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as standing respectively for the product, the maximum, and the

minimum of the elements in the set S; as before, this may be done

because each of the functions

F(I, J) = I * J

F(I, J) = MU(I, J) (« 1£ I> J$2m I SiSSi J)

F(I, J) = MIN(If J) (= i£ I < J then I else. J)

is commutative and associative ©

We shall also allow forms like

SUM(F(I), I «IN. S)

SUM(F(I, J), I .IN. SI, J .IN. S2)

and so on. Thus the sum of the squares of the integers from 1 to

Nwould normally be written SUM(I*I, I .IN. (1..N)). This, in

general, is more than an abbreviation; SDM(F(I), I .IN- S) is
{* not, in general, the same as SUM(SET(F(I), I .IN. S)), because

of the possibility that two or more of the F(I) may be the same.

For example, suppose that F(I) is always either 0 or 1, for all I

in S. Then SET(F(I), I .IN. S), unless F is identically either 0

or 1, is the set (0, 1) — the set containing only the ele-nents

0 and 1 — and SUM(SET(F(I), I .IN. S)) = 0 + 1 = 1. On the other

hand, SUM(F(I), I .IN. S) is meant to be the sum of all F(I), for

all I in S — that is, in this case, the total number of I in S

for which F(I) = 1.
Tba "such that" construction (#STa) may be applied to

assertions as well as to sets* Thus

(P(I), I oIN» S «STo Q(I»

f^ means that P(I) is true for all I in the set S such that Q(I)
is also true© We include this form as a convenience only* since

it is clearly equivalent to _ 2^„



(P(I) .CR. .NOT. Q(D, I .IN. S)

Likewise the extended form,

(PO^ ..., In), ^ .IN. Sv ..o, 3^ .IN. Sn .ST. QO^ .o., V)

is included as a convenience, equivalent to

(PC^, ..., In) .CR. .NOT. Q(Ilf ..., 1^9
^ .IN. S f ..., ^ oIN. Sn)

Finally, we introduce three assertions which effectively

involve the use of the logical quantifier 3("there exists"):

EI(I, X) There exists an integer, which we shall call

I, and I is a member of the set X

EF(F, X) There exists a function, which we shall call

F, and the set X is the domain of F

EP(P, X) There exists a permutation of the set X,

which we shall call P

The names I, F, and P may be used in assertions which follow the

respective uses of EI, EF, and EP that contain them. For example,

CBlCfr, X), .NOT. PCfr))

means that there exists an integer ft- in the set X for which the

property P(A-) is not true. It is equivalent to

.NOT. (P(I), I «IN. X)

— that is, the assertion that it is false to say that P(I) holds
for each element Iof X. The GCD function discussed in section
6-1 may be defined using MAX, MIH, and EI, as followsi

GGD(I, J) - MAX(K, K .IN. (l..MIN(I, J)) .ST.

CBI<KL, C1..I», I- K*EL, EICK2, (l..J)>, J= K*K2))
- 268 -

^



7-** Debugging By Proving Correctness

We shall now consider a very simple example of the payoff

that is to be expected from proving correctness of programs.

Namely, we shall show how our methods may be used to find bugs

in programs that not only look correct, but actually are correct

for most (but not all possible) input situations.

Let us write a program to test whether the positive integer

I is prime. We assume that we have access to the standard remain

der function MCD(I, J) uhose value is the remainder when I is di

vided by J. Since I will be non-prime If MGD(I, J) = 0 for suitably

chosen values of J, we start our programming task by writing

IF (MOD(I, J) oEQ. 0) 00 TO 2

where at statement number 2 we will note the fact that I is not

prime. Let us do this by setting the value of a function, called

PRIME(I), to .FALSE.; thus our program reads

LOGICAL FUNCTION PRIMS(I)

• o .

IF (M0D(I9 J) oEQ. 0) GO TO 2

...

2 PRIME = .FAISE,

RETIRN

Now what do we want to do if M0D(X9 J) is unequal to 0? We want to

increase J by 1 and loop back. We must make a test at this point,

and we may remember that if I is the product of any two integers

then at least one of them must be less than or equal to the square root of I.
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Since it is easier to take squares than square roots, we write

LOGICAL FUNCTION PRIME (I) ^

. • •

IF (MOD(I, J) .EQ. 0) GO TO 2

J = J + 1

IF (J*J .IE. I) GO TO 1

. • .

2 PRIME = .FALSE.

RETIRN

• . ©

There are now several things remaining to be cleared up. If the

test on J fails, then I is in fact prime, and we must set PRIME

to .TRIE. • We must ran ember to initialize J to 2, rather than 1,

since any integer is the product of itself and 1. Finally, we

must put an EM) statement on the program. The result is s

LOGICAL FUNCTION PRIME(I)

J = 2

1 IF (MCD(I, J) JEQ. 0) GO TO 2

J = J + 1

IF (J*J .IE. I) GO TO 1

PRIME = .TRIE.

RETIRN

2 PRIME = .FALSE.

RETURN

Em

We now have a program which seems to work; we may compile it, and ^

it will tell us, for example, that PRIME(17) is .TRUE, while
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PRIME(28) is .FAISE. 8 Let us, however, seek to verify its cor

rectness. The final assertion, which we wish to place at both

the RETURN statements, should clearly be that PRIME = P(I),

where P(I) is true if I is prime and false otherwise. In the

terminology of the preceding section, we may write by definition

P(I) a (I .NE. K*L, K .IN. (2.41-1), L .IN. (2.iI*U>

— that is, I is prime if I is unequal to K*L for any K and L

in the range 2 < K ^ 1-1, 2 £ L £ 1-1. Let us modify this defi

nition slightly to take into account the trick we are using in

this program having to do with the square root of I. First of all,

P(I) = (I .NE. K*L, K .IN. (2..1-1),

L .IN. (2..I-1) .ST. K .IB. L)

That is, we can restrict ourselves to the case K <J L in choosing

K and L from the above ranges (this is clear, since K*L « L*K).

We can then make another transformation of P(I), as follows!

P(I) = (I .NE. K*L, K .IN. (2..1-1), L .IN. (2..I-1)

.ST. (K .IS. L, K*K .IB. I))

As we have already mentioned, the restriction to those K for which

K*K < I is justified, by the fact that the smaller of the

two factors of the positive integer I is less than or equal to the

square root of I. Formally, if K*K > I, then K*L £ K*K > I, so

that I ^ K*L.

The initial assertion of our program is I .GT. 0 (since

the program does not check for zero or negative I). What is the

intermediate assertion at statement number 1? At this point we

have checked all possible factors of I which are less than J}
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that is,

(I .NE. K*L, K .IN. (2..J-1), L .IN. (2..1-1))

Let us check to see whether these assertions are enough. The

control path which leads around the loop may be written as

C (I .NE. K*L, K .IN. (2..J-1), L .IN. (2..1-1))

(M(2)(I, J) * 0)

J a J + 1

(J*J £ I)

C (I .NB. K*L, K .IN. (2..J-1), L .IN. (2..I-D)

The only difference between the assertion at the beginning of

this path and at the end is that we have increased J by one, and

thus the set (2..J-1) has been expanded by one element, namely the

initial value of J. Thus we must verify that

(I .IE. J*L, L .IN. (2..1-1))

if this path is taken, and this follows directly from MOD(I, J)

t 0. Furthermore, if J m 2, then (2..J-1) is the null set, and

therefore the assertion (I .IE. K*L, K .IN. (2..J-1), L .IN.

(2..1-1)) is always true in this case. This shows that the ini

tial control path is valid.

There are two further control paths, Oorrespohdlng to the

two RETURN statements. The first is

C (I .NE. K*L, K .IN. (2..J-1), L .IN. (2..1-1))

(M0D(I, J) * 0)

J = J + 1

(J*J > I)

PRIME = .TRUE.

C PRIME = P(I)
- 2?? -
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We have seen, from the analysis of the preceding control path,

jp* that (I .IE. K*L, K .IN. (2..J-1), L .IN. (2..1-1)) holds at

the end of this path) also, we have J*J > I. We must show that

this implies the truth of P(I). As shown above, P(I) Is equiva

lent to

(I .IE. K*L, K .IN. (2..I-1), L .IN. (2..1-1)

•ST. (K .IE. L, K*K .IE. I))

We can assume J < I (otherwise we are done), in which ease

(2..1-1) a (2..J-1) .U. (J..I-1)

But for K in (J..I-1) we have K«fc > I (since K £ J and thus

K*K £ J*J > Ij clearly J can be assumed positive) and so this

range may be disregarded, since we only need to consider those

K for which K*K £ I.

There remains the control path for the other RETIBN

statement, which reads

C (I .IE. K*L, K .IN. (2..J-1), L .IN. (2..1-1))

(&6QD(Z, J) = 0)

PRIME = oFAISE.

C PRB1B = P(I)

Since M0D(I, J) = 0, we have I a J*K for some K. From this, we

must show the falsity of P(I). It suffices to show that J ^ 1

and J / I. This, however, cannot be done with the given ini-

tial assertion for this path, which tells us nothing about the

^ behavior of J.

jpk Let us look again at the program. The initial value of J

is 2, and it increases thereafter$ so it is reasonable to assume
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that J can never be 1. Furthermore, the test conditions*J*J £ I)
at the end of the loop assures us that, at this position at least,
J can be no more than half of I (since J is itself at least 2).
Let us proceed, then, by placing the assertions J £ 2 and
J*J ^ I (which will imply J < I) at statement number 1, and
seeing if this helps us. We must, of course, now go back and

re-verify all the control paths.

For the control path containing HIIMB = .FALSE., the two

new conditions are, as we have seen, exactly what we need. For

the control path containing PRIME = .TRIE., there is no problem,

since we have merely added some new hypotheses without any new

conclusions. For the control path around the loop, we must verify

that J £ 2 and J*J £ I at thelend of the f»*tu The second of
these conditions follows directly from the condition J*J £ I in

the path; also, J^2at the beginning of the loop, and J is in-

creased in the loop, so clearly J £ 2 at the end.

tftifortunately, with the new conditions, the initial con

trol path is not valid. Since J = 2, we certainly have J £ 2j

but J*J ^ I will not hold unless I is at least ^. What do we do

now? We seem to have verified the partial correctness of the

program with the initial assertion I^^j the first three spe

cial cases, I = 1, 2, and 3, can be "run through" to complete

the proof. For 1 = 1, for example, we have M0D(1, 2) = 1, so we
increase J by 1, and then J*J is certainly greater than I. For

1 = 2 — Good heavens 4 We have uncovered a bugl

In fact, for 1 = 2 (and for no other positive integer

value of I), the program given above is asfc partially correct.

It will return PRIME(2) « .FAISE. — that is, 2 is not a prime — ^
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when in fact it is. This is the kind of bug that gives pro

gramming managers nightmares: a program is written, checked out,

the programmer goes on to something else, maybe moves to another

city, the program is included as a subroutine in a larger pro

gram, which in turn is made into a subroutine of one still lar

ger, and then strange erroneous behavior begins to appear. Often

it takes weeks to trace the bug back to the original program in

which it appears; sometimes it is not found at all, and the lar

ger programs are completely rewritten. In this case it is obvious

that, if we were testing numbers one at a time, it would never

occur to us to test such an obvious prime as 2; but if this rou

tine is part of a larger one, the logic of the larger program

might very easily require it to test the primeness of 2.

Fixing the bug, of course, is very easy; we rewrite the

program as followst

LOGICAL FUNCTION PRIME(I)

C I > 0

IF Of .GT. I) GO TO 3

J = 2

C (I .NE. K*L, K .IN. (2..J-1), L .IN. (2..1-1)),

C J .GB. 2, J*J .IE. I

1 IF (MCD(I, J) .BQ. 0) GO TO 2

J = J + 1

IF (J*J .IE. I) GO TO 1

3 FR3HE a .TRUE.

C PRIME a P(I)

RETIFN
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2 PRIME = .FAISE.

C PRIME = P(I)

RETURN

END

Here P(I) has the same definition as before. The initial control

path (which, in the end, was the only one that gave us trouble)

has now been replaced by two paths. The first is

C I > 0

0+ > I)

PRIME = .TRUE.

C PRIME a P(I)

This path is valid, because it cannot be taken unless 1 = 1, 2,

or 3, in which case I is prime and P(I) holds. (Note that 1 is

prime according to our definition; some authors do not include ^

1 among the primes.) The other control path is

C I > 0

<k$ I)

J = 2

C (I .NE. K*L, K .IN. (2..J-1), L .IN. (2..1-1)),

C J .GE. 2, J*J .IE. I

This is the same as our original first control path, with the

added condition Of < I). We have already verified all the final

assertions here except for J*J .IE. I, and, as we have noted, *

this follows from the added condition. This completes the proof

of partial correctness of the revised program.
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7-5 A larger Example

The following program contains 13 statements (including

the final CONTINTE) and three loops, two of which are nested.

It is included as an example of finding assertions and proving

partial correctness of a program which is larger than the

one-loop programs considered up to now. We may notice that, as

our programs get longer, the treatment of each separate assertion

gets longer as well. This is to be expected, since it reflects

the increasing complexity of larger programs; a lOO-statement

program usually takes much more, than ten times as long as a

10-statement program to write and debug©

Our program finds all prime numbers from 1 to N, using

the sieve of Eratosthenes. The basio idea is that in order to

find all the prime numbers we first find all the numbers that

tare not prime; then the ones left over will be prime. A number

is not prime if it is a multiple of something, and these mul

tiples occur in regular progressions! ^, 6, 8, 10, 12, etc.;

9, 12, 15, 18, etc.| 2?, 30, 35, to, etc., and so on. Once we

have found all these in a given range, if we have some way of

remembering which ones we did not find, these will be the primes.

The program uses a logical (i. e., Boolean) array of

length 1000, so that it will work for N £ 1000. At the end of

the program, the elements of this array, called A, will be set

to .TRIE, or .FAISE. depending upon whether their indices are

prime or not. That is, the final assertion will be

(A(D » P(Dt I .IN. (1..N))

where P(I) is defined as in the preceding section. The initial
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assertion is N< 1000 (so that the subscripts will always stay

within range) and N > 0; the program with its initial and final

assertions is: '

C N > 0, N £ 1000

1^1

1 A(I) = .TRUE.

1=1+1

IF (I .IE. N) GO TO 1

1=2

2 J = 1*1

IP (J .GT. N) GO TO If

3 A(J) = .FALSE.

J = J + I

IP (J .IE. N) GO TO 3

1=1 + 1

GO TO 2 1

C (A(X) = P(X), X .IN. (1..N))

h CONTINtE

We have used the variable X, rather than I, in the final asser

tion in order to avoid confusion with the variable I in the

program.

How many intermediate assertions do we need, and where

should we put them? In section 6-3, we saw that our procedure

for finding all control paths in a program can find an infinite

number of such paths if there is a closed loop in the program

which does not contain any control point. We therefore choose

our control points in such a way that this does not happen; that „.

is* every closed loon in the program must contain at least one ^

control point. This important condition is known as the closed
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loop condition; it is proved in section 8-3 that this condition

is necessary and sufficient for the control paths of any "reason

able" program to be finite in number.

How can we make sure that the closed loop condition is

satisfied? There are various ways; we shall ohoose one simple way,

namely, to make each statement to whieh a backward transfer J&

made into a control point. Clearly every closed loop in any pro

gram must contain at least one backward transfer. In our sieve

program, there are backward transfers to statements 1, 2, and 3»

and these become our intermediate control points.

At the beginning of our program, we initialise all the vari

ables A(l) through A(NX to tfR®. • the loop which performs this

initialization is much like the loops in section 7*2, and the

intermediate assertion at statement number 1 is chosen in the

jpn same way as was done there. It is the assertion that A(X) has been

set to .TRUE, for all indices X which are less than the current

value of I, or, in our notation of section 7-3,

(AGO = .TRIE., X .IN. (1..I-D)

To determine the other two intermediate assertions, we have to

look a bit more closely at how the program works. As soon as we

find a non-prime J, we set A(J) to JPAISE. (at statement number

3). The first few non-primes we find are **, 6, 8, 10, etc.; each

of these is found by adding 2 to the previous one (at the state

ment J = J + I; note that I« 2 the first time through the loop).

We stop this process when we have found all multiples of 2 that

are less than or equal to N. Now we have to find all such mul-

f^ tiples of 3. We can start with 9= 3*$* since 3*2 is a multiple

of 2 and has already been found. Similarly, when finding the mul-
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tiples of 7 (say), we do not have to worry about 7*2 through

7*6, because these are all multiples of numbers less than 7%

This accounts for the initializing statement J = 1*1. If there

are no multiples of I less than N, other.than t,hose which we

have found already, we are done.

At statement number 2, then, we have found all multiples

of all numbers less than I that we want to find. Let us form

these numbers into a set S1(I); then A(X) = .FALSE, if X is in

S1(I), and A(X) = .TRUE, otherwise. This can be written as

(A(X) = .FAISE., X .IN. S1(D), (ACX) = •TRUE.,

X .IN. ((1..N) J>. Sl(I)))

We recall that .D. means "difference"; (1..N) J>. S1(I) is the

set of all integers in (1..N) that are no£ in S1(I). The set

SI(I) may then be defined as followsI
1

S1(I) = SET(Y*Z, Y .IN. (2..1-1), Z .IN. (2..M-1)

.ST. (Y .flB. 2, Y*Z .US. N))

*- that is, the set of all Y*2 for 2 £ Y £ 1-1 and 2 £ Z £ N-l

which are such that Y £ 2 and Y*2 £ N. We note that the con

dition Y .IE. Z could have been omitted, and the same set would

have been obtained.

At statement number 3, we have found all elements of

the set S1(I), and a few more besides — namely, the multiples

of I that are less than J. Let us make all these into a new set

S2(I, J). The assertion here is the same as before, but with

S2(I, J) substituted for S1(I) «— that is, it is

(A(X) = .FAISE., X .IN. S2(I, J)), (A(X) « ^
.TRUE., X .IN. ((1..N) .D. S2(I, J)))
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where S2(I, J) is defined by

32(1, J) = S1(I) .U. SEKI*Z, Z .IN. (2..N-1)

.ST. (I .|B. Zy I*Z .IT. J))

— that is, S1(I) together with all those multiples of I that

are less than J (recall .U. stands for "union"; also, as be

fore, I .IE. Z could have been omitted).

The behavior of the integers I, J, and N must also be

part of the assertions. At statement number 1, we have 1 £ I

and I£ N. At statement number 2, we have I£ 2; we are Just

about to test 1*1 for being not greater than N, and we therefore

know this to be true of the previous value of I — that is,

(I-1)*(I-1) £ N. At statement number 3i we have tested the cur

rent value of I, and we know also that J is between 1*1 and N;

that is, I£ 2, 1*1 £ J, and J ^ N. Vfe also know that J is a

multiple of I; this may be expressed by asserting that MCD(J, I)
= 0, where the MOD function is as in the preceding section. Fi
nally, N> 0 and N£ 1000 hold throughout the program if they

hold at the beginning; these facts are needed in connection with

the restricted commands (see section 6-5) which make reference to

the subscripted variable A. Of these, only N£ 1000 needs to be
stated explicitly, since N> 0 is implied by each of the other

intermediate assertions. The program with all asser tions is thus*

C N > 0, N £ 1000

1=1

C 1£ It X£ *9 V£ X°°°» <*<** = •raUE»» X •^ (X..I-D)
.1 A(I) = .TRIE.

1=1 + 1

IF (I .IE. N) GO TO 1
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1 = 2

C I > 2, (I-1)*(I-1) < N, N < 1000, (A(X) = .FAISE., X

C .IN. S1(D), (A(X) = .TRIE., X .IN. ((1..N) J>. S1(I)))

2 J = 1*1

IF (J .GT. N) GO TO k

C I > 2, 1*1 < J, J £ N, MCD(I, J) = 0, N £ 1000,

C (A(X) = .FAISE., X .IN. S2(I, J)),

C (A(X) = .TRIE., X .IN. ((1..N) <J>. S2(I, J)))

3 A(J) = .FAISE.

J = J + I

TF (J 0LE. N) GO TO 3

1=1 + 1

GO TO 2

C (A(X) » P(X), X .IN. (1..N))

h CONTINIE

where S1(I), S2(I, J), and P(X) are defined as before.

There are seven control paths in this program, as followss

Path 1 C N > 0, N £ 1000

1 = 1

C 1 < I, I £ N, N£ 1000, (A(X) = .TRIE., X .IN. (1..I-D)

Path g C 1 £ X, X£ Ny N£ 1000, (A(X) = .TRIE., X .IN. (1..I-D)

CI £ I, I < 10003

A(I) = .TRIE.

1=1 + 1

(I £ N)

C 1 £ I, I < N, N£ 1000, (A(X) = .TRUE., X .IN. (1..I-D)
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J^

Path 1 C 1 £ I, I £ N, $ £ 1000, (ACX) = .TRIE., X .IN. (1..I-D)

tl <J I, l£ 10003

A(I) = .TRIE.

1=1 + 1

(I > N)

1 = 2

C I £ 2, (I-1)*(I-1) £ N, N£ 1000, (ACX) = .FAISB., X

C .IN. Sl(I)), (ACXJ « .TRW., X .IN. ((1..N) J>. S1(I)))

Path !fc C Ii2,, CX-1)*CI-1) £ N, M£ 1000, UOC) =» •FAISE., X

c .in. si(D), CACX) = .mus., x .in. C(i..n) j>. si(i)))

j= x*i

CJ > I)

C CAOO - PCX)t X .IN. a..N»

Path i C I £ 2, CI-1)*CI-1) £ N, N£ 1000, (ACX) = .FALSE., X

C .IN. SKI)), CACX) = .TRIE., X .IN. CC1..N) J). S1(I)))

J = 1*1

(J £ N)

G li 2, I*X£ J, J£ N, MODCI, J)•« 0, Mi 1000,

C CACX) = tFAISB., X..IM. S2CI, J))t

C CACX) = .TRIE., X .IN. ((1..N) J). S2(I, J)))
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Path 6 C I > 2, 1*1 < J, J < N, MOD(I, J) = 0, N £ 1000,

C (AOC) = .FALSE., X .IN. S2(I, J)),

C (A(X) = .TRIE., X .IN. ((1..N) J>. S2CI, J)))

CI < J, J < 10003

A(J) = .FAISE.

J = J + I

(J£N)

C I > 2, 1*1 £ J, J £ N, MOD(I, J) = 0, M i 1000,

C (A(X) = .FALSE., X .IN. S2(I, J)),

C (A(X) = .TRIE., X .IN. ((1..N) J). S2CI, J)))

Path Z C I > 2, 1*1 £ J, J £ N, MCD(I, J) = 0, N £ 1000,

C (A(X) = .FAISE., X .IN. S2(I, J)),

C (A(X) = .TRIE., X .IN. CC1..M) J>. S2(r, J)))

CI £ J, J£ 10003 ^
A(J) = .FAISE.

J = J + I

(J > N)

1=1 + 1

C I > 2, (I-1)*(I-1) <; N, N £ 1000, CACX) a .FAISE., X

C .IN. Sl(D), CACX) = .TRUE.* X .IN. ((1..N) J>. S1(I)))

The verification conditions of these paths may be obtained hy the

forward or back substitution method as extended in section 6-5.

The details of this are left as exercises.
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NOTES

Experimentation with the assertion method has been vi

gorously pursued since its popularisation in CKhuth 683. An

account of much of this experimentation, together with a number

of comments about the language of assertions, about forward and

back substitution, and about computer-aided methods of verifi

cation is given in CLondon 713. A further summary, including a

list of programs that have been proved correct and a list of

computer-aided methods In progress of being constructed, is given

in CLondon 723.

There is more to the "23rd-power algorithm" of section

7-1 than there appears to be. This algorithm has been cited by

Knuth as an example of the fact that the standard algorithm for

raising A to a fixed power Csquaring and multiplying by A in some

order dependent on the power) does not always take the smallest

number of steps.
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EXERCISES

1. (a) Determine a final assertion for the following

program:

IF (I JSQ. 0) GO TO 2

IF (I .GT. 0) GO TO 1

J m -1

GO TO 3

1 J = 1

GO TO 3

2 J = 0

3 CONTINIE

Express the final assertion using ££, then, and e£g&. (This

program calculates one of the standard functions of ALGOL.)

(b) Verify each of the paths from the beginning of

this program to the end by back substitution.

