

Copyright © 1973, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

INDUCTIVE INFERENCE: A RECURSION THEORETIC APPROACH

by

L. Blum and M. Blum

Memorandum No. ERL-M386

13 March 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

INDUCTIVE INFERENCE: A RECURSION THEORETIC APPROACH

L. Blum

Department of Mathematics
University of California, Berkeley, California 94720

M. Blum

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

There are several situations that we are trying more or less to model.

One arises from the standard IQ test in which a person is given a finite

sequence of integers and asked to produce the next integer in the sequence.

Another is provided by the following grossly simplified view of one aspect

of physics: Consider a physicist who is trying to find a law to explain

a growing body of experimental data. This data is presented as a set of

pairs (x,y). Here, x is a description of a particular experiment, e.g., a

high energy physics experiment; y is a description of the results obtained,

e.g., the particles produced and their respective properties. The law

describing these phenomena is essentially an algorithm for computing the

function f(x) = y. What an inductive inference machine does is to request

and obtain data in the form of pairs (x,y) and then use this to look for

an algorithm i that computes (an extension of) f. Other examples arise

in grammatical inference, pattern recognition, etc.

This paper develops inductive inference along the lines of Solomonoff

[], Gold, [] and Feldman []. What is new and distinguishes our work

from theirs is our attempt to characterize the set of functions that can

be identified by an inductive inference machine. In the process, we have

discovered (Theorem 4, part 1) that inductive inference machines can be

considerably more powerful than we previously thought possible.

The authors wish to thank Eliana Minicozzi for her vital participation in
this project. This work was supported in part by a Sloan Foundation fellowship
to the second author, and in part by the National Science Foundation, Grant
GJ-35604X.

1. Introduction

00

Let N denote the natural numbers. Let (<t>1)ja,n denote an acceptable

Godel numbering of all the partial recursive functions mapping N into N

00 00

[]. Let (*i)i=0 denote a complexity measure on (<J>i)i=_0 []•

Intuitively, $.(x) is the number of steps or amount of time that algorithm

i requires to compute <J> (x) .

An inductive inference machine is an algorithmic device or Turing

machine that works as follows: First the machine is put in some initial

state with its memory completely blank. From there it proceeds

algorithmically except that, from time to time, the device requests an

input or produces an output. Each time it requests an input, an external

agency feeds the machine a pair of natural numbers (x,y) or a *, aiMj then

returns control to the machine. Each output produced by the machine is a

natural number.

We next define which partial functions a given machine can infer.

For this, the following terminology is useful: Let f be a partial function.

Say that f is an enumeration of f if f= (a^a,,...) is an infinite

sequence in which each a. is either a pair (x,f(x)) or a *, and (x,f(x))

appears at least once in f for every x £ domain (f) . Let M be an

inductive inference machine. We write M[f] + i and say that M with input

f« (an,a ,...) converges to i if, whenever aQ,a1,... are fed to M in this

order, there eventually comes a time when M produces an i and then never

again produces a different number. We write M[f] + and say that M with

input f diverges otherwise , Following Gold [], we say that M can identify

One reason for the * is to have a way to represent an enumeration of the
partial function f with empty domain, namely f = (*,*,...).

Note that there are two ways for a machine to converge and two ways for
it to diverge: If M[f]+ithen M with input f either produces a finite
sequence of outputs, the last of which is i, or an infinite sequence of
outputs that are constantly equal to i from some point on. On the other
hand, if M[f] t then M with input f either produces no outputs or produces
an infinite sequence of outputs with an infinite number of alterations.

-2-

fif for every enumeration t of fthere is an isuch that M[t] Hand*

is an extension of f, i.e., <J>.(x) = f(x) for all x e domain (f) . We

say that M can identify a set S of partial functions if it can identify

every f in S. We let SM denote the set of all partial functions that M

can identify.

Before proceeding, we give some examples.

Example 1 The set of all primitive recursive functions can be identified

by an inductive inference machine. Let <J> /m , <f> /1X, ... be an effective

enumeration of the set of all primitive recursive functions. The machine

starts by requesting an input (x0,yQ). Each time it receives a new pair

(Vyn}' it: looks ^or the least ±such that ^(i^V =y0» •'•»
p(i)^Xa^ = yn and outPuts PC1)' The machine then requests the next input

and continues as above. Clearly, this machine can identify all primitive

recursive functions.

The simple technique used above permits one to construct a machine

that can identify any recursively enumerable set {d> ,..\ ^ of partial
o\l) i tN

recursive functions for which the ternary predicate [<J> ... (x) = y] is decidable

For example, the set of all step-counting functions {*^}j c M has such a

predicate and therefore can be identified. The set of step-counting func

tions differs from the set of primitive recursive functions in that it con-
2

tains arbitrarily fast-growing recursive functions. However, it does

not contain arbitrarily difficult 0-1 valued recursive functions.

1
We do not require that <|>i = f. If we did, a number of strange phenomena

would arise. For example, a machine that could identify all finite partial
functions would be unable to identify any partial functions with infinite
domain.

2

i.e., for every recursive h there is a recursive $. such that *,(x) > h(x)
for all x. ^ "i

-3-

Example 2. We now present a machine that is more complex than the one

defined in the preceding example, and also more interesting. It can

identify all quickly computable recursive functions, all recursive step-

counting functions (step-counting functions defined by using Turing

machines with a binary input-output code), and some arbitrarily difficult

0-1 valued recursive functions. This machine with input f works as

follows: It first conjectures 0. Now suppose at some moment in time that

its last conjecture is i. If it ever discovers that <f>.(y) * and $Ay) ^ f(y)

for some y, then it changes its hypothesis and outputs i+1. Suppose

instead it has tested and found that <J>.(y) + f(y) for all y < x.

It next tests ^(x) as follows: First, it constructs an upper bound

on the number of steps it will permit <f>.(x) to run. To construct

this bound, it dovetails <f>n, <J>1, ... looking for a j such that <f>.(y) + f(y)

for all y ^ max {2j,2x}. If and when it finds such a j, it sets

max (*.(y)|y f_ max {2j,2x}} to be the desired upper bound on *.(x). Second

it tests <J>.(x). If <|>.(x) + f(x) in the number of steps given by this upper

bound, then the hypothesis i is accepted for this x. If not, then M

switches from hypothesis i to hypothesis j.

