from the usage whether we mean the query q. or the set

of reply records for q.. If CR. «• r- r. ... r and CR~ =

r. r. ... r are two CR organizations with no records in common

then CR. • CR« • r, r0 ... r r, r- ... r is a CR organization.
1 LLl m l z n

Insertion and deletion are the two situations of updating.

There are two cases of deletion: (i) deletion of records from

the file F. Let R be the set of records being deleted from F.

Define Q = {q | q • q - R}. We need to analyse Q with respect

to F-R. (ii) deletion of queries from the family Q of queries.
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If Q-C Q is the family of queries being deleted, then we want

to examine Q-Q. with respect to U {q }. Similarly there
q± €Q-Qj

are two cases of insertion: (1) Adding queries whose pertinent

records are in F. (ii) Adding a new set of records R to the file

F and updating the replies to the queries in Q, i.e. for each query

<l± ^ Q» we add zero or more records from R as reply records.

If a query q with a set of reply records not contained in

F is added to the system, then CR(F,Q) • q. is a CR organization

for Q U {q^ with respect to F U q We can consider adding a query

qwith reply records Rx U R2 where R H r - 4, and R. is a subset

of records in file F and R2 is a set of records not in F in two

steps: First step is adding a query q. with reply records R.

and analyse the CR organization for Q U {q^} w.r.t. FUR . The

second step is to add the set of records R~ to (F U « ) and update

the reply of query q in the family (Q U {q }).

When records or queries are deleted from a CR organization,

the CR organization remains invariant. Let f be a function

that maps F into storage locations of the linear storage medium

and s be the sequence of consecutive locations corresponding

to q^^ € Q. Suppose we delete a set R of records from the file F.

Then the same function f and sequences {s } satisfy the CR property

of updated set of queries w.r.t. F-R. In practice, we may

have some gaps created due to the deletion of records and need

compacting. When a query q is deleted from a CR organization,

we may (i) delete the query q from the directory and (ii) delete
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from the organization the records that are pertinent only to q

Example 5.1: Let QQ - {qQ, q^ q2, q3> where qQ - {rQ, rlf r2)

q

Tq r r2 r r, is a CR organization for Q0>
1" {rl» r2» r3}* q2 * {r2» r3' V and q3 " {V rl» r2' r3}*

If we delete the record r2 from the file, then q. becomes

{rQ, r1>, qx becomes {r^ t^}, q2 gets updated to {r3> r^} and

q3 t0 *r0' rl* r3** r0 rl r3 r4 ls the or8anization obtained
by deleting r. from the CR organization for Q and squeezing the

gaps. rQ r^ r r, is a CR organization for the family of queries

with updated set of replies.

If the query q. is deleted from Q we may delete r, from the

CR organization for Q and obtain rQ r r2 r . This is a CR

organization for the updated family of queries {q_, q., q.}. r

was deleted from the CR organization for Qn since r, belonged

only to q2, the query being deleted from the system. ****

Let us now consider adding a query q to a CR organization.

The records pertinent to q are already in the file. Let Qn

denote the old family of queries and Q =» Q_ U {q} the new family

of queries. We are looking for a CR organization for Q w.r.t. F.

The following theorem gives some of the situations where a CR

organization for Q may be obtained by a few changes to the

existing CR organization for Q~. We need the following definitions:

Consider an undirected graph G. A path in G is a sequence of

distinct nodes i., ... i., ij+1t •.. ik such that for 1 £ j £ k,

1. is a node of G and for 1 < j < k,(i., i...} is an edge of G. G is
j — — j j+1

called connected if there is a path between every pair of nodes of G.
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A component of G is a subgraph of G that is connected and is not

properly contained in any connected subgraph of G [8].

Example 5.2: Consider the graph in figure 4.14. It is not a

connected graph since there is no path from say fq^ to SqS .

If Ris the connectivity relation of the graph, then [{(q^\ »

components of the graph. ****

Theorem 12: If q satisfies any one of the following conditions,

then QN has a CR organization:

(i) q covers every query e Q i.e. q D q for Vq € Q

(ii) qC .1q

qi G %

(iii) q - n q where Q' C q

(iv) qCj where q€ QQ and there exist at most one q€Q

such that q 4 q and q H q + $, i.e. in fl(Q ), zero or one

edge is incident on^qj, the node corresponding to q.