2. (a) Determine a final assertion for the following

program, in terms of the initial value 10 of Ii

I = I + J

IF (J .LT. 0) GO TO 2

IF (I .IE. N) GO TO 1

GO TO 3

2 IF (I .(21. N) GO TO 1

3 CONTINUE

tthis program represents one method ftf lending a loop in which

it is not known whether the step size J is positive or negative.

32b is assumed that statement number 1 is the beginning of the

loop.)
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(b) Verify each of the paths from the beginning of

this program to the end by back substitution.

3. In each of the following programs, give assertions at

the end and at statement number 1.

(a) I = 1

1 ACX) = 0

1=1 + 1

IF CI .I&* N) GO TO 1

(b) 1=0

J » 0

11=1+1

J = J + I

IF CI .IE. N) GO TO 1

(c) 1 = 1

K=0

1 IF (ACI) •»• BCD) GO TO 2

I » I + 1

IF CI .IB. 100) GO TO 1

GO TO 3

2 K= 1

3 CONTINUE

hm Suppose that we wish to prove the worreotness of *$fte-

programat the beginning of section 7-2, under the more general

assumption that initially N £ 0 and (N / 0 p£ A ?* 0).

(a) With the intermediate assertion X = A1, show that the
verification condition of the first control path is ijo£ neces

sarily valid.
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(b) Suppose we define EXP(U, V) to be 1^, except that
SXP(0, 0), instead of being undefined, is equal to 1. Place the ^
assertion X= EXP (A, I), rather than X= A1, at statement number
1. Notice that, in the proof in section 7-2, we needed the
general fact I^.tF = t^+W. Show that the corresponding equa
tion for EXP, namely EXP(U, V)-EXP(U, W) = EXP(U, V+W), does

not hold©

(c) With the assertion X = EXP(A, I) at statement number

1, show that the program is nevertheless partially correct.

(Hint: Show thut EXP(U, V)*U =EXP(U, V+1) always holds if U

and V arc integers and V £ 0.)

(d) Place the assertion X=EXP(A, N) at the end, and the
assertion A>0 (omitting all reference to the value of A) at
the beginning. Is-the program now partially correct? Prove or

disprove.

5. After the following set assignments are made, specify

which pairs of sets (chosen from SI, S2, and so on up to SIO)

are the same. Assume that Nl < N2 < N3.
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SI = (Nl, N2, N3)

^ 82 =(N1..N2, N3)
S3 = (Nl, N2..N3)

Bh m SI .U. S2

s5 = si ;i. S3

56 = S2 .U. S3

57 = (Nl-1, 1Q+1)

58 = (N1-1..N3+1)

59 = S8 J>. S7

SIO » ()

6. Simplify each of the following set expressions!

(a) SET(I+1, I .IN. (1..10))

(b) SET(6*1, I .IN. (1..10))

(c) SET(K*K, K .IN. (1, 10, 100))

* (d) (H..K..I2) .U. (I2..K..23) (assume H < 12 < O)

7. A number which is not prime must be divisible, either

by 2, or by some odd prime. This suggests a method of speeding

up the program of section 7-*H after we test whether I is di

visible by 2, we initialize J to 3 and then increase it by 2

each time, rather than by 1. Write suoh a program and verify

informally that it works.

8. Prove the partial correctness of the program of prob-
•»

lem 7.

9. Complete the prbof of partial correctness of the pro-

i gram of section 7*$9 * ; -
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10. In discovering all non-primes in a given range (in

the program of section 7-5)» it is sufficient to consider all

multiples of primes. Because of the order in which multiples

are found, it turns out that any non-prime value of I (the

quantity whose multiples we are discovering) will already have

been found as a multiple of something else by the time we get

around to consider multiples of it. Hence the two statements

1=1+1

GO TO 2

in the algorithm may be replaced by

5 1=1+1

IF (A(D) GO TO 2

GO TO 5

(recall that, in FORTRAN, "IP (A(I))W — where A(I) is a LOGICAL

quantity — means "If A(I) = .TRUE.*). Prove the partial correct

ness of the modified program. (It is sufficient to consider only

those control paths and assertions which are different from those

of the unmodified program.)
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CHAPTER EIGHT

TERMINAT ION

8-1 Loop Expressions

We shall now finish what we started in Chapter 6, and

show how to prove that a program terminates. If we have already

proved the partial correctness of the program, it will follow

that the program is correct. We shall always assume that par

tial correctness has already been proved; in fact, for

most programs, some of the facts we needed in order to prove

partial correctness will also be used to prove termination.

Every time a program is run, it either eventually stops,

or it does not. In the first case, we say that the program tg£-

minates (or "terminates in a finite number of steps"). If the

program does not terminate, it runs pjx ^definitely (or "goes

into an endless loop"). If a program has no loops, it always

terminates; and so our termination proof methods will concern

themselves with the behavior of loops. Specifically, we will

be concerned with the loon indices, and with other expressions

that act like loop indices.

As an example of how to prove that a program terminates,

let us consider the following program to calculate AN, modified

so as to have a decreasing rather than an increasing index It
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X = 1

I - N

1 IF (I .EQ. 0) GO TO 2

X = X * A

1=1-1

GO TO 1

2 CONTINUE

Let us first prove that this program is partially correct. The

index I counts from N down to zero, while the partial product is

built up from from A0 to Aw. Hence the intermediate assertion

* at statement number 1 is not X=A1, but X=A*"1. The final
assertion is X = AN, as before; and the initial assertion is

N > 0, since it is clear that the program is not correct (and

does not even terminate) if N < 0. In addition, as before, we

shall require A ^ 0.

The three control paths are:

C N > 0, A 4 0

X - 1

I ~ N

C X^AM

C X-A*"1 c X = A**

(I - 0) (I * o)

C X = A'f X - a * A

1=1-1

c X - A1*"1

At the end of the first path, we have X = A because I = ;J

and so X - A - 1 (assuming A 4 0). In the second path, if

I -• 0, then clearly X = A**""3* ant' a = A^ are equivalent. Back

substitution'in the third path gives X*A = A^"^1"1 ,which is
equivalent to the condition X = A^1 at the beginning of the

path. So the program is partially correct. ^)

V/e now observe that, in order to prove that this pro-
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gram is correct, we need to prove only that it terminates when

started with its initial assertion valid. It is not necessary

to prove that it always terminates. In fset, this program does

not always terminate; it runs on indefinitely if it is started

with N < 0. This, in fact, is characteristic of all our termina

tion proofs; they are, in a sense, proofs of "partial" termi

nation.

Intuitively speaking, why does this program terminate?

Consider the behavior of the loop index I. Every time we go

around the loop, it decreases. How do we know that it does not

keep on decreasing indefinitely? Because of the test at state

ment number 1. But the existence of such a test does not, in

itself, guarantee that a loop like this will terminate. We

could, for example, have written 1=1-2 instead of I = I - 1;

in that case, if N is odd (3, for example), the program runs on

indefinitely.

Suppose, however, that we can prove that I ;> 0. In this

case it should be clear that the loop must terminate — an in

teger variable which is always positive cannot continue to de

crease indefinitely. How can we prove that I > 0? In exactly the

same way that we proved partial porrectness. We place the as

sertion I £ 0 at statement number 1, along with all our other

assertions at that point; then we recalculate the verification

conditions. The three control paths are now*

C N > 0, A * 0 C X = A1*"1, I£ 0 C X = A*"1, 1^0

X = 1 (1 = 0) (1*0)

I=N CX = AN X = X * A

C X = A11"1, I £ 0 1=1-1

C X = A11*1, I£ 0
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At the end of the first path, we have I > 0 because I = N and

N > 0. (This program is partially correct for N < 0, since it

does not terminate, and thus only in the proof of termination ^ >

do we use the initial assertion N > 0.) At the beginning of

the third path, we have I £ 0 but I 4 0, and therefore I > 0

(that is, I > 1). Thus at the end of this path, after I has

been decreased by 1, we have I £ 0. The rest of the assertions

at the ends of paths have already been proved; the second path

is valid because no new conclusions have been added. Thus the

program is still partially correct, and, in addition, we have

shown that I > 0 at statement number 1.

We want to say that the program terminates because I is

an integer variable which decreases every time we go around

the loop, and is bounded from below at statement number 1.

For more general loops, however, we will need to find an ex

pression, rather than a single variable, which has these pro

perties. Such an expression will be called a loon expression.

For a simple example of a loop expression which is not

a simple variable, consider the exponentiation program in un

modified form (as given at the start of section 7-2)*

X a 1

1 = 0

1 IP (I .EQ. N) GO TO 2

X = X * A

1=1 + 1

GO TO 1

2 CONTINIR

Here the variable I increases every time we go around the loop,



and is bounded from above. We could, of course, construct dual

theories of increasing and decreasing loop expressions, but

there is a much simpler method available. If I increases and

is bounded from above, then -I decreases and is bounded from

below.

Actually, -I is not quite the expression we want here.

The reason is that -I is bounded from below by -N (we have

-I £ -N, since I £ N) and -N is not a constant. This is an im

portant point, because a loop might not terminate if its ex

pression is bounded by a variable. Consider the following loop:

J = 1

K = 10

1 J = I «• 1

K = K » 1

GO TO 1

Here X decreases every time we go around the loop, and X > J

at all times, but the loop does not terminate. Again, we could

make a special case of a variable, such as N in our exponential

program, which is not changed by any instruction within the loop.

There is, however, no need to make such a special case. If we

have a bound which is a variable, we simply add it to our loop

expression. Thus in this case the loop expression is N-I; it

is bounded from below by zero, and decreases every time we go

around the loop.

Another example of a loop expression is furnished by our

GCD program from section 6-1. Here there are two integer variables,

I and J, which are continually getting smaller. At the same time,
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they remain positive throughout the running of the program.

This time, we do not have to introduce anything extra into

the proof of partial correctness; the assertions I > 0 and

J > 0 at statement number 1 in this program had to be Intro- J

duced anyway, in order to derive the necessary facts about

the behavior of GCDs.

However, the variable I does not always decrease as

we pass from statement number 1 around a loop and back to

statement number 1 again. In particular, if we perform state

ment number 2, then I does not decrease. Likewise, J does not

always decrease as we go around the loop. The quantity that

always decreases is the §um of I and J; and this is our loop

expression.

In formal terms:

A loop expression for a given loop containing a given

control point is

(1) an integer-valued expression

(2) that decreases every time we go around the loop

(from the givon control point, assuming that the assertion

given thr.ro is valid, around the loop and back to itself)

(3) and that £s bounded f>om below, b^ a constant, a£

the given control point (as implied by the assertion given there).

Any program having only one loop always terminates, when

started with its initial assertion valid, if that loop has a

loofc expression. Anjnprogram having several loops always termi

nates, When started with its initial assertion valid, if there

is an expression which is a ldop expression for all of them.

The proof of these facts is quite easy. Suppose, on the con

trary, that such a program did not terminate; then there must **\

be one loop which is traversed an infinite number of times in
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some particular case. Let v^ v2, Vy ••», be the successive
values of the given expression in this case (evaluated each

time the program passes the given control point). By definition

of aloop expression, we have v^ >v2 > v^ > ..., which is im
possible, because, again by definition of a loop expression,

all the v± are integers and each vA (since it is evaluated at
the control point) is not less than some constant lower bound.

As an application of the above facts, let us prove the

correctness of some of the other examples given in the two pre

ceding chapterst

(1) The array-moving program of section 6-5 has loop

expression 1WC. This program resembles the exponentiation pro

gram of section 7-2 in this regard. Here K is the loop index,

but it increases, rather than decreasing, and so we must con

sider -K; and to this we must add N, the bound, since this is

variable.

(2) Bach of the four programs at the end of section 7-2

has loop expression 1M. The loop expression is not affected by

the offset, as this term is used in that section. In fact, a

loop expression never needs a constant term; it Is easy to see

that if sl is any loop expression and & any positive or negative

integer, then e+& is also a loop expression.

(3) The function PRIMB(I), given in its correct form near

the end of section 7-*f, has loop expression I-J*J. This one is a

bit harder to determine© It is clear that J increases and there

fore -J decreases as we go around the loop. It is also true that

J never becomes larger than I (and, indeed, we could also have

used I-J as our loop expression). However, the fact that J*J

never becomes larger than I is already known, by the assertion
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J*J £ I at statement number 1. Thus, by using I-J*J, Hfe obtain

* simpler proof of termination©

The sieve program of section 7-5 bas several loops, and

the proof of its termination will be deferred to section 8-5.
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8-2 Finding Loop Expressions

Loops terminate, in practice, for quite a variety of

reasons. Each of these corresponds to a type of loop expression.

In this section, we shall take up a number of these, and show

how the loop expressions are found in each case.

We may remark, first of all, that all three of our con

ditions on a loop expression (as given at the end of the pre

ceding section) are necessary. Consider condition (1). If we

have a real expression that satisfies conditions (2) and (3),

our loop might not terminate, as in the following programs

A = 1.0

5 A = A/2.0

GO TO 5

Here A decreases every time we go around the loop, and remains

strictly positive at all times© (Of course, in an actual com

puter, the finite representation of A would ultimately stop

decreasing, but that is irrelevant to the mathematical argument.)

What do we do if we have a program in which the loop index

— or whatever corresponds to the loop index — is a real number?

Unless this real number is converging to some value, as in the

preceding example, it will have a minimum increment or a minimum

decrements That is, each time around the loop, the expression —

let us call it §, — Is increased, or decreased, by no less than

some real number 2 eacn tlme around the loop. By taking negatives

if necessary, we can assume that & is decreased by at least x*

in which case §/& is decreased by at least 1. The integer part

of fi/S — that is, the greatest integer In §/£ — is then also

- 299 -



decreased by at least L The following program illustrates this:

FUNCTION SIMPS(F, A, B, H)

EXTERNAL F

X = A

S = F(X) + lf.O*F(X+H)

1 X = X + 2©0*H

IF (X ©GE. B) GO TO 2

S = S + 2©0*F(X) + lf.O*F(X+H)

GO TO 1

2 S = (S + F(X))/(3.0*H)

IF (X ©EQ. B) GO TO 3

S « S - (F(B) + >f.0*F((B+X)/2.0) + F(X))/(3.0*(X-B)/2.0)

3 SIMPS = S

RETtKN

END

(The purpose of this program is to use Simpson's rule, with step

size H, to calculate the integral from A to B of the function F.)

Let us assume that A < B and H > 0 are included in the initial

assertion© The variable X increases by 2S each time around the

loop, so that -X/H decreases by 2 each timej the greatest integer

in -OC/H is thus a loop expression for the loop in this program©

Let us now turn to condition (2)© The loop expression must

decrease every time we go around the loop© The operative words

here are "every time." For example, consider the following loop:

I » 10

J = 0 •

1 IP (I .IE. 1) GO TO 2

1=1-1
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2 J = J + 1

GO TO 1

The Integer variable I remains positivejat ^all times. There is

an instruction in the loop, 1=1-1, which decreases the value

of I; but this instruction is not executed every time through

the loop. In fact, of course, the loop does not terminate.

Forward substitution can tell us when an expression de

creases, tt^the «Ki of the loop, we evaluate our expression,

using the table we have built up, and subtract thismow symbolic

value f**m the initial one. If tbe.result is always positive,

the expression decreases. The fact that the result is positive

is sometimes quite obvious, as,-for example, when a variable

which is a loop expression is decreased by !• However, sometimes

it is necessary to use the assertions at the control point in the

loop in order to show that the given expression decreases. In our

GCD program, the loop expression I ♦ J is decreased either by I

or by J each timej thus we need the assertions I > 0 and J > 0

at the control point,iinothe course of showing that I + J is a

loop expression.

If we find an expression which increases, then, as we

have already seen, its negative will decrease. What if we have

an expression which alternately increases and decreases? First,

we must determine intuitively what general direction the expres

sion is headed in (whether upward or downward)! then we may ana

lyze the S$eo&fid method by which the index is changed in order

to obtain an expression which always decreases. The initial as

sertion of the^following program is N(l) = 2, N(2) = -1, N(3)

=2:

- 301 -



1 = 1

J = 1

1 CALL SIB(I)

1=1 + N(J)

J = J * 1

IF (J ©EQ. If) J = 1

IF (I .LE. 100) GO TO 1

This program calls SOB(I) where I = 1, 3, 2, h, 6, ?, 7t 9, 8,

and so on in that order. Without worrying about what SIB does

(so long as it does not change the value df I), let ?ua consider

whether this program terminates. The variable I alternatively

increases and decreases, but its general direction is upward.

We can obtain an increasing expression by subtracting 1 from I

if it is divisible by 3 and adding 1 to I if M0D(I, 3) - 2© A

little experimentation will convince us that 2*1 + N(J) is also l

increasing; it successively takes the values *t, 5, 6, 10, 11,

12, 16, 17, 18, and so on. We can then get a loop expression

by taking the negative of either of these.

A related, but simpler, problem occurs when a variable

always increases and decreases every time through a loop, as in

the following loops

1 = 1

1 1=1-1

CALL F(I)

1=1 + 2

CALL G(I)

IF (I .LE. 100) GO TO 1 ^

Assuming, as before, that the value of I cannot be changed as a
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result of the subroutine calls, -I is a decreasing expression

j* (and in fact a loop expression) in this loop. This example
points out the generality of considering the behavior of an

expression as. an entire Ififfi !§. traversed, rather than requiring,
foioexamnlev that the value -of a loop expression cannot be in

creased by any individual statement in the loop©

Now consider condition (3) — the last of the three con

ditions on a loop expression© We have seen that, in order to

insure termination, it is not enough to have a test in the loop

which exits if the given expression is zero (or any other final

value). We have likewise seen that it is not enough for our ex

pression to be bounded by a variable quantity, because,tas the

expression decreased, this variable quantity might be decreasing
^ilongwith it. Sometimes the bound will change but the program

f^ will still terminate, as in the following loop*

I « 1

J a N

1 CALL GETCX)

IF (F(X) ©IE. 0) GO TO 2

A(I) ••X

I * I t 1

GO TO 3

2 A(J) = X

J » J - 1

3 IF (I ©ffi. J) GO TO 1

ThB loop expression Here is J«-I. In this case the bound is be-

f^ coming smaller as the loop index is becoming larger. It is even
possible, however, for bb*h the index and the bound to become
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larger at the same time, as in the following (admittedly con

trived) example:

1 = 1

J = N

1 CALL F(I)

1=1 + 2

J = J + 1

IF (I .NE. J) GO TO 1

Again the loop expression is J-Ij it is easy to see that the

value of this expression decreases by 1 every time around the

loop. These two examples serve further to illustrate the advan

tage of our method of loop expressions ever any methodnwhichal*

lows the .bound to be variable.and then requires that it not be

changed within the loop, or that it be changed only in one di

rection©

One other necessary condition on loop expressions is

that they be bounded from below at tlje same point a£ which tte

decrease is measured. It is not enough for an expression to be

decreasing as we go around a loop, when measured from one point,

and to be bounded at a different point in that same loop© To see

this, consider the following loopx

1 = 1

J = 1

11=0

3 J = J + 1

I = - J

2 GO TO 1

At statement number 3, I is certainly bounded. If we go around

the loop from statement 2 back to itself, I decreases 5 yet the
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loop never terminates. Of course, I is not decreasing if mea

sured from statement 3 around the loop and back to statement 3»

Many programs terminate for special reasons© Among these

are the following*

(1) A program which calculates the elements of a con

vergent sequence, and which stops whenever two adjacent elements

of the sequence are within a certain tolerance of each other,

can be shown to terminate by making use of Cauchy^ criterion

for convergence© The following program calculates the square

root of the positive real number X, to within a strictly posiT

tive tolerance TOLj by Newton1s methods

Y = 2.0

1 Z = Y

Y = 0.5*(Y + (X/Y))

IF (ABS(Z-Y) ©GT. TOL) GO TO 1

The sequence calculated here is defined by y^ = 2, 7^+1 =

(y. + X/y.)/2. We know that this sequence converges, and thus,

by Cauchy's criterion, there exists, for every positive £ (and,

in particular, for € = TOL), a positive integer N such that

ly -7DI <£ for all a, b> N. The loop expression for this loop
is then N-I, where N is defined as above and I is such that yj

(in the sequence defined above) is the current value of Y.

The loop expression in this ease is nonconstruotive. It

involves variables which do not appear in the program, and which,

although they are clearly functions of the current state of the

computation (in this case, of the current values of X and TOL),

have not been given explicit functional definitions. In section

- , where the validity of the loop expression method is proved,
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it will be seen that a loop expression can be any integer func

tion of the current state© (It is also true that, unless TOL is

sufficiently large, this algorithm may, in fact, not terminate

on some actual computers because of the finite precision of the

quantities involved. This subject will be discussed further in

Chapter 16© The partial correctness of the above program is

also of interest, since it involves an unusual kind of asser

tion; this is also discussed in Chapter 16.)

(2) A sorting program, which puts an array in order, may

be shown to terminate by considering the total number of pairs

of elements in the array (not necessarily adjacent elements)

which are out of order© This number is bounded from below by

zero, and it may be shown to decrease whenever two out-of-order

elements are interchanged or whenever a partial merge process

is performed© This subject is considered further in section 10^3. ^
(3) A program which reads a new card every time around

a loop, and which contains a test that exits from the loop when

there are no more cards left in the hopper, can be shown to ter

minate by considering, as a loop expression, the number of cards

which remain to be read. This number is bounded below by zero

and decreases each time a card is read© For further discussion

of this subject, see Chapter 18©

Of) A program which operates upon the elements of a list,

moving from one to the next and stopping when the pointer field

in the current list item indicates that there are no more items,

can be shown to terminate by considering, as a loop expression,

the number of items remaining in the list© Such programs require

initial assertions that insure that they are not, in fact, wor- ^

king on circular lists. This subject is taken up in Chapter 17.
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8-3 Graphical Properties of Programs

The statement of the termination theorems we will use de

pends on the "closed loop condition," one of several graphical

properties of programs which are necessary to an understanding of

partial correctness and termination. We shall now define these

properties and prove certain important facts about them.

First let us consider programs which "obviously" always

terminate. Among these are the strai/rht-line programs, or pro

grams which have no transfer statements. Whenever we execute an

n-statement straight-line program, we do the first statement first,

then the second statement, and so on through the last statement,

so that the program always terminates© There is, however, a more

general class of programs which always terminate: those in which

jps all transfers are in the forward direction.

DEFINITION 8-1. A program containing n executable statements

C.., ••., C is a branch-forward program if,: whenever statement C

transfers to C.., we have i < j.

It is obvious that an n-statement branch-forward program

alv/ays terminates in a finite number (< n) of steps. We shall now

show that there is a sense in which branch-forward programs are

the only programs which "obviously" always terminate.

DEFINITION 8-2. A cycle (or "closed loop") in a program is
i

a path from some statement in that program to itself. An acyclic

program is one which does not contain any cycles.

It is clear that, if a program does not terminate, it will

eventually execute a statement which it has already executed.

^ Thus a cycle will exist, and hence the program cannot be acyclic.

This shows that acyclic programs always terminate,,
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All branch-forward programs are acyclic5 but the converse

is not generally true. For example, the following program to cal

culate the sum of the absolute values of X and Y is acyclic, but

it is not a branch-forward program because of the statanents GO TO

5 and GO TO 9s

F UNCT ION SUMABS (X, Y)

1 A = X

2 IF (A) 3, % ?

5 B = Y

6 JF (B) 7, 9, 9

9 SUMA.BS = A + B

10 RET !BN

3 A = ^A

h GO TO ?

7 B -; -B

8 GO TO 9

EPID

We have purposely included a statement number on every statement

in this program to show that it is in fact a branch-forward pro

gram if we interpret "forward11 to mean "in increasing a? der of

statement numbers." In fact, as we will now show, any, acyclic

program may have its statements ordered in such a way that it

becomes a branch-forward program in this sense.

THEOREM 8-1. The following three properties of programs

are equivalent:

(a) The statements of the program may be numbered in such

a way that all transfers vare in the forward direction. ^
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(b) The program contains no cycles.

(c) Every subset of the statements of the program contains

an initial statement of the subset (that is, a statement to which

no other statement of the subset makes exit).

HIOOF: (a)**(b) — Obvious.

(b) -* (c) — Suppose, on the contrary, that there was a

subset containing no initial statement. Choose any element of this

subset; call it C .Since CQ is not initial, there is another

statement — call it C — which makes exit to it. There is then

still another statement, C2, which makes exit to C^. Continue this

process until a statement C. is reached which is the same as state

ment C., i < j. This will always happen because the total number of

statements in the program is finite. But then C. -> c i^"* •••"*Ci

(= C.) is a cycle of the program.

