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ABSTRACT

A new simple lumped circuit model for junction diodes is presented.

The model contains only 4 elements; namely, 2 controlled current sources,

a nonlinear capacitor, and a memristor. Each component bears a simple

relationship with the physical operating mechanisms inside the diode.

The model is shown capable of simulating realistically the diode's

dynamic behaviors under reverse, forward, and sinusoidal operating

modes. Both the storage time and the fall time of the diode can

be accurately predicted. The model is also shown capable of mimicking

various second order effects due to conductivity modulation. In

particular, the model is shown to exhibit a predominantly capacitive

incremental impedance under small forward bias and a predominantly

inductive impedance under large forward bias. Moreover, it includes

the standard two-capacitor model as a special case.

Research sponsored in part by the National Science Foundation, Grant
GK-32236 and the U. S. Naval Electronic Systems Command, Contract N00039-
71-C-0255.



I. INTRODUCTION

Several circuit models have been proposed for simulating the

dynamic behaviors of p-n junction diodes. The simplest model consists

of an ideal junction-law diode in parallel with a nonlinear junction

capacitance C.(v.) and a nonlinear diffusion capacitance C,(v.) as shown

in Fig. 1(a). We will refer to this circuit as the two-capacitor model

[1]. A more general model capable of simulating the diode's conductivity

modulation was proposed recently by Barna and Horelick [2] and is shown

in Fig. 1(b). But the most sophisticated model capable of providing

as accurate an approximation to the diode diffusion equation as possible

is Linvill's multi-lumped diffusion model [3] as shown in Fig. 1(c).

Linvill's model will simulate the diode diffusion equation exactly as the

number of lumped sections approaches infinity. The variables across

the nodes in Linvill's model are hole concentrations rather than voltages,

and most of the elements used in the model are unconventional ones;

namely, combinance Hc, diffusance H., and storance S. An equivalent

counterpart of Linvill's model using conventional elements such as R's,

C's, and controlled sources was recently proposed by Wang and Branin [4]

as shown in Fig. 1(d).

Our objective in this paper is to introduce yet another model which

possesses the essential features of the above diode models. An

important advantage of this new model is its simplicity—it contains only

four lumped circuit elements; namely, two controlled sources, a non

linear capacitor, and a memristor [5]. We will refer to this model as

the memristive diode model. In order to compare our model with those

•*-For simplicity we assume that it is a single-side (e.g. N. » N ) abrupt-
step junction diode.
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shown in Fig. 1, however, it is important to point out the basic

dynamic behaviors observed in real junction diodes and the capability

of each model in mimicking these behaviors during reverse and forward

transient operations.

A. Dynamic Behaviors During Reverse Transient

Consider the simple diode circuit shown in Fig. 2(a). Assume that

the switch S is thrown from right to left at t = t , and that before t
° o • o

the diode is in steady state with a current i(t) = If, and a voltage

v(t) - Ef. Assume |E2|>>|Ef|. Then the reverse transient waveforms

v(t), and i(t) are shown in Fig. 2(b). Observe that there is a small

instantaneous drop in v(t) from E_ to E at t a t • A much larger

-E2
instantaneous drop in i(t) from le to -I - —r— occurs at t = t . The

r f r R o

current i(t) remains essentially constant at -I until t « t + t when

the voltage waveform v(t) crosses the time axis. The time interval

t is called the storage time. The additional time t^ it takes the

voltage to settle to 90% of the final steady state value is called

the fall time. The storage and fall times represent two important

figures of merit for switching diodes. The storage time t depends on
s

the effective time constant t as well as the reverse-to-forward

2
current ratio Ir/If. The relationship between the normalized storage

time tg/x versus I/If for long-base diodes as predicted by various

models are shown in Fig. 3. The lowermost curve is the exact solution

of the diode diffusion equation [6]; the corresponding relationships

as predicted by the two-capacitor model and The Linvill's two-lumped

2
It will be shown in section II that for a long base diode, t z t , the

mean hole recombination life time. p
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model have been given in [6] and are reproduced here (Fig. 3).

Finally, the relationship predicted by the memristive diode model is

also shown in Fig. 3 for comparison purposes. The Linvill and Wang-

Branin models give identical relationship since the latter is simply

an equivalent representation of the former. The Barna-Horelick model

differs from the two-capacitor model only by the additional controlled

resistor R , which has a negligible effect on t ; hence the two models
s s

also give the same relationship. Observe that these two relationships

differ significantly from the ideal one (the lowermost curve in Fig. 3),

while that predicted by the memristive diode model to be presented in

Section II represents a much better approximation. Of course, by increasing

the number of lumped sections in Linvill's model, it is possible to

approach the ideal curve. However, from the computer circuit simulation

.point of view, the memristive diode model is much more economical since

it requires only four elements.

The fall time tf depends on how fast the residual stored charge can

be discharged. Both the two-capacitor and the Barna-Horelick model

have predicted fall times which are typically three order of magnitude

smaller than actually observed [4]. Consequently, they are unsatisfactory

for analyzing many high speed circuits, such as switching circuits.

The Linvill and Wang-Branin model could predict a much more accurate tf

so long as a sufficient number of lumped sections are chosen. A typical

3
Actually the uppermost relationship shown in Fig. 3 is the solution of

the equation -Ir =-~£- +^ ,where q' is the charge of excess carriers
stored in base, Ir is the magnitude of the initial reverse current. But
this equation is precisely the governing equation for the two-capacitor
model during reverse transient. See Appendix A.
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number required for accurate prediction has been reported to be 20

sections [4].. Such model is often too complicated for simulating

circuits containing many diodes. In contrast to this, it will be

shown in Section III that the memristive diode model is capable of

approximating an accurate tf by only adjusting one of the model

parameters.