<v) q ° u <qH> where Q C q and fi(Q) is connected.

(vi) q» P^ U r2, ri n r2 . <j, and there exist Q C Q q C q

such that fl(Qx) and ft(Q2) are components of fl(QQ) and

R, - U {q } and R, - U {q }.
qi €Q, 2 qj €q2 J

(vii) q can be partitioned into X^, R2 R. such that for

1 <_ i<k.^Q, £Q0, Q(Q.) is acomponent of S1(Q )and
^ - U fq >.

q*€QJ
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Proof: Part (i) is obvious.

Part (ii): In the CR organization for Q w.r.t. F, the records

€ H q are consecutive and rearranging these records among

«ie %

themselves does not affect the CR property of Qfi. Rearranging

these records such that the records € q are consecutive, we obtain

a CR organization for Q„.
N

Part (iii): Observe that for any subfamily Q' C Q the records

€ H q are consecutive in the CR organization for Q . Then

q± GQ' °

the CR organization for Q is a CR organization for Q .

Part (iv): If there is no query q in (L such that q j q and

q i'l q ?t $ then the records belonging to q can be arranged among

themselves without affecting the CR property of the family QQ.

By rearranging the records belonging to q in the current CR

organization for Q such that records belonging to q are consecutive,

we have a CR organization for Q .

If there exists a q € Q , q different from q and q n q ^ 4>,

we note that rearranging the records £ (q O q) among themselves

and records € (q - q) among themselves in the present CR

organization for QQ do not affect the CR property of Q .

Rearranging the records £ (q - q) among themselves and records

e (q n q) among themselves such that records € q are consecutive,

we get a CR organization for Q„.
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Part (v): All we have to do is to prove that the records

pertinent to queries in Q are consecutive in the CR organization

for Qq. Let R. and R2 be some partitions of records € u_{qj)
qt € Q

For the sake of proof, assume to the contrary that the CR

organization for Q is R.RL where. R is a

non-empty set of records, i.e. assume that the records

e u {q.,} 3re not consecutive in the CR organization for Qn.

Then there is no query q € Q such that q D {r., r2) where

*1 € Rl and r2 G R . Thus for V q. € q, either q contains

records € R or records € R This means that in n(Q) there is

no path between a node corresponding to a query € Q that has

pertinent records belonging only to R. and a node corresponding

to a query € Q that has relevant records belonging only to R?.

This contradicts the hypothesis that Q(Q) is connected. Now

that we have proved that the records relevant to queries € Q

are consecutive in the CR organization for Q , it is obvious

that the same organization is a CR organization for Q .

Part (vi): From the proof of part (v), we observe that records

G K. must be consecutive in the CR organization for Q^. So do

the records € R Let the CR organization for QQ be

R, K R2 . If R • <J> then the records that are relevant

to q are consecutive in this organization which then is a CR

organization for Q . If R y $, arrange the records such that

the new organization is R. R2 R . Since n(Q.) is a
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component, there is no query q G Q such that q H r ^ <j> and

q H (F-R.) ?« <f> (Recall that F - U {q }.) Similarly, there

does exist a q € Q having qHL ^ and q n (F-R2) ^ $. Then

the new organization is a CR organization for Q~. But in the

new organization,records G R. and R2 which are precisely the

records that are relevant to q are consecutive. Hence the new

organization is a CR organization for Q._.
N

Part (vii): This is just a generalization of part (vi). By

repeated application of the procedure outlined in the proof of

part (vi), we obtain a CR organization for Q . QED ****

We considered in the above theorem some special cases of

adding a new query to the system. There is no elegant solution

for the general case. However, a few lines to reduce the amount

of work to be done may be worth mentioning. Let G., G2, ..., G

be the complete subgraphs of ft(Qn) that were chosen to cover

Q(QQ) in the application of algorithm (Al). For 1 <_ 1 <_ m,

let Q. be so that ft(Q.) c G. and G(Q.) be the DSG of Q . Let

12 k 1HQ be the family of sets {HQ, H-, ...., HQ} where HQ for

i • 1, 2, ...,kisa set of pair wise consistent Hamiltonian

paths in G(QX) ,G(Q2) G(Qn). In fl(QN), the node(q)
corresponding to the query q being added and the edges that are

incident ovfqjare not in any of the subgraphs G-, G2, ..., G .