(c)-* (a) — Let C. be any initial statement of the pro cram.

Since C is initial, there are no transfers to it. Remove C^ from

the program and consider an initial statement of the subset tint

remains; call this C2j Clearly there can be no transfers to C2 ex

cept possibly from C -. Now remove C~ and repeat the process. Con

tinuing in this way, it is clear that, at each stage, the current

statement C. can have no transfers to it except from statements C..

with i < j© Since this is true of every statement in the program,

it becomes a branch-forward program relative to the constructed

ordering of its statements. This completes the proof.

Next we consider another important property that every pro-

gram which alv/ays terminates may be assumed to have.

DEFINITION 8-3. A program is propram-rerJuced if every one of

its executable statements lies on some path from an initial state

ment to a terminal statement.
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Other names for progtam-reduced programs are programs v/ith

eligible flowcharts or with wel 1-formed flowcharts.

Given any program, we may define its program reduction as

the program obtained by deleting all statements which are not on

some path from an initial node to a terminal node. Clearly the

program reduction is itself program reducedo The process by which

the program reduction is obtained consists of a finite number of

steps, as follows:

1. Construct the set XQ of all initial nodes of the program.

2. At each stage, construct the set X. of all nodes to which

the nodes of X. , make exit, and which are not in X , ..., X ..

3. At some stage, some X will be null (since the total num

ber of statements in a program is finite). At that point, all

statements not in one of the X. cannot be reached from an initial

node, and may be deleted from the program. (Clearly such a state

ment in a program will never be executed, if the program is always

started from some initial node.)

h9 Construct the set Y of all terminal nodes of the program.

(We are now doing the previous three steps in reverse.)

5. At each stage, construct the set Y., of all nodes which make

exit to nodes of Y -, and which are not in YQ, •••, ^.j^

6. At some stage, just as before, some Yi will be null. At

that point, all statements not in one of the Yi do not lead to any

terminal node, and may be deleted. (Such a statement will never be

executed in a finite computation, although it might be executed as

part of an endless loop.)

In what follows, we shall assume, whenever it is necessary,

that every program which we consider is program reduced.

We shall now define the closed loop condition of a program

- 310 -



relative to an arbitrary subset of its statements. Our defini

tion coincides with that given informally in section 7-5* if

the subset is taken to be the set of all control points of the

program.

DEFINITION 8.if. A program is said to satisfy the closed

loop condition* relative to a subset of its executable state

ments, if every cycle of the program must contain at least one

statement in that subset.

Likewise, we need a definition of "control path" in a

more general context.

DEFINITION 8.5. A control path of a program, relative to

a subset of its executable statements, is a path from one state

ment in that subset to another one (possibly the same one)

which does not contain any other statements of that subset.

This definition agrees with that given informally in sec

tion 6-1, if we take for our subset the set of all control

points. \fe are now in a position to prove the statement made

about the closed loop condition in. section 7-5* together with

a partial converse.

THEOREM 8-2. Let there be given a subset of the executable

statements of a program which contains all of its initial and

terminal statements. Then, relative to that subset, the total

number of control paths of the program is finite if it satisfies

the closed loop condition; and the converse holds if the program

is program-reduced.

PROOF. Suppose the closed loop condition is satisfied. Then

any control path is completely determined by its first statement,

its last statement, and the set of statements between the two}

none of the elements of this set may be repeated (that is, a con-
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trol path cannot contain the same intermediate statement more

uhan once) because otherwise we would be able to get a cycle from

such a statement to itself, not containing any of the statements

in the subset. Since the total number of statements and the to

tal number of subsets of statements in a program are both finite,

the total number of control paths is finite. Conversely,

suppose that the closed loop condition is not satisfied. Let

Cn, .o., C. .., C, ~~ C. be a cycle containing no elements of the
1 lC—1 -K J.

given subset. Since the program may "be assumed reduced, C, is on

some path from some initial node to some terminal node. On this

path, let the two statements within the subset that are closest

to C1 bo denoted by C» and C1, so that C», C^, ..., C£ = C-^
C1 , .... C* is a control path. Clearly C,f and C1 must exist,
x+l' ' y 1 y
because the initial and terminal statements are all in the subset;

also, by definition, C., is not in the subset, so that x /I and

x 4 y. But we can now obtain an infinite number of control paths, ^

one for each positive integral value of n, by going from C£ to C^,

then n tines around the cycle, ending at C^ and finally to C*.

This completes the proof.

The importance of this theorem should be obvious. Our as

sertion method does not work unless we have a finite number of

control paths and thus a finite number of verification conditions.

If our set of control points (including initial and terminal points)

satisfies the closed loop condition, there will always be a finite

number of control paths; and, if the program is reduced (certainly

a reasonable enough restriction), the closed loop condition must ^

bo satisfied for thore to be a finite number of control points.

Hence we may always assume, when we are given a proof of partial

correctness involving control points and assertions, that the 1
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ipN

control points have been chosen in such a way that the closed

loop condition is satisfied©

There are a number of mechanical ways in which this may

be done. We have already mentioned that, if we choose for our

intermediate control points every point to which a backward

transfer is made, the closed loop condition will always be

satisfied. Further methods of guaranteeing this will be de

ferred to Exercise 5 at the end of this section.
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8-*f Loop Expression Sequences

Now we are ready to begin to formulate conditions for

the termination of programs with arbitrary numbers of loops.

As a first example, let us consider a program which multiplies

two matricesi

SUBROUTINE HATMUL(A, B, C, N)

DIMENSION A(N, N), B(N, N), C(N, N)

1 = 1

1 J = 1

2 K = 1

SUM = 0

3 SUM a SUM + A(I, K)*B(K, J)

K = K + 1

IF (K .IE. N) GO TO 3 ^

C(I, J) = SUM

J = J + 1

IP (J .IE. N) GO TO 2

1=1 + 1

IP (I .IE. N) GO TO 1

RETTEN

END

The final assertion of this program is that C(I, J) is equal

to the sum of all A(I, K)*B(K, J), 1 < K £ N, for each I and J

in the range 1 < I £ N, 1 £ J £ N. We shall choose a single in

termediate control point, namely statement number 3; clearly

every closed loop in this program passes through this statement. -^

At this point, the assertion is that!
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(1) For all i less than I, the 1-th row of the array

^ Cithat is, C(l, 1) for 1£1£ N) has been calculated.
(2) For all JL less than J, the i-th element of the

I-th row of C (that is, C(If 1) has been calculated.

(3) SUM is equal to the partial sum, taken over all

&less than K, for the element C(If J) of C.
ft.) The indices I, J, and K are in range (that is, be

tween 1 and N Inclusive).

Let us rewrite the program with these assertions, using

our notation, omitting the SUBROUTINE, DIMENSION, RETtBN, and

END statements, and with the initial assertion N > Ot

C N > 0

1 = 1

1 J = 1

r" 2 k =i
SUM = 0

C 1 £ I, I £ N, 1 £ J, J £ N, 1 £ K, K £ N,

C (C(II, JJ) = SUM(A(II, KK)*B(KK, JJ), KK .IN.

C (1..N)), II .IN. (1..I-1), JJ .IN. (1..N)),

C (C(I, JJ) =SUM(A(I, KK)~*B(KK, JJ), KK .IN.
C (1..N)), JJ .IN. (1..J-1)),

C SUM = SUM(A(I, KK)*B(KK, J), KK .IN. (1..K-D)

3 SUM = SUM + A(I, K)*B(K, J)

K = K + 1

IF (K .IE. N) GO TO 3

C(I, J) = SUM

J = J + 1

IF (J .LE. N) GO TO 2

- 315 -



1=1 + 1

IF (I .IE. N) GO TO 1

C (C(II, JJ) =SUM(SET(A(H, KK)*B(KK, JJ), KK .IN. ^
C (1..N))), II .IN. (1..N), JJ .IN. (1..N))

Let us first prove that this program is partially correct.

It has five control paths©

The first path starts at the beginning of the program

and goes to statement number 3» At the end of this path, 1 < I,

1 <: J, and 1 < K follow from I = 1, J = 1, and K = 1; also

I<N, J^N, andK<N follow from I = 1, J = 1, K = 1, and

N > 0. The other three parts of the intermediate assertion in

volve either the set (1..I-1), the set (1..J-1), or the set

(1..K-1). All these sets are null in this case, which means

that there is nothing to prove (that is, the assertion may be

assumed to be true). ^

The next three paths start and end at the intermediate

assertion. The second path leads from statement number 3 through

the next two statements and back to statement number 3. This

path changes the values of only two variables, SUM and K. The

only parts of the intermediate assertion that involve these

variables are 1 £ K, K < N, and SUM = SUM(A(I, KK)*B(KK, J),

KK .IN. (1..K-1)). The other parts of the intermediate asser

tion, therefore, remain true at the end of the path if they were

true at the beginning. We still have 1 ^ K at the end of the

path0 because K has been increased, and we have K £ N because ?

of the IF statement (this branch is not taken unless K £ N).©

The set (1..K) is the disjoint union of the sets (1..K-1) and

(K), and the sum of all F(KK) for all KK in the disjoint union ' '
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of two sets is the sum of the two sums; that is,

*. SUM(F(KK), K .IN. (SI .U. S2)) »
SUM(F(KK), K .IN. SI) ♦ SUM(F(KK), K .IN. S2)

if SI .1. S2 = ()• (Note that this last condition — that SI and

S2 are disjoint — is necessary. If SI = S2, for example, then

SI .U. S2 = SI, and the above relation clearly does not hold un

less SUM(F(KK), K .IN. SI) = 0.) This implies that when A(I, K)*B(K, J)

is added to SUM at statement number 3* we obtain SUM = SUM(A(I, KK)*

B.(KK, J), KK .IN. (1..K)); then K is increased by 1, leaving us

again with Stttf = SUM(A(I, KK)*B(KK, J), KK .IN. (1..R-D).

Vie now skip to the fourth path, since the third path

will then be more easily understood. The fourth path leads

from statement number 3 through the next seven statements, then

\ back to statement number 1, and finally forward to statement

number 3 again. At the end of this path, we have 1 £ J, J £ N,

X £ K, and K £ N for the same reasons as in the first path.

Also, when this path started, we must have had J = N and K = N.

This is because J £ N and K £ N by the intermediate assertion,

together with the fact that, after increasing both J and K by 1,

we had J > N and K > N. By substituting N for K in the inter

mediate assertion, we-obtain that we had SUM » SUM(SET(A(X,

KK)*B(KK, J), KK .IN. (1..N-1))) at that time, and thus, by-an

argtimeftt^simllar tott^ateusedcfor the second path, we see that

SUM =*SUM(A(I, KK)*B(KK, J)7 KK"7lN.~(l..N)) just before

the statement C(I, J) = SUM. Just after this statement, there-

fore, we have C(I, J) = SUM(A(I, KK)*B(KK, J), KK .IN.

(1..N)). tfbv, by substituting N for J in the intermediate as-
• <.
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sertion and in the preceding sentence, we have

(C(I, JJ) = SUM(A(I, KK)*B(KK, JJ), KK .IN. (1..N)),

JJ .IN. (1..N-1)) and

C(I, N) - SUM(A(I, KK)*B(KK, N), KK .IN. (1..N))

These two assertions, taken together, are equivalent to

(C(I, JJ) = SUM(A(I, KK)*B(KK, JJ), KK .IN. (1..N)),

JJ .IN. (1..N))

as may be shown formally by using the fact that (1..N) is the

disjoint union of (1..N-1) and (N), together with the fact that

SUM(F(X), X .IN. (SI .U. S2)) =

SUM(F(X), X .IN. SI) + SUM(F(X), X .IN. S2)

and that

(P(X), X .IN. (31 .U. S2)) a

(P(X), X .IN, SI) and (P(X), X .IN. S2)

for any two disjoint sets SI and S2, function F, and predicate

P. In turn, the assertion just determined, together with

(C(II, JJ) = SUM(A(II, KK)*B(KK, JJ), KK .IN. (1..N)),

ii .in. a..1-1), JJ .IN. (1..N))

is equivalent to

(C(II, JJ) = SUM(A(II, KK)*B(KK, JJ), KK .IN. (1..N)),

II .IN. (1..I), JJ .IN. CL..N))

for the same reasons. This is then true just before the state

ment I = I +1, after which we recover the original intermedi

ate assertion. (The remainder of this assertion is now immediate;
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we have 1^1 because I has increased, we have I £ N because of

^ the final IF statement, and the rest of the intermediate as
sertion involves (1..J-1) and (1..IWL), both of which, as be

fore, are null.)

The third path in this program is, in a sense, a cross

between the second path and the fourth© It leads from statement

number 3 through the next five statements, then back to state

ment number 2, and forward to statement number 3 again. The

handling of the final assertions X£ I, I £ N, and (C(II,

JJ) a SUM(A(H, KK)*B(KK9 JJ), KK .IN. (1..N)), II .IN.

(X..I-X), JJ .IN. (1..N)) of this path resembles their handling

in the second path, while the handling of the final assertions

1 < K, X £ N, and SUM = SUM(A(I, KK)*B(KK, J), KK .IN.

(1..K-1)) iof this path resembles their handling in the fourth

#PN path. The remaining assertions, involving J, are handled some

what as the analogous ones involving I were handled in the

fourth path.

The fifth and last path leads from statement number 3 to

the end of the program. As in the fourth path, we must have had

J = N and K = N when this path started, and also I = N. Thus

the final assertion of this path holds, since it is obtained

by substituting N for I in one of the intermediate assertions

which was proved to hold at the end of the fourth path. This

completes the proof of partial correctness. (The assertions

1 £ I, I £ N, 1 £ J, J £ N, 1 £ K, and K £ ti at« abatement

number 3 assure us that each subscripted variable is always

referenced with both subscripts in range.)

if^ How can we prove that the program terminates? There are

three loops, with loop expressions N-I, IWT, and IWC respec-
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tively. All of these are integer expressions, bounded below by

zero at statement number 3, and each one decreases as we go

around its respective loop. However, these facts are not suf

ficient to prove termination. Consider the following program:

1 IF (K .EQ. 0) GO TO 2

K = 0

1=1 + 1

J = J - 1

GO TO 1

2 K a 1

1=1-1

J = J + 1

GO TO 1

Here there are two loops; as we go around one of them, I de

creases, and around the other one J decreases. Also, by the

logic of the program, I and J keep "bouncing" up and down by

one, and hence are bounded. Yet the loops never terminate.

To show what further conditions we should impose on

loop expressions in the presence of multiple loops, let us

examine the behavior of §Ji three loop expressions in our ma

trix program, as we go around the three loops:

Expression N-I Expression N-J Expression N-K

Inner loop Remains the same Remains the same Increases

Middle loop Remains the same Belcreases Reset

Outer loop Increases Reset Reset
>

This behavior is exactly the same as the behavior of the digits ^

in a three-digit integer when that integer is decreased. There
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will always be one digit which is decreased! the digits, if any,
to the left of that digit will remain the same, and those to

the right of it are reset (to 9, for decimal integers). In gene
ral, if/the elements of any set may be placed in order, the
n-tuples of elements of that set may be placed in ^x^cograpfricaj,

order. The n-tuple (ax, ..., aR) prefixes? the n-tuple (b1, ...,
b)if a. <b,or if a =bx and a2 <b^, or, in general, if
a =b± for 1£ i£ k-1 and s^ <b^, for some k, 1£k<n.

Lexicographical ordering is normally applied to either

the digits in an integer or the letters in a word. We may, how

ever, apply It to n-tuples of integers. If we consider the

n-tuple of current values of N«I, N-J, and N-K, then, as we go

around any of our three loops, this n-tuple is decreased — if
by "decreased" we mean that the new n-tuple, after we have' gone
around the loop, is less than it in lexicographical order. We
are thus led to the concept of a Jfiojfc expression peg gage,e — a

sequence of integer expressions tfiich are bounded from below by
constants at a given control point in a loop, and such that the

sequence decreases', in the above sense, every time we go around
the loop from that control point to itself, assuming that the

assertion given at that point is valid. As before, if a pro

gram has a single intermediate control point, it always termi

nates when started with its initial assertion valid if there is

a sequence of integer expressions which is a loop expression

sequence for all loops in the program. In particular, our matrix

multiplication program has been shown to terminate.
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8-5 General Termination Conditions

So far, we have restricted our discussion of termination

to programs having only a single intermediate control point. In

such a program, each loop corresponds to a single control path

from that point to itself. In general, there will be several

intermediate control points, and a control path may extend either

from one of these points to itself, or to another such point.

In this case, the method of loop expression sequences, as pre

sented in the preceding chapter, generalizes in the following

way© There will be a sequence of expressions associated with

each control point, and we must consider the behavior of these

expressions aj. wei g£ along an. arbitrary control Path* rather than

around an arbitrary loop. Such a control path is now associated

with two sequences — one at the beginning and one at the end0 ^

Our conditions "are now that:

(1) The sequence associated with the control point at the

end of a control path must be less, in lexicographical order,

than the sequence associated with the control point at the be

ginning, whenever that control path is actually taken.

(2) Each expression in each sequence must be bounded below,

by a constant, at its associated control point.

It is not necessary that all sequences have the same

length. Lexicographical ordering may be applied to two sequen

ces of different lengths (as, for example, two words in a die- ?

tionary). The sequence (a^, •••, an) is less than the sequence

(b., ..., b ) if there exists k, k < n and k £ m, with a^ < b^

and a± =b for 1<i£ k-1, ojr if n<mand a1 = b± for 1<i ~}
< n. (This last rule is what, for example, makes the word HIGH
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precede the word HIGHWAY in the dictionary.)

Before showing how one would construct such sequences

in practical cases, let us prove that, if the above conditions

are satisfied, the given program must always terminate when

started with its initial assertion valid. Suppose the con

trary, and pick some initial condition under which the program

does not terminate. The execution of the program follows the

control paths; at each control point, we may evaluate the ex

pressions in the sequence given at that point, and in this

way we obtain an infinite sequence of sequences which is de

creasing in lexicographical order. This, however, cannot happen

if the expressions in the sequences are bounded from below.

(The mathematical reason for this is that the set of all such

sequences is a well-ordered set under lexicographical order.)

We will now give a general method for constructing these

sequences which is applicable to programs containing more or

less "conventional" loops — those, for example, which are equi

valent to FORTRAN DO loops. We shall assume that each loop has

a loop expression, and that the given program is arranged in

such a way that there are no backward transfers, except for those

associated in the natural way with the ends of loops. The method is as follows,

1. For every innermost loop, do the following:

a. Associate the loop expression of the loop with

every control point in the loop (as one element of the

sequence).

b. As the next element of the sequence, associate

a small integer, as follows. Start at the control point -

dn the loop which is nearestoto, but preceding, the point

at which the loop expression is decreased. If there are
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no such control points, start at the last control point

in the loop. Associate with this point the integer 1.

Continue backwards through the loop and around it, and

associate with the other control points in the loop the

integers 2, 3, h, etc., in the order in which these con

trol points are encountered. Note that there must be at

least one control point in every loop; if there is only

one, this step may be skipped for that particular loop.

2. Find a loop containing only loops which have already

been treated (if there are none such, skip to step 3),

and, for this loop, do the following:

a. Associate the loop expression of the loop with

every control point in the loop, including those in

inner loops (these already have sequences, which will be

appended later). a

b. As the next element of the sequence, associate

a small integer, as follows. Start as in step lb and as

sociate with the point thus determined the integer 1.

If this point is within an inner loop, append the loop

expression (from the previous step) and the integer 1

onto the beginning of the sequence already determined

for that inner loop. Now proceed backwards around the

loop, again as in step lb. If the next control point

encountered is in the same inner loop, associate with

it the same integer; otherwise, the next higher integer. 5

In either case, if that control point is within any inner

loop, append the loop expression and this integer onto >

the beginning of the sequence already determined. Con- ^

tinue in this fashion all the way around the loop.
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$. Find another loop containing only loops which

jpv have already been treated, and return to step 2a.

3. Finally, start at the physical end of the pro

gram, assigning to the control point there the integer 1,

and proceeding backwards through the program as in step

2b, assigning a small integer to each control point and

putting this small integer on the front of the sequence

already found at that point. This process ends when we

reach the beginning of the program.

This process will now be illustrated for the sieve pro

gram of section 7-5. In order to provide a better illustration,

we will assume initially^that every statement lit this::program is

a control point* tod d^tonmtnalsequences at each of these points.

Later, we will show how to determine sequences at only the con

trol points given in section 7-5»

There are two inner loops in this program. The first reads

1 A(I) « .TRIE.

1=1 + 1

IF (I .IE. N) GO TO 1

The loop expression of this loop is N»X9 so we associate this

with every control point. Let us agree to associate the sequence

of expressions oL, ..., 0^ with a control point by writing

C SEQfcC-, •••♦ <*n)

Just before that control point. Our jtimer loop thus reads

P C SEQ(N-I)

1 A(I) = .TRIE.
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C SEQ(N-I)

1=1 + 1

C SEQ(N-I) «*%

IF (I .IE. N) GO TO 1

The loop expression is decreased at the statement 1=1 + 1©

Therefore, just before that statement, we place the integer 1

as part of our sequence© Working backwards and around the loop,

we place the next higher integer, namely 2, at the beginning of

the loop, and 3 at the end, as follows*

C SEQ(N-I, 2)

1 A(I) = .TRIE.

C SEQ(N-I, 1)

1=1 + 1

C SEQ(N-I, 3)

IF (I .IE. N) GO TO 1 ^

Let us see why this works. When we execute A(I) = .TRIE., the

sequence is decreasing — that is, the value of (1M, 1), the

sequence after this statement, is less, in lexicographical order,

than the value of (1M, 2), the sequence before this statement.

This is because N and I do not change, so the value of N-I re

mains the same, but 1 is less than 2. When we execute 1=1 + 1,

the sequence is decreasing, because the value of N-I after this

statement is less than its value beforehand. (It should be clear

that the fact that 3 is greater than 1 does not matter, because

of the definition of lexicographical order.) Finally, when we

execute the IF statenent, if we go back to the beginning of the

loop, the sequence is decreasing, since 2 is less than 3 and ^
neither N nor I is changed when the IF statement is executed.
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Hence, for this loop, the sequenoe is decreasing in all cases..

Treating the other inner loop in exactly the same way,

one obtains:

C SEQ(N-J, 2)

3 A(J) = .FAISB.

C SEQ(N-J, 1)

J 8 J + I

C SEQ(N-J, 3)

IF (J .BE. N) GO TO 3

This time, in order to show that the sequence is decreasing

when J » J + I is executed, we need the asser tion that I > 0

at that point. This assertion, of course, is proved as part of

the proof of partiaX correotness.

We now have to find a loop that contains only loops that

have already been treated, if there is one. In this program,

there is only one more loop, namely the loop which starts at

statement number 2. (Xii the: matrix mi&tiplicatiQn program of the

preceding section, we would be obliged, by this rule, to treat

the loops in the order "inner, middle, outer.") What is the loop

expression of this loop? In fact, either !M or N-I*I will doj

the latter seems to be slightly easier to verify, so let us use

it. Leaving out, fdr-the moment, the sequences we have already

determined for the inner loop, our outer loop looks like thiss

C SEQ(N-I*I)

2 J = 1*1

C SBQ(!M*I)

IF (J .GT. N) GO TO h

C SEQ(JM*I)

3 A(J) = ©FAISB.

- 327 -



C SEQ(N-I*I)

J = J + I

C SEQ(N-I*I)

IF (J .IE. N) GO TO 3

C SEQ(N-I*I)

1=1+1

C SEQ(N-I*I)

GO TO 2

Now, as before, we start Just above the statement (in this

case it is I = I + 1) that decreases the value of the loop

expression. At this point we assign the integer 1. At the

next point (just before the IF statement) we assign the in

teger 2, and we append the two quantities thus found at this

point — namely N-I*I and 2 — onto the beginning of the se

quence already determined at that point in the preceding step,

which was (N-J, 3). The result is (N-I*I, 2, N-J, 3)» We do

the same thing in the other statements of the inner loop, re

membering not to increase the integer 2 until we get out of

the inner loop. The result is that this integer 2 is assigned

to the next two points, then the integers 3 and *♦-, and finally,

as we go around the loop (just before GO TO 2), the integer 5.

