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ABSTRACT

For an intermediate mean free path regime where A << L, the system
length, but where A >> zm, the scale length of the magnetic field varia-
tion, it is found that the confinement time Tmm of ions in a multiple
mirror system_écales quadratically with the system length. When either
inequality is not satisfied a transition is found to a scaling which 1is

more closely proportional to L. For the high density regime this corre-

sponds to MHD flow. By comparison with numerical and experimental results

a criterion is found for the transition from the quadratic to the linear
scaling. The value of Tm = ML2/2£CG found from diffusion theory is in
good agreemenﬁ with a more accurate analytic treatment which is valid
in the limit of A/M << Qc, where M is the mirror ratio and 2, is the
cell length, and v is the average ion velocity. Good agreement is also

obtained with a self consistent numerical computation.
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I. INTRODUCTION

During the last few years, interest has developed in multiple-
mirror confinement systems as possible fusion reactors. Numerical cal-
culations of barticle containment in multiple-mirror systems have been
performed using fixed scattering centers.l’2 With Aecz, the mean
free path mfp for scattering into a loss cone angle ec,'comparable
to the system length L, but much greater than the mirror spacing Qc,
Post found a containment time t scaling roughly linearly with the number
of mirror cells1 (L increasing with the number of cells). With

A0 2 zc << L however, Logan, et. al., found T -~ L2 ,» in agreement

c
with diffusion theory.2 Here A is the Spitzer3 mfp for ion-ion
collisions. |
Taylor considered the effect of adding mirror cells of negligible
length, with RF-assisted scattering, to the ends of. a mirror device.4
Using particle conservation and with trapping probabilities per stopper
near unity, he found a containment time for the center mirror cell in-
creasing linearly with the number of stoppers (L constapt). His analy-
sis, applied to the case of stoppers of length equal to the center cell,
predicts a éuadratic increase of the total containment time with the
number of stages, in agreement with the results of Logan et. al.2
From the kinetic theory, of ion and electron transport along a

multiple mirror field, with 2c << xecz << L, Budker et. al., find an



L2 scaling for'both heat and particle transport. In their analysis,
electron effects were included using a self-consistent ambipolar elec—
tric field. They also found improved containment with sharp mirrors
[B/(dB/dz) << 2.1 in contrast to a sinusoidal field variation. Pre-
liminary experimental results have confirmed the T « L2 scaling law
and qualitatively given the predicted confinement time7.

In Sectioﬁ IT of this paper, an approximate diffusion theory for
particle and heat transport in a multiple-mirror system will be developed
for a Maxwellian distribution, using a one-dimensional random walk
description for each velocity group. The main purpose of this section is
to develop formulas which span the range of parameters from xecz << zc
to_)\ec2 >> lc for comparison with experimental results.

In Section III, using a combintation of kinetic theory and macro-
scopic conservation laws, the containment time is derived in the limit
of collisional cells, Aecz << 2c and collisionless mirrors Aecz >>
B/(dB/dz). This limit, together with the results of Budker et. al.,h’5
bounds the values of containment time as found in Section II. It should
be noted, however, that the entire range of m.f.p's from the limit given
in Budker et. al. to the limit in Section III, are all part of the inter-
mediate mfp regime in which T « L.% For A 2B/(dB/dz) the random walk
approximation is no longer valid, leading to plasma flow conditions in
which t « L. . This regime, which we designate as the MHD flow regime,
is analyzed in Section IV. Previous numerical computations, employing
a fixed scattering center model for the collisions, cannot simulate the
MHD regime. In order to explore, numerically, the transition between

the intermediate m.f.p. regime and the MHD regime a numerical model has
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been developed which includes drifts self-consistently. The results of
this calculation are presented in Section V togetheﬁ with comparison of
ion containmént times obtained from diffusion theory and the macroscopic
conservation ;aws. Results of experiments on plasma confinement in a
multiple mirror device are presented in a companion paper,8 henceforth

known as II, in which comparison of experiment with theory will be

made.

!

IT. DIFFUSION THEORY

Consider a symmetric multiple-mirror system as in Fig. 1, with S
particles per unit area per unit time injected into the center in steady
state. The mirror widths zm = B(dB/dz)-l are assumed to be small com-

pared to lc » 80 that the loss cone angle ec defined by

2

sin Gc =%i- s (@)

where M = Bmax/Bmin is the mirror ratio, is a constant over the cell
length zc. For many cells (L >> lc) large mirror ratios (M >> 1), and
sufficient source strength S such that the scattering mfp A << L,
particles will'be trapped and untrapped many times before reaching the
ends, so that their axial motion can bé described by a random walk.
Since thé distribution of velocities in such a system may approach
a Maxwellian, the scattering distances for individual particles vary
from distances much less thén zc to distances much greater than zc .
Considering the velocity groups which would have average step length 22
much greater -than Ec (but zz still << L) the average step length L,
and step time t can be estimated from average times ty and t, spent out
and in the loss cone respectively} For particles at speed v, and M >> 1