Let G„, Gy, ..., GJJ be aset of complete subgraphs of 8(QN)»

distinct from G_, G2> ..., Gffi, such that G_, G2, ..., Gm,

Gy, G* g£ cover n(QN). qJ be such that n(Q*) -G* for
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1 <_ i <_ p and G(Q ) denotes as usual the DSG of Q . We now

obtain H , the family of sets of pair wise consistent Hamiltonian

paths in the directed semantic graphs G(Q). Now that we have

H. and H.., it is easy to obtain ii., the family of sets of pair wise

consistent Hamiltonian paths in the directed semantic graphs

of the subfamilies corresponding to some complete subgraphs

covering ft((Xj). If IL ^, we proceed by choosing any member

of H^, defining the P.O. graph G(QN) and applying the rest of the

algorithm (Al). Thus, we see that if at every stage we keep

a family of sets of consistent Hamiltonian paths, the problem

is a little simplified when we add a new query to the system.

Let us now consider the addition of a set of new records

to a CR file organization. When a set of new records is added

to a CR organization and replies to one or more queries in Qn

are updated, we essentially have a new family of queries QN

and a new file. We may reorganize the new file w.r.t. the new

set of queries and obtain a CR file organization from scratch.

Apart from this trivial and inefficient solution, we may consider

some efficient methods that follow.

If we can anticipate the semantics of the new records, we

can include dummy records as pertinent to queries that may have

some of the new records as reply records. When the actual

records are added to the system, we simply replace the dummy

records by the actual ones. Till the addition of new records,

the dummy records must be removed from the set of replies to

all queries.
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If it is difficult to anticipate the semantics of new

records and if we can relax the requirements of a CR file

organization for QN, there is an elegant method. Q0 is the family

of queries in the system. Let R * {r , r2, ..., r } be the set

of new records added and Q the family of queries with updated

set of replies. Now, define Q - {q , q , ..., <J } such that

for V q± G qu§ q± CRand for Vq G q^, qOr+$-» 3 q G QQ

and q± G Q such that q « q. U q

Theorem 13: If Q does not have a CR organization, then Q

does not have a CR organization.

Proof: If Q has a CR organization, then we can delete the

records not belonging to any q. G Q from the CR organization for

C^. The resultant is a CR organization for Q . This is imminent

from the fact established earlier in this chapter that deletion of

a set of records from a CR organization does not affect the CR

property of the family consisting of queries with updated set of

reply records. Thus, Q has a CR organization implies that Q has

a CR organization.

Example 5.3: Let QQ - {qQ, q±t q2, q3>

where qQ « {rQ, r^ r2),

ql * {rl* r2}*

q2 * {r2' r3}*
and q3 • {r3, r^}.

Let R = {re, r , r_} be the set of records added to the system.
j o 7

Let QN - {q0, q±t ^t q^ where 5X ° qx u 52 - (x^ r2> U {r5}

q2 -q2U52 " (r2, r3) U {r5, r?}

T7-



and q3 " q3 u q3 s {r3, rA) U {r6> r?}

We note that rQ ^ r2 r3 r^ is a CR organization for Q and

r0 rl r2 r5 r3 r7 r4 r6 l8 a CR or8anization for Q . Then,

^U * *ql* q2* q3^ has a CR or8anization which is r. r rfi. ****

Unfortunately, theorem 13 does not work the other way,

i.e. if Q has a CR organization, then Q need not possess

a CR organization.

Consider the example below:

Example 5.4: Let QQ = {qr q2, q3>

where q1 » {p, q}

q2 = (r, s}

q3 - (t, u).