The result is:

C SEQ(N-I*I, h)

2 J = 1*1

C SEQ(N-I*I, 3)

IF (J .GT. N) GO TO h

C SEQ(N-I*I, 2, N-J, 2)

3 A(J) = ©FALSE.

C SEQ(N-I*I, 2, 1W, 1)

J = J + I
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C SEQ(N-I*I, 2, N-J, 3)

IF (J .IE. N) GO TO 3

, C SEQ(!M*I, X)

I a I + X

C SEQ(N-I*I, 5)

00 TO 2

This works for the same reason as before; when a statement is

executed, the sequence always decreases. The controlled expres

sion of the inner loop is not affected within the outer loop.

(We can see why we held the Integer 2 constant over the inner

loop if we consider what happens when we execute the IF state

ment in the inner loop and transfer to statement number 3.)

Finally, we start at the end of the program, assigning

the integer 1| then the integer 2 to all the statements of the

v loop we just analyzed; the integer 3 to the statement 1 = 2;

the integer *f to all the statements of the other inner loop;

and finally the integer 5 to the beginning of the program. As

before, we append these integers onto the front of the already

existing sequences. The "finaliresalt 1st

C SEQ(y)

1=1

C SBQCf, N-I, 2)

1 A(I) = .TRIE.

C SEQ&, N-I, X)

1 = I + X

C SEC*ft., lUf 3)

f^ IF (I .IE. N) GO TO X

C SEQ(3)

1=2
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C SB5(2, N-I*I, »f)

2 J = X*X

C SEQ(2, N-I*I, 3)

IF (J .GT. N) GO TO h

C SEQ(2, N-I*I, 2, N-J, 2)

3 A(J) « «FAI5E.

C SEQ(2, 2^.1*1, 2, IW, X)

J = J + I

C SEQ(2, N-I*I, 2, N-J, 3)

IF (J .IE. N) GO TO 3

C SEQ(2, N-I*I, X)

I = I + X

C SEQ(2, 1M*I, 3)

GO TO 2

C SBQ(X)

*f CONTINUE

Suppose now that we wish to have oontroX points only at the

beginning and at the numbered statements. We would start with

the inner loops as before, and would assign the sequences (29-1)

and (JW); step lb may be skipped in both oases. Now we would

do the outer Xoop, and assign the integer X at statement number

3 and the Integer 2 at statement number 2, in addition to the

Xoop expression of that loop. Finally, we would assign the in

teger X at the end of the program, 2 at statements 2 and 3, 3

at statement X, and h at the beginning. The sequences would bex

At the;begiim±ng -• Of)

At statement number 1 — (3, N-X)

At statement number 2 — (2, M-I*I, 2)

At statement number 3 — (2, &-I*I, X, N-J)

At statement number *f — (X)
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NOTES

The fact that termination of programs must be shown

separately, if one is using Floydfs basic method of proving

partial correctness, appears in [Floyd 673. He foxy briefly

indicates a methcdtof proving termination which is essentially

the one given hero, and illustrates it for a one-loop program.

A much more thorough study of termination of algorithms

was carried out by Manna in his thesis CManna 683; the basic

results are given in [Manna 703. Three examples are given in

this paper; in one of these, there is only a single intermedi

ate control point, while the other two tech involve three nes

ted loops, as in our matrix multiplication program. The methods

which Manna illustrates are essentially our methods of loop ex

pressions and loop expression sequences. The method of section

8-5, for more general loops, was conveyed to the author in a

private communication by Manna.

In another series of papers (see [Manna 693 and [Manna

and ftraeli 703, for example), both the general problem of par

tial correctness and the general problem of termination are

shown equivalent to certain problems in second-order logic.

The term*."partial correctness" first occurs in [Manna 693.

The term "eligible flowchart" in section 8-3 (referring

to a flowchart with no unreachable statements, etc.) appears in

[Karp 603; the term "well-formed flowchart," for somewhat the

same thing, appears in [Bjorner 703. The closed loop condition

is briefly suggested in [Floyd 673 and used in King's program

verifier [King 693.
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EXERC35ES

1# Prove the correctness (partial correctness and ter- ;1
mination) of the following program (slightly modified fiom one

given in section 6-5)t '

K = 1

1 B(K) = A(K)

K = K + X

IF (K .IE. N) GO TO X

Be sure to include a proof that the subscripts are in range every

time a subscripted variable is referenced.

2. Prove the correctness of the following program (slight

ly modified from one given in section 7-2)»

1=0

X 1= 1*1

If (X JBQ. A(D) GO TO 3

IF (I *M. N) GO TO X

Assume that the assertion after the.Xafft statement of thecpr*ram
_lso(X .KB. A(I), I.IN. (X..N)), while the assertion at state
ment number 3 is X = A(I).

3. Prove the correctness of the following program (slight
ly modified from one given in section 7-2)t ?

1 = 1

S = A(l)

11=1+1

S = S + A(I)

IP (I .Iff. N) GO TO 1
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Be sure you choose the initial assertion properly©

f^ k>. The following program, given with assertions, is a

modification of that given in problem 1 abovet

K = 0

1 K = K * 2

B(K-X) « A(K-X)

B(K) « A(K)

IF (K .IE. N) GO TO X

The point of the modification, of course, is that it takes the

computer just as long to do K = K + 1 as K = K + 2, and we need

to do K = K + 2 only half as many times as we would need to do

K = K + X. There is, however, a bug in the above program.

(a) Try to prove the correctness of this program and show

v exactly where a proof breaks down.

(b) Fix the bug, while retaining the statement K = K + 2

and the property of it mentioned above.

(c) Prove the correctness of the resulting program.

5. Show informally, using the arguments of section 8-3,

that the total number of control paths in a program will be

finite if we take as our control points the initial and ter

minal statements of the program, together with

(a) all labeled statements of the program;

(b) all ML statements &n& other op nditlonal statements

of the program;

(o) all backward transfer (conditional and unconditional)

f^ statements in the program. (Note: Exercises 5a, ?b, and ?o are

three separate exercises. It is not meant that all statements

of all three types should be considered simultaneousB*.)
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6. Give an example to show that a program with a finite

total number of control paths need not have a control point in

each closed loop unless it is progranwreduced.

7. In the matrix multiplication routine of section 8-*t,
we used the variable SUtfcas apar.*lal*W tattae* thanCC(I*)J),
for the sake of efficiency. Suppose, however, that we do not do
this; that is, we eliminate the statement C(I, J) =SUM, and re
place SUM toy C(I, J) everywhere else in the program. How does
this change affect the proof of partial correctness?

8. In the matrix multiplication routine of section 8-4,
we used Ias the outer loop index and Jas the middle loop index.
Agood FORTRAN programmer might notice that, if we used Jas the
outer loop index and I as the middle loop index, an optimizing
FORTRAN compiler might produce faster code, sinee passing from
C(I, J) to C(I+1, J) (rather than to C(I, J+l)> involves incre
menting an index register by 1(or toy * to the IBM 360 and 370),
due to the way in which FORTRAN arrays are stored. How woulA
this change affect the proof of partial correctness?

9. Determine sequences of expressions, using the method
of section 8-5, for the matrix multiplication program of section
8->t, assuming that every statement in this program is acontrol

point*

10. Consider the sequences of expressions determined at
the esl of section 8-5 for the Initial state*** and the labeled
statements in the sieve pro gram. Complete the proof of termi
nation of the sieve program toy showing that, for each oortrol ^
path of this program, the sequence is decreasing (in the sense

used in this section).
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CHAPTER NINE

MACHINE LANGUAGE

9-1 Pure Procedures

In order to make use of our program correctness tech

niques in practical situations , we shall have to be able to

prove the correctness of machine language programs. In par

ticular , we shall have to be able to prove that the machine

language object code of a compiler is equivalent to the cor

responding source code* Clearly, unless this is true, a "cor

rect" program written in an algebraic or other higher level

X language may still give wrong answers when compiled and executed „

In studying machine-language program correctness, we must

deal with self-modification and integer and floating point

a&U&metic^ 4s> we shall see, the concept of a restricted com-,

"**•'•• ,mandf, as introduced in section 6-5, provides us with a powerful

general method of treating all of the above phenomena,) Of those9

self-modification is the most fu damentalo Many machine-language

programs perform no arithmetic oporrtions, and are thus not sub

ject to roundoff, truncaltan, or overflow considerations; on the

other hand, even when a machine language program does not modify

itself -o that is, when it is a pure procedure — that fact mu3t

be proved*

The basic principle behind proving that a procedure ir, pure

is quite simple© Suppose that a program P does in fact modify

itself$ then it must be modified by one of its own instructions*
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Oven a pure procedure, of course, might be modified by some other

procedure; this possibility is discussed in section 20-«.) If we

wish to prove that P does not modify itself, therefore, we look

at each instruction of P and prove that that instruction cannot

modify P. Moreover, we may assume, by induction, that the given

instruction has not itself been modified yet. Let us now cast this

intuitive argument in formal terms.

Let a be an instruction word in some computer. (That is,

a denotes the space taken up by one instruction. This will be

the same as a data word on the UNIVAC 1108 or the H>P-10; it

will be two, four, or six bytes on the IBM 370} either one half

or one fourth of a word on the CDC 6600, and so on.) We may re

gard a as a variable, whose value w. is presumably the code for

some instruction I. Since a is a variable, we may regard a«w

as an assertion. The instruction I will be performed only if the

assertion a=^w holds just before it is to be performed. Thus every

instruction in machine language may b& viewed as a restricted cpm-

inand. To say that the instruction I has been modified is precisely

to say that the assertion a=w fails to hold.

Now let the set of all instruction words in the program P

be a., ..., an, and let the corresponding values be -w^, ..., wn,

and the corresponding instructions 1^, ••., 1^* The assertion

(a^ = wK, K .IN. (1'••&)) -

says that "so far, the program has not been modified"; or, in other
words, every instruction word in ttie program has. the same contents
as it had when the program started. Let us now include this as an

assertion at every control point In the program. The verification ^
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condition of each control path must now include a verification

of this abortion at the end of each path, under the hypothesis

that it is satisfied at the beginning of that path.

In many machine language programs, the above verification

may be performed by reference to the individual instructions of

tho program. Most of the instructions in the repertoire of a ty

pical computer do not change the contents of words in memory.

These include loading, shifting, most arithmetic and logical in

structions, and conditional transfers. Mven those vhich do

alter memory, such as store instructions and "add to memory" or

"increment memory11 instructions, very often alter only certain

fixed cells in memory (if, in particular, they are not indexed).

If all of the instructions in a program are of the above types,

then the program cannot modify itself, no matter how it works or

what it does. We shall refer to such a program as an absolutely

pure procedure•

We shall now give an example of the proof of correctness

of an absolutely pure procedure. We shall use the machine of

section 3-5* and the GCD iprpgram of section 6-1 as it might be

compiled for that machine. Our program, with assertions, is as

follows:

Address

(hexadecimal)
Contents
(hexadecimal)

Mhemorlies anc

100 I BE 1

101 J RE 1

102 M RE 1

103 ........ N RE 1
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ich 1102

105 7100

106 1103

107 7101

108 1100

109 5101

1QA C110

10B 6001

IOC Cll*+

10D 1+001

ICE 7100

10P A108

110 1101

111 5100

112 7101

113 A108

* M > 0, N > 0

ID M

ST I

ID N

ST J

* GCD(I,J) = GCD(M, N),

* I > 0, J > 0

U ID I

SU J

TM V

SUI 1

TM W

ADI 1

ST I

TR U

V ED J

SU I

ST J

TR U

* I = GCD(M, N)

U^ W

This program uses the instructions ID, ST, SU, TM", SUI, ADI, and

TR. Of these, only ST (store) alters the contents of any word in

memory. The four ST instructions in this program alter only the

contents of I and J, which are declared by means of the pseudo-

operation RE (RE n reserves fl words of memory). Thus the above

program is an absolutely pure procedure, and the proof of its
correctness proceeds along standard lines. Let us consider in de-
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tail one of the control paths, namely the one that proceeds from

address 108 to address 10F, and back to address 108:

* (ICA), GCD(I, J) = GCD(M, N), I > 0, J > 0

ID I ac = I

SU J ac = ac - J

(ac. > 0)

SUI 1 ac = ac - 1

(ac £ 0)

ADI 1 ac = ac + 1

ST I I = ac

* (ICA), GCD(I, J) = GCD(M, N), I > 0, J > 0

We have explicitly introduced here an instruction constancy as_-

sertion (ICA). This is the assertion, mentioned earlier, which

states that the instruction words of the program — in this case,

the sixteen cells with hexadecimal addresses 10*+ through 113 —

have the same contents they had at the beginning of the program,

which in this case are given by the table in hexadecimal. We must

first show that IDA is preserved by the path. Now ICA implies, in

particular, that cell 108 contains the instruction code for ID I.

This instruction changes only the accumulator (denoted, as before,

by ac), and thus ICA remains true after it is executed. In turn,

since IDA implies that cell. 109 contains the instruction code for

SU J , this instruction is executed properly, and. so on through

the end of the path. The last instruction, ST I, alters cell 100,

which is not one of the cells (10*+ through 113) in the definition

of ICA, and thus, again, ICA is preserved.

We have given each instruction in the path with its algebraic
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language equivalent, as in section 3-5• Note that we have em

ployed a programming "trick" to circumvent the fact that our

computer has no test for zero — we test for minus, then sub

tract one and test for minus again*. If the first test fails and

the second succeeds, the accumulator must have been zero before

subtracting 1. In this case, however, I-J was strictly posi

tive, and we added the 1 back on again to get the original re

sult (I - J) to store in I. Forward substitution produces the

following table:

Variable I J ac

Initial value I J ac.

Value after ID I I J I

Value after SU J I J I-J

(ac > 0) becomes (I - J £ 0)

Value after SUE 1 I J I-J-1

(ac > 0) becomes (I - J - 1 > 0)

Value after ADI 1 I J I-J

Final value I-J J I-J

The final assertion becomes

(ICA), GCD(I-J, J) = GCD(M, N), I-J > 0, J > 0

and. this must be implied by the initial assertion and the two

intermediate conditions as modified above by substitution, that is,

(ICA), GCD(I, J) = GCD(M, N), I > 0, J > 0, I-J > 0, I-J-1 > 0

Of course, since I and J are assumed to be integers, I-J-1 > 0 is

equivalent to I-J > 0,.or I > J. The proof now proceeds much as in ^

section 6-lo
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9-? Verified Purity

Absolutely pure procedures may not contain any instructions

which are capable of altering arbitrary cells in memory. Among ,

these are the indexed store instructions, necessary for implemen

ting assignments to subscripted variables. However, there are

other classes of pure procedures in which such instructions may

appear. Consider, for example, the class of programs produced as

object code by a compiler with a subscript range chocking for tore.

(Most ALGOL compilers have this feature; mo3t FORTRAN conrdlerr.

do not. With PL/I, we would consider only those object programs

corresponding to PL/I source- programs in which the SUB^CriPTKANGK

condition is valid over tho entire program.) Given such a program,

even if we do not know how it works or what it does, we may as

sume, provided the compiler is correct, that the program does not

modify itself. In particular, every assignment to a subscripted

variable is always within the range of that variable, or else tho

object program stops at a run-time error exit.

The method by which it is proved that no member of such-a

class of programs can modify itself will be called a ^ocal verifi

cation algorithm» There are many local verification algorithms,

each one corresponding to some class of locally ver ifiable £Ure

procedures« A typical such algorithm proceeds as follows. Let us

first assume that all (conditional and unconditional) transfer in

structions in a program transfer to fixed addresses in the program

— that is, there are no indexed transfer instructions, such as

computed GO TO or subroutine return instructions. In this case we

may identify all locations in the program to which transfer may be
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made. Now suppose that the instruction words of the program are a ,

.... a , and that aJ is an indexed store instruction. We assume
' n7 j

that no instruction in the program can transfer to m. Xete& .

be the largest integer with i < j such that transfer may be made

to a.,. Then all of the instructions a., a, ,, •••, a, . must al-
i i7 i+1' j-1

ways be executed just before a.. Suppose that, if these instruc

tions are executed in the given order, a. cannot modify any in-
J

struction word of the program. If we can prove this for each in

struction like a. in the program, we have proved that the program

is a pure procedure.

As an example of such a program, let us consider the exam

ple of section 6-5 as it might be compiled for an 18-bit machine

whose instruction words have 2-bit index register fields, and

which are otherwise like those of the 16-bit machine of section

3-5© We shall assume that the fields of the instruction word are

in the following order: index register, 2 bits; operation code,

h bits j address, 12 bits. All operation codes are the same as be

fore } an indexed address is followed by a comma and then the index

register number, from 1 to 3» whereas zero in the index register

field, as usual, specifies no index modification. The index re

gisters 1 to 3 are addressable and occupy cells 1 to 3 respective

ly. The program is as follows:

Address (octal) Contents (octal) Mnemonics and assertions

1000 A RE 100

111+1+ B RE 100

1310 —- N RE 1

* N > 0, N £ 100

1311 ,020000 IDI 0 ^)

1312 070001 ST 1
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* (A(K)=B(K), K .IN. (1..X1-1)),

* 0 £ XI, XI < N, N £ 100

1313 1J0001 u IN 1

1311*- 010001 ID 1

1315 060001 SUI 1

1316 1*+1327 TM E

1317 o6oi*& SUI 100

1320 #1327 TP E

1321 210777 ID Arl,l

1322 27111+3 ST B-1,1

1323 010001 ID 1

132*+ 051310 SU N

3325 1^1313 TM U

* (A(K) -- B(K), K .IN. (1..N))

132$

1327 E

This routine has two exits — the normal exit, at address 1326,

and the error exit, at address 1327• In fact, the error exit is

never taken; but we do not have to know this in order to prove

that this is a pure procedure. The points to which transfer may

be made are U (address 1313) and E (address 1327)• The only in

dexed store instruction in the program is at address 1322, and

thus all instructions from 1313 through 1321 must be executed

just before this store instruction. Let us write these instruc

tions as if they-were ;a control path with no initial assertion:

IN 1 XI = XI + 1

LD 1 as. * XJ
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SUI 1

(ac £ 0)

SUI 100 :

(ac < 0)

ID A-1,1

ST B-1,1

ac = ac - 1

ac = ac - 100

ac =* A(X1)

BiXl) =32.

Here and in the assertions of the |>rogram,:Xl, of course* jrefers

to index register 1. Forward substitution epplied to this path

yields the following table:

Variable

Initial value

Value after IN 1

Value after ID 1

Value after SUI 1

(ac > 0) becomes (XI

Value after SUI 100

(ac < 0) becomes (Xl«

Value after ID A-1,1

Value after ST B-1,1

The indexed store instruction, ST B-1,1 , alters address

Hl+3 modified by the contents of register XI. The symbol XI

above, of course, refers to the oriaina!^contents of this re

gister; its current contents are Xl+1. The two conditions,

XI > 0 and. Xl-100 < 0, are equivalent to 1 < Xl+1 < 100; that

is, at the time ST B-1,1 is executed, the index will be
between 1 and 100, inclusive. This, of course, is the point of

the instructions U+l through U+5 — to verify that the sub

script is in this range before making reference to the subscrip
ts1^ -

ac XI A(Xl+1) B(X1+1)

ac XI A(Xl+1) B(X1+1)

ac Xl+1 A(Xl+1) B(X1+1)

Xl+1 Xl+1 A(Xl+1) B(X1+1)

XI Xl+1 A(Xl+1) B(X1+1)

£0)

Xl-100 Xl+1 A(Xl+1) B(X1+1)

•100 < 0)

AXX1+1) Xl+1 A(X1+1) B(X1+1)

A;(xi+i) xi+l A(Xl+1) A(X1+1)

•^*!\
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ted variables. In particular, the address of the .-tore instruction

is always outside the program's instruction word area, and the

program is therefore a pure procedure.

We may summarize our local verification algorithm as follows:

(1) Determine all points in the progran to which transfer

may be made©

(2) For each indexed store instruction in the program,

write a control path directly to it from the nearest of these points

(3) Verify that, if this path is followed, the indexed store

instruction will never modify any of the programfs instruction

words. Do this for each indexed store instruction in the program.

Note that we have given assertions for our program, and may

proceed with an analysis of its control paths, just as in the pre

ceding section. However, such an analysis is not necessary in order

to prove that the program is a pure procedure.

What if there are indexed transfers in a program? In this

case, we must have some other way of determining all points in the

program to which transfer may be made. (Otherwise we might, for

example, transfer directly to an indexed store instruct ion without

knowing anything about the contents of the index register.) This

leads us to further local verification algorithms, depending upon

the particular type of indexed transfer we have in mind. Suppose,

for example, that we wish to admit ah implementation of the com

puted GO TO in FORTRAN (or the use of a switch in ALGOL). This is

a construction which may transfer to one of n locations, dependent

upon whether the value of a certain integer variable (let ur call

it k) is 1, 2, •••, a. Let us implement such a construction by

testing to make sure that 1 £ k < n before the indexed transfer

is ma.de. If this test is always carried out in a fixed way, we may
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scan the code immediately preceding the indexed transfer in order

to determine the value of n, which in turn allows us to obtain

exactly n points to which indexed transfer may be made. Another

slightly more efficient local verification algorithm assumes that

every one of these n points, except perhaps the last one, will

itself be a transfer (this is normally the case). Hence these

points may be omitted in our consideration of all points to which

transfer may be made, except that airy point immediately following

an unconditional transfer is then counted as such a point.

Local verification algorithms for subroutine return in

structions depend in an essential way upon the subroutine call

and return conventions. This subject will be taken up in section

It is, of course, possible to write a pure procedure vfaose

purity; cannot:be shown*by-local algorithms.• For example, let us

remove from the preceding example the instructions U+l through

U+5, obtaining the following program:

Address (octal) Contents (octal) Jfaemonics and assertions

1000

llW

1310

13U

1312

1313

131^

020000

070001

150001

210777

- 3k6 -

A RE 100

B RE 100

N RE 1

* N > 0, N £ 100

IDI 0

ST 1

* (A(K) = B(K), K .IN. (1..X1-1))

* 0 £ XI, XI < N, N < 100

U IN 1

ID A-1,1

^\



1315 2711^3 ST B-1,1

1316 010001 ID 1

1317 051310 SU N

1320 m-1313 TM U

* (A(K) = B(K)

Let us consider a typical control path of this program, namely

the one which extends from address 1313 to address 1320 and back

to address 1313s

* (ICA), (A(K) = B(K), K .IN. (1..X1-D), 0 £ XL, XL< Nf K £ 100

IN 1 XI = XI + 1

ED A-1,1 ac = ACX1)

ST B-1,1 B(X1) = ac.

ID 1 ac = XI

SU N §£ = as. - n

i§LC < 0)

* (ICA), (A(K) = B(K), K .IN. (1..X1-1)), 0 £ XI, XI < N, N < 100

As before, we have explicitly included (ICA), the instruction con

stancy assertion, which in this case states that the eight in

struction words with addresses 1311 through 1320 have the contents

given in the table. This time, however, the validity of (ICA) at

the end of the path depends upon the validity of certain otfter

assertions .at the beginning of the path — in this case 0 < XI

and XI < 100 (which follows from XI < N and N < 100). Aft^r in

creasing XI by 1, we will have 1 < XI < 100, and it is this fact

which keeps the array references in the third instruction in the

path (and the second one as well, Ibr that matter) within their

prescribed bounds.
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We shall refer to the above program as a globally veri

fied pure procedure o This is the most general form of pure pro

cedure with which we shall be concerned. A globally verified

pure procedure may contain arbitrary indexed store and indexed

transfer instructions, and these are kept within limits by the

assertions given with the procedure. The idea of proving that

a program does not modify itself by using the control paths in

that program, when the fact that the program does not modify

itself must be used in setting up these very same control paths,

may seem like a circular argument; but it is not. Remember that

both the instruction constancy assertion and the other assertions

at the beginning of a path may be assumed to hold in proving the

validity of both the instruction constancy assertion and the

other assertions at the end of that path.
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9-3 Self-Modification

Even when a machine language program does modify itself, an

extension of the methods of the preceding section may be used

to prove its correctness. Such methods are necessary, for oxam-

ple, when working with a computer having neither index registers

nor indirect addressing; all array references in any program

written for such a computer must be made by modifying instruction

words. Also, when the subroutine call instruction of a computer

stores a subroutine return instruction in memory — as, for exam

ple, on the CDC 6600 — this must be considered as a form of in

struction modification.