(small ec), we can estimate
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where Ty (v) is the scattering time at speed v for a mean-square deflec-
tion of 52 =1 radian,2 as calculated by Spitzer.6 We define the average

step length between successive trappings, to be

2Z(v) 2ot (V) v (3

where @ is a proportionality constant to be determined by experiments.
Assuming the velocity-space density of ions at speed v in the loss
cone is nearly the same as that out of the loss cone, (e.g. a Maxwellian)
statistical mechanics gives the ratio of trapped time tl(v), to untrapped
time tz(v), equal to the ratio of trapped to untrapped surface area at

radius v in velocity space:

tl(v)_ cos 6

-tz(v) = TI-cos 6, - M (M >> 1) o (4)

Equation (4) was found to qualitatively describe numerical results for
t1/t2.2 For 1a¥ge M,tz(v) can be neglected compared to tl(v) in the total
step time t(v).= tl(v) + tz(v), Eq. (4) with Eq. (3) gives t(v) = ZTe(v).
Note that for o of order unity and zz(v) >> Ec’ t; 1s many bounce periods
zc/v » so that the concept of trapping is well defined. We define a
diffusion coefficient for the velocity group v satisfying Zz(v) >> lc as

zzz(v) ) azré(v) v2 a%z(v) v

PO =5y - PR Y y )

For velocity groups in which the scattering mfp.

gy
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A(v) = tz(v) << zc, the concept of trapping is not well defined, but
the particles are nonetheless localized to each cell for many bounce
periods with M >> 1. For an isotropic distribution of ions per unit

solid angle at speed v, the localization time (total step time) in a

given cell is

4nzc [}
t(v) = =2M — ’ (6)
. 2v cos 0dQ
loss cone

where the integral is taken over one loss cone surface at radius v

in velocity space. Note that t(v) counts both the time spent by ions

in the loss cone as well as out of the loss cone. When an ion crosses

a mirror, it is considered to be localized to the center of the next
cell, and the ion is counted as having taken a random walk step of length
of length 2c . The time to travel the distance zc is already counted

in t(v). For velocity groups with A(v) << 1c, the diffusion coefficient

is then
222 Ecv
PO =3 W : | ™

To treat, approximately, the case of arbitrary ratios of )\(v)/ﬁ.c .
we extend Eq. (5) and Eq. (7) beyond their valid limits, taking Eq. (5)
for D for all ions with A(v)/M > zc and Eq. (7) for D for all iomns with

A(v)/M < Rc.

The average diffusion constant D over a Maxwellian velocity dis-

tribution is
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f D(v) folrrrvzdv
50 —
f f olnrvzdv
0

where fo = exp [ -mv2/2k1‘].

€))

Using Egs. (5) and (7) in the appropriate velocity regimes and

evaluating the integrals, we obtain

_ Ay
D = (—p (GH) . 9)
= 1/2
Here v = (8kT/wm) » the average speed,
) mvo mvz
- 2kT

represents the contribution of "slow ions", v < v, s

2
I 1 0,2 (11)
Hlvy) = [ +3+ 6D + 6D ]

represents the contribution of "fast ions", v > Vo, o» and v, is obtained

from A(v )/M = 2. - The particle flux is then

The same model can be used to calculate the energy flux

f( Smv )D(V)an o

f folmvzdv
0

. (13)
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Evaluating the integrals, we obtain

L v
Q= ~kI() (X + V)Va (14)
where . mvi
mv T ALm
X(v)) = [26(v) - G2 e 2T (15)
and
2
va
mv = orm
v = (W) + ol e T : (16)

A convenient parameter to evaluate the functions G, H, X and Y is

A
L . (17)

where l* is.;he m £ p for an ion of average speed to scatter into a
loss cone angie. For x*/zc << 1, the quantity (mvﬁ/ZkT) is large, the
function G apbroaches unity, and the function H approaches zero. In
this limit, D has the minimum value Dmin given by Eq. (7) with v =1v .
The ratio °f'ﬁmin/5 , with D givén by Eq. (9), is plotted as a function
of A*/JLC in Fig. 2. For x*/mc 2.2, the fast ion contribution to diffu-
sion is greater than the slow ion contribution, and D depends more on

* -
the mfp than on the cell length. For A /£c>> .2 , D has the limiting

form
_ Z, () - -
D=3.7 ZM = 3.7 (2%32&) (18)
M



The coefficieﬁt of 3.7 in Eq. (18) indicates that paf;icles with veloc-

ities greater than the thermal velocity dominate the’ transport by diffu-

sion, since they have much larger step lengths than Zz(;) when
zz(G) >> zc. The factor 3.7 derived using our simple model agrees

closely with the correction factor calculated by Hochstim and Masal9

for a diffusion coefficient varying as T§/2
L%
The particle containment time t for the case that A /nc << ,2 in
all cells can be easily derived. Assuming T, v, lc and the plasma

cross sectional area to be the same in each cell, D= ﬁmi » given

n
by Eq. (7) with v = v . Particle conservation requires the particle

flux F to be constant

-D = S
Dmin Va 5 . | (19)

where S is the source strength. This indicates a linear density pro-
file, dn/dz = const. = nll(L/Z), with an average density n = %-nl .
For a discrete system of K = L/29,c cells in a half length L/z; the

maximum density ny in the center cell is given by

n; = K An , (20)

where An is the density increment across each mirror. The containment

time for this case is

1n, L
i 2 2

T (max) = 2 =L .M (21)
2 Dmin Vn 8 Dmin 22cv

which is a maximum since the flux 2 Bmin Vn is a minimum.