Let R- {a, b, c, d) and Q^ - {q^, q2, q3> where q - {a, b),

q2 - {b, c}, q3 - {b, c, d}. Let QN » {qx, q2, q3) where

qt s 5t u q± for 1<1£ 3. pqrstu is aCR organization for

Q0 and abed is aCR organization for Qu# But QN does not have a
CR organization. ****

The two examples above lead us to a general solution when

(i) QN has CR organization, but we opt not to do a reorganization

and obtain a CR organization for QN and (ii) Q does not have a

CR organization, but Qy has a CR organization. We form a CR

organization for Q^ Each query q G q is q U q for some

qi € Q0 and q ls either empty or some query G q in order to

obtain the relevant records for the query q€o We obtain from

the CR organization for QQ the records relevant to q and if

q - $, we stop. If q 4 $, as the second step, we retrieve

records pertinent to q from the CR organization for Q . This
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method may be extended so that we can define several update

families Q„ , Q.. , ... such that each query q G o may be

expressed as a union of one query G Q and zero or more queries

each belonging to some update family Q .
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CHAPTER 6

RAMIFICATIONS OF CONSECUTIVE RETRIEVAL FILE ORGANIZATION

In this chapter, we consider some file organizations

(on linear storage media) which are offshoots of the

Consecutive Retrieval File Organization (CRFO). All of them

are interesting both theoretically and practically. We also

indicate a few problems for future research.

In Chapter 2, we defined a Query Inverted File Organization

(QIFO). It is a file organization in which records relevant

to each query are stored in consecutive storage locations.

We also saw that in a QIFO, we may have to store a record

more than once (i.e. we may have to have redundant records).

Let m' be the number of records in a QIFO and m the number of

records in the file having QIFO. Then m' - m is called the

redundancy of the QIFO. Note that our definition of redundancy

implicitly assumes that all records are of the same length.

This may not be adequate in some situations.

Example 6.1: Consider the QIFO in figure 3.2 (page 23). The

redundancy of the organization is • A - 3 • 1.

Naturally, the question that arises in one's mind is that if

Q does not possess a CRFO (i.e. Q does not have a QIFO with

zero redundancy), what is the QIFO with minimum redundancy?
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This problem is not solved here and is a nice problem to look

into in the future. The problem may be broken into two parts:

(i) What is the minimum redundancy of a QIFO of an arbitrary

family of queries (ii) how to find such an organization.

Dr. S. P. Ghosh establishes some bounds on redundancy in [15].

One obvious way to reduce redundancy in a QIFO for Q is

to partition Q into k subfamilies, k < m, such that the sub

families have CR organizations where m is the number of

queries in Q. It is easily seen that any pair of queries have

a CR organization and hence, such ak exists. Indeed k <_ "-f

where \— stands for the smallest integer greater than or equal
m

to —. If the CR organizations for these subfamilies are

CR^ CR2, ... and CR. respectively, then CR. • CR2 • ... • CR,

is a QIFO for Q. Suppose QI and QI are two QIFO with some

( >0) records common at one of their ends. Then, QI and QI

may be stored consecutively with common records at their ends

stored only once. For example, If rn r r r r is a QI

organization for Q and rQ r, r r r, is a QI organization for

Q2 then r6 r5 ^ rA rQ ^ r£ r3 ^ is aQIFO for Qx u Q2-

In a query inverted file organization, we assumed that the

storage space is cheap and we looked for a file organization

with maximum retrieval efficiency and as less a storage

(redundancy) as possible. We can also consider the converse

problem: obtain a storage organization (on a linear storage

medium), in which each record is stored only once ( i.e.

guaranteed minimum storage space) and as high a retrieval
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efficiency as possible. The problem may be formulated as possible:

(i) Let Q be a family of queries regarding a file F. That is,

F « U {q }. Note that, as before, we let q denote both
q±€Q i *

the query and set of replies to the query. All the queries

in Q are equally likely. Tor each query, the file is accessed

from one end of the organization.

(ii) There is no cost to reach the first relevant record of a

query,

(ill) There is no cost after reading the last relevant record

of a query,

(iv) It cost a dollar to skip a record

(v) Find an organization (mapping or permutation) of F in the

linear storage medium (real line) in which each record is

stored only once (mapping is a one to one function) such

that the cost of retrieving is minimized.