Suppose that a-, ..., a are the instruction words of some

program. If this program modifies itself, there may, in general,

be several codes w^, w^, ..., for instructions 1^, 1^ .».,
which may, in the course of the program, occupy the single in

struction word a.. Since the total number of instruction codes is

finite, there will, in general, be a finite number k± of those

for each a... If k± = 1, then a^^ is never modified. In order to
prove the correctness of a self-modifying program, we first

determine the values of each k^ and all the w^; that is, we
determine, for each instruction word, hfcw';many different instruc

tion codes may be stored there, and what these codes are. Relative

to this information, we may formulate an instruction behavior as

sertion (IBA) for the program; this is the assertion that the

current value of each a^, 1 < i£ n, i§. some wi., 1 < j < k^.

The instruction behavior assertion is the natural generali

zation of the instruction constancy assertion (IDA) of tlje pre-
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ceding secticnj it reduces to that assertion if each k^ = 1©

Like the constancy assertion, the instruction behavior assertion

must be shown to be preserved along each control path of the pro

gram. In order to show this, of course, we will need other as

sertions that constrict the behavior of modified instructions

more precisely.

How do we set up our control paths when some of our in

structions may be modified? Suppose that some instruction word

aj can contain k. different Instruction codes. Then we must treat
i 1

a. as a kj-way conditional instruction. If the codes are w^, •••,

wik ' and the corresP°ndin& instructions are 1^, •••, 1^ ,then
the meaning of a. within this program is "If a^ = wi-, then per

form the instruction I±1." The instruction behavior assertion,

which we are assuming to hold at each point, tells us, of course,

that the contents of a± must always be some w^. If each 1^. is
a transfer instruction, then aA becomes a k^-way conditional trans

fer instruction, and there are kj different directions for a con

trol path to go. On the other hand, it may happen that none of the

I . (for this particular value of i) is a transfer instruction; in

that case, all control paths through the given instruction word

proceed forward in the normal manner.

We illustrate these notions by writing the program of the

preceding chapter for our original 16-bit computer of section 3-5*

as follows:

Address Contents Mnemonics and assertions
(hexadecimal) (hexadecimal)

100 A BSS 100

±0+ B BSS 100
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1C8

1C9

ICA

1CB

ICC

1CD

ICE

1CP

23)0

1D1

1D2

1D3

ID?

1D6

13>7

IDS

2D9

OJDA

N BSS 1

J BSS 1

1100 W LD A

71& X ST B

♦ N > 0, N < 100

11C8 s LD N "

6001 SUI 1

71C9 ST J

110A ID W

7103 ST Y

UCB ID X

7ipk ST Z

♦ (A(K) -= B(K), K .IN. (1..N-J-D)

♦ 0^ J,, J < N, N < 100,

* Y = (LD A(N-J)), Z - (ST BOM))

1100 Y LD A

7lG* Z ST B

PID3 IN Y

DID^ IN Z

E1C9 DE J

11C9 LD J

B3I>3 TP Y

* (A(K) a B(K), K .IN. (1..N))

There are two instructions in this program which may be modified,

namely Y and Z. The instruction at Y may contain any of the 101

instruction codes for "load A(i)," 1 £ i £ 101; the instruction

at Z may contain any of the instruction codes for "store B(i),1'

- 351 -



1 £ i < 101. (The case i = 101 happens only the last time through

the loop, as a result of incrementation, and therefore Y and Z are

never actually executed under these conditions.) The instruction

behavior assertion here, then, states that each of the sixteen in

structions with addresses ICA through U>9 has contents as given

by the above table, except for Y and Z (addresses 2B3 and ID*f),

for which we have 1100 ^ Y ^ ll(k and llc^f < Z < 11C8 (hexadecimal).

We now give a complete proof of the partial correctness of

this program. (Termination will follow immediately from consider

ing the controlled expression J. Note that, since the original

index I is no longer needed, due to the address modification, we

have chosen to employ a decreasing index J for efficiency reasons.)

The first control path is

* (IBA), N > 0, N^ 100

ID N ac = N

STJI 1 ac a ac - 1

ST J J = ac

LD W ac = W

ST Y Y = ac

LD X ac = X

ST Z Z = ac

* (IBA), (A(K) = B(K), K .IN. (1..N-J-D), 0 £ J, J < N,

* N < 100, Y = (ID A(fiW)), Z = (ST B(!W))

We must, of course, explicitly introduce (IBA) at the beginning

and the end of every path such as this, Just as we did before with

(ICA).

There are three store instructions in this path. The first ^

stores J, which is not an instruction, and therefore this does not
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affect IBA. The other two store instructions initialize Y and Z

to the initial contents of W and X respectively, and these are

given by IBA as (ID A) and (ST B) respectively. From this we may

conclude that IBA continues to hold at the end of the path. The

assertion about A(K) and B(K) is vacuously true, since J is set

equal to IML in the path and thus N-J-l = 0. The other assertions

at the end of the path are verified as follows* 0 ^ J, since N > 0

and J = N-l; J < N, since J = N-l; N£ 100, since N is unchanged;

Y = (LD A) = (ID A(l)> = (LD A(N-J)), since J = N-l; Z = (ST B) =

(ST B(l)) = (ST B(N-J)), also since J = N-l.

The second control path is

* (IBA), (A(K) = B(K), K .IN. (1..N-J-D), 0 £ J, J < N,

* N < 100, Y - (ID A(N-J)), Z = (ST B(N-J))

Perform Y ac = A(N-J)

Perform Z B(N-J) = ac

IN Y Y = Y + 1

IN Z Z = Z + 1

BE J J = J - 1

ID J ge = J

(ac. > 0)

* (IBA), (A(K) = B(K), K .IN. (1..N-J-D), 0 £ J, J < N,

* N < 100, Y = (ID A(N-J)), Z = (ST B(N-J))

There are two instructions here which modify other instructions,

namely (IN Y) and (IN Z). (The instructions Y and Z themselyes,

liy IBA, -cannot modify other instructions.) Since 0 ^ J < N at the

beginning of the path, we have (ID A(l)) £ Y < (ID A(N)) at that

time, and similarly for Z, so that (IBA) holds even after modifi

cation© The first thing this control path does is to set B(N-J) =
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A(IT-J); we may infer this from that part of the initial assertion

which deals v/ith the contents of Y and Z. This, combined with (A(K)

= B(K), K .IN. (1..N-J-l)), gives (A(K) = B(K), K .IN. (l..N-J))$

later, J is decreased by 1, giving (A(K) =* B(K), K .IN. (1..N-J-D)

again. Similarly, (Y = (H) A(N-J))) becomes (Y = (ID A(N-J+1)))

when Y is incremented, and (Y = (ID A(N-J))) again when J is

decremented; and similarly for Z. The other assertions at the

end of the path follow much as before: 0 < J (from ac = J and

ac > 0 near the end of the path); J < N (from J < N at the start,

since J is decreased and N is unchanged); and N^ 100 (since N is

unchanged).

Finally, the third and last control path is

* (IBA), (A(K) = B(K), K .IN. (1..N-J-D), 0 £ J, J < N,

* N < 100, Y = (ID A(N-J)), Z = (ST B(N-J))

Perform Y ac = A(N-J)

Perform Z B(N-J) = ac

IN Y Y = Y + 1

IN Z Z = Z + 1

DE J J = J + 1

ID J ac = J

(ac < 0)

* (IBA), (A(K) = B(K), K .IN. (1..N))

We note first that we had 0 < J at the beginning of the path,

and then J was decreased by one and the result was negative.

Therefore we must have had J = 0 at the beginning of the path,

and hence (A(K) = B(K), K #IN. (1..1KL)), Y = (LD A(N)), and Z =

(ST B(N)). The preservation of (IBA) now follows just as it did

in the second path, although, as we have already noted, the final
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values of Y and Z must be specified with care when (IBA) is

constructed. Also, just as before, by setting B(?T) - AGO when

(A(K) - B(K), K .IN. (1..N-D) is true, we obtain the final as

sertion (A(K) = B(K), K .IN. (1..N)). This completes the proof.

We may note that our program has been globally verified.,

in the terminology of the preceding chapter. Is there an analogue,

for self«-modifying programs, of the absolutely pure procedure —

a sort of "absolutely not-quite-pure procedure"? More specifically,

4f we specify an instruction behavior assertion with particular

choices of the instruction codes w^ and corresponding instruc

tions I±1, if we note that none of these are indexed store in

structions and that no store instruction can change the contents

of a cell which is not to be modified, can we infer that the r:iven

instruction behavior assertion is always preserved? In general,

the answer is no. The trouble is that we have no way of knowing

what might be stored in the modified instructions. In particular,

we might store something there that would proceed to modify some

other instruction in an uncontrolled manner the next tine it was

executed. Even if a store instruction is always immediately pre

ceded by a load instruction, so that we presumably know what is

in the accumulator or other such register at the given time, we

have no general way of knowing that some other instruction cannot

transfer around that load instruction. If instruction modifications

are of certain specified types, a local verification algorithm may

be set up; this is, in particular, true when considering subroutine

call instructions which store a subroutine return instruction in

memory. This subject will be taken up again in section 20- .
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9-^- Integer Arithmetic

The special problems of integer arithmetic on computers

include size specifications, overflow (including negative over

flow and overflow as a result of shifting), division by zero,
S

and the use of special properties of arithmetic instructions

(such as integer subtraction of floating-point numbers as a test

for equality). Jtroperties of programs which involve any of these

phenomena may be proved by^further application of our notion of a

restricted command©

Every computer has some smallest negative value and some

largest positive value for the one-word integers which it can

store. We shall refer to these bounds, in the remainder of this

section, as min and max respectively, with the understanding that

they will be different on different computers. If negative numbers

are represented in twofs complement, we normally have m£n. = -2 ~ ,

where b is the number of bits per word. If negative numbers are

represented in one's complement or by signed magnitude, we have

min = -2V1+1; finally, in all cases, we have max = 2 " -1.

When any final result or intermediate quantity in a calcu

lation is an integer which is larger than gax, we say that oyer flow

has occurred; for an integer which is smaller than min, we say that

negative overflow (or "underflow") has occurred. In most programs,

we shall be interested in proving that overflow never occurs, pro

vided that the data which the program processes is within certain

limits. 0: the other hand, there are some programs — such as

double precision addition and subtraction routines — which make

use of the specific results calculated by the add and subtract in- ^
structions of a computer when overflow does occur.
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Before taking up the question of overflow, however, we

must consider the even more basic question of size sjBCifications

on the constants and data of a program that are determined by min

and max. These affect all programs which process integer data,

even if overflow never occurs. As we shall see, our GCD program

of section 6-1 never produces overflow or underflow in any situa

tion; but this does not mean that this program will correctly cal

culate the GCD of any two positive integers. The problem is that

an integer larger than max or smaller than min can never be stored

in M or N in the first place. In general, if I is any integer vari

able in a program, the assertions max > I and I £ min must hold at

all points within the program. They must, in particular, be implied

by the initial assertions of the program. In the GCD program, we

have the initial assertions M > 0 and N > 0, which imply M £ m£n

and N > mint but max > M and max £ N must be explicitly or implicit*

ly specified as initial assertions also.

Sometimes, in the presence of finite-precision arithmetic,

stronger assertions than the above must be given. Thus in the

routine of section 7-1 to calculate the 23rd power of a number A,

if this number is taken as an integer, we must initially

have Al £A and A£ A2, where Al2^ = mag and A2 ^ = m£a« In the
GCD program, however, because the variables I and J continue to

decrease, the program will actually run for all M and N which are

between 1 and max. inclusive.

Let us now see what we can prove about overflow. The addi

tion, subtraction, and multiplication operations on actual com

puters are not defined so as always to coincide with the mathema

tical operations of integer addition, subtraction, and multiplica

tion© Thus when we write N = I + J in an algebraic language, or
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when we write its equivalent In"machine language instructions,

we are not actually — always — adding I and J; we are performing

an operation which sometimes is identical to ordinary addition, >

but sometimes (when overflow or underflow occurs) is not. What

result is actually calculated depends upon the computer being used.

The same is true if the plus sign were replaced by a subtraction

or multiplication sign. (Integer division, with a single-precision

dividend, cannot give rise to overflow or underflow.)

The above facts may seem to imply that, when we want to

prove the correctness of a program on an actual machine, we must

replace each addition operation by the use of a function giving

the result of machine addition on that machine (and the same for

subtraction and multiplication) and prove the correctness of the

resulting program© Thus, for example, every use of the statement

N = I + J would have to be replaced by N = ADD(I, J), where ADD(If

J) is defined as I + J if max. £l + JandI + J£ mjg, and as some

thing else (dependent upon the particular machine) otherwise. Such

a requirement would significantly increase the cumbersomeness of

proofs of most programs as run on actual machines. Our first appli

cation of restricted commands serves to make such a requirement

unnecessary for the vast majority of programs, in which it is to

be assumed (and proved) that overflow will never occur. Any addi

tion operation is viewed as a restricted command, which works pro

perly only if both of its operands aflg, t£e result are in the range

defined by min, and max. and the same is true for subtraction and
*

multiplication. Thus N = I + J, for example, is a restricted com

mand with the restrictions max £ I, I > sis, majc > J, J £ gin*

max > N, and N>min* As long as I, J, and N are in these ranges, ^
the actual addition function of the given machine will coincide
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with ordinary addition, and thus we may assume that the resfrrio*

ted command N = I + J always performs ordinary addition.

When an integer expression is evaluated by means of such

restricted commands, the assertion before the start of evaluation

must imply that all intermediate results, as well as the final

result, are within the bounds determined by mia and m§x. The fol

lowing progran, written in the assembly language of section 3-5$

executes the FORTRAN'assignment Z = A + B - C: :

ID A

AD B

SU c

ST Z

As a control path (with initial and final assertions unspecified

for the moment), this readss

C INITIAL ASSERTION

[max > A, A ;> mini

ac « A

Cmax £ B, B £ mjji, max > ac., ae 2 mi&, mg£ 2 &+&y £S+B £ m£n]

ac « ac + B

Cmax > C, C j> min. max £ a£, fi£ £ min. max. £ a£-C, ac-C > mjLn]

ac = ac - C

Cmax ;> Z, 2 £ min3

Z a ac

C FINAL ASSERTION

where the restrictions, as before, are contained In brackets, and

where ac denotes the accumulator. We may now see that the initial

assertion
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max > A, A > min. max > B, B ^ &s&*

max > C, C > min. max £ A+B-C, A+B--C > mia

— that is, the assertion that all variables in the given expres

sion, as well as the expression itself, are within range — is not

sufficient to make this control path valid. (Consider A > 0 and

B = C = max, for example.) We must also require that the interme

diate result A+B is within range. When the statement Z = A + B - C

is executed In an algebraic language, where Z, A, B, and C are in

tegers, and the execution is presumed to take place on an actual

computer (rather than an abstract machine whose cells can hold

numbers of arbitrary size), similar restrictions must be given.

(It is conceivable that a language might be defined in which these

restrictions are relaxed — by specifying, for example, that all

intermediate computations take place in double precision, with the

final result being re-converted to single precision.)

Now suppose we have a progran in which use is made of the

properties of the computer's addition and subtraction functions

in the presence of overflow. In such a case restricted commands

cannot be used; we must use the functions defining the actual

arithmetic operations of the given machine. The following

double-precision addition routine illustrates what may be

done in such a case. It is assumed that the double-precision

quantity A is stored as an array of size 2, with the high-order

part in A(l) and the low-order part in A(2), and similarly for B

and C. The routine treats A.and B as unsigned,integers, and simi

larly A(1), A(2), B(l) and B(2) as unsigned quantities (nonnegative

and less than 2b), so that we may regard A as 2b*A(l)+A(2), and
similarly B as 2b*B(i;+B(2) and C as 2b*C(l)-*C(2). The routine

sets C equal to A+B:
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* 0 <A(l), A(l) <2b, 0 £ A(2), A(2) <2b,
* 0 £ B(l), B(l) <2b, 0 £ B(2), B(2) <2b,
* (2b*A(l)+A(2)) + (2b*B(l)+B(2)) <22b

ID A (2)

AD B(2)

TC ALPHA

ST C(2)

IDI 0

TO BETA

ST C(2)

IDI 1

AD A(l)

AD B(l)

ST C(l)

* 0 ^ C(l), C(l) <2b, 0 <C(2), C(2) <2b,
* (2b*C(l)4C(2)) = (2b*A(l)+A(2)) + (2b*B(l)+B(2))

ALPHA

BETA

The Initial assertions are that A(l), A(2), B(l), and B(2)

are in range, and that the resulting value of C will fit into a

double word. The instruction TC Z transfers control to Z if

carry is 1; carry is set by the AD instruction, and specifically

AD Y sets carry = If ac + Y < 2b then 0 else 1, followed by

aj£ = ,ifac+Y<2b then ac. +Y else ac +Y - 2 . This program

has two control paths; we consider only the first (the one which

passes through the statement labeled ALPHA)t

* 0 £ A(l), A(l) < 2b, 0 £ A(2), A(2) < 2b,
* 0 £ B(l)f B(l) <2b, 0 £ B(2), B(2) <2b,
* (2b*A(l)+A(2)) + (2b*B(l)+B(2)) < 22b

ac = A(2)
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carry = if ac + B(2) < 2b then 0 else 1

ac = if ac + B(2) < 2b then

ac + B(2) else ac ♦ B(2) - 2b

(carry =1)

C(2) = ac

ac = 1

carry = if ac. +A(l) <2b then 0 else 1
ac a if ac + A(l) < 2b then

ac +A(l) else ac +A(l) - 2b
carry =i£ ac, + B(l) <2b then 0 else 1
ac = if ac + B(l) < 2b then

ac + B(l) else ac + B(l) - 2b

C(l) a ac

*0<C(l), C(l) <2b, 0<C(2), C(2) <2b,
*(2b*C(l)-*C(2)) =(2b*A(l)+A(2)) +(2b*B(l)+B(2)) ^

The condition cgrry = 1 in the path Implies that we must

have had A(2)+B(2) > 2b at the start of this pathj SMIX. ia ^±m
tially set to 1and ac to ac +B(2) -2b. Furthermore, the initial
assertion (2b*A(l)+A(2)) +(2b*B(l)+B(2)) <22b implies, as afew
calculations will show, that each of the other two instructions

sets carry to 0. Thus the above path reduces to

*0£ A(l), A(l) <2b, 0<VA(2), A(2) <2b,
*0£ B(l), B(l) <2b, 0£ B(2), B(2) <2b,
*(2b*A(l)+A(2)) ♦ (2b*B(l)+B(2)) <22b,
* A(2)+B(2) £ 2b

ac = A(2)

carry = 1 ^)

ac a ac + B(2) - 2
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(carry = 1)

_ C(2) = ac

ac a 1

carry a o

ac = a& + A(l)

carry = 0

ac. a ac + B(l)

C(l) = as.

* 0£ C(l), C(l) < 2b, 0£ C(2), C(2) < 2b,
* (2b*C(l)+C(2)) = (2b«5A(l)+A(2)) + (2b*B(l)+B(2))

At the end of this path, we have C(l) a 1+A(1)+B(1) and

C(2) a A(2)+B(2)-2b, implying that the last of the final asser

tions is validj also, C(l) is in:irange because of what we have

said about carry in the last two additions, irfiile C(2) is in

* range because A(2)-fB(2) £ 2b implies C(2) £ 0 and A(2) < 2b and
B(2) < 2b Imply C(2) < 2b. Thus the given path is valid.

Other Integer arithmetic instructions may also be viewed

as restricted commands in this way0 For a divide instruction,

the restriction says that the divisor is unequal to zero. If

our program uses the special result (normally zero) to which the

given register is set when the divisor is actually zero, then

"divide by Y" must be interpreted as ac a ^f y=o then 0 else ac/Y.

Similarly, for a shift instruction which is being used as a mul

tiplication or division by a power of 2, the restriction says that

overflow cannot occur in this process, and also, quite often, that

the initial contents of the given register were nonnegative. If

r possibly negative quantities are being shifted, the arithmetic in

terpretation of the shift instruction must be given with care; it

will depend on whether one»s complement or two's complement is

being used, and whether the shift is circular; sign-extending, etc.
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9-5 Floating Point Arithmetic

From the viewpoint of correctness, floating point arith

metic differs from integer arithmetic in two fundamental respects.

The first is that real numbers are, in general, represented only

approximately by floating point numbers, whereas integers are

represented exactly. The second is that, even if two real numbers

are represented exactly, their sum, difference, product, or quo

tient might not be; and if they are represented inaccurately, it

is possible for such arithmetic results to be represented even

more inaccurately. Worse than this, these two types of error can

be arbitrarily large; cases may be constructed, on typical digital
100computers, for which they are as large as 2M .

Given these dismal facts, are we completely at a loss to

prove anything about floating point calculations? Perhaps sur

prisingly, the answer is no. Many programs which perform floating

point arithmetic may be proved correct almost as easily as those

which do not. Several specialized techniques, however, are neces

sary in proving correctness in this case; and there are a groat

number of simple floating point calculations which, although they

are correct, are quite difficult to prove correct.

The first thing we have to realize about floating point

addition, subtraction, multiplication, and division is that it is

only subtraction which causes unbounded increase in floating point

inaccuracy. (Strictly speaking, it is only addition of quantities

of opposite signs, and subtraction of quantities of the same sign»)
So long as we restrict ourselves to addition of positive numbers,

and arbitrary multiplication and division, the total error in a

calculation is roughly proportional to the number of operations
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performed. This number may be determined by our standard asser

tion method in many cases. let us now make the above statements

precise o

In the remainder of this section, we shall assume that a

floating point number consists of a 1-bit sign, an &-bit exponent,

and a fc-bit fraction. Thus the total length of the word is l+&+t.

The bias, which shall be called ft, is an exponent field quantity
^s-1consisting of 1 followed by all 0*s, or, in other words, T .

He shall denote by FFW(E, F) the positive floating point word

with exponent field E and fraction field F; its value is F»2r • •

Here E is assumed to be an integer and F a fraction with binary

point at the left. It is assumed that 2m% £ F <1; if 1/2 £ F <1,
then PFW(E, F) is said to be normalized. The floating point sum,

product, difference, and quotient of U and V will be denoted by

m^ FLA(U, V), FIS(U, V), FLM(U, V), and FID(TJ, V) respectively; if

U a PFW(E, F) and Vva PFWCE1, F») are both normalized and U£ V

(that is, F.#-£ £ frf ♦8#,-P> then

FIA(U, V) = FLA0T|YTJ) M ££#<£) *1 $m FFWCE+1, W(t-D) §l§e

PFVCB, W(t)), where,W(A)*=* [(Pt!,^t)*2A ♦ 1/23/2*
FIS(tTf V) a -tfLSCV, U) a j&f**"1 £ V£ 2~* J&gn PFW(E-G,

W*2?)f 0£ Q£ £, Where ,W =* C(F - F«/2?WB,)«2* +1/23/2*

while (regardless of wbather U ;> V or U < V) we have

FLM(U, V) a if W(t+1) < 1 then PFWttHE «-p-l, Wfe+l)) Slge

EFWCB^-p* W(t))f where W(A) =CF*F«.2A +1/23/2*
FIDCUj V) a if W(t) 2. 1 then ?FW(B-E«+p+l, W(t-D) eJLse

FFWOE^+p* W(£)), where W(A) » C2A»F/F« +1/23/2*

and FLA(U, V), FI£(U, V), FLM(U, V), and FID(Uf V) are all nor

malized. (Here 0X3 is the greatest Integer in«tj «HL< CoG £ pCo)
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We must note at this point that these conventions are by

no means universal for typical digital computers. On the CDC

6000 series, for example, for which (using the notation above) ^

§. a 11 and t a W, the "fraction" is not a fraction at all, but

an integer, and the exponent is adjusted accordingly. In this

case FFW(E, F) is called normalized if 2t"1 £ F<2*, and it is
always assumed that 1 <F <2* (for a positive floating point
word). Thus 1, for example, is represented in normalized form

by PFW(p-*f7, 2?), whereas, using our conventions, it would be
PFW(ft+l, 1/2). On the IBM 360 and 370, where 1 is 7 and £ is

either 2k- ("short," single precision) or 56 ("long," double pre

cision), the exponent is a power of 16, rather than of 2, and

the value of FFW(B, F) is F-lc^-P. It is to be understood, how
ever, that, although the details of the statements and proofs

of the theorems given below will be different for different com-

puters, the basic ideas remain the same.