B. Dynamic Behaviors During Forward Transient

Consider the diode circuit shown in Fig. 4(a) where a positive step

current ig(t) as shown in Fig. 4(b) is applied at t = 0 when the diode

is in zero state. The associated diode voltage waveform v(t) for

t > 0 is shown in Fig. 4(b) corresponding to three different values of

current amplitudes I_. It is well known that for small current ampli

tudes, the voltage v(t) increases monotonically to its steady state

value [7]. Conversely, for large current amplitudes, the voltage v(t),

after an initial overshoot, decreases monotonically to its steady state

value. In between, there exists a range of intermediate current ampli

tudes where v(t) has an oscillatory component which decays quickly to

zero. The above three distinct forward transient behaviors are depicted

in Fig. 4(b).

Another general dynamic characteristic of junction diode under

forward bias is that its small-signal sinusoidal response varies from

a prediominantly capacitive impedance under low forward bias to a

predominantly inductive impedance under high forward bias. In between,

a ringing phenomenon is observed [7-10].

The above forward transient behaviors are due mainly to the

conductivity modulation arising from the variation of stored charge as a
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function of the external excitation and the internal state of the diode.

Among the four models shown in Fig. 1, only the Barna-Horelick model is

capable of simulating the forward transient behaviors accurately. This

is achieved through the introduction of a linear resistance R whose
s

value is controlled by the junction current i.(t), which in turn is a

function of the junction voltage v.(t). Observe that as the capacitors

C, and C. are charged or discharged, R decreases or increases, thereby

providing a mechanism for simulating the conductivity modulation. How

ever, it is a poor model for simulating reverse transient behaviors

as we have already indicated earlier. In contrast to this, the memristive

diode model will be shown capable of predicting both forward and reverse

transient behaviors. Here the memristor will be seen to play a

crucial role in mimicking the charge storage effect in the diode base.

II. THE MEMRISTIVE DIODE MODEL

Consider the one dimensional p-n junction diode shown in Fig. 5(a)

with an n-type region of width W and junction area A. Assume that the

p-type region is much more heavily dopped than the n-type region. Hence,

the hole current at the junction is approximately equal to the total

diode current. The memristive diode model as derived from the physical

operating mechanism of the diode is shown in Fig. 5(b). The four

circuit elements in this model are characterized as follows:

(1) The nonlinear junction capacitance .

4
Equations (1) and (2) are the depletion approximation for a single-side

abrupt-step junction diode. For a linearly-graded junction diode, the
exponent 1/2 and the constant K must be modified accordingly [6].

8L
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vv-t^vv

K = A[2eq N ]
a n DJ

where

i|> = built-in voltage

e = dielectric permitivity of the semiconductor

q = magnitude of electron charge

ND = donor concentration in the n-type region.

(2) The memristor

Vv>

W

=1 f d
A J a(x,

o(x, a ) = qu n + qu Jp +
V ^Kn no HMp vno

where

y = electron mobility

y = hole mobility

(1)

(2)

(3)

r coth I •=—ft)
(4)

The memristor is a two-terminal circuit element defined by v = R (q ) i ,
where R_(q ) is a linear resistance whose value depends on m m m
the charge a passing through its terminals [5]. A memristor can be
considered therefore as a charge-controlled linear resistor.
"Equation (4) is valid only in the low injection case where electrons
can be considered as the majority carriers. For our purpose, however,
Eq. (4) is adequate.
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nno = equilibrium electron concentration in n-type region

Pno = e<luiliDrium hole concentration in n-type region

A = junction area of the diode

Wn = width of the n-type region (base width)

L =X/D x = hole diffusion length
p v p p

D = hole diffusion constant

x = hole recombination life time

(3) The controlled current source ±2 « Io(q_)

W mT <5)

A
X = X

p
1 - sech ft) (6)

where x , wn> and L are as defined above. We call x the effective hole

life time. Since sech x _< 1 for all x, we have 0 _< x _< x . Observe

that x -*• 0 as W -*• 0 and t + t as W -*• ». For long base diodes with
n p n

W_ » L . we have x - x .
n p p

(4) The controlled current source jL = I-(i,i.,v.,q )

^^•^tVj,^) = Ilf U(i) + Ilr U(-i) (7)

where U(«) is the unit step function , and

The unit step function is defined by U(x)

If the discontinuity at x » O^is objectionable, U(x) can be replaced by
its continuous approximation U(x,K,6) as in appendix B.
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^•.MaH-^y",T' J ~j^j

where I = diode saturation current
s

kTVT - — = thermal voltage

. I x , V. v

cd(vj)=^r **xt) (9)

is the diode diffusion capacitance, and C.(v.) is as defined in (1).

8The quantity I1 is defined by:

Ilr = i- CjCvj) max (ya,Yb) (10)

where

A

Ya =

w{1 +°[(i?ilv\]»<-v}
Y, = -max (y„,Y^)

(ID

c'V (12)

I

A ShR)-l-
Yc = «d(Tj) +CJ(vj) (13)

The function max (•, •) is defined by
max (x,y) = x whenever x _> y

= y whenever x < y.
If necessary, max (x,y) can be replaced by a differentiable function
M(x,y,K,6) as defined in appendix C.
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and

(14)

The physical parameters I , x, V„, A, q, W , and L in

Eqs. (11) - (14) are as defined above, while "a" and "3" are empirical

parameters whose value can be chosen to obtain an accurate prediction

for the storage time t as well as the fall time t,.. Typically, 3 = 1.5,
s I

and 0.5f a < 10. The precise value of a depends on how much the residual

stored charge still remains in the base region of a particular diode

at t s t + t and on how fast it can be discharged.