The "intelligence" of this machine lies in part in its unwillingness

to change hypothesis i to j unless <J>.(y) 4- f(y) for all y <_ 2j. This

requirement forces j to be a reasonable hypothesis for f because program j,

which is of length log2J (assuming a standard Godel numbering), is not big

enough to store the at least 2j bits that define f(0), ..., f(2j). Hence

<f>. must actually compute these values of f, not just remember them.

-4-

The above machine is a special case of the machine defined in Theorem

4. As we shall see, machines like this are much more powerful than machines

constructed along the general lines of example 1.

Example 3. Consider the set S of all recursive functions f with the

property that the least x such that f(x) - 1 is itself an index for f.

This is the set of so-called self-describing functions, and it is trivially

identifiable. A machine can identify all f £ S by simply requesting inputs

and conjecturing the least x, if any, such that (x,l) has appeared as input.

Though the above machine is trivial, the set of functions it identifies is

impressively large: One can show that for every recursive function g there

is a self-describing recursive function f which is equal to g almost every

where. From this it follows that the self-describing functions even include

some arbitrarily difficult 0-1 valued recursive functions. However, no

machine can identify S together with all the easily identifiable functions.

In fact, let Sfi be the set of all recursive functions f such that f(x) = 0

for almost all x. Sfi by itself is certainly easy to identify. However, no

inductive inference machine can identify SUs.. The following proof is a

diagonal argument along with an application of the recursion theorem:

Suppose M can identify S_. Without loss of generality we suppose M

initially produces an output and that it eventually makes an infinite

number of input requests. Now define f by the following algorithm:

f(x) = "Determine (via the recursion theorem) the index i of this algorithm.

Now suppose x > i and f(0) , f(1), ..., f(x-l)
Let f(x)

JO if x <i

ll if x= i

-5-

are defined. Feed M the sequence (0,f(0), (l,f(l)), ... (x-l,f(x-1)),

(x,0)»(x+l,0) , ...,(x+n,0), ... in this order. For each n > 0 let i denote
— n

the last output produced by M after seeing (0,f(0), ... (x-1,f(x-1)),

(x,0), ..., (x+n,0) but before making its next input request. Dovetail

the computations <J>. (x+1) , <J>. (x+2) , ... until an integer N is found
0 Xl

such that <J>. (x+N+1) = 0 (eventually such an N will be found since M

can identify Sn and hence can identify the almost everywhere 0 function

it is being fed). Let f(x) « f(x+l) =... = f(x+N) = 0. Let f(x-HJ+l) = 1

(so ff()."

Clearly, f is self describing. Notice that there are infinitely

many x and corresponding N such that M's last conjecture after seeing

(0,f(0)), ...,(x,f(x)), ..., (x+N,f(x+N)) is JL but f ^ <{> . Thus M cannot
N

identify f.

One corollary of the above result is Gold's important theorem []

that no inductive inference machine can identify all the recursive functions.

Another is a non-union theorem for inductive inference machines: S„ U s

Ml M2
is not in general identifiable.

2. Order

The purpose of this section is to show how the order in which a

partial function is fed to a machine affects its final output.

Let M be an inductive inference machine and let f be a partial

recursive function. We say that M can identify f by effective enumeration

iff for every effective enumeration f of f there is an i such that M[f] + i

and (^ is an extension of f. Identification by primitive recursive

1 2
enumeration and by increasing enumeration are defined in a similar
~-s—_ :—: — 4

Ive

partial
recursive function has a primitive recursive enumeration.

2- t = ((0,f(0)), (l,f(l)), (2,f(2)), ...) is the increasing enumeration
of a total function f.

-6-

—3- ^

1. f is primitive recursive if f = (a^a.,...) and there is a primiti^
recursive function p:N->-(NxN) U {*} such that p(n) = an. Every part:

way. Identification by arbitrary enumeration is synonomous with

identification.

Theorem 1 (Gold) One can construct a machine M to identify by primitive

recursive enumeration the set P of all partial recursive functions.

Proof:

Let p_, p , ... be an effective enumeration of all primitive

recursive functions mapping N into(N x N)U {*}. Clearly, each primitive

recursive enumeration of f G P is of the form (p. (0), p^d),***) for

some i.

Now let p be a total recursive function defined by <J> ,.*(x) = "Find

the least n such that p.(n) = (x,y) for some y. Output y".

If (p.(0), p.(1), ...) is an enumeration of f € P then <j) ... « f.

Now define M as follows:

M[f] = "Go to stage 0.

Stage n: Request an input and let the inputs received up to now

be art,..., a in this order.
0 n

Find the least i such that

p.(0) = aQ,..., p.(n) = a . Output p(i) and go to stage

n + 1."

Clearly M has the desired properties. •

This theorem has its strengths and its weaknesses. Its one

remarkable strength is the fact that a machine can learn any partial

recursive function if that function is fed to the machine by a primitive

recursive enumeration. Another less obvious but very real strength is

that a standard dovetailing of a partial recursive function yields an

-7-

enumeration that is actually primitive recursive.

A weakness of this theorem is that if f is a primitive recursive

enumeration of a difficult-to-compute recursive function, then a very

large number of repetitions will occur in f, and in some applications

this is not a natural way to feed a function to a machine. In fact, a

device built to learn sequences such as 314159... may be viewed as an

inductive inference machine that is fed the function (0,f(0)), (l,f(l)),

(2,f(2)), ... in increasing order (of the domain). It is easy to see

that any set of recursive functions that can be identified by increasing

enumeration can also be identified by arbitrary enumeration; hence the

identification of sequences does not fall into the category of Theorem 1.

We will next show that if a set of partial recursive functions can be

identified by effective enumeration then it can be identified by arbitrary

enumeration. Furthermore, the machine to do this identification can even

be made order independent: M is order independent if it has the property

that for every partial function f, if M[f] + i for some enumeration ? of f,

then M[f] 4- i for every enumeration t of f.

Before proceeding we will need a few definitions: First, let

a = (an, a., ..., a) be a finite sequence such that each a. *= (NxN) U {*}.

Let I denote the set of all such finite sequences, a. If a. = (a ,...,a) and

a2 = 0>Q,...,bm), then let a± •a£ = (aQ>... >an,bQ,..•,bm). Say a is an extension

of a. if for some a«, a = o-» a2. Say a £ Z is contained in (a partial

function) f if for each pair (x,y) in a, f(x) = y; a is consistent iff

it is contained in some partial function.