Every floating point number may be represented with a Re

lative inaccuracy of at most 2**; that is, if R is areal num
ber and FPAGO is its best floating point approximation, we have

R(l -2-t) ^ FPACR) £ R(l +2"*)

provided that R is positive and in the floating point'range, that

is, provided that

PFW(0, 1/2) £ 'R £ EFW(2p-l, 1-2**)

or, in terms of values, 2^"1 £ R £ 2P"1•(l-e"t). (We shall
refer to 2^"1 as fmin and 2^"1*>(l-2'"t) as fmax, so that fmin <
R < fmax. A few unnormalized floating point numbers less than

fmin exists these will be ignored.;If .Rids..negative,. R(1-2" ) £ -^

FPACR) £R(l+2"t).) In fact, let *a[log2 Rl,. so that 2V £R<
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2^+1. Then -p-1 <r<p-1. and 1/2 £ fc*-*"1 <1. tot H- K-
2-^f and let N« =Uf2* +1/23, so that 2W <; N« <2*. Then
N.2* - 1/2 <N« £ N.2* +1/2, and 1/2 * N«/2* ^ 1. We set FPA©)
=if NV2* =1tfeen PFW(pot+2, 1/2) fiige. WW(f+*U, N»/2*). Note
that both 1/2 and 1^/2* are in the proper form to be the fraction
part of a normalized floating point number. Also, 0£ p+*+l <2f,
and we cannot have p+Y+2 =2? and NV2* =1 (because then R=
N.2^1 would be greater than fmax), showing that the exponent of
FPACR) is in its proper range. Finally, since N>1/2, we have
N*2*(l - 2-*) =N*2* - H<J No2* - 1/2 <N« £ N-2* +1/2 £ N.2* +N
=No2*(l +2-2), so that N(l - 2"*) <N«/2* ^ N(l +2mt) and
R(l - 2-*) =N.2t+1(l - 2-*) <FPAOO £ No2*+1(l +ST*) =R(l +
2-*)f since the value of FPA(R) is in all cases 2P+ +" •N,/2t* »
2*+1«Nl/2t. This completes the proof of the above statement.

The floating point sum of two numbers, provided that it Is

properly normalized and rounded (as it is in the definition of

FLA(U, V) above), should be the best floating point approximation

of the actual sum, provided that the actual sum is in range. Thus

we should expect, from the equation above, that

(U +V)(l - 2**) £ FLA(U, V) £ (U +V)(l +2"*)

Let us prove this formula for U= PFW(E, F), V = PFWCE1, F1),

and £mln £ WV £ fmax. We may assume U£ V; the value of U+V is

2E'P.F +^'-f.pt =2E-^.F +&±/f•*')•?< - 2*"f<F +Ft/**-*')..
For convenience, we set G=F♦ **/&*% so that a**.0 is the
value of WV, and W(A) (In the definition of FIA(U, V)) is CG*2A
+ 1/23/2*. Assume first that W(t) £ 1; then we must have G > 1 -

2-*"1, since otherwise G*2* +1/2 <2* and hence W(£) <1. Since,
in general, oC-1 <M £ <*, we have G.2*~r - 372 <CG^1 +1/23
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<G.2*-1 +1/2, so that G/2 - 2mt'l <W<£-1) £ G/2 +2"*-1. There
are now two subcases. If 1 - 2wt-l <G£ 1, then 2*-1 +lA <
(j.2*'-1 +1/2 £ 2*'1 +1/2; since 2*"1 is an integer, we have
CG^15-1 +1/23 =2t-1, so that W(£-l) =1/2 and G/2(l - 2"*") ^
1/2(1 - 2-*) <W(t-1) <1/2(1 +2-*-1 - 2-2ij-1) =1/2(1 - 2-*'-1)(l +
2-t) £ G/2(l +2-*"). If, on the other hand, G>1, then G/2(l - 2"*)
=G/2 - G.2-*-1 <G/2 - 2-*"1 <W(fc-1) £ G/2 +2-*-1 <G/2 +G^^-1
=: G/2(l +2-*). In either case, 2B-PoG*(l - 2-*) <2E+1-P-W(fe-1) £
2E-P.G-(1 +2-fc), that is, (U +V)(l - 2"*) <FLA(U, V) £ (U +
V)(l + 2-*). Now suppose that W(£) <1. Again from o(-l < HO <o(»

we have 0-2* - 1/2 <CG*2* +1/2] £ G-2* +1/2, so that G- 2"*-1
<W(£) £ G+2-*-1. Since F >1/2 and F1 £ 1/2, we have G>1/2*
thus Go(l - 2"*) =G- G.2-* £ G- 2*-1 <W&) ^ G+2"*-1 £ G+
0*2-* =G*(l +2"*), so that 2B-F*G*(1 - 2"*) <2M.W&) £
2s-?^God 4- 2"*), that is, just as before, (U +V)(l - 2"*> <
FLA(U, V) £ (U +V)(l +2"*). This completes the proof.

Let us now prove similar formulas for multiplication and

division. If U = FFWCE, F) and U» = PFW(E«, F1) are normalized,

then

U*V.(1 - 2-*) £ FLM(U, V) £ U.V«(1 +2"*)

if fm-fn < U»V ^ fmax« and similarly

(U/VM1 - 2-*) <FH>(U, V) £ (U/V)*(l +2-*)

if fmin < U/V £ fmax. As before, these formulas merely reaffirm

that floating point multiplication and division provide the best

possible approximation to actual multiplication and division.
For multiplication, suppose first that WCt+1) < 1* Since

«-l <DG <OC, we have F*Ft.2t+1 -1/2 <CF.F«<»2t+1 +1/21 £
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F.F«.2t+1 +1/2, so that 2oF.F' - 2~t-1 <W(£+l) £ 2-F-F" +2-*-1.
Since F£ 1/2 and F* >1/2, we have 2«F«F«.(1 - 2-*) =* 2-F-F1 -
2-F.F«.2"t £ 2«FoF» - 2-*"1 <W(£+l) £ 2»F*F» +2"*-1 £ 2*F*F« +
2.F.F«.2"t « 2*F*F'<1 +2"*)9 so that &mf*•&*•+•**•(! - 2-*) <
2B4E»-f-l-p.W(£+1) ^ 2B-PoFo2E9~^F9.(l +2"*), that is, U«V.(1 -
2"*) <FLM(U, V) £ U»V«(1 +2"*"). Now suppose that W<fc*l) >1; we
must then have F.F« £ 1/2 - 2°"t-2, since otherwise F«F».2tfl +1/2
< 2* and thus W(K+1) < 1« There are now two subcases. If 1/2 -

2-t-2 <F-Ft £ 1/2, then 2t-1 +lAiM'^ +1/2 £ 2t>1 +1/2}
since 2*-1 is an integer, we have CF^F*^ +1/23 =2t~1, so that
W(£) =1/2 and F*F»(1 - 2-*> £ 1/2(1 - 2"*) <W(£) <1/2 +2" "2 -
2-2t-2 _ ^jyg _ 2"*-2)(l + 2"*) ^ F°F»(1 + 2"*'). If* on the other

hand, F«F» >1/2, then F.F«(1 - 2"*) =F«F» - F.F«*2"* <F*F« -
2-fc-l <W(^j ^ F#pt +2**"1 ^ F«F« +F«Ff»2-* =F«F,«(1 +2"tK
In either case, 2E-^F.2Et-P.F«.(l - 2"*> <2E^8^PoW(t) <J
2B-P*F*2B,"^F»*(1 +2"*), that is, IMf(l - 2"*) <FLM(U, V) £
U»V»(1 + 2-^), just as before.

For division, note that W(£) (as defined in connection with

FH>(U, V)) £ 1 if and only if F^8 Z i (that is, F £ F»). For
clearly W(fc) >F/F»; whereas if F/F« <1, then (2ft*F)/(2t*F«) <
1, and, since 2**F and 2 '̂F8 are both integers, they must differ
by at least 1, that is, 2*oF ♦ 1£ 2*«F» or 2%7F« +1/F1 <2*,
so that W(t) = £2*.F/FB +1/23/2* <1. First suppose, then, that
F£ F«; since tf-1 <[o(3 £ *, we have 2tw-F/F« - 1/2 <C2t-1»F/F»
+1/21 ^ 2*-1«F/P« +1/2, so that 1/2 • F/F« - 2-^-1 <W(t-1) <
1/2 • F/F» +2-1*-1. Since F£ F», we have 1/2 • F/Ff»(l - 2"*) =
1/2 o F/F» - 1/2 • F/F« • 2"*' £ 1/2 * F/F« - 2mt"1 <Wttf-1) £
1/2 • F/F» +2"1sr-1 ^ 1/2 • F/Ff +1/2 • F/P*« • 2"* =1/2 • F/F» •
(1 +2-*), so that ((2B-?.F)/(2E8-f .F»))-(l - 2"*) <&•***+**.
W(t-l) £ ((2E-P*F)/(2BI-^F«))*(1 +2"*), that is, (U/VXl - 2m%)
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<FID(U, V) £ (U/V)*(l + 2-*). Now suppose that F <F1; again

from fc-1 <D*3 <OC, we have 2*tf/F« - 1/2 <C2t»F/F» +1/23 £
2t*F/F* +1/2, so that F/F« - 2~t~1 <W(t) £ F/F« +2"t"1. Since
1/2 <F, F» <1, we have 2F >F«; thus F/F» • (1 - 2"*) =F/F» -
F/F« • 2-* <F/P« - 2-t<"1 <W(t) £ F/F» +2-*''1 <F/F« +F/F» •
2"* =F/F» • (1 +2-*), so that ((2E-P.F)/(2BI^-Ft))*(l - 2^)
<2E-E,'fP-f *W(t) £ ((2E-?*F)/(2B,-^F«))-(1 +2-*), that is,
(U/VW1 - 2-t) <F2D(U, V) £ (U/VWl + 2"*) as before. Thus
both of the above statements are proved©

We are now ready for the fundamental definition of this sec-

tion•

DEFINITION 9-1. Let N > 0. The assertion

i£ R£ 0 £M3 R-OL - 2-*)N £ R« £ R*(l - 2"*'rN
else R*(l - 2-t)-Jf ^ Rf ^ R*(l - 2"*t)N

will be denoted by FEQ(R, R1, N) (read "R floating-equals R1 with

tolerance N units")•

It should be clear that, if R £ 0 and N is not too large

(II <2t/2, say) that FEQ(R, R1, N) implies R*(l - (N+l)^) <Rf
<R*(1 + (N+l)^-*); if the tolerance is Nunits, the relative

inaccuracy is at most (Nfl)^"*. Other properties of FEQ(R, RS
N) are:

(1) If FEQCR, RS N), then FEQ(R«, R, N).

(2) If FEQ(R, R«, N), then R and R1 are either both posi

tive, both zero, or both negative.

(3) If FEQ(R, R1, N), thenFEQ(-R, -ft1, N).

ft.) If FEQ(R, R1, N), thenFEQ(l/fc, 1/R1, N).
(5) If FEQ(X, Y, N) and FEQ(Y, Z, M), then FEQ(X, Z, N+M).

In fact, X, Y, and Z are either all positive, all zero, or all
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4. * J&fM
negative; if they are all positive, we have X»(l - 2 ; =»

Xo(l - 2-*)NoX.(l - 2^)M £ Y.(l - 2*)M ^ Z <; Y-(l - 2^ )~M <
* X^CL - 2-trN-X*(l - 2"*rM » X«(l - 2"t)-(N+M). (The proof in

the other two cases is similar.)

(6) If U and V are both positive or both negative, then

FEQ(D+V, FLA(U, V), 1). In fact, 1 +2"* < (1 - 2"*)"1 (since
(1 +2-*)(l - 2"*) = 1 - 2"21* <1), so that, by what we have
already proved, (IW>(1 - 2"*) £ FLA(U, V) £ (IWXl +2"*) <
(U+V)(l - 2"*')"1. If U and V are both negative, the proof is

similar©

(7) FEQ(U«V, FLM(U, V), 1). (Same argument as above.)

(8) FBQ(U/V, FI2)(U, V), 1). (Same argument as above.)

(9) If FEQ(U, U», N) and FEQ(V, V», M), and U and V are

either both positive or both negative, then FEQ(U+V, IH+V1,

p raax(N, M)). In fact, if Uand V (and thus IP and V1) are both
positive, and if U.(l - 2mt)* £ U« £ U(l - 2"trN, V<1 - 2wt)M
£ V» £ V*(l - 2"*)"Mf then, letting P = max(M, N), we have
(U+V)(l - 2-t)P = U«(l - 2-*)P +V(l - 2"t)P £ tMl - 2"t)N +
V.(l - 2"t)M £ U«+V« £ U*(l - 2-*)"N -f V(l - 2-t)"M <U- (1 -
2-t)-P +Vo(l - 2-t)-p = (U+V)(l - 2"t')-P. If Uand V are both

negative, the proof is similar©

(10) If FEQ(U, U«, N) and FEQ(V, V», M), then FEQ(U.V,

U«»VS N+M). In fact, if Uand V are both positive and U*(l - 2" )^
£ IP £ U.(l - 2-t)"N, V(l - 2"t)M £ V« <V*(l - 2-*rM, then
U.Vo(l - 2m't)N+M = U*(l - 2-t)N»V»(l - 2-*)M £ U««V» < U.(l -
2-t)-N.V*(l - 2-*)-M =* IMT«(1 - 2-tr(N+M). There are three other
cases — U and V both negative, U positive and V negative, and U

^ negative and V positive — and the proofs are all similar.
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(11) If FEQ(U, IP, N) and FEQ(V, V1, M), then FEQ(U/V,

Uf/\TS N+M). (This follows directly from ft) and (10) above.)

(12) If U and V are both positive or both negative, and if <=%

FEQ(U, U», N) and FttQ(V, V«, M), then FEQ(UW. FLA(US V*),

max(N, M) +1). (This follows directly from (9), (6), and (?)

above.)

(13) If FEQ(U, IP, 2N-1) and FEQ(V, V1, 2M-1), then

FEQ(U«V, FLM(tP, V1), 2(N+M)-1). (This follows directly from (10),

(7), and (?).)

Oh) If FEQ(U, U«, 2N-1) and FEQ(V, VS 2M-1), then

FEQ(U/V, FLD(US V1), 2(N+M)-1). (This follows directly from (11),

(8), and (?).)

It is understood, of course, that all given quantities must

be in range for each of these properties to hold; that is, f&Jn.

&)d< frcax for each quantity o( mentioned in connection with each

property.

Roughly speaking, the result of an operation which requires

N multiplications and divisions will be equal to what it is sup

posed to be, with tolerance 2N-1 units, by properties (13) and

Cft) aboveo The same (actually a little more) is true if additions

of quantities of like sign, or subtractions of quantities of op

posite sign, are allowed, by property (12) above. We shall now

illustrate property (13) by investigating the partial correctness

of an assembly-language program which performs exponentiation,

using the algorithm which was programmed in FORTRAN at the begin

ning of section 7-2. In addition to FEQ, we use the assertion

IHUUdO (that is, ot is in range), meaning that fmin £(o(J£ £max,

and the assertion N0RM(tf), meaning that <rt is in normalized form.

The program is as follows:
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*N£ 0, (N j4 0pjr A^ 0), NCRM(A), Il«tA(AW)
ID ONE

ST X

IDI 0

ST I

*FEQ(X, A1, 21-1), NORMOO, NORM(A), BfcA(AN), I£ N

LOOP LD I

SU N

TZ DONE

LD X

FM A

ST X

IN I

TR LOOP

* FEQ(X, A», 2IM.)

D0M3

The cell ONE is presumed to contain the floating point

number 1.0; the instruction mnemonic FM means "floating multiply."

Note that, whereas in section 7-2 we had the intermediate asser

tion X= A1, here it is only FEQ(X, A1, 21-1); that is, X is
only approximately equal to A1. The term 21-1 is suggested by

the term 2N-1 in property (13) above. In fact, whenever we pass

the beginning of the loop, the value of I will be equal to the

number of multiplications thus far performed, and property (13)

then tells us that 21-1 is the tolerance.

Let us look at the control path in this program which goes

around the loops
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* FEQ(X, A1, 21+1), N0RM(X), NQRM(A), INRA(AN), I <J N

ac = I

ac = ac - N

(ac £ 0)

ac ~ X

ac = FLM(as, X)

X = ac

1=1 + 1

*FEQ(X, A1, 21+1), NCRM(X), N0RM(A), INRA(AN), I^N

Since multiplication is in floating point, we write ag. = FLM(ac,

X), rather than ac = ac, * X. The verification condition of this

path is

(FEQ(X, A1, 21+1), NCRM(X), N0RM(A), INRA(AN), I£ N,
I-N ^ 0) implies (FEQ(FLM(X, A), A1*1, 2(I+1)+1),

N0RM(FLM(X, A)), NQRM(A), INRA(AN), 1+1 < N) ^

Since I < N but I-N 4 0, we must have had I < N at the beginning

of the path, implying 1+1 £ N. As we have defined FLM(X, A), if
X and A are normalized, so is FLM(X, A). The assertion FEQ(FLM(X,

A), AI+1, 2(I+1)+1) follows from property (13) given above, and
also property (1), under the hypotheses of this path, provided

that we can show INRA(AI+1)# It is assumed that fiqin < 1 and

fmax >1; if \M >1» then certainly fmin <|ai+3/, while Ja1*3/ <U' /
£ fmax since 1+1 <N. If |A| =1, then fmin </AI+2| =1 <£22*1
while ifW<1, then fsjin <JA*? £[k1^ since 1+1 £ N, and cer
tainly |AI+:4 < fmax. Thus the verification condition of this path

is valid.
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NOTES

The first detailed treatment of machine language program

correctness seems to be that of [Painter 673. Painter is con

cerned with proving the correctness of a compiler whose source

language is algebraic, and whose destination language is an as

sembly-like language. The machine for which this assembly lan

guage is designed, however, is assumed to be free from the dif

ficulties discussed in this chapter, such as finite precision,

overflow, and the possibility of self-modification.

The concept of a pure procedure is well known in the

-> field of operating systems. A program which is to be used very

often in a time-sharing or other multiprocessing environment

should, if possible, be coded as a pure procedure, because then

a single copy of the instruction words of this program may be

used by several users without swapping. When a compiler is so

constructed that it always generates a pure procedure as object

code, this pure procedure is normally, in our sense, locally

verifiable; references to subscripted variables are allowed, but

the object code checks that each subscript is in range at the

time of use.

All of the considerations of this chapter apply, of course,

not only to assembly-language programs, but to compiled versions

of algebraic-language programs as well. An algebraic-language

program may be proved correct and yet not run properly when com

piled, perhaps because the compiler is not correct (many compilers,

of coin'se, still have uncorrected errors in them), but more often

because the proof of correctness was an "ideal" proof which did

not take finite precision into account. This point is made in
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[Redish 713, with specific reference to the proof given in [Lon

don 703 of the correctness of TREESCBT III, an in-place sort

written in ALGOL.

There are several approaches to the problem of proving the

correctness of programs which perform floating point calculations.

One is to use interval arithmetic, in which each real number & is

represented by two floating point numbers x and y., for which it

is known that x < s. £ %• Addition of two real numbers z1 and ^

with corresponding floating point numbers x-p y^, Xg, and y2, is

then performed (if all these numbers are positive) by calculating

the largest legal floating point number which is less than x^+x^,

and then the smallest such number which is greater than y^+yp0

The other arithmetic operations are handled similarly. A subrou

tine package performing interval arithmetic is proved correct in

[Good and London 683 (see also [Good and London 703). The advan

tage of interval arithmetic is that we no longer need worry about

subtraction or about the total number of operations performed;

any algorithm, so long as it is correct in the ideal sense, is

correct when executed using interval arithmetic. One disadvantage

of interval arithmetic is that it is slow; this, however, could

be remedied by building interval arithmetic into the hardware of

some computer. Another, more serious, disadvantage is that, at the

end of execution of a program using interval arithmetic, we are

given an interval within which our answers are guaranteed to be

contained, but we have no way of knowing, in advance, what the

size of that interval will be.

For an excellent discussion of rounding errors, see [Wil

kinson 633. (Wilkinson uses fl(Xl+X2) for our FLA(X1, X2)f

fl(Xl*X2) for our FLM(X1, X2); and so on.)
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EXERCISES

1. Complete the proof of partial correctness of the program

of section 9-1o

2. Prove that the program of section 9-1 terminates. In

what specific ways does this proof use the assertion ICA?

3. Complete the proof of partial correctness of the first

program of section 9-2.

km Complete the proof of partial correctness of the second

program of section 9-2.

5. Consider the final program of section 7-2, which per

forms, in FORTRAN, a linear search of an array. Translate this

program into the machine language of the original 16-bit computer

of section 3-5» In much the same way as is illustrated in section

9-3. (Instruction modification is to be used in this program in

the same way as illustrated in section 9-3 j in order to traverse

all the elements of the array to be searched.) Formulate initial,

final, and intermediate assertions for this program, including

the assertion IBA, and describe the assertion IBA precisely.

6. Prove the partial correctness of the program of problem

5 above.

7. Write a program in the assembly language of section 3-5

to calculate the value of Z according to the formula Z = C*C -

A*A - B*B. Formulate initial assertions involving max and flin.

as in section 9-*f, which must be satisfied for this program to

be correct, and then prove its correctness.
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8. Show the validity of the verification condition of the

second control path of the program of section 9-^o

9. Verify properties (1) through Of) of the assertion FEQ

defined in section 9-5©

10. Complete the proof of partial correctness of the pro

gram of section 9-5©
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CHAPTER TEH

SEARCHING AND SORTING

10-1 Linear Searching and Timing

In any search routine, there is a table of values of some

kind, and we are looking for some element of that table which sa

tisfies some given condition. In the search routines to be con

sidered in this chapter, our table is an array with subscripts

extending from 1 to N, and our condition is that the element of

this array which we see trying to find be equal to some fixed

quantity, sometimes called the target. We shall call the target X,

and the array A; thus, if the search is unsuccessful, the asser

tion which is true after the search has been completed is

(X^A(II), II .IN. (1..N))

while if the search is successful, the assertion is X = A(I), where

I is an integer variable used by the program. Normally we need to

have I set properly at the end of the search; that is, we need to

know not only that X is equal to some element of A, but specifically

which element.

The easiest method of searching an array is the linear search

method, a program for which was given in section 7-2. We may write

this program with assertions as s
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DIMENSION A(|i)

C N > 0, N < a

1 = 1 ^

C 1 < I, Ii H, N<a, (X ^ A(II), II •». U.ol-D)

1 IF (X .EQ. A(D) GO TO 2

1=1 + 1

IF (I .LB. N) GO TO 1

C (X/ A(II), II .IN. (1..N))

• • ©

C X = A(I)

2 CONH NIE

This program has two stopping points, the first for an unsuccess

ful search and the second for a successful search. Each of these

has its own assertion. (We recall that aji stopping points of a

program must be control points of it.) The intermediate assertion
given here is the one that was given with this program in section

7-2, rewritten according to the conventions of section 7-3*
As we have seen, the proof of partial correctness of a pro

gram involves determining its various control paths, and then fin
ding and proving the verification condition of each path. In most
of the programs which follow, we shall not attempt to give the com

plete proof of partial correctness. Sometimes we shall merely list
the verification conditions of all paths, as they would be obtained
by either the forward or the back substitution methods of sections
6-*f and 6-5$ the paths themselves are considered in the order in
which they would be found by the method of section 6-3•At other
times, we shall give a detailed analysis of a single path in a pro
gram, and leave the consideration of its other paths to the reader. ^
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For the program above, there are four control paths, of which we

shall consider only the third one*

C l£l, I^N, N^S, (X^ A(II), II .IN. (1..I-D)

CI £ It I £ a3

(X 4 A(D)

1=1 + 1

(I £ N)

C 1 < I, I£ N, N <; a, (X * A(H), II .IN. (1..I-D)

The assertion 1 £ I is preserved here because I is increased; I £ N

at the end follows from the condition I £ N in the path; and N £ n

is preserved because N is unchanged. The assertion X 4 A(I)

is equivalent to (X / A(II), II .IN. (I)), and this, together

with (X * A(II), II .IN. (1..I-D), is equivalent to (X * A(II),

II .IN. (1..D). Then I is increased by 1, giving (X £ A(II), II

.IN. (1..I-D) again. Formally, we have used the following general

facts t

1. (F(I), I .IN. (J)) is the same as F(J)

2. (F(I), I .IN. SI) and (F(I), I .IN. S2), taken together,

are the same as (F(I), I .IN. (SI .U. S2))

3. (I..J) = (I..J-D .U. (J), if I £ J

In a program such as this, which has more than one stopping

point, it is sometimes desirable to set up initial conditions

under which the program must terminate at some one particular point.