Observe that the memristive diode model is specified by 13

physical diode parameters {i|> , e, N.., y,y,n ,p , A, W , D , x ,
/ r yo* ' D* n' p no* 'no* n* p p'

V_, I } and two empirical diode parameters {a,3}. Among the 13 physical

parameters, several are constrained by well-known relationships.

Moreover, typical values of most of these parameters are known and

precise values for a particular diode can be obtained through standard

computer optimization techniques [11].

The capability of the memristive diode model will be discussed in

detail in Section IV with numerical examples. However, in order to

understand why and how this model works, we now turn to Section III

and show how this model is derived from the physical operating principles

of the diode. The few occasions where an empirical term is introduced

will also be pointed out along with the reason for its introduction.
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III. DERIVATION OF THE MODEL

Consider the one-dimensional diode shown in Fig. 5(a) under the

assumptions enunciated in Section II (i.e. N. » N_, and assuming an

abrupt-step junction). We know from diode physics that there exists a

thin transition layer at the junction, and that the resistance in the

neutral region depends solely on the carriers available there. Observe

that as carriers flow through a diode, they either flow into the

transition layer and change the amount of charge stored there, or leak

9
through the layer into the neutral regions where they are recombined

or stored. In the latter case, the carrier concentration in the neutral

regions may change, thereby inducing a corresponding change in the

conductance. These basic diode operating mechanisms are incorporated

in the model shown in Fig. 5(b) where C. is used to represent the effect

of the transition layer, i. is used to simulate the leakage of carriers

through the layer, R is used to simulate the conductance of the neutral

regions, and i« is used to represent the recombination of carriers. The

characterizing functions for these four elements are also derived from

basic physical principles:

(1) The nonlinear junction capacitance C (v.).

For simplicity we choose the standard expression for C (v.) as

derived from the depletion approximation for a one-dimensional diode with

an abrupt-step and single-side (i.e., N. » N ) junction [6]. This

expression is given by Eqs. (1) and (2).

9
These two distinct mechanisms actually operate simultaneously.
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(2) The memristor R (q).

Since N. » ND, the conductance of p-type region is much greater

than that of the n-type region, i.e., the resistance of the diode is

mainly contributed by the n-type region (the base region). The conductivity

a(x) of the base region under low injection condition is

a(x) =q{unnno+pppn(x)} (15)

where P_(x) is the hole concentration at x, (x is measured from the

junction into the base region). In order to evaluate p (x), let us

consider the one dimensional diode steady state diffusion equation [6]

32 p'(x) p'(x)

where p'(x) = p (x) - p is the excess hole concentration ai x in the
rn nv ' rno

base region.

The boundary conditions are:

(a) at x = 0:

Pn(x) =pn(0) =Pno [exp0 -1] (17)

where v. is the applied voltage across the diode junction.

(b) at x = W :
n

i _ KMS x p»(W ) - - J (VJ) = - D —i-
p rn n7 q pv^a7 p 3x

-12-
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where S is the surface recombination velocity [6], and J (x) the hole

current density at x.

The solution of Eq. (16) subject to Eqs. (17) and (18) is:

Wcosh Ir^U ^f- slnhl
P;(x) = P;(o) cosh / —

L S
P P

cosh ft> -($ ft)]sinh f- (19)

If S is very large, then

-coth(^) sinh(^p;w = pi<o> cosh Ij—$
The stored excess minority charge q' is

i _

%

W

j Aq pn(x) dx =Aq p^(0) h^
0

rwn
cosh(~

sinh

/W

-11

solving for p'(0) from Eq. (21) and substituting it into Eq. (20),

we obtain:

cosh /f-\-coth^ sinh/f-p;w AqL

(20)

(21)

(22)

This standing assumption is satisfied when the base terminal contact
has plenty of electrons and/or recombination centers to recombine any
excess hole there.
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11
Replacing q' in Eq. (22) by q. , and substituting the resulting

expression into Eq. (15), we obtain Eq. (4) (where we have also made

use of Pn(x) = p + pn(x)). The resistance in the base region is

W

I dx
given by Rn(qm) = 1 a o(x q)'which is E<1* <3>' A W^al curve for

0 '^

R as a function of q is shown in Fig. 6.

(3) The controlled current source i„ = ^2^%?'

From Eq. (21),

q; - Aq pn(0) L

Aq DP p;<o>

cosh(^

Lsinh(^

n
coth [ •=—

- 1

1 - sech ft)
where we have used the identity L = D x .

P P P

On the other hand the diode current is given by:

a p!(x)
i = A J (0) = -Aq D -r-3

ps n p 3x
x = 0

It follows from Eqs. (20) and (24) that

* -> *" M&1 = ft

(23)

(24)

(25)

11The replacement of q' by the memristor charge q will be justified soon.
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Equations (23) and (25) together give

% = ± T (26)P

where x is the effective hole life time defined in Eq. (6). If follows

from Eq. (26) that a hole, on the average, stays in the base x seconds

before it is recombined or passes through the base.