Assumption (ii) is valid since we can do a fast wind to reach

the first relevant record of a query even if all the queries are

not equally likely. Assumption (iii) is also valid since we do

not care what happens after retrieving all the relevant records

of a query. Assumption (iv) treats all the records equally. In

reality, the cost of skipping a record should be a function of

the length of the record. Before we give a solution based on

dynamic programming [16], let us give an example.

Example 6.2: Consider the family Q- {q^ q2, q3, q^} where

ql = {ri» V r4K q2 " {r2» r3}» q3 = {rl' r3} and q4 " {ri> r2•
r3» r4^' Consider the following permutation tt: 1 -> r ,2 -• r ,
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3 •*- r3 and 4 -*• r , In the arrangement r r2 r r, ,when we

retrieve replies for q., it costs a dollar (since we skip the

record r ), for q is costs nothing, for q« it costs a dollar and

for q^ it costs nothing. Hence the total cost is two dollars.

Now, consider the permutation, 1 •*• r ,2 -• r., 3 •+ r2 and 4 •*• r,.

In this arrangement (r r. r2 r.) the total cost.is one dollar.

We know that this is the best we can do. (Q does not possess the

CR property. 2(Q) is complete and -^ q - <t>. By Lemma 3, Q

is not consecutively retrievable.)

We can give this problem a matrix representation. Let M be

a zero - one matrix, whose m columns correspond to queries,

n rows to records and M ™ 1 iff record r is relevant to query

q. and M = 0 otherwise. The cost of the matrix M « y ^ Number

1 £ j <_ m

of zeros between the top and bottom "ones" in column j.

The problem then is to find a permutation of rows such that

the total cost ir minimum.

Example 6.3: Consider the same query family in example 6.2.

The matrix M representing Q is given below for the arrangement

rl r2 r3 V

ql q2 q3 q«

M
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Cost of M = > cost of column j

j

= 1 + 0 + 1 + 0=2

/
(Cost of column 1 • number of zerop between the first (M,,) and

last (M,1) "one" in column one.)

ql q2 q3 %

M'

M* is the same as M except that rows two and three are inter

changed. Cost of Mf « 1. We proved in example 6.2 that this cost

was minimum.

We now give a dynamic programming solution to this problem

and analyze the complexity of the solution.

Let B be a subset of rows in the matrix M. 0R(B) denotes

the inclusive OR of the row vectors in B. For example if

10 10 and 110 1 are the two row vectors in B then 0R(B) is

the vector 1111. OR ({$}) = 0 where {$} is the empty set.

If a • (aQ, a1> ..., a1, ..., a^) and b* (bQ, b^, ..., b^ ..., b )

are two row vectors of zeros and ones, then a * b is the row

vector (aQ xbQ, ai xbi »an *bn^' 'al * X_^ al "
i»0,n

number of "ones" in the vector a. a is the complement of a which

is (a_, ..., a., ..., a ) where a. » 1 if a. B 0 and a • 0 if
u l n l l I
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a. - 1. If A denotes a set of rows in M, then A-B denotes the

set of rows in A and not in B.

Define: f(r ; B) is the minimum cost of placing row r. in M

immediately after the rows in the set B.

f(r.; B) - Min [f(r.; B-{r,})] + d. „ where
1 r G B 3 J B» ri

dB,r "I0R(B) **i *0R(F"B U {ri}) I
in which F denotes the set of rows in M. Boundary condition is

f(r±; {$}) » 0. The minimum cost of M is Min f(r ; F-{r.}).
ri

As a by-product of this calculation, we obtain a minimum cost

permutation.

Example 6.4: For example, let us calculate f(r,; {r^r^r.})

for the example 6.3..