Now for convenience we suppose for the rest of this section that

each inductive inference machine initially produces some output and makes

-8-

an infinite number of input requests, if M is an inductive inference

-»-,

machine and if a = (a ,...,a)is in E, we let M[a] denote the last output
o n

produced by M after it has seen a , ..., a in this order, but before M
on

makes its next (n+2nd) request. By our supposition on M, M[a] is always

defined and computable .

Lemma: Let M be an inductive inference machine and let f be a partial

recursive function that it can identify by effective enumeration. Then

there is a a contained in f such that Mfcr1] » M[a] for all extensions

o ' of a contained in f.

Proof: Suppose the lemma does not hold for some M and for some f that

it can identify by effective enumeration. We shall get a contradiction

by constructing an effective enumeration f of f such that M[rJ t:

Let (an,a_,...) be some fixed effective enumeration of f.

Effectively construct a sequence cn, 0-, ... of sequences contained in f

as follows:

"Go to stage 0.

Stage 0: Let aQ = (aQ). Go to stage 1.

Stage n+1: a is contained in f. Look for an extension a* of
n n

a contained in f such that M[a!] 4 M[a] (a' must exist
n n n n

|v .y mJ^ _i.

else a is the desired a). Let a .•, ° a' • (a .,)
n n+1 n n+i

Go to stage n + 2."

->• ->•->•
For each n, a is contained in f, a belongs to a .and a ,- extends

n n ° n n+1

o . Thus lim o is a well defined effective enumeration of f which we
n n

n-H»

Whenever the technical tool M[o] is used in this paper we assume it is
well defined e.g., we implicitly make the above assumptions on M. The
main results are independent of these assumptions.

-9-

call f. But when Mis fed rit produces an infinite sequence of outputs
with an infinite number of alterations (i.e. M[f] changes its mind an
infinite number of times). So M[f] +. •

Remark: Let Mbe an inductive inference machine, let fbe apartial

recursive function that M can identify by effective enumeration,and let

o be the finite sequence given by the lemma. Then M[a] is an index for

an extension of f. To see this ,first note that there is certainly an

effective enumeration f of fwith initial subsequence a. Since M

can identify fby effective enumeration, Mwith input 1 converges to an

index for an extension of f. By the properties of a, this index is equal
to M[o].

Theorem 2 Let M be an inductive inference machine and let S be the set

of all partial recursive functions that M can identify by effective

enumeration. Then there is a machine M» uniform in M that can identify

(by arbitrary enumeration) every f€ s. Furthermore, MT is order

independent.

Proof: We design a machine M» with the property that whenever it is fed

an enumeration t of fG S, it looks for a sequence a with the propert

of the lemma and then converges to M[a]:

First let A be a subset of (NxN) U {*}. Let Z = {o € i\
A '

each a± in a belongs to A}. Note that if A C Af then I Cj 1(Now fix
— A — A

some standard effective enumeration of E.

Mf[f] = "Go to stage 0.

Stage_0: Request an input, call it aQ. Let aQ =(a)and

output M[crn]. Go to stage 1.

les

-10-

stage n+1: Request an input and then let A - be the set of

inputs received so far. Let a be the first sequence in the

enumeration of E such that (i) a G Z and (ii) M[of]
n+1

= M[a ,,] for all extensions o1 of a ,, in ZK that occur inn+1 n+1 An+1

the effective enumeration of Z either before o .- or among

the n+1 elements immediately after o ,..

If a = a output nothing.

Otherwise, output some number different from M[a] and then

output M[a -]. Go to stage n+2."

Mf is order independent; For each partial function f, one of the following

two cases must apply.

•y _^.

Case 1) Each a contained in f has an extension o* contained in f such

-y > -y

that M[o'] t M[a]: In this case, whenever M1 is fed an

enumeration f of f, each a produced must necessarily be

discarded at some later stage. So M1 will produce an infinite

sequence of outputs with an infinite number of alterations.

So M[l] t.

Case 2) There is a o contained in f such that for all extensions a1 of

a contained in f, M[ol] = M[o]. Let o denote the first such

->.

sequence in the enumeration of E; Suppose f is an enumeration

of f and M is fed f. By some stage all the elements of a will

be fed to M and so from that stage on, the search for a will
n

->•••»" -»-

never get past a. If a occurs before a, then (by the choice
n ' J

of <j) a must eventually be discarded never to be chosen again.

Hence M*[f] + M[a] for every enumeration f of f.

-11-

Now assume that M can identify f by effective enumeration. We show

that M1 can identify f; By the lemma, case 2 above applies, and so

for each enumeration f of f, Mf[r] 4- M[a]. By the remark, M[a] is an

index for f. So M'can identify f. •

As a consequence of the above result, we shall assume without loss

of generality that all our inductive inference machines (unless otherwise

stated) are order-independent . We shall also write M[f] without mentioning

the order in which f is fed to M.

3. Strong identification.

Let S be a set of partial functions, and let M be an inductive

inference machine. We say that M is strong on S iff for each f £ S,

M[f] + if and only if M can identify f.

A systematic study of strong machines and their naturalness for

inductive inference has been made by E. Minicozzi []. (Her paper also

has a number of other interesting results on inductive inference.)

Suppose M is strong on S. Then whenever M with input f £S conjectures

an integer i such that (j>. is not an extension of f, then M must

eventually change its mind: A strong machine thus informs the world

of its mistakes.

It is easy to see that the machine of example 1 which identifies

the primitive recursive functions is strong on the set of all partial

functions. As we shall see, the machine of example 2 is strong on R,

the set of all total recursive functions, but not on P, the set of all

partial recursive functions. In fact, it follows from Theorem 3 that

"These machines define partial functionals.

-12-

machines that can identify arbitrarily complex 0-1 valued recursive

functions cannot be strong on P. Finally, no machine for identifying

the set of self-describing functions of example 3 can even be strong

on SQ, the set of almost everywhere 0 functions.

Strong machines have a very useful union property:

Union theorem (e. Minicozzi): Let M and M be two inductive inference

machines that are strong on S. Then one can uniformly construct a new

machine M that is strong on S and as powerful as both M and M on S.