‘e,
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For A*/zc,>> 0,2, for which D is given by Eq. (18), D is not con-

. = 1
stant with z since there is a density gradient with z and D ~ A - o

= : = S
For systems with D ~-% in all cells, integration of -D Vn = E-gives

an exponential density profile:

‘ ‘ Sz
n )y n(z) = n, exp[- —— R (22)
ave YU saE, R
Ave Ave

D(

where D(nAve)is given by Eq. (18) evaluated at the average density noe *

The containment time is

2 -1

ot W CHLYCP) B (23)
Di(n

Ave

To determine the transport of energy Eq.(14) can be evaluated as
a function of the parameter A*/lc . The resulting ratio Q/kTF is
plotted in Fig. 2. The limits of Q/KTF = 2, 4 are in agreement with
those calculated by Hochstim and Masal9 for the cdrresponding dependences

1/2 and TS/Z’ respectively.

of D proportional to T
If we take the product (Q/kTF)(ﬁminlﬁ) to obtain the relative
variation of Q as a function of_A*/JZ.c we find that the prodﬁct has a
broad flat regi&n near X*/lc = 1, rising slowly for A*lkc < 0.2 and
falling slowly for x*/zc > 5., Considering that the system length L
and the density, and therefore A* , are held fixed, we obtain the result
that the energy flux decreases slowly, i.e. the energy confinement time
increases slowly with increasing number of mirrors. The limiting case
is the corrugated magnetic field structure.s’6 For economy of design,
long mirrors are desirable, and we therefore will concentrate our atten—
tion on the region for which A*/lc = 1. In the following section, how-
ever, we consider the limit in which k*/lc << 1, for which the contain-

ment time for a fixed system length L is maximized.

~9-



Up to this point nothing has been said about the effect of electrons
on the ion containment time. Since Ae = Ai for self scattering at
Te = Ti’ consideration of electron motion alone leads to expressions
for electron diffusion times similar to.Eq. (21), except ;e is used
for v . Thus electrons would initially diffuse mi/me times faster
than ions, resulting in an ambipolar electric field which regards the
electrons. The ambipolar electric field increases the ion diffusion
rate, with thé well known result
T
D(ambipolar) = ﬁi 1A+ (25)

Ty

for systems with no temperature gradients.

*
III. A THEORETICAL MODEL. Analytic Solution for A /M << Ec

We consider the magnetic field geometry shown in Fig. 1, with

*
AT/M << %, - The magnetic field is constant in each cell, except in

*

the mirror regions of length zm, where it is assumed that r << lm << %f-,

with r the ion Larmor radius. The first inequality implies that the
magnetic moﬁgnt is conserved in the mirror region in the absence of
collisions,'ana the second implies collisionless mirrors. The effects
of the electron ambipolar potential are neglected and are corrected as
in Eq. (25).

Since A*/M << zc , the distribution function at the center of the
ith cell is a drifting Maxwellian, characterized by the parameters n,
(density), vdi (drift velocity) and Ti (temperature). In the steady
state, the particle and energy flow integrals are conserved (we ignore

radial loss) and we have the following equations for cell i :

-10-

tey
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"

v £, dv (26)
z i

and

vzvzfi d3v , (27)

O
i

where F and Q are constant in all cells with

2 2 2 2
n, -[vx + vy + (vz - vai) 1/2 ¢y
£, % 372 3 ° ’
(27) c;
2 kTi
and ¢; < o « We then have
F = ng Vag (28)
"and
Q=n, v,, vo.+5 c,?) (29)
i "di di i

From Eqs. (28) and (29), alone, we cannot determine the densities
and temperatures in all cells, given ng Ve and Tl. The additional

equation must come from the fact that the momentum flow in a given cell

- 3. _ 2 2
Pii[v vzfidv—ni(vDi+ci ) R (30)
for a drifting Maxwellian, is not conserved across a mirror. There is
a net transfer of momentum to the magnetic field due to the unequal dis-~

tribution functions on either side of the mirror and the specular reflec-

tion (in velocity space) of trapped particles by the mirror. Since the

-11-~



mirrors are collisionless, all particles in the loss cone facing an
adjacent cell are transmitted, as shown in Fig. 3, whereas all particles
outside the loss cone are reflected. This causes the distribution func-
tion at the edge of the mirror to be symmetric in the trapped region

of velocity spacé, but asymmetric in the loss cones. These considera-

tions may be expressed by the following equations:

fi’r o) = £, (v, = 0), = Mo S B <ug
= -1 = -
fi,r (v,u) = fi+1,2 (vou) 1=uw<-u, (31)
<
fi’r (vyu) = f1+1,2 (v,u) , M, <u=1

where f, 1} (vou) and £, _(v,u) are the distribution functions at the
i, > i,r | 1/2
left and right edges of cell i and Ko is defined as (1 - %?. To
use Eq. (31) the form of the distribution functions fi 1y and fi p must
H 9

be known. For infinite mirror ratios, there is no flow of particles
through the mirrors and the steady state distribution function in each
cell is a stationary Maxwellian. For large mirror ratios, we assume
the form of the distribution function to be a stationary Maxwellian,

with different density and temperature parameters in the loss cone and

trapped regions (see Fig. 3).