{rl'r2'r3}* r4

{r^}, r2

l(r3), rx

Similarly, d , . - 1
rl» lV

OR ({ri,r2,r3}) * ru *OR ({<fr})| -0

OR ({r^}) * v2 * OR (r4)

1111*0010*1001 |

0 0 0 0-0

OR ({r3» * vx * OR ({r2,r4»

0 10 0-1
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f(r1;{r3»

f(r3,[r1»

f(r>;{<(.}) + d. , =0 + 1 = 1
•j i * i

f(r ;{$}) + d, . =0 + 1 = 1
-1 l * 3

^V'V^^.r^r,,
f(r2;{rl>r3}) = Min

f(r ;{r }) + d }

= 1 + 0=1

Similarly

f(r1;{r2,r3>) = 1

f(r3;{r1,r2}) = 2

f(rr'r2'r3!)+d(r1,r2,r3),r/
f(r4;{rltr9,r }) Min^f(r2;{r3>r1» +

f(r3;{r1,r2)) +

= i, ****

Now, let us look into the complexity of our algorithm. The

answer is Min f(r ;F-{ri>). There are n choices for r where
r. *
l

n is the number of rows of M(n is the number of records in the

file). Consider the computational step f(r ;B). There are

(n-1) choices for r . If the number of row vectors in B is p,

then the number of ways of choosing B is(n \. 0R(B) involves

"oring" p vectors, 0R(F-BU{r.}) involves "oring" n - p - 1

vectors. There are two row multiplications. Hence the number of
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operations in d is (n+1). Therefore, the total number of

n-2

operations -n•Y^ (n-1) •(n"2) .(n+l)
p»0

(n-2)

which is "n •22 ("p2) where *stands for "of the order of",
P

0

(n-2)
3 E(n-2) !

(n-2-p) ! • p!
= n

0

m

3
= n La (m-p)! •p! •n ' (1+1) "n •2 t

p=0

The solution has complexity of the order of 2n which is

exponential. I strongly suspect ti.at this problem is polv-

nomial complete [17]. If this conjecture is true, it means

that if we can solve this problem in polynomial time then we

can solve in polynomial time several problems which are strongly

suspected to be unsolvable in polynomial time (like the traveling

salesman problem [18], [21], the satisfiability problem [17], etc.)

Proving that the conjecture is true or false is a good problem for

future research.

Another interesting problem is to assign weights or

probabilities to the queries in Q and find CRFO and QIFO with

maximum retrieval efficiency and minimum redundancy.

Consider the following problem. Let R = (l,2,...,n). Find

a shortest length sequence of elements belonging to R containing

every k out of n combinational subsequences. A combinational
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subsequence is a sequence of consecutive locations in which we

ignore the ordering of elements. For example, 1231 is a shortest

length sequence of {1,2,3} containing all the two-out-of three

combinations which are {1,2}, {1,3} and {2,3}. This problem also

seems (?) to be polynomial complete. If R corresponds to the

set of records of a file and the family of queries Q regarding

the file is {q. | reply for q. is k out of n records in the file},

then solving the above problem is equivalent to finding a QIFO

for Q with minimum redundancy (of course, assuming that the

records are of the same length) [15]. In addition to QIFO, the

above problem seems to have applications in coding theory,

placement algorithm and information theory. Giving a solution

to the problem that works in polynomial time or proving that the

problem is polynomial complete is a good research topic.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The work reported here was in the nature of a general

optimization problem applied to storage organization techniques.

We assumed that we knew in advance a family of queries Q

regarding a file F. We wanted to store the file on a linear

storage medium so that the retrieval efficiency was maximum and

the amount of storage used was minimum. We analysed the four

existing file organizations, namely, the sequential file

organization, index sequential file organization, inverted file

organization and multilist file organization. Among these, the

inverted file organization possessed greater flexibility and

higher efficiency of retrieval. Because of often unwanted

generality, the efficiency of retrieval in an inverted file

organization was not fast enough.

We introduced the notions of QIFO and CRFO. QIFO provided

minimum overall retrieval time for all queries in Q and CRFO

guaranteed minimum storage space in addition to minimum overall

retrieval time. The CR property of a family of queries was

generalized to the L.O. property of a family of aets. With this

generalization, the model could be applied to many storage

organizations of interest. Apart from storage organization in
i

a computer, book organization in a library shelf, inventory



organization in a warehouse, placement and maintenance of

equipments, switches, gadgets, etc. are some of the several

examples of the applications of the model.

We took a graph theoretic approach to investigate the

problem. We got some results connecting the L.O. property of a

family of sets and an interval graph. We obtained' necessary and

sufficient conditions for a family of sets to be linearly orderable.