Proof: First note that given an inductive inference machine M one can

easily construct a machine M* (uniform in M) that is at least as

powerful as M, that initially produces an output, and that has the

property that after n steps of computation, if it (M1) outputs an index
2

i , then i > n.
n' n —

Construct M^ and M' from M- and M« as indicated above. Now M works

as follows: It runs both M' and M' and makes its own current (i.e. last)

output be identical to whichever current output of M' and M' is smallest.

Thus if M[l] +ithen either M^lj H or M1 [?] +i, while if either
M^[f] or M^t?] converges, then so does M[£]. If follows (by the first

implication) that M is strong on S; and (by the second implication and

strongness) that if f G S can be identified by either M or M , then it

can be identified by M. •

1.M is (at least) as powerful as M^ (on S) iff M can identify those
partial functions (in S) that M, can identify.

2. M1 is not necessarily order independent.

-13-

In the next two sections we characterize precisely what can be

identified by machines that are strong on P and on R.

4. Strong Identification on P

We first note that if M is strong on the set of all partial

functions then it is strong on the set P of all partial recursive

functions and hence on the set S of all finite partial functions.

It is also easy to see that strongness on S-. . implies

strongness on the set of all partial functions. Hence, the three notions

of strongness are equivalent.

The main theorem of this section characterizes the maximum power

of machines strong on P. These machines can identify, for example,

step-counting functions, real time computable functions,and almost

everywhere polynomial functions. However, they cannot identify complex

(slowly computable) 0-1 valued recursive functions.

For the characterization we will need the following complexity

theoretic notion:

Suppose h is a recursive function of two variables. We say that a

partial function f is h-honest if it has an extension <J>. such that

$.(x) <_ h(x,<}> (x)) for almost all x G domain f. An h-honest function f

is one that can be computed within the amount of time, modulo h, required

to read the input x and print the output f(x). We let S. denote the set

of all h-honest partial functions.

This definition of h-honesty is a generalization of A. Meyer's definition
(see []). We point out the following peculiarity of

this definition: Suppose f(x) =«|t ^X^* e*• Then for each recursive
h and for each algorithm i for computing f(i.e., f=<J>.) there are
infinitely many x such that *.(x) > h(x,<f>. (x)) . However, for any
reasonable h, f is h-honest since f can be extended to the constant
function, g(x) = 1.

-14-

Theorem 3 Let M denote an inductive inference machine that is strong on

P. Let h denote a recursive function of two variables.

1. For every h there is an M uniform in h such that for all

partial functions f, f is h-honest =* M can identify f, i.e.,

sh £ V

2. For every M there is an h uniform in M such that for all

partial functions f, M can identify f =* f is h-honest, i.e.,

SM £ V

Proof

1. A recursive h is given. First note that if f £ S_, then there exist

integers i, m such that <J> is an extension of f and *.(x) < max{m,h(x,f(x)) }

for all x in the domain of f. This suggests the following definition of

M:

M[f] « "Go to stage 0.

Stage n =< i,m >: Output i. Check that (i) $.(x)< max{m,h(x,f(x))} and

(ii) $ (x) = f(x) for all x G domain (f) . If and when this check fails for

some x, go to stage n+1."

We first show that M is strong on P: Let f £ P and suppose M[f] + i.

Then M with input f must enter stage (i,m) for•some-m and never leave it.

But in this stage, M checks that if = f on the domain of f. Hence <|>

must be an extension of f. This shows that M is strong on P. We next

show that S, C Sw: Let f GSL, Let n =(i,m > be the least integer such
h — M h '

that 4>. is an extension of f and $.(x) < max{m,h(x,f(x))} for all x £

domain (f). It is easy to see that for any enumeration f of f, M[f] can

never get past stage n. It follows that M[f] must converge, and since M

1. < > is an effective 1-1 map from N*N onto N.

-15-

is strong on P (and hence strong on the partial functions) it must

converge to a correct index for an extension of f.

2. We make some preliminary remarks: An inductive inference machine M

~y

is said to have the overkill property iff for each consistent a £ E, if

->- ->•

M[a] = i then <f>.(x) = y for all pairs (x,y) in a. Clearly, if M has the

overkill property, then M is strong on all partial functions.

Lemma 1 Suppose M can identify Sf . Then there is an M1 uniform in M

that is as powerful as M and has the overkill property.

Proof: M1 [f] = "Output 0 and go to stage 0.

Stage n: Request an input until a pair is received. Suppose

(xrt,y«),...,(x ,y) are the pairs received until now. Feed M
0 0 n n

this sequence followed by a sequence of *'s until M produces an

integer i such that <\>±(xQ) = y0,.. .*$±(\) = vn-

Output i and go to stage n+1." n

Lemma 2: Suppose M is strong on P. Then there is an M1 uniform in M

that is as powerful as M and has the overkill property.

Proof: It is easy to see that there is an inductive inference machine

M that is strong on the partial functions and that can identify Sfinite*

By the union theorem there is a machine M uniform in M and M that can

identify Sf. . and is as powerful as M. Apply lemma 1 to Mg. n

We are now ready to prove 2. Suppose M is strong on P and so, without

loss of generality, suppose M has the overkill property. Let < be an

effective ordering of NxN, and for each (x,y) € NxN let E(x,y) be the

-16-

finite set of all finite consistent sequences of the form a = ((xQ,y0),

...,(xn,yn), (x,y)) such that (xQ,y0)<...< (vV <(x,y). E(x,y) is

afinite set and by the overkill property, <J>MrJ](x) =y for each a GE(x»v)•

So the function h(x,y) »max{$ -£,(x)|o € E(x,y)} is recursive. We now show that

S C s, : Suppose f € Sw. If the domain of f is finite then f e S
M — h M n

trivially. If the domain of fis infinite, let I =» ((xQ,y0), (x^y^, ...)

be the enumeration of f induced by the order < on NxN. M[f] converges

to an index i (for an extension of f). For sufficiently

large n, M[(xQ,y0), ..., (*n»y))] = *• Now by definition of h it

follows that for sufficiently large n, * (x) £ h(x ,<f>.(x)). So f G S . •

Corollary: Suppose S Is a set of partial functions such that S U S

can be identified by an inductive inference machine. Then there is a

recursive function h such that S C S, .
— h

5. Strong Identification on R

The machine of Theorem 3 makes up conjectures, i, and then tests

each i on all inputs x=0, 1, 2, A great weakness of this machine

is that it uses an a priori upper bound h(x,f(x)) to determine the

number of steps it permits <{>. (x) to take: If $. (x) exceeds this bound,

then hypothesis i is automatically rejected. The more sophisticated machine

we shall define in this section uses an a posteriori upper bound. To

develop this bound, the machine has a built-in formal criterion of what

constitutes a reasonable alternative hypothesis j to a given hypothesis i,

given that 4>.(y) + f(y) for all y < x(e.g. the criterion of section 1,

example 2 is that <|>.(y) should converge to f(y) for all y <_ max {2x,2j}). The

-17-

machine looks for such a j and then uses it to construct an upper bound on

^(x) (e.g. the bound of section 1, example 2, is max{$, (y) |y <_ max{2j,2x}}.