If we define i« as

h = %/T (27)

then at steady state, i.e., when h = 0 and consequently no current

flows through the memristor, we have i = i„ and

x ~T (28)

This constraint justifies the identification of q! with a . It follows

from Eqs. (26) and (27) that at steady state, the diode current i must

feed the bulk recombination in the base at a recombination rate of

Qp/T [6]. The introduction of the controlled current source i„ = q/x

is therefore necessary for simulating this mechanism.

(4) The controlled current source i = I (i ± v Q \

To derive Eq. (7) for i let us rewrite it as follows:

\ =
^"lf wlien i > 0

i^r> when i < 0

-15-



Clearly, i should be defined in such a way that the resulting model

will mimic the essential features of the diode static and dynamic

characteristics when i > 0 (including forward transient behaviors).

A similar requirement applies to the definition of I . Now, if we

define I as in Eq. (8), we can recast it into the following form:

I.. = I
If s

= I

exp

exp

V,

vt

_1

- 1 + Cd(v )
VV

(29)

dv

- 1 +VV aT

Equation (29) can be interpreted as the governing equation for a circuit

consisting of an ideal junction-law diode in parallel with a nonlinear

capacitor with capacitance C,(v.) as defined in Eq. (9), which is the

conventional expression for the diode diffusion capacitance. Hence,

when i > 0, the upper part of the hinged circuit in Fig. 5(b) is

equivalent to the two-capacitor model. It is now clear that the lower

portion of the memristive diode model is responsible for simulating

those forward transient behaviors found wanting in the two-capacitor

model, the Linvill model, and the Wang-Branin model.

To derive I. , consider again the circuit shown in Fig. 2(a). It

is well known that the carrier concentration distribution after t = t
o

is as shown in Fig. 7, where the concentration gradient at x = 0 is

proportional to the diode current, and where the carrier concentration

at x = 0 reaches the equilibrium value p at t ° t +t [121. For a
n rno o s

long base diode, t /x and I /I_ are related as follows [13]:
s r x
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erf [<V*>1/2] -rrtn; (30)

where erf(«) denotes the error function. To incorporate the above

observations into our model, we note that at steady state p'(0), the

excess carrier concentration at x * 0, is related to the stored charge

qV (or q^) by Eq. (21). To emphasize that Eq. (21) is valid only at

steady state, we denote the steady state excess carrier concentration

by P_(0), and the steady state stored charge by q and recast Eq. (21)

as follows:

*;<» - a^
r sinh a

y\ -1cosh

(31a)

Let us now define a quantity p'(0,t) as follows:

W

*;<°.t>-iiL-

sinh
n

Lcosh(iT
(31b)

- l

Observe that Eq. (31b) reduces to Eq. (31a) in steady state. Next, we

postulate the following constraint on the rate of change of the excess

12
carrier concentration p'(x) at x = 0:

12-
The terms I x and I in Eq. (32) are very small constants which are

introduced to avoid computer overflow problem when q (t) = 0, or i(t) = 0,

-17-



d Pn(0) p;(o,t)
dt

[°^ (iS) +Is)xJ
3

(32)

To justify the reason for introducing this constraint, we observe that

if 3 = 1, and if the initial reverse current -I(t ) = I is equal to

qm(tQ)/x = If, then since i(t) ~ i(t0) for t<t + t ,we have

d p;(o) P^(0,t)

dt

0.25x
1V« + Xs T

[(|i(t0)| +1,) xj

^VI llnhfe) «.<'«,>

AqL

rw
ncosh (j- J- 1 AqL

0.25

0.25x
= constant

\M
sinh

W

AqL cosh - 1

0.25x

|i(t0)lT

W

sinh [ z^

cosh

0.25x
fih

(33)

Equation (33) implies that if we switch a diode with a reverse current

whose magnitude I is equal to the forward steady state current If, then

p'(0) will become zero at t - t + 0.25 x. This observation is consistent
n o

with that predicted by Eq. (30); namely, if Is I-, then t ~ 0.25 x,
r i s

i.e., v.(t ) = v.(0.25x) = 0.
' J s j

Since

v.

P;(o)=Pno texp ug -i] (34)

-18-



p'(0) also becomes zero at t = t + 0.25 x. Thus we see Eq. (32)

indeed represents a "qualitatively" reasonable constraint. It

follows from Eqs. (32) and (34) that

d v

dt
la

vT 5n(o,t)
\M + I x

s

(35)

Pno exp\V. |0.25x (|i(t)| + I8)x

If we use only Eq. (35) to calculate v.(t) and t during reverse
3 s

transient, two problems immediately arise:

(i) It predicts too long a storage time t when I « I_.
9 i Jl

(ii) When t > t + t , v.(t) < 0 and exp
o s j fe> ° Hence,

dv

dt

becomes exceedingly large, thereby resulting in "too short" a fall time

t_, let alone the computer over flow problem that invariably arises.

13
To overcome these problems, we first modify Eq. (35) as follows:

dv.

dt

vT 5n(0,t)

{• iPno j1 +«P ([1-0.5 Vj U(-Vj)] VT 0.25x
fK^
[wr

(36)

Observe that Eq. (36) is equivalent to Eq. (35) when v » V„. However,

when v. < 0 there is no overflow problem since

13
This modification will differ significantly from Eq. (35) only when

v. < 0. However, in this case the discrepancy is immaterial because,
as will be shown later, when v. < 0, the model will automatically replace

J dV4
Eq. (35) with a more realistic expression; namely, -j^- = y^9 where ym is
defined in Eq. (11). dt

-19-



exp([1-0.5 VjJn(-v )] vT )*-»<-2/»t>« as vj -»- -».