This may be done by placing the assertion .FAISE. at all other

stopping points of the program, setting up the initial conditions

at the beginning, and proving the correctness of the resulting pro

gram. In the above program, if it is to terminate at statement num-

- 381 -



ber 2, there must exist an integer J, 1 < J £ N, with X = A(J).

We may write this as

EI(J, (1..N)), X = A(J) ^
i

Using this as part 6f the initial assertion, we may rewrite:*our

program with assertions as -

DIMENSION A(n.)

C N > 0, N £ a, EI(J, (1..N)), X = A(J)

1 = 1

C 1 £ I, I < N, N < at EI(Jf (I..N)), X = A(J)

1 IF a JBQ. A(I)> GO TO 2

1 = 1 + 1

IF (I .IE. N) GO TO 1

C .FAISE.

. . .

C X = A(I) ?

2 CONTINUE

This time, we assert at statement number 1 that the integer J,

which is known to exist, has not been checked so far — that is,

it must lie between I and N, inclusive. Let us examine the control

path ending at the assertion .FAISE.t

C 1 < I, I< N, N£ a» EI(J, (I..N)), X = A(J)

CI £ I, I s a3

(X 4 A(l»

1=1 + 1

(I > N)

C .FAISE.

The verification condition of this path is that, if the path is
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taken, .FAISE. is true. In other words, we must prove that the

path can never be taken when started with its initial assertion

valid. Since I £ N at the beginning, but I + 1 > N, we must have

had I = N, and the integer J is in (N..N). This means that J = N

and thus X = A(N). But then X = A(I), since I = N, and the path

is never taken because of the condition X ^ A(I) in it.

Now let us assume that the array A is sorted in ascending

order. This may be expressed in two waysJ

(A(K) £ A(X>1), K .IN. (1..1M.))

(which says that each element of the array is not less than the im

mediately preceding one), or

(A(K) £ A(L), K .IN. (1..N), L #IN. (1..N) .ST. (K < D)

jpv (which says, more generally, that each element of the array is

not less than any element which precedes it. Recall that we are

using .ST. to mean wsuch that.") The equivalence of these two,

for N £ 2, may be shown by induction on N. For N 3 2, the equi

valence Is straightforward, while if

(A(K) £ A(K+1), K .IN. (1..1KL)) ^

(A(K) £ A(L), K .IN. (1..N), L .IN. (1..N) .ST. (K < L))

then

(A(K) £ A(K+1), K .IN. (l..(N+l)-l) ^

(A(K) £ ACK+1), K .IN. (1..N-D) ajfl A(N) £ A(N*-1) &

(A(K) £ A(L), K .IN. (1..N), L .IN. (1..N) .ST. (K < D)

and (A(N) £ A(L), L .IN. (N+l)) &

(A(K) £ A(L), K .IN. (1..N+1), L .IN. (1..N+1) .ST. (K < L))
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The last of these equivalences follows by noting that, if K =

N+l, we cannot have K < L, whereas if L = N+l, then A(K) £ A(L)

since A(K) £ A(N) and A(N) < A(L). ^

We shall define

ASC(A, II, 12) = (A(K) < A(K+1), K .IN. (II..12-1))

— that is, ASC(A, EL, 12) means that the elements A(EL) through

A(I2) are sorted in ascending order. When necessary, we shall use

the fact, proved in the same way as above, that

ASC(A, II, 12) » (A(K) < A(L), K .IN. (EL..12),

L .IN. (II..12) .ST. (K < L))

A linear search of a sorted array can stop when we pass the

point where the searched-for element "ought to be." The following

program, given with assertions, makes this kind of a search:

DIMENSION A(a)

C N > 0, N £ fi, ASC(A, 1, ,N)

1 = 1

C 1 £ I, I < N, N £ a* ASC(A, 1, N), (X / A(H), II .IN. (1..I-D)

1 IF (X-A(D) **f 3, &

2 1=1 + 1

GO TO 1

C X = A(I)

3 CONTINIE

. . o

C (X * A(II), II .IN. (1..N))

If CONTINUE

Let us see what happens at"the end of an unsuccessful search by
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considering the control path ending at statement number hz

0 1£ I, I£ N, N £ at ASC(A, 1, N), CX * A(II), II .IN. (1..I-D)

CI £ I, I £ a3

(X-A(I) < 0)

C (X ^ A(II), II .IN. (1..N))

Since ASC(A, 1, N) Implies that (A(K) £ A(L), K .IN. (1..N), L

.IN. (1..N) .ST. (K < D), we have, In particular, that (A(I) <

A(II), II .IN. (I+1..N)). Since X < A(I), this gives (X < A(II),

II .IN. (I+l^N)), which Implies (X AA(H), II .IN. (I+1..N))}

and this, together with (X * A(II), II .IN. (1..I-D), from the

beginning of the path, and X ^ A(I) (implied by X-A(I) < 0), gives

the assertion at the end of the path.

The proof of termination of the above two routines is very

simple. In each case, N-I is a loop expression, as may easily be

checked.

It is well known that the linear search is a relatively slow

searching method. We shall now show how our methods may be used to

prove exactly how many steps an algorithm takes. Let S3TEBS be a

pseudo-variable whose value, at any time In a given program, is

the total number of steps taken so far. If by "steps" we mean "exe

cutable statements," then each executable statement increases the

value of NSTEPS by 1. We may now include assertions in our program

which involve N3TEFS} the initial assertion is NSTEPS a 09 If'the

program with these new assertions can be proved correct 9 thentthe

tbtal number a$ a£epa fca%ftn4^ the -b3$ds$$P Is given by the -value

of JBTEPS as specified in the finaloassettion.

For the first search program of this section, we may place

the assertion N3TEPS = 3*X«£ at statement number 1, the assertion
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NSTEPS = 3*N+1 at the failure exit, and the assertion NSTEPS =

3*1-1 at the success exit. With these assertions, the program may

again be proved correct. Thus, if the search is successful and

A(I) = X, the program takes 3*1-1 steps (this, of course, depends

on I, that is, on whether X is found near the front of the table

or near the back). If the search is unsuccessful, the program al

ways takes 3*N+1 steps.

Most programs do not always take the same number of steps

each time. In such a program, the final (and often the inter

mediate) assertions about N3TEPS are not equalities, but only

upper and lower bounds. In the program above which searches a

sorted array, we may put N3TEJfS = 0 at the beginning, IBTEFS «

3*1-2 at statement number 1, and 3B3BEPS = 3*1-1 at the success

exit, as before, but the assertions atjthe failure exit'are

2 < NSTEPS and PETEPS £ 3*N+1. Thus this program is "at most li

near" — it takes no more than a number of steps which is some

multiple of the size of the table — but it can take much less

than that. (For a program to be strictly linear in a variable N,

we would have to have final assertions of the form aN+b £ ICTEPS

and NSTEPS < cN+d.)

Other facts about the timing of programs may also be de

termined in this way. The number of times a certain individual

statement is executed, for example, may also be considered as a

pseudo-variable whose value is initialized to asro, and \Aiich is

increased by one each time that statement is executed. The num

ber of multiplications which take place in a .program, tfce number

of times a particular subroutine is called, and the total number

of assignment statements executed, are further examples of quan

tities representable as pseudo-variables in this way.
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10-2 Binary and Hash Table Search

^ A binary, or logarithmic, search of a sorted table is car

ried out by repeatedly dividing the table in half. We shall study

a version of the binary search which makes a two-way test each

time the table is divided, rather than a three-way test; that is,

it does not check, each time the table is divided, whether the

middle element of the current table A is equal to the target X.

The use of a two-way test increases the efficiency of the binary

search on most computers.

The integer variables IFIRST and HAST will denote the first

and last indices, respectively, of that part of the table in which

we are currently looking. Our key assertion Is that, if the element

X is anywhere in A, Its index must be between IFIRST and HAST,

inclusive. This ~may be expressed as

(x * A(n), ii .in. (i..n)) .<r;

(BI(J, (IFIRST..HAST)), X = A(J))

Note that this is not quite the same as

CX ?* A(II), II .IN. ((1..N) J>. (IFIRST..HAST)))

because of the possibility of duplicate items in the table. In

particular, we might have A(IFIRST-l) = AdFORST)^ X orlA(IlAST)

»(AXBASTH) --X» either of which would make the first of the

above two conditions true and the second one false.

Initially, IFIRST and HAST are set to 1 and N, respective

ly. To divide the table in half, we calculate the average of

IFIRST and HAST, that is, (IFIRST+IIAST)/2, and call this BflDL.

Since the division is performed without rounding, either BflDL or
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IMIDL + 1/2 is the exact average of IFIRST and ILAST. This suggests

that IMIDL should be taken to be the final index of the first half

of that part of the array between IFIRST and ILAST, inclusive. If

X is larger than A(IMIDL), it belongs in the second half of the

table; the new IFIRST will be IMIDL+1, and IIAST remains unchanged.

Otherwise, X belongs in the first half of the table, and, in this

case, IFIRST remains unchanged and IMIDL becomes the new IIAST.

The process of dividing the table in half terminates when we

have a table of length 1, that is, when IFJRST and HAST are equal.

At this point, we simply check to see if X is equal to ACEFJRST).
The program with assertions is as followst

DBENS ION A(3)

C N > 0, N £ a* ASC(A, 1, N)

IFIRST = 1

IIAST = N

GO TO 17

C 1 £ IFIRST, IFIRST < IIAST, HAST £ N, N£ a»

C ASC(A, 1, N), ((X 4 A(II), II .IN. (l.»N)) .CR.

C (EI(J, (IFIRST..HAST)), X = A(J)))

11 IMIDL = (IFIRST+IIAST)/2

IF (X .GT. A(IMIDL)) GO TO 1?

IIAST = IMU>L

GO TO 17

15 IFIRST = IMIDL+1

C 1 < IFIRST, IFIRST £ IIAST, HAST £ N, N <; a»

C ASC(A, 1, N), ((X 4 A(II), II .IN. (1..N)) .CR.
C (EI(J, (IFIRST..IIAST)), X = A(J)))
17 IF (IFIRST .HE. IIAST) GO TO 11 ~)
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IF (X .EQ. A(IFIRST)) GO TO 19

C (X 4 A(II), II .IN. (1..N))

...

C X = A(IF2RST)

19 CONTINUE

The assertion ASC(A, 1, N) is as in the preceding section. We

have used one more contsi point than Is absolutely necessary,

in order to shorten the analysis of control paths. The assertions

at the two intermediate control points are the same, except for

IFIRST < IIAST at statement number 11 versus IFIRST £ ILAST at

statement number 17©

There are six control paths, as followst

Path 1 C N > 0, N^a» ASC(A* 1, N)

IFIRST « 1

IIAST = N

C 1 £ IFIRST, IFIRST £ HAST, ILAST £ N, N < a*

C ASC(A, 1, N), ((X 4 A(n), II .IN. (1..N).) .CR.

C (Eltf, (IFIRST..IIAST)), X » A(J)))

The verifications here are straightforward! in particular, if

IFIRST = 1 and HAST = N, the two conditions connected by .CR.

are exaot opposites of each other.

Path 2 C 1 £ IFIRST, IFIRST < HAST, HAST £ N, N £ a*

C ASC(A, 1, N), ((X 4 A(II), II .IN. (1..N)) .OR.

C (EI(J, (IFIRST..ILAST)), X = A(J)))

IMIDL = (IF3RSP+IIAST)/2

CI £ IMIDL, IMIDL £ nj

(X > A(IMIDL))
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IFIRST = IMIDL + 1

C 1 < IFIRST, IFIRST £ IIAST, IIAST £ N, N £ a*

C ASC(A, 1, N), ((X 4 A(II), II .IN. (1..N)) .CR.

C (EI(J, (IFIRST..IIAST)), X = A(J))>

When .OR. appears in the initial assertion of a path, as here,

we must consider separately the two assertions connected by it.

If (X 4 A(H), II .IN. (1..N)) at the beginning of the path,

then this will still be true at the end. If (EI(J, (IFIRST..HAST)),

X s A(J)) at the beginning of the path, ahdiif the path Is actually

followed, then we may show that this will still be true at the end,

as follows. Since X > A(IMIDL), we have at the end X > A(IFIRST+1),

and from ASC(A, 1, N) we then obtain (X > A(II), II .IN. (1..IFIRST-1))

and hence (X 4 A(II), II .IN. (1..IFIRST-1)). Hence the J that exi

sted at the beginning of the path must have been in the set

(IFIRST..HAST) as that set exists at the end of the path.

As for the other assertions at the end of this path, Bg?3

£ N, N£ a* and ASC(A, 1, N) are unchanged during the path. Since

IFIRST < HAST and HAST+IIAST is even, (IFIRST+IIAST)/2 must be

strictly less than (HAST+IIAST)/2 — that is, at the end, IMIDL

< IIAST and hence IFIRST £ IIAST. Finally, since IFIRST < IIAST,

we have IFIRST £ IMIDL after calculation of IMIDL, and hence

1 £ IFIRST at the end. The verification that the restriction
[1 £ IMIDL, IMIDL £ n.3 holds within the path is straightforward.

Path 3 C 1 £ IFIRST, IFIRST < IIAST, IIAST £ N, N < fi,

C ASC(A, 1, N), ((X 4 A(II), II .IN. (1..N)) .CR.

C (EI(J, (IFIRST..HAST)), X = A(J)))

IMIDL = (IFIRST+IIAST)/2
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CI £ IMIDL, IMIDL £ a3

(X £ A(IMIDL))

IIAST = IMIDL

G 1 £ IFIRST, IFIRST £ IIAST, HAST £ N, N £ a»

C ASC(A, 1, N), ((X 4 A(H)f II .IN. (1..N)) #CR.

C (EI(J, (IFIRST..HAST)), X » A(J)))

Here, as before, (X ^ A(II), II .IN. (l.oN)) is true at the

end if it is true at the beginning. Otherwise, there are two

possibilities. If X a A(IMIDL) in the path, then (EI (J,

(IFIRST..HAST)), X = A(J)) is certainly satisfied after HAST

is set equal to IMIDL. If X < A(IMIDL), then X < A(II) for all

II greater than IMIDL, again by the ascending-order condition,

and thus the integer J at the beginning of the path must lie

between the final values of IFIRST and IIAST, inclusive. Since

IFIRST < ILAST, we have at the end IFIRST £ IMIDL and hence

IFIRST £ ILAST (equality might hold* because the division is

performed without rounding). Also, the value of IIAST cannot in

crease along this path, so we still have at the end IIAST £ N.

The final assertions 1 £ IFIRST, N£ a» and ASC(A, 1, N) remain

unchanged along the path.

The remainder of the proof is straightforward. Path *f goes

from statement number 17 to statement number 11; its verification

condition is immediate. Path 5 goes from statement number 17 to

statement number 19; tBa.final assertioa^iifc'ttUL* fcath follows-im

mediately from the condition in the path brought about by the

final IF statement. Path 6 goes from statement number 17 to the

"unsuccessful search" exit. Since IFIRST = HAST, J (if it exists)

must be equal to IFIRST, and X = A(IFIRST); but we know this is

false, and hence the first of the two original alternatives, namely
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(X 4 A(II), II .IN. (1..N)), must have been true at the beginning

of the path. The loop expression of this program is IIAST-IFIRST;

each time around the loop, either IFIRST increases or HAST de

creases, and ILAST-IFIRST never becomes negative. Thus the program

is correct.

We now consider a hash table H of length L, in-jwhich there

are currently N entries, leaving L-N empty spaces in the table.

Let Z be the special word (often, but not always, zero) which de

notes an empty space in the hash table. There is then some set

of indices of entries in the table, and, for any index K which is

not in this set, we have H(K) « Z. The set of indices is deter

mined by the entries themselves, which we shall denote by T(l)»

..., T(N). (There is nothing in this notation to distinguish T

from a linear array of entries, and, in fact, we may consider it

as such, even though there would normally not be such an array in

memory.) All the T(I) are assumed to belong to some set ENT of all

possible entries in the table, and, for each element Q of ENT, we

are given HASH(Q), the hash index of Q, which is between 1 and L

inclusive. If no collisions exist in the hash table, we have

{(T(K) = H(HASH(T(K))), K .IN. (1..N)), (H(K) = 2,

K .IN. ((1..N). J). SET(HASH(T(K)), K .IN. (1..N)))))

If collisions do exist — that is, if HASH(T(D) = HASH(T(J))

for some I 4 J — then we must have a collision handling method.

Let us assume that ae,ch T(K) is always kept in H, rather than in

some auxiliary list space, and that there is a function COLL(Q, J)

giving the index of the J-th "try" at placing Q in the table. That

is, if H(HASH(Q)) 4 Z, then we try H(C0LL(Q, 1)), H(COLL(Q, 2)),
and so on in this order, until we find J such that H(COLL(Q, J)) =
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Z, and this is the point at which Q is placed. For convenience,

we let COLL(Q, 0) = HASH(Q) for each Q. Our assertion is now

(CBI(J, (1..D), T(K) = H(C0LL(T(K)f J)), (H(C0LL(T(K), II))

4 Z, II .IN. (0..J))), K .IN. (1..N))

Let us call this assertion HTA(H, L, T, N). It is preserved by

hash table insertion routines, and is assumed to be true whenever

a hash table search is performed© For the simplest collision hand

ling method (linear with wraparound) we have C0LL(Q, J) = HASH(Q)

+ (££ HASH(Q) + J £ L then J else (J-L)); the following routine

searches a hash table under these conditions I

C HTA(H, L, T, N), L > N

I = HfcSHOO

C HTA(H, L, T, N), (X 4 H(C0LL(X, J)), Z 4 H(C0LL(X, J))),

C J .IN. (O..I-l-HASH(X)+(if I .IT. HfcSH(X) then X else 0)))

1 IF (X .BQ. H(D) GO TO 2

IF (X .EQ. Z) GO TO 3

1=1 + 1

IF (I .IE. L) GO TO 1

1=1

GO TO 1

C X = H(I)

2 CONTINUE

...

C (X 4 T(K), K .IN. (1..N))

3 CONTINUE

When a hash table, as above, is used to associate information

with the quantity being hashed, then the basic hash table as-
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sertion must be modified. For example, there may be a second

hash table H2, also of length L, as well as N further entries

T2(K), 1 < K £ N$ each T2(K) is a quantity which we wish to as

sociate, in some way, with the corresponding T(K), and this is

done by placing T2(K) in H2 as H2(KK) where T(K) has been placed

as H(KK). The assertion that all these quantities have been pro

perly placed is

((EI(J, (1..D), T(K) = H(COLL(T(K), J)),

T2(K) = H2(C0LL(T(K), J)), (H(COLL(T(K), ID)

4 Z, II .IN. (0..J))), K .IN. (1..N))

We may now substitute this assertion for HEA(H, L, T, N) in

programs such as the one displayed above.
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10-3 Permutations and TMsertadness

In proving the correctness of programs which rearrange data,

such as sorting and merging programs, certain assertions are made

whose properties depend on a study of permutations. The simplest

of these is the assertion that an array has been sorted. Let us

consider the following array of four elements with values given:

A(l) = 13 A(2) = 19 A(3) = 11 AOf) = 16

If we were to sort this array and place the sorted results in a

new array B, without changing the original array, we would have

B(l) = 11 B(2) = 13 B(3) = 16 BOf) = 19

Here we clearly must have B(l) £ B(2), B(2) £ B(3), and B(3) £
B(*f), or, in the terminology of section 10-1, ASC(B, 1, *f). But
to prove the correctness of a program which performs this sorting,

it would be a mistake to regard the above relations as the entire

final assertion. If we did that, then a "sorting program" which

terminated in the above case with

B(l) = 1 B(2) = 2 BO) = 3 BOf) = h

would be Just as "correct." We also need to know that B(l) = AQc),
for some value of £ with 1 £ x £ *f$ and similarly B(2) = A(x),
B(3) = A(g), and BftO = A(jf). Moreover, we must know that x, £,

&* and w, are all distinct.

Let us refer to 3, v., a, and w. as £(1), £(2), £(3)* and fCf),

respectively. Then B(£) must be equal to A(£(i)), for 1 £ A £ **•
The values of the function f lie between 1 and h inclusive, and
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they are all distinct, which means that £ is a permutation on the

integers 1 through *f. In the case above we have

f (1) = 3 f (2) = 1 f (3) = If f (If) = 2

We could just as easily have written here A(i) = B(g(i)), for

g(l) = 2 g(2) = ^ g(3) = 1 gCf) = 3

and 1 £ i £ h. The function & is also a permutation; it is the

inverse of £, and £(&(!)) = *(£&)) = I for 1 £ i £ h.

Using the terminology of section 7-3> we may write

(EP(P, (1..N)), (A(K) = B(P(K)), K .IN. (1..N)))

as the assertion that the elements of the array B are a rearrange

ment of the elements of A, where N is the number of elements. That

is, "there exists a permutation, call it P, on the integers 1

through N, such that A(K) = B(P(K)) for each K, 1 £ K £ N." We

denote this assertion by PERM(A, B, N). If Afe) = B(g), 1 £ £ £ N,

then certainly PERM(A, B, N) holds, because we need only to set

Pfe) = 2S for each 2> this is the identity permutation. Thus

PERM(A, B, N) becomes an initial as well as a final assertion in

a program to sort the array A into the new array B© It is not sur

prising that, in many sort programs, It is also an intermediate

assertion; that is, it remains true as the sort progresses.

Now suppose that, instead of placing our sorted results in a

new array, we are sorting an array in place. In this case, just as

in section 6-2, we must introduce new variables into our program

for the sole purpose of allowing us to state our assertions proper-

ly. If the array A is being sorted, we may invent a new array —

call it AO — with AQc) = AOfe) for 1 £ x. < N, where the dimension
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of A is N. This is then our initial assertion, and our final as

sertion is PERM(A, AO, N) (as before,, this is also true at the

start of the program), as well as ASC(A, 1, N). It is to be noted

that this subterfuge is necessary only when the program contains

no other known array, or its equivalent, which contains the values

of the elements of A. For example, if a file is read into memory

and sorted, we have the same data in two places — in memory and

on the file — and so our assertion:nay;dlmp3gr be that each vari

able Ate) is at some unique place within the file.

We now prove that PERM(A, B, N) is preserved by an inter

change of two elements of the array A; that is, we shall show

that the verification condition of the path

C PERMCA, B, N), 1 £ I, I £ N, 1 £ J, J £ N

T = A(I)

A(I) = A(J)

A(J) = I

C PERMCA, B, N)

is valid. This prototype situation may then be applied to an

arbitrary interchange sort program, in which an array is sorted

by successive interchanges. (For an in-place sort, we take B to

be the same as AO above.) Let £ be the permutation whose existence

is implied by PERM(A» B, N) at the beginning of this path; we wish

to find a permutation £ which will make PERMCA, B, N) true at the

end of the path. The definition of £ in terms of £ is as follows:

£(£> -id). &(i> = £(1)* *<fc> = £<k> fwkiiitia^k^N)

where £ and j, are the respective values of I and J (note that the

values of I, J, and N are not changed in the above path). If x 4
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i, i, then Afe) = B(f (x.)) = B(g(x.)) at the beginning of the path;

since A(x.) is not changed anywhere in the path, this relation

still holds true at the end. If A(I) =B(£(I)) and A(J) =B(£(J)) ^
at the begin/ling of the path, then by forward substitution we

obtain A(I) = B(£(J)) = B^d)) and A(J) = B(£(I)) = B(g(J)) at

the end of the path© This completes the proof. s

Let us now prove the correctness of a typical interchange

sort routine. We use PERM and ASC as above; PERM(A, AO, N) will

be preserved throughout the algorithm (except during the inter

changes themselves). The routine is as follows:

DIMENSION A(q)

C N£ 2, N^^, (A(K) = AO(K), K .IN. (1..N))

1=1

C 1 £ I, I < N, N £ fl, PERM(A, AO, N), ASC(A, 1, I)

1 IF (A(I) .GT. A(I+D) GO TO 2

1=1+1 }

IF (I .NE. N) GO TO 1

GO TO 3

2 T = A(I)

A(I) = A(I+1)

A(I+1) = T

IF (I .EQ. 1) GO TO 1

1=1-1

GO TO 1

C PERM(A, AO, N), ASC (At 1, N)
3 CONTINUE

This routine looks through the a? ray A in the forward direc tion

for an adjacent pair of elements (A(I), A(I+D) which are out of

order. It is always assumed that the elements A(l) through A(I) ;
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are in ascending order, so that, if I becomes equal to N, the

array is sorted. If the pair (A(I), A(I+D) is found to be In

order, then I is increased by 1; if this pair is out of order,

it is interchanged and I is decreased by 1.