If $.(x) exceeds this bound, then the machine switches from hypothesis

i to hypothesis j.

We shall give a few preliminary definitions now that lead up to the

formal criteria mentioned above.

First, we shall need the idea of a recursive operator []: Informally,

any such operator C/ls an effective mapping from partial functions g to

partial functions h;it is defined in terms of an algorithmic device, D'

For our purpose, we shall assume that U^ is fed the sequence g(0), g(l), ...

in natural order up to the least y, if any, not in the domain of g. We

interpret the output integers of ^-, in the order of their generation,

to be h(0), h(l), We shall be particularly concerned with those

recursive operators Uhaving the special property that they map R into R.

LetCy; R -*• R be a recursive operator. Let g be a partial function.

We shall write (3(g) for the partial function obtained by applying Uto g,

andO(g,x) for 0(g) (x). For f6 R, we say that f is everywhere

(^compressed if there is an algorithm i that computes f in such a way that,

given any algorithm j for computing f, $±(x) <_ (a$., maxd^j^}) for all

x. The above index i is called a compression index (with respect toO)

for f.

Theorem 4 Let M denote an inductive inference machine that is strong on

R. Let ^denote a recursive operator that maps R -»• R.

1. For every Othere exists an M uniformly in C^such that for all f£ R,

f is everywhere (^compressed => M can identify f.

-18-

2. For every M there exists an (^uniformly in M such that for all f^R,

M can identify f=* f is everywhere Uncompressed.

Proof 1. Let OxR + R be a recursive operator. We shall construct

an M that can identify every f^R that is everywhere 0-compressed.

Basically, one would like to construct M so that M[f] looks for a compression

index for f, and converges when it finds one. To do so, M[f] should converge

if it finds an i such that $± =fand such that if <j)^ - f then

$ (x) ±(3fo., max{i,j>x» for all x. The difficulty here is that M has

no way of checking that <(> =fin the case that a±(x) >uUj .maxCi^j >x})
for some x. A patching argument will be used to overcome this difficulty.

Definition Let OxK •+ R be a recursive operator, let gGP, and let x € N.

Define AUg,x) = the least n such that g(y) + for all y < n and

^Xgjx) 4- when &Qis fed the sequence (g(y))

if such n exists, » otherwise.

Remarks (i) If <^(g,x) * then A(^(g,x) <~ and A^(g,x) is the least

number of (g-valued) inputs ikneeds to output &(%,x).

(ii) If ^(g,x) + then A$g,x) *= » and (since ffi R -*• R)

g(y) + for some y.

(iii) Suppose g(yf) 4- for all y1 < y. Then from the sequence

(g(y,))yt Ky one can effectively decide whether or not y <A(^g,x): Feed

the sequence (g(y')) f< into ^and wait until either Sn.produces

c^(g,x) or U/j requests g(y) before producing £/(g,x). One

or the other must happen sinceQx R •+ R. In the first case y >_ A0(g,x)

Without loss of generality we assume that if aj/q make a request then it
does nothing until it gets a new input.

-19-

while in the second, y < A#g,x).

The following lemma is needed in a patching argument. In a first

pass through this proof of 1, we suggest the reader bypass this lemma and

try to understand the construction of M with (?($., max{i,j,x}) in place

°f a(i,j,x)' a^i»^»x))- The only err°r then occurs in the next to last
line of the proof of 1, viz. "M[f] will converge at least by stage i."

Lemma: Let OiR -+ R be a recursive operator. Then there is a recursive

function a, uniform in C% such that for all i, j, x, a(i,j,x) >_ max {i,j,x},

and for all i, j, x and all f G R, if * (y) = f(y) for all

y<At/(Vi,j,x)^(i^X^

then (1) 0fao(lfj>x). a(i,j,x)) +

and (2) ^=f-*a(i>j>x) -f-

Proof of lemma: a(i,j,x) is defined by implicit use of the recursion

theorem and padding (to ensure a(i,j,x) >. max {i,j,x}) to be an index of

the following algorithm:

*o-(i,j,x)*y) = "SuPP°se *a(i,j,x)^y,) has been defined for a11 yf <y-

We now define ♦a(ifj>x)(y): By Remark (iii) above, we can decide whether or

not y<A<*V(lfjiX), o(i,j,x)).

case <a> Suppose y<A(^> o(i,j,x)). Then set A, ,(y) =<j>.(y).

case (p) Suppose y >. A#* , ,, a(i,j,x)). Then set A .(y) = *,(y)."

-20-

By the effectiveness of the recursion theorem, q is recursive and

a is uniform in O. By construction q(i,j,x) ^max{i,j,x}.

By the construction of o, it follows that if <i>.(y) = f(y) for all

y<40t*a(i,j,X)'°(1,j'x))

then (1) +a(1>j,x)(y) =*j(y) for all y<Aff*a(1>j >x) .<j(i,j,x)).

Hence> *0<i,j,x)(y) * for -11 y <A^*o(i,J>x)» °a.J.*».
Hence ^7(*a(ix), o(i,j,x)) +.

and (2) If 4k =fthen *o(ljj >x)(y) =*±<y) for all y>A#»a(1

«(l.j.x)). So*a(i(j>x) -f.

Construction of M:

M[f] = "Go to stage 0.

Stage i: Output i. Spend half your time doing A and half doing B:

A. Look for an x such that ^(x) +and A.,(x) j f(x) . If and when

such an x is found, go to stage i+1.