Upon substituting Eq. (31b) into Eq. (36) and dropping the argument t,

we obtain y. as defined by Eq. (14). Let us further postulate the two

expressions y and y as defined in Eqs. (11) and (13). Note that from
a c

Eq. (13), Yc[Cd(Vj) +^(Vj)] =yexp^-j- 1] -i. Hence, yc is
equal to -d v./dt of the two-capacitor model. Also observe that when

v. > 0, and i < 0. Eq. (11) becomes

\ - <nkr (37)
J J

which is the most negative among y >~Y > and ~Yj since C. (v.) is very
a c Q j 3

small (typically in the order of 10" farad). Hence the function max

(Y > Yu) must give y, when v. > 0 and i < 0, where y, is as defined in

Eq. (12); namely, Yh - - max(Y » Yj)» Observe that when v. > 0, the

function max(Y , Yi_) actually selects between the greater of two possible
a d

values of

dv.

dt

two-capacitor model prediction, or that predicted by Eq. (14) which is

based on our postulate of Eq. (32). Consequently, the relationship

between the normalized storage time t /x and the reverse-to-forward current

ratio I /If as predicted by the memristive diode model could approach

the ideal relationship shown in Fig. 3 by an optimum choice of the model

parameter 6. On the other hand, when v. < 0 and i < 0, Eq. (14) gives—

except when i has decayed to a very small value— too large a value

for dv,/dt because the exponential term in the denominator approaches

; namely that predicted by y which coincides with the

-20-



14
zero when v. < 0. Moreover, since

and

I x
s

'dNVjy " V,C,<v4) -HHexp^y1)* 0
T \'T

Is[exp U)-1] =-Ig

when v. < - VT < 0, Eq. (13) can be approximated by

*.SW

But since C. is very small, Eq. (38) gives too fast a decaying

rate for v.(t) and i(t). Physically, it is the residual stored charge

in the base— which can still support a rather large value of |i(t)|—

which prevents i(t) from decaying too fast after t • t + t . To
o s

account for this effect, the function y (•) as defined in Eq. (11) is
ex

postulated.

1^To see this, we follow a similar procedure used for deriving Eq. (33)
by substituting 3=1, i(tQ) =- Ir =- If, and t» tg into Eq. (14):

aw. ^^-v vt p;(°>
dt p x 2 x 0.25x p„^ x' 0.5x

no no

Now p' (0)/p s exp
*nv ' *no

v1* o'i-^j \j and typically v.(t ) z 0.7 volt. Hence
vt J'

P'(0)/p z 5x 1011, and
n no

dv (t ) V x5 x1011 1012 V
J S_ . = 1__ This ig ODViously a
dt 0.5 x x

much greater decaying rate than that actually observed.
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When v. < 0, Eq. (11) reduces to:

Ya= 7 rl- I ^T .,S (39)

vl'"l*K&]}V

Observe that for sufficiently large value of a, |y j will be sufficiently

small such that the function max(Y , Yu) = Y when v. < 0 and i. < 0.
x'a' 'b' 'a J j

For a particular diode the value of the empirical parameter a is

chosen so that the fall time t. approximates the measured value as

accurately as possible. To demonstrate how sensitive the parameter a

is in controlling the fall time, we simulated the circuit shown in Fig.

2(a) with E« = 10 volts, R = IK, I s I = 10 mA, and with a varying

from a = 0.5 to a = 10. The result as summarized in Fig. 8 shows

that it is easy to vary a so that a realistic fall time t. is predicted.

The preceding derivations show our model is indeed capable of

mimicking the essential qualitative diode behaviors under both reverse

and forward transients. We now turn to some specific examples so

that the quantitative behavior can be evaluated.

IV. EVALUATION OF THE MODEL

Consider a silicon diode with the following prarmeters:

15 -3 -7
L = 10 cm x = 10 sec
D p

2
u = 1350 cm /v-sec. w = 5 L
n n p

U » 480 cm2/v-sec. T = 300° K
P

I = 1/2 x 10~12 amp ^ = 0.9 volt

15
Other diode parameters are taken to be the same as those in the examples

in Section IV.
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From these parameters, we obtain

2
D = u V,,, = 12.5 cm /sec

P HP T
t -3

L = /D x => 1.12 x 10 cmp V p p
15 -3n Z N-, = 10x:? cm J

no D

n2 (300°K) _3
p ~ = 2.1 x 10 cm
rno n

no

and

I L 12
A = S—2 —v = 1.40 x 10"1 cm

q D p coth ( z—
p *no lL

1. Model Testing:

A. Reverse transient:

The above diode is used in the circuit shown in Fig. 2(a). As before

we assume the switch S is thrown from right to left at t • t =0, and
o

that before t = 0, the diode is at steady state with current i = I. = 10 mA.

The voltage E» is taken to be 10 volts. In all cases a is chosen to

be unity, and B is chosen to be 1.5.

The computer simulated result is shown in Figs. 9 and 10. Observe

the small voltage drop at t = 0 when S is switched. This is because the

qm(t=0) If x
reverse diode current -i as well as i0 = = = I£ both flowr 2 x x f
16

It follows from the ideal junction diode law and Eq. (25) that
W \ /W

n \ . .. / nAqDpCOthlj-
i - I [exp / - 1] = ^-EZ, p'(0) =s VT Lp n

Aq D coth . _
P \L.