We now consider a multiple mirror system with (2N+1l) cells and
an external source of particles S.cm-zsec-1 injected into the center

cell. The injected particle velocities are assumed to be symmetric

-12-
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in angle. The cells are numbered -N, -N+1, -—, -1, 0, 1, 2, ———, N.
In the steady state the flow of particles in each axial direction is

F = §/2. The integrals F, Q, Pi and P + defined in Eqs. (26), (27)

i+l
and (30) for a loss cone perturbed Maxwellian distribution with param-
eters n_, '1‘a o, Tb (see Fig. 3), for the mirror separating cells i

and i+l, are given by

: 1
F = (2—“)'1—/—2'—h; (naca - l‘l.b C.b) (32)
n, .’ 3, . ™ °b2 3
Py=S @+ )+ A=) (33)
n Cc 2 ﬂb Cbz
Pig = -+ 2 e d (34)
g 3 3
Q= m (naca - ey ) R (35)

The boundary conditions at the mirror automatically insure particle flow

and energy flow conservation across the mirror region. Eqs. (33) and

(34) show that momentum is not conserved across a mirror for Mo >0

i.e., for M > 1. Given Ny Vg and Ti’ we wish to find D1 0 Vai+l

and Ti+l s eliminating the intermediate unknowns na’.Ta’ o, and Tb .

However, we héve only six equations for seven unknowns; one particle
flow, one momentum flow and one energy flow conservation equation for
each of the éells i and i+l. An approximate seventh equation is

found in the limit of small drift. Equating energy flows in adjacent

cells,

2 2 2 2
Vag T2 Vg tSceiy -

-13-



If the drift;' velocities are small compared to the thermal velocity,

the above equation indicates that to a first approximation the system |
is isothermal. This is also borne out by the results of the numerical

b : T.
We solve for ng Vas and ey by considering cell N at the right end :

model (see Section V). We therefore make the assumption Ta = T

of the system and iterate toward the center cell to obtain general ex-
pressions for the density, drift velocity and temperature in the ith ¥

cell, in terms of the parameters n., ¢, at the right hand mirror of

]

cell N. ‘(If i 0 at the right hand mirror).

N in Fig. 3, then n

We obtain:

_5 3 _ '
ni-sna[l+uc (Z(N 1)+1) (36)
4 [ 1 ]
v = 9 (37)
i Sn |4 “c3 (Z(N-i) + 1)4
an |
and e — (38) :

J5

To express the parameters n, and c, in terms of the éxternal source con-
ditions, we define an average input particle velocity g such that

G% m cSZ)S is the flow of energy into the system per unit area. Solving
for n and c, in terms of s and cg» we finally obtain

5 VZﬂ MS [

n, = 1+ (200-9) + 1)] (39)

-14-
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v, =- (40)
@ 5/or M [ 14 (2(N-i)+1)]

e
and c, = —= . : (41)

"

The results,(39)'— (41) are insensitive to the assumed form of the dis-
tribution function near the mirrors, as can be shown by assuming another
distribution function near the mirror to obtain results that differ by
only small,cénstant factors.l3

We can now obtain the average containment time Tos for a 2N+1 cell

system, from the relation

N
. L
= <
T, S (no + 2 ; ni) . (42)

Substituting Eq. (39) in Eq. (42) and performing the summation we have

5\ag M L 3.2

‘l.'c= —8—~c-s——(l+2N+2ucN) (43)

The assumptions of complete Maxwellianization in the cell midplanes

and collisionless mirrors yilelds a value of Tc from Eq. (43) that is

an upper limit. Putting N :f%_ > Mg % 1, and using the definition of
c

1/2 - 1/2

cg = (5w/8) v , Eq. (43) can be written as Tc = (5/4) ML2/22,c v,

which is seen to be 1.1 ﬁmm(max) as given by Eq. (21), in good agree-

ment with diffusion theory.

We contrast these analytic results with numerical values obtained

in Section V. Taking S =5 x 103 particles cm~23ec-l, M = 5, and constant

-15-



velocity injection with cg = 7.8 x 107 cm/sec, we obtain

17 _. -3 - 5
particles em 7, Vio 6 x 10° cm/sec and c, = ¢ <

n ~-4x10
(o)

3.44 x 107 cm/sec (T0 = Ti = 2.5 keV). When these parameters are used

17 particles cm-s,

in the nuﬁerical model, the results are n, -~ 2 x 10
V4o ~ 1.2 x 10? cm/sec, To ~ 3 keV and T4 ~ 2.6 keV (see Figs. 8 and 9).
The differences between the theoretical and numerical results may be
attributed to the following factors related to the numerical parameters:
(1) the mirror regions are not perfectly collisionless, (ii) the cells

are not sufficiently long to isotropize the ions between mirrors.

IV. MAGNETOHYDRODYNAMIC THEORY

We conéider the behavior of multiple mirror devices in the magneto-
hydrodynamic'(MHD) limit. Taylor and Wessonlo have presented a solution
for plasma flow in a converging nozzle. However, as we shall show below
their solutions are not generally valid due to the assumption that sonic
flow is alwaﬁs achieved at the throat. Here, we present the solution
for both subsonic and sonic flow in the throat of a converging-diverging
nozzle, and apply the results to the multiple mirror configuration.

The equaﬁibns developed below result from combining the one dimen-
sional equations for the steady-state flow of a neutral compressible
gas11 and the oﬁe dimensional MHD equations. Their vélidity is subject

to the following restrictions: (i) isentropic potential flow, (ii)

AB/B << A/L where AB is the change in the magnetic field B over the

to:

Spitzer mean free path A , and L is the characteristic length of the
system, (iii) magnetic Reynolds number >> 1, and (iv) infinite con-
ductivity. Quantitative assessment of MHD validity to multiple mirrors

is considered at the end of this Section.