B. For every pair (j ,x) such that 0f» ,. . ,, a(i,j,x))+and such
that a (y) = f(y) for all y <A(36 . cr(i,j,x)) check

J q^i,J,Xy

that $±(x) l^*CT(1>jfX)t ^(i,J,x)). if this check fails for
some (j,x), go to stage i+1."

Clearly, M is uniform in Q?

Let f G R have the property that M[f] converges, say to i. Thus

M[f] never gets past stage i. Let A = f. Then (cf. part (1) of lemma)

^o(i,j,x)' °<i.j.*)) +for all x. Hence, A#$a(i>j >x),a(i,j,x)) <-
and so M in stage i(B) will verify <fc(y) = f(y) for all y < A#f$,

J a(i,j,x)'

a(i,j,x)). It follows that M in stage i(B) will verify that $.(x) +

-21-

for all x. As a consequence, M in stage i(A) will verify that

*i(x) = f(x) for all x. Hence M[f] converges to an index for f. It

follows that M is strong on R.

Finally, let f G R and suppose that f is everywhere Uncompressed

with compression index i. Then M[f] will converge at least by stage i.1

Since M is strong on R, it follows that M can identify f.

2^. We are given a machine M that is strong on R. From M it is easy 'to

construct a machine M' that is strong on R, that is as powerful as M on

R, that initially outputs index 0, and that has the property that after n steps

of computation, if Mf outputs an index i , then i ^ n. (Thus M1 can

diverge only by changing its mind infinitely often and can converge only

by outputing a finite number of integers.) From now on we shall write M

in place of M'. Notice that M is not order-independent.

Define Uas follows:

0(g,m) = "By dovetailing, search for all integers j <_ m such that

g(y) ^ $.(y) for some y G N. For each such j that is found, cancel j and

set j = 0.

While the above procedure is going on, do the following for each

uncancelled j, j <_m9 for as long as that j remains uncancelled: Compute exactly

m steps of M[(j>.] for the increasing enumeration A. of A.. Let j denote the
3 J J _

last integer that M[A] produced during this m-step computation. Next,

This is not true if (5f$,max{i,j,x}) is substituted for Of$ f .,
J O* \i- , J yX)

a(i^x))in the construction of M.
The reason M[f] will converge by stage i is this: Suppose

^*„M < \> s^'J**)) + and A.(y) = f(y) for all y < b6C*fi * vx ,
ov.i,J»xJ j q(.iO»x;

a(i,j,x)). Then (cf. part (2) of lemma) A ,. "N = f and so
a(i,j,x)

*±(x) iWatijjjX), max{i, o(i,j,x), x» . But q(i,j,x) >_ max{i, j ,x}.
So Ai(x) l^a(ijjjX), a(itjfX)).

-22-

It follows from the proof of 2 that the set of recursive functions

that are everywhere (^compressed for some recursive operator CTTr + R

are actually everywhere #f-compressed for some general recursive operator

&* . This suggests that relatively "simple" operators are all that is

needed to construct inductive inference machines of great power.

As we shall see from applications 1 and 2, the particular

operator (5(f) = Xx[max{f(0), ..., f(2x)>] yields an exceptionally powerful

machine. Paul Young has pointed out to us that the machine M^defined

by this operator converges when fed a Martin-Lof [] random total function

To see this, use the fact that if A. is consistent with a Martin-Lof

random function f (i.e., A (x) \ and f(x) + =* A (x) = f(x)), then A (x)
J J j

may not converge on much more than log_j integers x. Now, when M/<i.is

fed a Martin-Lof random f, it conjectures and eliminates inconsistent

indices until it finally conjectures an index i such that A, is consistent

with f. Furthermore, once M^ conjectures this i, it never finds a

reasonable alternate hypothesis j to replace it. This is because no

algorithm j can correctly compute f(0), ..., f(2j) for a Martin-Lof

random f. Hence M_ converges to I. Here then is a curious distinction

between the machines of Theorem 3 and those of Theorem 4: The machines

of Theorem 3 necessarily diverge on Martin-Lof random functions, while

those of Theorem 4 do not.

6. Applications

1. Let a,h be two recursive functions. An inductive inference machine

strong on R can be designed to identify every 0-1 valued recursive

function f having a program i such that

(a) $ is monotonically increasing, and

-24-

continue the computation of M[A J and simultaneously start computing

<K (0), ..., A (m). If Mjf J produces a new conjecture (after m steps)
Jm Jm J

then cancel j and set j = 0. On the other hand, if A (0), ..., A. (m)
m ^m

all converge, set j = maxU. (0), ..., $. (m)}.
**m ^m

All of the above procedures are stopped once j is defined for every

j <_ m. At that time, set C/(g,m) =maxfj |j_< m}."

Clearly, Uis uniform in M.

U is a general recursive operator : Let g be a total function and

let m G N. We want to show that 0(g,m) 4,. Assume to the contrary that

the algorithm for Qfg,m) never defines j for some j <_ m. Then g= $.

and M[a.] 4- j . In this case, M strong on R=> (a, = A.) ** *j total **
J m ^ra J m

max{$. (0), ..., $. (m)} 4.. This means that j is defined, which is a
Jm -'m

contradiction.

U1 R -> R because ^ is general recursive.

Let f G r. M can identify f ^ f is everywhere C/-compressed:

Suppose M[f] 4- i(A. = f since M is strong on R) . Suppose A = f (thus

M[A] 4-i) , x G N, and m = max{i,j,x}. We are required to prove that

(7($. ,m) 21 $.(x) : Notice that the device for computingC>($. ,m) will

attempt to cancel j on the grounds that $. ^ $., but naturally this will

fail. Hence it will compute M[a.] for m steps, thereby producing j .

M[A.] will never change its mind after producing j (for if it did then

i would be greater than m, according to our construction of M', and this

would contradict the definition of m). Hence j = i and j = max{* (0),

..., $. (m)} = max{*.(0), ..., *.(m)}. Therefore, LA* .,m) >_ 3 L fA*) »
3m J

as was to be proved. •

A general recursive operator (yis a recursive operator that maps all
total functions into total functions.

-23-

(b) for every program j for f, *.(x) <_ h(x,$.(x)). for all but (at

most) a(j) integers x.

The compression theorem [] supplies arbitrarily difficult 0-1

valued recursive functions f satisfying the above requirements (with

o = Xx[x] and> in the case of Turing machines, h(x,y) = (x+y) .