L
P

Pno I L

*V-te)-1]
Aq Dp coth LA

Hence, I = = \-JU. , or A = ^
S Li

P
q D p ^ coth
n p rno

-23-
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through the memristor from minus to plus terminal (see Fig. 5(b)) and cause

the small instantaneous drop in the voltage waveform. Also observe that

the voltage waveform v(t) before t = t is almost flat (so is
5

i(t) =- [E2 + v(t)]/R). This will be obvious if we look at the case
17I = If as described by Eq. (33) where we have

dpn(0)
— = - K, K being a positive constant.

This means that p'(0) decreases linearly with time t before t = tg.

But

v =VT An [1 +-jj ] (40)
J pno

It follows from Eq. (40) that as p'(0) decreases linearly with t, v.(t)

11 dv1will decrease very slowly. For t > t , v.(t) < 0, and -jj£ = Ya« Hence,

dv.

-t-^ must decay in accordance with Eq. (39). The current i(t) must also
dt

decay correspondingly, and as i(t) approaches zero, the voltage drop

across the memristor becomes negligible.

In Fig. 3 we show the normalized storage time t /x predicted by
s

different models as a function of the reverse-to-forward current ratio

I /I,.. We see that the memristive model gives an excellent approximation,
r f

B. Forward transient:

The above same diode is now used in the circuit shown in Fig. 4(a).

Different current steps are applied and the computed voltage transient

Although we assumed $ = 1 in the derivation of Eq. (33), it does not
matter here since we are only trying to develop some intuitive feeling
for the model.
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waveforms are shown in Fig. 11. Observe that the waveforms behave

exactly as described in Section I-B. The reason for the success of this

model can be explained intuitively as follows.

Recall that when i > 0, L, = I'9 i.e.,

xi =Is ^(^j-^ +W 3?-
Thus our model reduces to that shown in Fig. 12. Now when If is small,

capacitors C. and C, will charge slowly, and v = If R (q ) is negligible,

Hence we expect to obtain the lowermost waveform in Fig. 11. When If is

large,capacitors C, and C. will charge rapidly and v.(t) will also rise
j j

rapidly. Moreover, at the instant when this large If is applied,

q (t=0) = 0, i«(t=0) = — = 0, and all I- must consequently flow

through the memristor R_(q_) whose resistance is relatively very high.

Hence, an initial jump of v - R (0) I£ volts occurs at t = 0. As
mm I

time increases, however, the memristor charge, q (t), increases and its

resistance Rm(q^) decreases accordingly (See Fig. 6). Simultaneously,

the memristor voltage vm(t) = im(t) ^O^CO) decreases while the

current ±2 (q^) increases (this further reduces i (t), hence v (t))

until 12(0^) = If» when vm(t) » 0 (since im(t) = If -^^ = °^# ThuS

with v.(t) rising rapidly to its steady state value while v (t)

decreases quickly to zero, we obtain the uppermost waveform in Fig. 11.

The two components v. (t) and v (t) and their superposition,

v(t) = v.(t) + vm(t), are depicted qualitatively in Fig. 13 (a), (b),

and (c) for large, intermediate, and small magnitudes of the current

step If, respectively.
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From the above two examples we see that the memristor R (q )

is responsible for the conductivity modulation phenomenon—which is

so important during forward transient— as well as for the initial

small voltage drop during reverse transient.

C. Sinusoidal response in rectifying circuits:

The circuits shown in Figs. 14(a) and 15(a) have been simulated

in the computer. The results are shown in Figs. 14(b) and 15(b),

respectively. We observe that in each case there is a small 'tail'

in the current waveform in the cut-off half cycle. This is obviously

due to the effect of the charge stored in the base. In fact, our

computed results agree remarkably well with the real observations given

in [14].

2. Small Signal Impedance:

Assume that a junction diode is under forward bias. Under this

condition (i > 0) we have already shown that our memristive diode model

is equivalent to the circuit shown in Fig. 12. Since Cj » C. under

forward bias, we can neglect C. for simplicity. Let us apply a steady

current source I. upon which a small signal iin(t) *s superimposed as

shown in Fig. 16. Throughout this section, we use upper case letter

(I, V , etc.) to denote the dc component of a variable, lower case letter
m

to denote the ac component, and capital script letter to denote the

total instantaneous value. We put a wiggle """' on top of a variable to denote

its Laplace transformation. Using the above notations, the impedance Z-

of the upper part of the memristive diode circuit model shown in Fig. 16

is given by:
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r.

z, =
1 lj..o 1 + jw r. C.

7" J(0 Cd 3
3

(41)

The incremental resistance r. and capacitance C, about the dc operating

point ~U = V. are given by:

and

r. A
3

dl.

dv.