-16-



With these'restrictions, the mass continuity equation pav = conmst.

the adiabatic equation of state pp-Y= const., and the force equation

2P0 ) —oyx @xp -+ L @xm xB
(o]

yleld Bernoilli's equation for compressible gas flow

%-vz + ®w = const. (44)
Here p = mass density, v = fluid drift velocity, p = plasma pressure
(assumed isotfopic), a = plasma cross sectional area, B is the magnetic
field vector ahd w = specific enthalpy (dw = dp/p). This description
of MHD plasma flow is identical to compressible gas flow except that
the plasma éfeara(z) is an unknown function of the axial position z and
must be determingd from MHD considerations.

For an infinite conductivity plasma, the flux internal to the plasma

¢i and the flﬁx external to the plasma ¢e are conserved; i.e.,

a(z)Bi(z) = const. (45)

and

(A(z) -a(z))Be(z) = const. (46)

where A(z) is the conducting wall area as shown in Fig. 4 . The plasma-

vacuum interface boundary condition for streamline flow is

-17-



B, B, |
P+'§T‘:=Eﬂ; . (47)

Solving Eqs. (44) - (47) for the plasma pressure p(z) and plasma area
a(z) in terms of the initial conditions at the plasma inlet (see Fig. 4),

denoted by subscript 1, we obtain

' . y-11/2
B EHE-E @R -
Po €1 % v-1 8 /\Pg P
(48)
and .
2 .
, A]_
P\ ;2 a "1
_P__é_l__(_l)(_l_)wz 1 s-1g=0
Py 11 'Po/ \ 4 (—A—-?il--l)
a; a )
(49)
where Bil = — is the inlet internal plasma beta, and
Byy /2¥g -

a2 = Bil/Bil =1+ Bil » and the subscript o refers to plasma quantities

corresponding to the zero drift velocity condition and has been used for
convenience in normalization. We note that pllp° is specified in terms

of the normalized initial flow velocity vllc1 as

.
p v2 -1
P 2 2
[s] Cl

-18-



For a given initial vl/cl’ Bil and axial variation of the con-
ducting wall area A(z)/al, Eq. (48) - (50) yield p(z)/po and a(z)al.
Some solutions are shown in Figs. 5 and 6. In Fig. 5 plots of p(z)/po
versus A(z)/a1 are made for high and low Bil for several values of
initial velocity vllcl. We note from the form of the curves in Figs.
5 and 6 that for given values of vl/cl and B, it is impermissible
to specify A(z)/ai less than some minimum value. This implies that
there is a maximum wall ratio RwiAllAmin and a maximum plasma mirror
ratn:Rgal/amin. For given values of vllcl, Bil and a;s it follows

that there is a maximum flow wﬁax where W = pav which is given by11

y+1
2y-2

W _=pgcya

[

min = Y PoPo YL min (51)
where the subscript * denotes conditions at the plasma throat; i.e.,
at a(z) = a i, + It is easily seen that for vllc1 <1and W< W oo
the flow velocity v is subsonic everywhere in the nozzle. Equation (51)
shows that the.maximum permissible'flow wﬁax is obtained for the case
in which sonic velocity occurs at the throat. For W = Wﬁax’ the flow
in the diverging portion of the nozzle may be supersonic or subsonic,
depending on the pressure conditions at the discharge portion of the
nozzle (Fig. 4).

Solving for W using the conservation of mass, equation of state,

and Bernailli's equation and using Eq. (51), W/Wmax is given by

-19-~



y+1f ‘
2y-2 v,/c a
ww = i 11 L (52)
max 2 2 +1 a
ivl -1 7y-2 min
() ()«
(L ¢ ]

It is clear that when W = wmax , (52) explicitly determines vl/cl ;

i.e., vllcl‘ is then not an independent initial condition.

We consider two types of initial conditions. If the nozzle is
connected to a constant pressure reservoir (p = Py V = 0), then a
solution similar to that of Taylor and Wesson is obtained; i.e., somnic
flow in the throat. The minimum plasma area a in is obtained from
Eqs. (48) - (52). W/Wmax is set equal to unity in the last equation.

W oax 1S then obtained from Eq. (51). Of greater interest to the problem
of MHD flow in a steady state single or multiple mirror system is the

case in which the flow W is a constant, determined by plasma injection

conditions. For this case we calculate the variation of the plasma

parameters as the wall mirror ratio Rw is varied (Bil is fixed). If

<
W wmax initially, Wmax decreases as R.W is increased, until the limit
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W= wmax isv?eached and v1/c1 (and hence pllpo) is determined by

(52). 1f Rw is increased further and Q is maintained constant,
the initial density pl must Iincrease. A plot of p, versus Rw is shown
in Fig. 7 fo?;Bil = 0.1.