An operator for which these functions are everywhereC^-compressed

is given by C/(g,m) = max{h(m+n,g(m+n))|n G [0, max o(k)]}. To see this
k<m

note that if f and its program i satisfy (b) and if j is any program for

f, then for each m there is an n G [0,o(j)] such that $.(m+n) <_ h(m+n,

$.(m+n)). Hence for all x and for m = max{i,j,x},

C^($,m) = max{h(m+n, <&.(m+n)) |nG [0, max a(k)]}
3 j k<m

_> $.(m+n) for some n G [0,a(j)]

_> $. (m) _> $.(x) if i satisfies (a).

Hence i is a compression index for f with respect toL7. A refinement

of this argument shows that there exist arbitrarily difficult

0-1 valued recursive functions f that are everywhere (^compressed for

such simple &as 0(g) * Xx[max{g(0) , ..., g(2x)}].

2. Define x G R so that

1 if *.(x) + and $ (x) <_ $±(x)

A.. (x) = ^0 if $±(x) +and $x(x) >$±(x)
+ if $.(x) i

For <I>. GR, A ..v may be viewed as providing an approximation to the

halting problem. The bigger *. is, the better is the approximation

provided by ^T/^* As we shall now show, the set {A ^.n|$. is a monotonically

increasing total function} can be identified:

This shows that machines strong on R are strictly more powerful than
machines strong on the set of all total functions, F. Why? Because for'
every machine M that is strong on F there is a recursive function h such
that the 0-1 valued recursive functions that M can identify are all
h-honest. This follows from a binary-tree argument (K6*nig!s lemma).

-25-

-J

Proposition There exists ageneral recursive operator c^such that for every

monotonically increasing *± G R, a is everywhere ^compressed.

Lemma 1 There exists a q G r monotonically increasing in all three variables

with the property that for every i and every x in the domain of A ,

*T(i)<x> <q(i,xA(x)).

Lemma 2 There exists p, aG R such that for every j and m,o(j,m) _>

max{j,m} and

(i) *a(j,m)(a(j>m)) +w*j(«Cl,«)) -0

(ii) ♦a(j,m)(o(J,m)) iP(J»m.*j(CT(J.m))) if *j(o(j,m)) =0.

Proof of lemma Define a G R so that a(j,m) > max{j,m} and

(x) =<0*o(j,m)^x^ =,S0 if *.i(a(J»m)) +0 (implicit recursion Theorem)

t otherwise

Set p(j,m,z) ="If yoCj.m)) =2and a <o<j,m)) =0,

output ^a(j>m)(a(j,m)). otherwise, output 0." n

Proof of proposition Set0fg,m) =max{q(i,m,p(j ,m,g(a(j ,m)))) |i,j ^m}
Since q,p,a G r, {/is a general recursive operator.

Now suppose $ G r is monotonically increasing. Let A. = A ...,

let xGN, and let m=max{-r(i) ,i,j ,x}. We show that $f.(x) <Cf($. ,m):
First note that

$a(j>m)(tf(j,nO) +=» A (a(j,m)) =0by lemma 2(i), and

*o(j,m)(tf(J,m)) +^ *x(i)(a(j,m)) -0by definition of $.

Since A = A the above two equations imply that

*T(i)(j(j,m)) = *jC°(J»m)) =°'

-26-

Hence (?($.,m) > q(i,m,p(j,m,$.(o(j,m)))) by definition of O

>_ q(i,x,4». (x)) by the monotonicity of q and the fact

that p(j,m,$.(a(j,m))) >. * ,4 m\ (aCi »m)) bv lemma 2(i:L)3 o \j ,m^

and the fact that A.(o(j,m))=0

2. *j(°(j»m)) °y definition of A , .

and the fact that

«J>T(i)(a(j,m)) =0

>^ $, (x) since o(j,m) >^ m _> x

and $. is monotonically

increasing.

> $,.N(x) by lemma 1.
- x(i)v

Suppose that (A.) G is a standard acceptable GOdel numbering defined

in terms of Turing machines with binary input-output code. Let Is be the

recursive operator defined by ^g) = Xx[max{g(0), ..., g(2x)}]. In this

special case, then, A ,. is everywhereDecompressed for every $± G R that

is monotonically increasing and rapidly growing. We omit details.

3. As Albert Meyer has pointed out to us, there exists a recursive operator

Cf\ R•* Rwith the property that for every h^R^ a0-1 valued recursive

function f can be constructed that is everywhere O-compressed and has h-

speedup almost everywhere. Thus some arbitrarily speedable functions can

be identified by machine.

4. Let h,o G r. There exists a machine M strong on R that can identify

all recursive functions f having the property that

-27-

C?(J,X)

3*-[*± =fand Vj >i[^ =f=>vx >i[*.(x) <^ h(z,$(z))]]]
z=0

This operator-free formula conveys much but not all of the power available
to machines that are strong on R.

We now give another quite different characterization of the recursive

functions that can be identified by a machine strong on R. This theorem

and its proof are very close to Theorem 3, which characterizes the

machines strong on P.

Definition Let @:R + R be a recursive operator. We say that fGRis

Phonest iff "2±[+± =fand <D±(x) <fltf,x) almost everywhere].

Theorem 5 Let M denote an inductive inference machine that is strong

on R. Let (^denote a recursive operator that maps R into R.

JL For every (9^there is an M uniform in (^such that for all fG R,

f is (^-honest =* M can identify f.

2. For every M there is an Uniform in M such that for all fG R, M

can identify f => f is (^honest.

Proof 1. First note that if f G R is ^honest, then there exist

integers i,k such that A., = f and $.(x) 1 max{k,#(f ,x)} for all x. This

suggests the following definition of M:

M[f] = "Go to stage 1.

Stage n = <i,k> : Output i. Check that *. (x) <^ max{k,(5Cf ,x) } and

that A±(x) = f(x) for x = 0, 1, 2, As soon as this check fails

for some x, go to stage n + 1."

Clearly, M is uniform in Oi

M is strong on R: Suppose f G R and that M[f] 4- i. Since M[f]

changes its mind (i.e., outputs a different integer) each time it changes

stage, it follows that M[f] must eventually enter and never leave some

"28-

stage n = <i,k> . In this stage M verifies that A = f.

f is(phonest =* M can identify f: Suppose f G R isCT-honest. Choose

i,k so that A± = fand $±(x) _< max {k,(?(f ,x) }for all x. Then M[f]

can never go past stage <i,k) . It follows that M[f] will converge, and

by the strongness of M, will converge correctly.