-1

[M I [exp I^ J- 1]

TT - $)]
-1

I + I.
_S 1

=v **>($)- x(I +1 )
s 1

-1

}]
-1

substituting Eqs. (42) and (43) into Eq. (41) we obtain:

Zl =
VT (l-ju)x)

(I + I,) (l+a)2T2)
& J

(42)

(43)

(44)

The impedance Z„ of the lower part of the memristive diode circuit

model is derived as follows: At steady state I = I. = I„ = I (where

we have denoted the steady current as I) and 1=0. Moreover, observe
J m '

that

o

t

.() = _s. = o
2 x x

)dt!

d 32 d±
Hence i^ = \ =x-jj- =t^j-

-27-
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It follows that .0. = I + i, = &,+ $= I + i„ + t
~^m in z m z

di« ~

and i. = i0 + x -77— . Therefore, i. - in + xs i0, or
in Z at in Z Z

Now

*2
1 + XS 1 + J0)X

in

v = i R =
m mm

di:
dt" R =

m
xs i0 Rm = jwx try Rm

z m z m

Hence

* v i« 3<*>x R
n A m -15 2 J mZ0 = -sr— = jwx R •=— = - , .—

2 . J m . 1 + jwx
in in

2 2
R (jwx+w x )

mVJ

1 + 0) X

Adding Eqs. (44) and (47) we obtain the total impedance

f T VlVT +(I+Is) a)2x2 Rm ja,rRm " IT+T
Z = Z± + z2 =

(Io+I) (1 + a)2x2)
m

1 j. 2 21 + 0) X

di,

IF

It follows from Eq. (48) that if I is small such that R «
m I + I '

then the reactive component of Z is negative and the impedance is

predominantly capacitive. Similarly if I is large such that

VTR » -——- , then the impedance is predominantly inductive. These
m I + I

s

properties are consistent with those alluded to in Section I-B.

(46)

(47)

(48)

3. The Memristive Diode Model at Steady State:

It is also interesting to observe that under steady state condition,

we have i. = i =0 (see Fig. 5(b)). Hence, using the same notation as
3 m
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in the preceding section, we have:

I, = I2 = I

where I denotes the steady state diode current. It follows from

Q_
I2 = — and Eq. (23) that

3s-S_ a<» dp p;<°> ,.
f coth ©H

Aq D P'(0)
-" coth (r)-V^)-1!

[1 - sech ( 7—)] xm

where we have made use of Eq. (6) and the relations:

and

I =
s

Aq Dp coth ^ j

P;(0)=pno[exp(^)-

no

1]

Finally, it follows from Eqs. (49) and (50) that

1 = 1, I2 s Istexp («- 1]

•]

(49)

(50)

(51)

Thus the memristive diode model reduces to just a nonlinear

resistor obeying the diode junction law, as any valid diode model should.
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V. CONCLUDING REMARKS

A new p-n junction diode model containing only 4 lumped circuit

elements has been presented. Each component of this model bears a

simple relationship with the physical operating mechanisms inside the

diode. In spite of its simplicity, this model is shown capable of

simulating realistically the diode's dynamic behaviors under reverse,

forward, and sinusoidal operating modes.

During reverse transient operation, the model yields a normalized

storage time t /x vs. I /If relationship which is far more accurate
s r i

than that predicted by the standard two-capacitor model (and Barna-

Horelick model), or the Linvill two-lumped model (and Wang-Branin two-

lumped model). This model is also shown capable of mimicking realistically

the reverse transient decay behaviors. By adjusting a single emperical

parameter, the fall time tf can be predicted accurately. To obtain a

comparable accuracy using the Linvill or the Wang-Branin model would

have required typically 20 multi-lumped sections [4].

During forward transient operation, the model is shown capable of

simulating all known qualitative behaviors. In particular, the model's

voltage response to a current step input i = If U(t) is shown to be

monotonically increasing when If is small and monotonically decreasing,

after an initial overshoot, when If is large. For intermediate values

of I_, a highly damped oscillatory response is observed.

The model is also shown to correctly predict the diode's small-

signal behaviors; namely, the model exhibits a predominantly capacitive

impedance when the biasing current If is small, and a predominantly

inductive impedance when I,. is large. Finally, the model reduces in the
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steady state to a single nonlinear resistor characterized by the ideal

junction law.

The success of this new model is due largely to the use of the

memristor which accounts for the charge-storage and conductivity

modulation effects. It appears that memristors are useful for modeling

other devices which exhibit delay and charge storage effects. In

particular, the techniques presented in this paper should be applicable

also to the modeling of the p-i-n diode [15] or the step-recovery diode

[16]. Memristors have also been used successfully to model mechanical

and electro-chemical devices [17].

In view of its rather recent origin, a theoretical analysis of

circuits containing memristors might appear to be a difficult task [18].

18
However, from the computer-aided circuit analysis point of view, the

memristive diode circuit model is quite attractive because it is simple,

realistic, and requires very little computer memory.

18
The expressions defining the controlled source i- may appear to be

rather complicated. However, since these expressions do not involve any
time differentiation, their numerical evaluation require no more than
simple algebraic computations, a task well suited for a computer.
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APPENDIX

A. Governing Equations for Two-Capacitor Model in Reverse Transient:

For t<tQ+ tg, Vj(t) >0and i(t) =- Ir. If we neglect C in
19the two~capacitor model, the resulting model is shown in Fig. AI,

where we see that

dv.
-1=1 = I [exp/^- - 1] + C,(vJ

r s \vt/ d j dt

8 \Vl/ , Tls ^ dv

(*)
vT exP(v^) at (A-"

It follows from footnote 16 and Eq. (23) that

and

W

Aq D coth(t^ ) p
P V L / *no

I = Ljl
s L

rW
AqDpcoth»rn

q. = _ \_E_/ p. (Q) T
P

Aq Dn cothf^ J p .
P \ L / rno / v-T j_^Z [expf^] -1]

(A.2)

(i)-= x I [exp r^- - 1] (A.3)

19^.
This assumption is valid since C,(v.) » C.(v.) when v. > 0.

d 3 3 3 3
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substituting Eq. [A.3] into Eq. (A.l), we obtain

-I -^ +# U.4)r x dt

which is the equation alluded to in footnote 3 for a long base diode

<T - T ).