To exténd fhis analysis to multiple mirrors is simple for the
case of intérest where the cell mirror ratios increase in the direction
of flow. If Wﬁi denotes the maximum permissible flow through the ith
mirror then we have Wmi < Whj for 1 > j. Therefore the flow in the
system is subsonic throughout if it is subsonic at the inlet. The maxi-
mum flow is dictated by Wﬁn, where n is the index associated with the
exit mirror. Since the flow is constant throughout the system, the con-
finement time of a test particle in the multiple mirror system with a
fixed mirror ratio in the exit cell, is then proportional to the number
of cells. This is in contrast with the intermediate density regime in
which the confinement time scales as the square of the number of cells.

We now calculate the confinement time in a single cell in which the
MHD assumptions are satisfied. Let S denote the flow of particles per
unit plasma afea per second, and ny the number density, both evaluated
at the inlet. We specify S, a;, Tl and Bil’ as the initial conditions.

In the absence of any flow restrictions other than those represented by

the mirror, T nax in the throat. Therefore, from Eq. (52) we have
(for vy = 5/3)

2.2 4

¢y 16R ( ) + 1) .
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where szal/am.

>
i FOr Rp z 2, vl/c1 ~ 9/16 Rp, giving for the single

cell confinement time

. '3 2 R
<_c _16 "cp
c vl 9 c1

The inequality follows because the flow velocity is not a constant every-
where in the cell, but increases as B increases. Since vy is calculated
at minimum B the actual confinement time is somewhat smaller than that
given by Eq. (53), although for sharp mirrors with flat central regions
the difference is not significant. For multiple mirrors we obtain an
upper limit for the confinement time by replacingAJLc in the above Equa-
tions by the system half length L/2,

We now discuss the validity of MHD analyses following the work of
Shkarofsky, Johnston and Bachynski.12 We apply their amalysis both to
the conditions of our laboratory experiment, and to a conceptual fusion

plasma configuration. For the MHD analysis we assumed scalor pressure

and E+vxB=0. FromRef. 12, the scalor pressure assumption is

~

mizsv Qav
KT >> 1 and X9 =5 >> 1 , where zs is the scale

i o

valid if X1

length over which the pressure changes v, is the average drift velocity,

m, and Ti are the ion mass and temperature, and v is the ion-ion collision

frequency.
For the lab plasma we choose parameters that correspond to the
high density regime of the Berkeley multiple mirror experiments, with

singly ionized potassium as the ion species. We take Ti = 0.5evV,

1cm—3, lc = 0.3m, plasma radius = 1 cm and the

injector source strength = 1016 particles cm'-2 sec-l. Since the plasma

B = 2000 Gauss, n = 101
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is lost rapidly under these conditioms, the characteristic drift velocity
is Vo ~ vth/ﬁ , where M is the mirror ratio averaged over the cell length.
With M = 2, v, = 105 cm/sec, v = 0.3 x 104 Hz and ls & 2; , these param-
eters give Xy = 0.75 and Xg = 1, so that the assumption of scalar pres-
sure 1is not qompletely satisfied. Furthermore, the f X %.term and the
resistivity.term nJin Ohm's law are not negligible. Despite this

lack of clear applicability of MHD theory, a qualitative correspondence
between the'expérimental results, and MHD theory exists. The periodic
variations in density with magnetic field, found in the multiple mirror
experiment, corresponds to that predicted by MHD theory and the confine-
ment time i;creases linearly with the length of the system. However,

if n is a factor of 5 smaller than the value used in the example (i.e.

if n~ 2x lOlocm), corresponding to a smaller collision frequency and
Xy = Xg = 0.2, multiple mirror confinement effects can be observed in
the system.7 (See also II). For the fusion plasma we select parameters

roughly consistent with a fusion feasibility study presented in II. Deu-

17 -3

terons are the ion species with T cm s B = 100 kG,

and 2c = 6.5m. We take v, = 2.5 x 106 cm/sec as calculated from the
numerical model in the high density case with S = 5 x 1023 particles
cux'-2 sec. (see Section V), v = 2.105, and 1etting.28 = lc we obtain

X; = 0.14 andbkz >> 1. Numerical studies in Section V, using the fusion
parameters,'above, indicate that multiple mirror effects are present at

17 cm-3 17 -3

densities n S 10 , whereas for n 2 2 x 10°' cm ~ , the variation

of density from cell to cell is approximately that predicted by the MHD
theory. This is clearly seen in Fig. 10 of Section V, where the density

variation in a 10 cell system is plotted. In the four cells where

-23=-
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n~2x10 ,cm-3, the density is almost constant from one cell to the

next, but large differences in density exist for neighboring cells for
n < 1017 en3,

In both the above examples, the scale length zs of the magnetic
field variation has been taken equal to the cell length zc. This corres-
ponds to a gradual field variation over the entire length of the cell.
If the mirrors are peaked, then the scale length zs must be taken as
the length of the mirror region (lm in Fig. 1). Using ¢ = 2m < lc makes
both X1 and Xy smaller and thus increases the range of densities over
which multiple mirror effects can be obtained. We conclude that the
transition from the intermediate mfp regime, in which the multiple

mirror principle applies to the MHD flow regime, occurs for the param-

eters x, = 0(1) and Xy = 0(l).