We gave an algorithm to find a linear ordering if one existed and

analysed the complexity of the algorithm.

All these examinations were done on the assumption that the file

was time invariant. In Chapter 5, we addressed ourselves to the

problems of updating a file with CRFO and obtained some nice

results. Several file organizations that have similar flavour

to CRFO were exposed in Chapter 6. Some open problems were also

cited.

The idea of CRFC is based on the assumption that we know

in advance the set of queries concerning the particular file F.

It is my belief that the different number of queries asked by

different users regarding a file at different tines are not too

many. These queries may be obtained by the data management

system by monitoring and audit logging the accesses to the file.

Among the queries frequently asked by users regarding a file

F, let Q denote the maximal subset having the CR property. We

build a CR organization for Q. Whenever a query q not in Q

is asked by a user, since the CRFO is also a sequential

file organization (if we ignore the directory part), we can



fetch the records relevant to q as if the file has the sequential

organization. When a query G Q is asked, we access the file

making use of the CR organization.

-///-



REFERENCES

[1] D. Hsiao and F. Harary, A Formal System for Information

Retrieval from FileB, Communications of ACM, 2, February,

1970.

[2] D. E. Knuth, The Art of Computer Programming, volume 1,

Addison Wesley, Reading, Mass., 1968.

[3] D. K. Hsiao, A Generalized Record Organization, IEEE

Transactions on Computers, 12, December 1971.

[4] W. C. McGee, Generalized File Processing, Annual Review

in Automatic Programming, 5, 13, Pergamon Press, New

York, 1969.

[5] S. P. Ghosh, File Organization: The Consecutive Retrieval

Property, Communications of ACM, 9, September, 1972.

[6] S. P. Ghosh, File Organization: Consecutive Storage of

Relevant Records on a Drum Type Storage, RJ 895, IBM Research

Report, July, 1971.

[7] E. F. Codd, A Relational Model of Data for Large Shared

Data Banks. Communications of ACM, 6, June, 1970.

[8] F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969,

[9] P. C. Gilmore and A. J. Hoffman, A Characterization of

Comparability Graphs and of Interval Graphs, Canadian

Journal of Math., 16, 1964.

[10] A. Pnueli, A. Lampel and S. Even, Transitive Orientation

of Graphs and Identification of Permutation Graphs, Canadian

Journal of Math., 23, 1971.

- 112 -



[11] C. Berge, Theory of Graphs and its Applications, Wiley,

New York, 1962.

[12] F. Harary, R. Z. Norman, and D. Cartwright, Structural

Models: An Introduction to the Theory of Directed Graphs,

Wiley, New York, 1965.

[13] D. R. Fulkerson and 0. A. Gross, Incidence Matrices and

Internal Graphs, Pacific Journal of Math., 15, 1965.

[14] R. Tarjan, Depth-First Search and Linear Graph Algorithms.

SIAM Journal on Computing, 2, 1972.

[15] S. P. Ghosh, Consecutive Storage of Relevant Records with

Redundancy, RJ 933, IBM Research Report.

[16] R. E. Bellman and S. E. Dreyfus, Applied Dynamic

Programming, Princeton Univ. Press, 1962.

[17] R. M. Karp, Reducibility among Combinatorial Problems,

Complexity of Computations, Plenum Press, 1972.

[18] M. Held and R. M. Karp, The Construction of Discrete

Dynamic Programming Algorithms, IBM Systems Journal,

4, 2, 1965.

[19] K. Eswaran, A Graph Theoretic Approach to Linearly Orderable

Sets, Electronics Research Laboratory, Univ. of California,

Berkeley, research report, M 369, 1972.

[20] K. Eswaran, Faithful Representation of a Family of Sets by

a Set of Intervals, to appear in the Journal of Information

Sciences.

[21] V. R. Pratt, A n log n Algorithm to Distribute n records

Optimally in a Sequentially Access File, Complexity of

Computations, Plenum Press, 1972.

- ffS~


	Copyright notice 1973
	ERL-384 (1 of 2)
	ERL-384 (2 of 2)