B. Smooth Approximation of U(x):

Define

U(x, K, 6) A - — (B.l)

1+ (K) W^

where K and 6 are positive constants to be chosen for the desired

accuracy (K should be large while 6 should be small). The curve

representing the function U(», K, 6) is shown qualitatively in Fig. B.l

as a function of 6. Observe that as 6 •*• 0, and K -»-«>, U tends to the

unit step function.

It is easy to show that U(x, K, 6) is differentiable with respect to x.

C. Smooth Approximation of max (x,y).

Define

g(x, K, 6) 6 xU(x, K, 6) (C.l)

where K and 6 are defined above. Observe that

g(x, K, 6) 2 x, x > 0

(C.2)
= 0, x < 0
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Hence, g(*, K, 6) represents an excellent approximation to a unit

ramp function as shown in Fig. CI. If we define

M(x, y, K, 6) & x+ g(y-x, K, 6) (C.3)

then

Jx if x > y
M(x, y,K, 6):{ (C4)

ly if x < y.

A curve representing M(x , y, K, 6) is shown in Fig. C2.
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FIGURE CAPTIONS

Fig. 1. Existing models of junction diodes: (a) two-capacitor model,

(b) Barna-Horelick model, (c) Linvill's multi-lumped model, and (d)

Wang-Branin model.

Fig. 2. Reverse transient behavior of junction diodes:(a) simplified

circuit for measuring diode reverse transient (b) the qualitative

waveforms of diode voltage and current during reverse transient.

Fig. 3. The relationships between the normalized storage time t /x and
s

the reverse-to-forward current ratio I /If as predicted by different

models for long base junction diodes.

Fig. 4. Forward transient behaviors of junction diodes:(a) the simplified

circuit for measuring diode forward transient, (b) the input current

step i (t) and the qualitative voltage waveforms during forward

transient corresponding to three different values of If.

Fig. 5. (a) A one-dimensional junction diode (b) the memristive model

for the diode shown in (a).

Fig. 6. A typical relationship for the memristor resistance R (q ) as a

function of the charge q passing through its terminals.

Fig. 7. The qualitative distribution of the carrier concentration p (x)

in the base region during reverse transient operations.

Fig. 8. The current transient waveforms of the circuit in Fig. 2(a)

with R = 1 Kft, E2 = 10 volt, If = 10 M.A. and with a varying from

0.5 to 10.

Fig. 9. The reverse transient response of a junction diode in the circuit

shown in Fig. 2(a): (a) the voltage waveforms corresponding to
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different values of R: 0.2K, 0.25K, 0.333K, and 0.5K, (b) the

corresponding current waveforms.

Fig. 10. Same as Fig. 9 except R = 0.625K, 0.833K, 1.25K, and 2.5K.

Fig. 11. The forward transient response of the diode in Fig. 4(a).

Fig. 12. The equivalent circuit of the memristive diode model which

applies when the diode current i > 0.

Fig. 13. The qualitative forward transient waveforms of the voltages

v(t), v.(t) and v (t) across the memristive diode model, the
3 m

junction capacitor C., and the memristor R , respectively:

(a) high input current case (b) intermediate input current case,

and (c) low input current case.

Fig. 14. The sinusoidal response of a junction diode: (a) the circuit

arrangement, (b) the sinusoidal voltage excitation e(t) - E-, and

the calculated current response i(t). (The voltage scale is 2

volts per division and the current scale 2 mA per division.)

Fig. 15. (a) the bridge rectifier circuit, (b) the current waveforms

l(t) for D. and i«(t) for D, due to the sinusoidal excitation

e(t). (The voltage scale is 2 volts per division and the current

scale is 2 mA. per division.)

Fig. 16. Simplified circuit of the memristive diode model driven

by a small ac signal i, (t) superimposed on top of a dc forward

bias I.
in

Fig. AI. Simplified circuit for the two-capacitor model when v. > 0.

Fig. Bl. The smooth function U(x, K, 6) for approximating a step

function is shown qualitatively as a function of x with 6 as a

parameter and K fixed.
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Fig. CI. The smooth function g(x, K, 6) for approximating the unit ramp

is shown as a function of x for a typical set of values of 6 and K.

Fig. C2. A representative curve M(x , •, K, 6) associated with the
A

smooth function M(x, y, K, 6) for approximating the function

_fx, x >y
max(x,y) -< . „ .|y, x <y
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(a) Two- Capocitor Model

Cj(vj)s -^ (+o"vj)"**> Vfe5 bui,t"ln voyage

^j'8 T^"exp(u;) »Iss saturation
VT v' current

Ka and T are diode parameters

Rs =R0 f(ij) where:

Cd(y,) fCpii-J-m , '+*1'J Xn l+Krijexn
R0, Xn and Kr are diode parameters

(b) Borna-Horelick Model

I
P0 Hd Hd

+

V

—IS—
Cj

? ° MM f tHMr-t <|—•
cb ,c±3, cb ,[±3, i ,r±3,

He S 1hc S 1hc S
4 4 ft- 1 1 1 1_ .

(c) Linvill's (vluiti - Lumped IVIodel

Ptwjft Pn (eVj/vT-i) p H
/ no Ko hd nd

\ « 0—AW—0 vW—*-

(d) Wang-Branin Model

Fig. I
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