V. A NUMERICAL MODEL

In an earlier article2 numerical calculations of containment time in
a multiple mirror device were made using a fixed scattering center model
for the collisions. Here we use a model in which the field particle den-
sities, drift velocities and temperatures are included in a self consist-
ent manner. The calculation procedure follows that of the earlier work.2
A number of test particles are numerically followed through the multiple
mirror system with the velocity vector of each test particle varied on
each step. The variation is composed of two parts, an adiabatic change
due to the variation of the magnetic field and a random change arising
from small angle'coulumb collisions with the background plasma. The ran-
dom small angie scattering is computed in the center of mass frame of the

background plasma which is drifting, and the velocity vector transformed
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to the laboratory frame for computation of the adiabatic motion. The
complete mathematical procedure is presented in Ref. 13. The confine-
ment times of é large number of test particles are averaged to obtain
a multiple mirror confinement time.

The values of the density, n, , drift velocity Vie? and temperature
TR of the field particles in cell number %, that are used for the initial
calculation qf’confinement time, are chosen either from the results of
diffusion theory or from a fixed scattering center numerical model. From

h

the average value of confinement time T, in the zt cell the new values

of the field parameters, to be used in the next iteration, are obtained

from
St

B T2 >
S

VD2= 2n ’ (54)
)

2
sz— g W, ,

where Vi is the average test particle velocity in the drifting frame,
gnd the source strength S is assumed constant throughout the calculation.
The calculation procedure is then repeated until the results converge.

To obtain results appropriate to a fusion reactor design (see II),
the mirror ratio was assumed to vary from cell to celi to hold the ratio

*
A /lc (see Eq. (17)) constant. To satisfy this condition with constant

LS

S (2 e
w-(z) = &



where the subscript o refers to the quantities in the center cell. 1In
order to allow for a variation of the sharpness of the mirror field the

axial variation of the normalized magnetic field was chosen of the form

1

B(z) = THy
A

[1 + v, exp{ - sinz({-z—)} ] , (56)
[o]

where (L+y£) = Mz and §, defining the sharpness of the axial field varia-
tion,was taken = 10 for the fusion plasma simulation. The source strength
S was taken as 2.6 x 1023 particles cm-zsec-lin order to obtain a center

16 -3

cell density ~ 4 x 10 as is roughly appropriate for a reactor design

as given in II. VTest particles with an initial velocity of 7.8x107
cm/sec were injected at the minimum of the magnetic field, alternately
into cell numbers 5 and 6 of a 10 cell system. The input field particle
temperature was taken as constant (5 KeV) and the initial field particle
densities and drift velocities were obtained from the results of the
fixed scattering center model.2 From Figs. 8 and 9 it is seen that an
approximate convergence in density and temperature is obtained in 3
iterations.

To determine if the confinement time depends quadratically on the
number of mirrors, numerical calculations for a 20 cell multiple mirror
system were made using the same basic paraﬁeters as those used for the
10 cell system. In order to obtain a similar density regime as that used

6 particles/ cm3 in the center cells),

3

in the 10 cell case (= 4 x 10T

-1

) -2
the source strength was lowered to S = 1.3 x 102 particles cm = sec .
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The results are shown in Table I.

TABLE I
Self-consistent numerical calculations

.of multiple mirror confinement times.

# of cells M M Optimized Confinement
max min
M? time T msec
10 7.2 4.0 Yes 0.866
20 7.2 4.0 No 2.6
20 16.8 4.0 Yes 3.1

In two runs with 20 cells the first used fixed mirror ratios, while the
second, using a mirror ratio according to Eq. (55) increased the con-
finement time by about 20%. For both cases an approximately quadratic
relation exists between the mirror ratio optimized 10 and 20 cell cases.
The temperature extremes in the 20 cell cases were approximately the
same as those obtained for the 10 cell case: Tmin(énd cells) = 3.7

to 3.8 keV and T = 4.5 - 4.7 keV.

A comparison was also made between the computer run and some re-
sults obtained‘in the multiple mirror experiment.7’8 The experimental
value for the axial confinement is = 17 msec7 and is in good agreement
with a value of 15.4 msec which we obtain from the numerical calcula-

tion. Further-details as well as other comparisons of theory and
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experiment are given in II.

Since thé‘confinement time in'a multiple mirror system is sensitive
to the ratio of ion-ion mean free path to cell length, runs were made with
the numerical model using different source strengths. All other param-
eters were kept constant (zc = 6.5 meters, input particle velocity =
7.8 x 107 cm/sec, particle species (deuterium), mirror ratio = 5 for
each cell, number or cells = 10). The confinement time results are “
shown in Table II. (X is the mean free path in the center cell.) We
note from Table II that the confinement time first decreases and then
increases with source strength. The high confinement time in the lowest
source strength case is due to the fact that the system is essentially
collisionless and that particles are injected into the system at an

angle of 90° to the axis. As the source strength (density) is increased

TABLE II
Confinement time as a function

of source strength.