2. 6ff,x) - "Feed f in increasing order (0,f(0))i (l,f(l)), ... to M
st

until M requests its x + 1 input. Let i denote the last output produced

by M at that time. Now continue the computation of M[f] and in addition

start computing A. (x). Do both until either
x

(a) M changes its mind about i , in which case output 0, or

(b) ^ (x) \y in which case output $ (x)."
x x

Clearly, O^is uniform in M and (^is a recursive operator.

Now suppose f G R. We want to show that @\f,x) \x Since M is strong

on R, M[f] will either change its mind infinitely often or else will

converge on an index for f. If M converges by the time it requests the

st
x + 1 input, then i is an index for f, whence A (x) +, whence Gf(f,x)

x l
X

is defined in (b). If, on the other hand, i is not the last output

produced by M[f], then 0\i,x) will eventually halt, in (a) if not (b).

Hence f G R =>ffif) G R.

Let f G R. We now show that M can identify f =» f is (^honest:

Choose n such that M[f] converges by the time it requests the n + lSt

input. Then a = f and 0(f,x) = $ (x) for allx^n. •
n n

Theorems 4 and 5 are very different: For example, the operator of

Theorem 4 can always be chosen to be general recursive, but not so the

operator of Theorem 5.

Together, Theorems 4 and 5 clarify an open question in abstract

complexity theory about what are the operator honest recursive functions:

-29-

Corollary The operator honest recursive functions are precisely the

everywhere operator compressed recursive functions (i.e., for every operator

OiR •> R there is an operator 0 :R ->- R such that (1) all (5^-honest recursive

functions are everywhere O* -compressed, and(2) all everywhere ^compressed

recursive functions are &-honest).

This characterization really does give insight about what it means for

a function to be ^-honest. For example, see the applications at the begin-

ning of this section.

7. Strong Identification on P
. «— — 00

Let P denote the set of all partial recursive functions with infinite
00

domain. Machines strong on P are weak only because they must infer all finite

functions. Machines strong on P , on the other hand, can infer many
00

though not all of the recursive functions that can be infered by

machines strong on R. For example, the set of recursive functions mentioned

in application 1 of section 6 can be inferred by a machine strong on Pw,

but not so the set mentioned in application 2.

8. Open Problems

Q) Say that M can identify f almost everywhere iff whenever

M is fed f in any order whatsoever, then it eventually converges on an

index for a partial recursive function A. that extends f almost everywhere,

i.e., A.(x) = f(x) for all but a finite number of integers x G domain (f).

Let S be a set of partial recursive functions. Say that M is strong on S

with respect to almost everywhere identification iff whenever M[f] converges,

say to i, for some f G S, then A is almost everywhere an extension of f.

An open problem is to characterize the set of partial recursive functions

that can be identified by a machine that is strong on P(or R) with respect

to almost everywhere identification.

-30-

@ Characterize the sets of partial or total recursive functions

that can be identified by arbitrary (not necessarily strong) inductive

inference machines.

9. Conclusion

Our main result, theorem 4 part 1, is an algorithm schema for designing

powerful inductive inference machines. In the usual recursion-theoretic

manner, our machines are designed to enumerate all hypotheses, good and bad,

in order to select the most likely hypothesis for a given input sequence.

A weakness of our machines lies with this enumeration process:

In practice, inductive inference machines should be designed to generate

reasonably good hypotheses right from the start, and then to select the

best hypothesis from among them. Our machines actually generate all

hypotheses, not just the reasonably good ones, and so they are absurdly

inefficient.

A strength of our machines, on the other hand, lies in the particular

and unusual criteria they employ to determine which of several hypotheses

is best. By these criteria, a machine does not reject a hypothesis on

the naive grounds that it is computationally difficult. Instead the

criteria actually defend a machinefs latest hypothesis, as long as that

hypothesis explains approximately as much data in a given amount of

time as any competing hypothesis.

Theorem 4 part 2 asserts that the above-mentioned criteria are in a sense

the best possible. Because of this, we expect that they will eventually

be employed in the design of practical inductive inference machines.

-31-

Acknowledgements

Our early study of inductive inference took place during the fall

of '71 at the Artificial Intelligence Group, MIT, under the sponsorship

of Marvin Minsky and Seymour Papert. We thank them and Albert Meyer

for their welcome encouragement.

The main impetus to this work was the discovery and proof of what

is now application 1 to Theorem 4 during the summer of f72 at Berkeley.

Theorem 2 and a number of other results not mentioned here were also

obtained at this time.

Further discussion of the formal problem took place during the

fall of *72 at the Cybernetics group of Guiseppe Trautteur, The University

of Naples, Italy. Special credit is due to Eliana Minicozzi of that

group for her study of strong machines and her discovery and proof of

the Union Theorem. More of her results appear in [].

The discovery and proof of Theorem 4 is work that the authors did

in the winter of *72 in Caracas. The proof of Theorem 5 came shortly

later in Berkeley.

-32-

References

1. Blum, M., A Machine-Independent Theory of the Complexity of Recursive

Functions. J. ACM 14, 2 (April 1967), 322-336.

2. Feldman, J., Some Decidability Results on Grammatical Inference and

Complexity, Information and Control 20, No. 3, (April 1972),

244-262.

3. Gold, E. M., Language Identification in the Limit. Information and

Control 10, (1967), 447-474.

4. Martin-Lo*f, P., The Definition of Random Sequences. Information

and Control 9_, (1966), 602-619.

5. Meyer, A. R. and Fischer, P. C, Computational Speed-up by Effective

Operators. J. Symbolic Logic 37, 1 (March 1972), 55-68.

6. Minicozzi, E., Some Natural Properties of Inductive Inference.

Istituto di Fisica Teorica, Naples, Italy; to be published.

7. Rogers, H., Jr., Recursive Functions and Effective Computability.

McGraw-Hill, New York, 1967.

8. Solomonoff, R., A Formal Theory of Inductive Inference. Information

and Control 7,C 1964) , 1-22, 224-254.

-33-

	Copyright notice 1973
	ERL-386