-2 - Confinement noax A
Particles cm “sec time T :
n (L/2)
msec min

1 x 1022 % 0.47 - 3.2 6.3
5 x 1022 0.32 3 1.95 .
1 x 1023 0.53 4.9 0.46
5 x 1023 1.48 3.8 0.046
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the collision‘frequency increases and the confinement time decreases.
In the interﬁediate mean free path regime, the confinement time again
increases with increasing density. In the last case in Table II we are
in a transitioﬁ regime to short mean free path in the center cells with

the intermediate mfp regime existing in the outer cells. In contrast,
23

in the lower injection rate case of S = 10°~ particles cm.-2 sec ~ the
densities in the end cells are too low for good confinement. For the
higher density, the confinement times lie between the lower limit pre-
dicted by the MHD analysis in Section IV and the collisionless mirror
region analysis of Section III. This behavior is illustrated by the
density profile for the high density case in Fig. 10, showing the
flattered MHD—;ype distribution in the center cells

In order to be useful a multiple mirror equilibrium must be stable
against perturbations. The numerical iteration procedure may also be
unstable, independently of the stability of the physical plasma. For

22 particles em 2 sec-l)

example, in the low source strength case (S = 10
five iterations were performed and numerical convergence was not ob-
tained. (The confinement time shown in Table II is an average over the
numerical oscillation). We present in Appendix A criteria for numerical
and long-timevphysical stability. The analysis shows that convergence
of the numberical procedure insures physical long-time stability, but

not vice-versa. Experimentally7’8 it was found that stable multiple

mirror density;distributions could be found in the intermediate mfp

regime.

VI. CONCLUSIONS

In conclusion, we have demonstrated that, under suitable conditions,

a quadratic dependence of confinement time T on the system length L can
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be realizgd in a multiple mirror system. This result is obtained using
an approximaté diffusion analysis which is valid over a wide range of
mean free pafhs for scattering out of a mirror loss cone A/M , froﬁ

A/M << zc tg A/M >> zc where A is the ion-ion collision mfp, M is the
mirror ratio, and zc is the length of a single mirror. The above result
holds provided L is long compared to A , and the mirror ratio M is
sufficiently large. For high densities and small mirror ratios there

is a transition to MHD flow in which t is proportional to L. By comparison
with numeriéai and experimental results a criteriqn is found for the
transition from the intermediate mean free path regiﬁe, where multiple
mirroring action can be found, to the MHD regime.

The value of T, calculated from diffusion theory, is checked by a
more accurate apalytic treatment which is valid in the limit of A/M << zc,
but with collisionless mirrors. It,is found that thé two theories give
essentially the same value T = ELE; where v is the average speed.

Zlcv
A self consistent numerical analysis also gives a value of Tom in good
agreement with that obtained from diffusion theory.

In a previous paper7 preliminary experimental results were reported
which are in.goéd agreement with the theoretical work presented here.

In a companion.paper8 the experimental results are considered in greater
detail, and cbmpared with the theory.

In this paper and in the companion paper we conéider only axial
confinement. 'Using the confinement times obtained in these two papers,
a feasibility analysis of a fusion reactor, presented in II, indicates

that the multiple mirror system is a possible alternative to other con-

finement systems. However, the system is at best avefage minimum B,
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(4

and thereféfe‘subjec; to localized modeé,*in common with toroidal
devices. 'Becadse the loss cone is nearly. full, onftﬁé other hand,
it should not b;-subject to velocity space instabilities. A theo-
retical and'éxperimental inyestigation of the stabiiity properties

of multiple mirror devices is required.
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APPENDIX A. NUMERICAL AND PHYSICAL STABILITY

Let

141 = £(ny)

and

S
=g £

n, . = —_ ¢
L
(o] Cc

i+l i+l

where the subscript i denotes the ith iteration for the density and
confinement time in cell %, where, for convenience, the subscript £
has been omitted. Equilibrium between the test particles and field
particles is obtained when Ny =0y

for numerical convergence we expand Ty D

=n,. To derive the condition

4 and £ about their equili-

brium values. For the difference variables we then have

ATyp = (a1)

S
oy = i Aty (a2)
From Eqs. (Al) and (A2) we have
S df.i -
An 1+1 (—2—; I‘;) An 1 | . (A3)
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Thus, for a fixed S, a stable numerical equilibrium is obtained if

l_— < 1 . (A4)
[+

Inequality (A4) must be satisfied in each cell for the numerical proce-

dure to converge. In the numerical procedure we make discrete jumps

£ n
at each iteration between the curves T, = g 2 and Ty = f(nz), as shown

in Fig. 11. We commence the procedure at some value of density n,

and the numerical procedure converges or does not converge according

as inequality (A4) is or is not satisfied. The oscillation showm in
Fig. 11b was observed for the first case in Table II. For the physical
system, the situation is somewhat different. We create a perturba-
tion in density so that the density is n, instead of the equilibrium

value n, . If the slope Q% of the curve T % f(nz) is smaller than

d L
, n,%
lc/S (the slope of the line T, = -é%jh then a change in density from
the equilibrium value will tend to restore the density and confinement
L
time to the equilibrium values. The opposite will occur if‘%% >~§E

see Fig. 11). This must hold since the curve Ty = f(nl) represents
a physical property of the system and the confinement time and the
density of the system must always lie on the curve.

Therefore whenever

2

£ s (45)

dnn

holds for every cell in the system, the system will be stable to
density perturbations on time scales long with respect to the confine=

ment time. The last qualification is necessary since the entire
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formulation is quasi steady state and is therefore not applicable to
temporal fluctuations comparable to or smaller than the confinement
time. We note that inequality (A4) implies (AS5), but not vice versa.
This means that a convergence of the numerical procedure implies long-

time physical stability, but that the reverse is not necessarily true.

df
For the first case of Table II, a value of Sa;— ~ 30, and hence
a numerical convergence was not obtained. For the 10 cell case with
S =2.6 x 10_23 mfzsec_l, Eg-%g ~ 0.3 indicating the convergence that
: c L

was found numefically.
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