There are five control paths, as followst

Path 1 C N > 2, N£ a, (A(K) = AO(K), K .IN. (1..N))

1 = 1

C 1 £ I, I < N, N < a, PERMCA,,A0, N), A?CtA, 1, I)

Here 1 £ I follows from 1 = 1; 1< N follows from I = 1 and N£ 2;

N£ a is unchanged by the path; and ASC(A, 1, I) is ASC(A» 1/ 1)»
which is always true. (Formally, ASC(A, 1, 1) is CA(K) £ A(K+1),

K .IN. (1..0)), which follows since (1..0) is the null set.) The

fact that PERMCA* AO, N) is implied by the initial assertion here

follows from our discussion of the identity permutation.

Path £ C 1 £ I, I < N, N£ a» PERMCA, AO, N), ASC(A, 1, I)

CI £ X, X £ a, 1 £ X+l, 1+1 £ Ql

CA(I) £ A(I+D)

1=1 + 1

(I 4 N)

C 1 £ I, I < N, N £ a» PERMCA, AO, N), ASC(A, 1, I)

The restrictions in the path are all clearly implied by the ini

tial assertion. The inequality 1 £ X Is preserved because I in

creases, and N £ n is also preserved. The initial assertion I < N

becomes 1+1 < N, or I £ N, and since I 4 N in the path, we must

have I < N at the end. The assertion PERM(A, AO, N) is unchanged

by this path. Finally, ASCCA, 1, I) at the beginning of the path,
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together with A(I) < A(I+1), give ASC(A, 1, 1+1) (by the first

definition of ASC, given above), and then I is increased by 1,

giving ASC(A, 1, I) again. ^

Path 2. C 1 < I, I < N, N £ a, PERM(A, AO, N), ASC(A, 1, I)

CI £ I, I £ n, 1 £ 1+1, 1+1 £ a3

(A(I) £ A(I+D)

1=1 + 1

(1= N)

C PERM(A, AO, N), ASC (A, 1, N)

Again, the restrictions in the path are implied by the initial

assertion, and PERM(A, AO, N) is unchanged by the path; and, just

as in the previous path, ASC(A, 1, I) holds at the end. Since I =

N, this becomes ASC (A, 1, N).

Path Jfc C 1 < I, I < N, N < 39 PERMCA, AO, N), ASCCA, 1, I)

CI £ I, I£ a, 1£ I+l, I+l £ 2p 1
CA(I) > A(I+l)

ci £ i, i £^i

T = A(I)

ci ^ i, i £ a» i £ i+i, i+i ^ a3

A(I) = A(I+1)

A(I+l) a T
(I = 1)

C 1 .< I, I < N, $ £ a, JFERM(A» AO, N), ASC(A, 1, I)

There are four restricted commands in this path, and all the re

strictions are implied by the initial assertion, since I does not

change during the path. The assertions 1 <J I, I < N, and N < n

are likewise unchanged during the path. The fact that PERM(A, AO, /
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N) is preserved in a sequence like this follows from our discus

sion earlier in this section. Finally, ASC (A, 1, I) is ASCCA, 1,

1), which, as we noted before, is always true.

Path 5 C 1 £ I, I < N, N£ a» PERMCA, AO, N), ASCCA* 1, I)

CI £ I, I £ a* X £ I+l, I+l £ n.3

CA(I) > A(I+X))

Cl£ If I <fl3

T = A(I)

CI £ X, X£ a, 1 £ I+l, I+l £ A3

A(I) « A(I+1)

CI £ I+l, I+l £ A3

A(I+1) » T

(1*1)

1=1-1

C 1 £ I, I< N, N£ A> PERMCA, AO, N), ASC(A, 1, I)

Here we must have had 2 £ I at the beginning of the path (since

1 £ I and I 4 1), and therefore 1 £ X-at the end. The inequality

I < N is preserved since I decreases; the inequality N^gis also

preserved. P91M(A, AO, N) is preserved here just as it was in the

preceding path. Finally, we may write ASC (A, 1, I) at the beginning

of the path as A(I-l) £ A(I) together with ASC(A, 1, I-D« Then

ASC (A, 1, I-l) is preserved by the first three assignments in this

path, since it is a condition only on values A(g) for &£ I-lo

When I is decreased by 1, this becomes ASC (A, 1, I) again. Thus

the sort program is partially correct.

The loop expression for this sort program is a bit more com

plex than the loop expressions we have considered so far. It is
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the total number of pairs (A(I), A(J)) which are currently ou£

of order. We shall call this the unsortedness of the array A;

it is very commonly a loop expression in sort programs. Formally, a

it may be expressed as *

SUM(if(I < J, A(I) > A(J)) then 1 else 0,

I .IN. (1..N), J .IN. (1..N))

Notice that this is an integer expression which cannot be negative.

We shall now prove, for the prototype control path discussed ear

lier in this section (in connection with preserving PERM(A, B, N)),

that the unsortedness of the given array is always less aj. the end

fif £he path than i£ wag. at tjg. beginning, provided that A(I) and

A(J) were out of order to begin with. That is, we shall prove this

with the additional assertions I < J and A(I) > A(J) at the begin

ning of the path.

Clearly the pair (I, J), which was out of order, is placed in ^

order by the given operation; this decreases by one the number of

pairs out of order. We complete the proof by showing that for any

pair (I, x) which is in order and is put out of order by the in

terchange of I and J, the pair (J, x.) will be out of order and

will be placed in order; a similar statement may then be proved

if we start with a pair (J, x) which is put out of order, and hence

there can be no further net increase in the unsortedness. Let (I, j&)

be in order; then either 2 < I 2nd- Afe) £ ^(1), or else * < 2 and
A(I) < A(x). In the first instance, £ < J since I < J, and so

(I, s) cannot be put out of order by the transposition. In the

second, in order for (I, x.) to be put out of order, we must have

x < J. By hypothesis, A(I) > A(J), and since A(I) < A(x.) we must

have A(x.) > A(J). But this shows that (J, x.) is out of order be- l
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fore the transposition, and in order after it. As mentioned before,
»

a similar argument holds in reverse, and the proof is thus complete©
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10-h The Tree Sort

Most of the more advanced sorting methods in existence have

timings proportional to n logg a, where a *s the number of items

being sorted© One of these methods is the tree sort, which has the

additional advantage of being an in-place sort requiring no re

cursion and relying entirely on interchanges©

The tree sort works with what may be called a "simulated

tree©" That is, there is no actual tree structure in memory, and

no pointers; the elements of the array (which we shall again call

A) to be sorted are simply considered as belonging to an abstract

tree, as follows*

A(l)

A(?)^ ^A(3)^
AOf) ^A(?) A(6)^ JA(7)

A(8) A(9) A(10) A(ll) A(12) A(13) AOM A05)

/wwwwwww^
and so on. Note that there is an arrow from each A(i) to A(2i)

and to A(2i+1), unless 2i (or 21+1, respectively), is larger

than the size of the array. Putting it another way, there is an

arrow from each A(i/2) to A(i), for i £ 2, where the division is

performed without rounding©

The first step in the tree sort is to rearrange the array

A, by means of interchanges, in such a way that every Path in

the above tree is sorted in descending order. That is, we must

have A(i/2) > A(i) for each i £ 2. This is done by calling a sub

routine whose correctness we will now prove. The remainder of the
•^*\



tree sort is postponed until section 20-5, when we shall be able

to apply certain facts about subroutine parameters. In fact, the

correctness of the main routine which calls this subroutine de

pends in an essential way upon the method by which the parameters

are called.

The subroutine is called SIFTUP. It has two parameters, I

and N. When it is called, it assumes that all paths in the above

graph involving A(I+1) through A(N) are sorted in descending order;

after it is done, all paths involving A(I) through A(N) are sorted

in descending order • This means that after the main program calls

SIFTUP(I, N), it decreases I by 1 and calls SIFTUP(I, N) again.

The initial value of I in the main routine is N/2, because there

are no paths in the graph involving A(N/2) through A(N); after

SIFTUPd, N) has been called, all paths in the entire graph will

be in descending order, and, in particular, AQ.) will be the lar

gest element of A.

We shall not attempt to explain how SIFTUP works, but shall

simply give the program with its assertions:

SUBROUTINE SIPTUP(I, N)

C 1 £ 10, I £ N, N £ a, I = io,

C (A(E/2) £ A(K), K .IN. (2*10+1..N)),

C EP(P, (1..N)), CA(II) a A0(P(II)), II .IN. (1..N))

COPY = A(I)

1 J a 2*1

C ((I = 10, (A(K/2) £ A(K), K .IN. (2*10+1..N))) .OR.

C (I > 2*10, A(I/2) > COPT, A(I/2) £ A(I),

C (A(K/2) > A(K), K .IN. (2*I0..N)))), I £ N, 2*1 = J,

C (EP(P, (1..N)), COPY = A0(P(I)), (A(II) = A0(P(ID),

C II .ill. ((lo.N) .D. (I)))), 1 < 10, N^a

IF (N-J) If, 3, 2
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2 IF (A(J+1) .IE. A(J)) GO TO 3

J = J + 1

C ((I = 10, (A(K/2) £ A(K), K .IN. (2*I0+1..N))) .OR. ^
C (I > 2*10, A(I) £ A(J), A(I/2) > COPY, Att/2) > A(I),

C (A(K/2) > A(K), K .IN. (2*I0..N)))), I = J/2, 2*1 £ J, J < N,

C ((2*1 < N, A(J) = MAX(A(2*I), A(2*I+1))) .CR.

C (2*1 = N, A(J) = A(N))), (EP(P, (1..N)), COPY = AO(P(D),

C (A(II) = A0(P(ID), II .IN. ((1..N) J). (I)), 1 £ 10, N£a

3 IF (ACJ) oLE. COPY) GO TO h

A(I) = A(J)

I = J

GO TO 1

if A(I) = COPY

C EP(P, (1..N)), (A(ID =A0(P(ID), II oIN. (1©.N)),

C (A(K/2) 2 A(K), K ©IN. (2*10..N))

RETIBN y

END

Since the array A is being sorted in place, we must, as be

fore, introduce another array AO, such that the elements of A are

a rearrangement of the elements of AO both before and after SIFTUP

is executed. In addition, we have introduced a variable 10 to stand

for the initial value of I, since SIFTUP may change the value of I.

As before, a denotes the total amount of space reserved for the"

array A.

In order to simplify the proof, we make the following abbre

viations:

Al a (1 £ 10)

A2 = (I = 10) ^)

A3 = (I £ N)
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Jp^1

a^- = (n £ a)

A? a (A (5/2) £ A(K), K .IN. (2*10+1..N))

A6 = (EP(P, (1..N)), (A(II) = A0(P(ID), II .IN. (1..N))

A7 = Ui 2*10)

A8 = (A(I/2) £ A(D)

A9 « (A(K/2) £ A(K), K .IN. (2*I0..N))

A10 = (2*1 = J)

All =» (A(I/2) > COPY)

A12 = (EP(P, (1..N)), COPY = AO(P(D), CA(II) = AO(P(II)),

II .IN. ((1..N) J>. (I))))

A13 = (J > N)

Alk « CBP(P, (1..N)), ((££ II = I iJjea COPY ejjg. A(II)) «

A0(P(ID), II .IN. (1..N)))

A15 a ((j£ K/2 = I then COPY else A(K/2)) £ (i£ K = I then

COPY else A(K)), K .IN. (2*10. .N))

A16 a (J = N)

A17 = CACD 2 ACJ)

A18 a CI = J/2)

A19 = C2*I £ J)

A20 a CJ £ N)

A21 = C2*I < N)

A22 = CACJ) = MAX (A(2*1), AC2*I+1)))

A23 a C2*I = N)

A2*f = CACJ) = ACN))

A2? = CJ < N)

A26 = CACJ+1) £ ACJ))

A27 = CACJ+1) > ACJ))

A28 = CACD 2 ACJ+1)

A29 - Ci = (J+D/2)
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A30 = (2*1 < J+l)

A31 = (J+l £ N)

A32 = (A(J+1) = MWC(A(2*I), A(2*I+1)) ^

A33 = CA(J+1) a A(N))

A31* = (A(J) £ COPY)

A3? « (A(J) > COPY) ~

A36 = (J 2 2*10)

A37 = ((££ J/2 = I then A(J) elgg. A(J/2)) > COPY)

A38 a ((if J/2 = I then A(J) elge A(J/2)) £ A(J))

A39 = (U£ K/2 = I then A(J) else ACK/2)) £ (££ K = I then

A(J) else A(K)). K .IN. (2*I0..N))

A*fO = (BPCP, C1..N)), COPY a AOCPCJ)), C(if II = I then

ACJ) eige. A(ID) = AO(P(II)), II .IN. ((1..N) ©D© CJ))))

CThese are initial and final assertions of control paths

in this program© The ones which are final assertions have been

obtained by substitution.)
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There are seven control paths. The first

one starts at the beginning of the program; its hypotheses are the

assertions Al, A2, A3, Ah? A?, and A6. Its conclusions are:

((A2 and A?) p£ Z), where we shall not spell out Z because

A2 and A? are true anyway;

A3, which is preserved;

2*1 a 2*1, which is obvious;

CBP(P, (1..N)), A(I) = AO(P(D), (ACID = AOCPCH)), II ©IN.

CCU.N) J). (I)))), which reduces to A6j

and Al and A*f©, which are preserved.

The second control path starts just following statement

number 1 and proceeds immediately to statement number *f. Its hy

potheses are ((A2 and A?) ffi (A7* All, A8, and A9)), A3, AlO, A12,

Al, A*f, and A13. Its conclusions are Al1*, which reduces to A12,

and A15. If A2 and A? are true, then A2 and AlO give (2*10..N)

a (J.iN), and this is thfli null Bet by AX3* s$ that Inhere ia/notfeing

to prove.inaA15» Otherwise, we cannot have K/2 a I for K in

(2*10..N), because then K a 2*1 or K a 2*1+1, and 2*1 = J > N by

AlO and A13. Hence Al? reduces to (A(V&) £ COPY, (A(K/2) £ A(K),

K ©IN. ((2*I0©.N) J). (I)))), and this is implied by All and A9o

The third control path starts at the same point as the

second, and proceeds immediately to statement number 3© Its hypo

theses are ((A2 and A?) p£ (A7, All, A3, and A9))» A3, AlO, A12, Al,

Ah-, and Al6. Its conclusions arei

((A2 aM A?) px (A7, A17, AX}* A8, .ajft A9))© Here if A2 and

A5 are true initially, they are preserved. Otherwise A7, All, A8,

and A9 are preserved, and it only remains to prove A17« By AlO,

A17 becomes A(J/2) > A(J), and this becomes A(N/2) £ A(N> % Al6.

But this is true by A9f :

A18, which is true by AlO;
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A19, which is true by AlO;

A20, which is true by Al6;

((A21 and A22) p£ (A23 and A2W). A23 is true by AlO and Al6,

and A2*f is true by Al6;

and A12, Al, and Ahf which are preserved.

The fourth control path starts at the same point as the se

cond and third, and proceeds to statement 2 and then to statement

3 (without executing J = J + 1). Its hypotheses are ((A2 and A?)

pr (A7, All, A8, and A9)), A3, AlO, A12, Al, A*f, A2?, and A26.

Its conclusions aret

((A2 ajr& A5) ox (A7, A17, All, A8, ajfi A9)), which is true

just as in the preceding path, except that Al6 no longer holds,

so that A(J/2) £ A(J) does not become A(N/2) £ A(N), but A(J/2)

> A(J) is still true by A9, A25, A7, and AlO;

A18 and A19, which are true by AlO, just as before;

A20, which is true by A25j

((A21 and A22) pr (A23 an£ A*-)). A21 is true by AlO and

A2J. We have AC2*I+1) £ AC2*I) by A26 and AlO, so that A22 re

duces to ACJ) = AC2*I), which is true by AlO;

and A12, Al, and A*f, which are preserved.

The fifth control path starts at the same point as the se

cond, third, and fourth, and is the same as the fourth except

that J a j + 1 is executed. Its hypotheses are ((A2 and AJ) p£

(A7, All, A8, and A9)), A3, AlO, A12, Al, A*f, A25, and A27« Its

conclusions ares

(CA2 and A5) P£ CA7, A17, All, A8, and A9)), which is true

just as in the preceding path;

A29, which is true by AlO Crecalling that the division is

performed without rounding);
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A30, which is true by AlO;

A31, which is true by A25;

J*v ((A21 and A32) pjr (A23 §nd A33)K A21 is true by AlO and

A25. We have A(2*I+1) > A(2*I) by A27 and AlO, so that A32 re

duces to A(J+l) a A(2*1+1), which is true by AlO;

and A12, Al, and A**, which are preserved.

The sixth control path starts at statement number 3 and

goes immediately to statement number *f. Its hypotheses are ((A2

and A5) pr (A7, A17, All, A8 a^d A9)), A18, A19, A20, ((A21 §M

A22) p£ (A23 an&A2*f)), A12, Al, A^, .and AS1*-© Its conclusions are AlV,

which reduces to A12, and A15. If A22 is true, then COPY £ A(2*1)

and COFY£ A(2*I+1) by A22 and A31*-; otherwise, J a N by A19, A20,

and A23, so that COPY £ A(2*I) by A3h and A23, and 2*1+1 > N.

If A2 is true, then I is not in (2*I0..N), and otherwise A(I/2)

> COPY by All© This takes care of the cases K/2 a I and K=Iin

f^ A15, and the other cases all follow from A? or from A9, one or the

other of which must be true.

Finally, the seventh control path starts at statement number

3 and goes back to statement number 1. Its hypotheses are ((A2 and

A?) fSL CA7, A17, All, A8, and A9)), A18, A19, A20, ((A21 and A22)

pr (A23 and A2*f)), A12, Al, A*f, and A35» Its conclusions arex

(2 fi£ (A36, A37, A38| aj^A39)>t?whe*e.;we shall not spell out

Z because the other aljbernative will always hold© In fact, A36

follows from A19 together with either A2 or Xf\ A37 reduces to

A3? by A18; and A38 becomes A(J) £ A(J) (which is obvious), again

by A18© If A22 is true, then A(J) 2 A(2*I) and A(J) £ A(2*I+1) by

A22; otherwise, A(J) £ A(2*I) by A23 and A2*f, and 2*1+1 > N. If
*

A2 is true, then I is not in (2*I0..N), and otherwise A(I/2) £

A(J) by A8 and A17© This takes care of the cases K/2 a I and K a
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I in A39, and the other cases all follow from A? or from A9j

A20, which is preserved;

2*J a 2*J, which is obvious; ^%

A*K), which is derived from A12 by taking P in A*fO (call it

PP) to be PP(I) = P(J), PP(J) = P(D, and <P*(K) a P(K), K .IN.

((1..N) .D. (I, J))). We have COPY = AO(P(D) a AO(PP(J)), A(J) *

= AO(P(J)) = AO(PP(II)), and (A(K) = AO(P(K)) a AO(PP(K)), K .IN.

((1..N) .D. (I, J))), from A12, which implies A*fO;

and Al and A^-, which are preserved.

In all of these paths except the third, there are restric

tions due to the use of subscripted variables. In the first path,

these restrictions follow from assertions Al, A2f A3, and A*f© In

all the other paths, we make use of the fact that either A2 or A7

must be true. In the second path, Al, A3, and Ah are also needed;

in the fourth and fifth paths, A25, AlO, and Al; and in the sixth

and seventh paths (which use both A(I) and A(J)), assertions Al, J

A19, A20, and A**-. This completes the proof of partial correctness.

The termination of this program follows from the fact that

N-J is a loop expression when loops are measured from statement

number 3© Every loop must pass through statement number 3| the

expression 1W is bounded at that statement by assertion A20; and

its value must decrease every time we go around the loop, since

N does not change while J can only strictly increase — at state

ment number 1, which must be executed, and at J = J + 1© In fact,

at statement number 1, J is doubled, and it is. therefore increased

(since Jai>lo>ObyAl and either A2 or A7). Thus our program

is correct.
»

The SIFTUP program is short (only ten executable statements),

but of high complexity. It was obtained only after considerable

thought, and the complexity of its proof should not be surprising.
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lO-J Merging and Exchanging

A different kind of permutation is used in proving the

correctness of a program which merges two sorted arrays A and B

to produce a single sorted array C. Three pointers, which we shall

call I, J, and K, are kept in such a routine. The elements A(l)

through A(I-l) and the elements B(l) through B(J-l) have presu

mably already been merged to form the elements C(1) thro ugh C(K),

and K a (I-l) + (J-l), or I+J-2. Our permutation P will be on the

set (1..K), and, for each element X of the set (1..M.) we will

have A(X) = C(P(X))$ that is, each element of A, below:the I-th

element, is contained in C somewhere below the K-th element© Each

element of B below the J-th element is also contained in C, and

these J-l elements of B are keyed to the permutation P by writing

B(X-(Z-D) for X in (I..K). Thus our assertion is

EPCP, (1..K)), CACX) = CCPCX)), X .IN© C1..I-D),

CBCX-CI-D) = CCP(X)), X ©IN. (I©.K)), K = I+J-2

We shall denote this assertion by MERGE(A, B, C, I, J, K).

The following program merges the sorted arrays A and B to

form the sorted array C, in the manner suggested above. The length

of A is M and the length of B is N. In order to determine the K-th

element of the new array, we look at the I-th element of A and

the J-th element of B; the smaller of these two, in the given

order, becomes the new K-th element of C. In addition, if the

smaller element came from A, then I is increased by 1; otherwise,

J is increased by 1. As soon as we are finished with A or with B,

we copy the rest of B (or, respectively, A) into C. The program

may be written as follows i
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DIMENS ION A(in), BQi), C(p.)

C ASC(A, 1, M), ASC(B, 1, N), M > 0, M£ fl, N > 0, N £ n, M+N < p.

1 = 1

J a 1

K = 0

c 1 £ I, I £ M, M < m, 1 £ J, J < N, N £ fl, M+N £ p.,

C ASC(A, 1, M), ASC(B, 1, N), MERGE(A, B, C, I, J, K),

C (K = 0 .CR. (K > 0, C(K) £ A(I), C(K) < B(J), ASC(C, 1, K)))

1 K a K + 1

IF (A(I) < B(J)) GO TO 3

C(K) = B(J)

J = J + 1

IF (J .IE. N) GO TO 1

C 1 < I, I < M, M £ 1, ASC(A, 1, M), J = N + 1, N £ £, M+N £ £

C MERGE(A, B, C, I, J, K), K > 0, C(K) £ A(I), ASC(C, 1, K)

2 K a K + 1

C(K) = A(I)

1=1 + 1

IF (I .IE. M) GO TO 2

GO TO ?

3 C(K) = A(I)

1=1 + 1

IF (I .IE. M) GO TO 1

C 1 £ J, J < N, N £ a, ASC(B, 1, N), I = M + 1, M£ m, M+N £ £

C MERGE(A, B, C, I, J, K), K > 0, C(K) £ B(J), ASC(C, 1, K)

h K = K + 1 *

C(K) = B(J)

J = J + 1

IF (J .IE. N) GO TO h '

C MERGE(A, B, C, M, N, M+N), ASC(C, 1, M+N)

? CONTINIE - ^l^ -



As the value of K increases, the permutation whose exis

tence is implied by MERGE(A, B, C, I, J, K) expands its domain

and range and takes on new values, although its old values remain

the same. To see how this happens, let us examine a typical con

trol path in the above routine:

C 1 £ I, I £ M, M£l, 1 £ J, J£ N, N£2J, M+N £ £,

C ASC (A, 1, M), ASC(B, 1, N), MERGBCA, B, C, I, J, K),

C CK a 0 .OR. CK > 0, CCK) £ ACD, CCK) £ B(J), ASC(C, 1, K)))

K = K + 1

Cl£ I, l£ffl, l£ J, J£S3

CACD £B<J))

CI £ J, J £ a, 1 £ K, K £ nl

C(K) =.B(J)

J = J + 1

(J£ N)

C 1 £ I, I £ M, M £ 1, 1 £ J, J £ N, N £ n., M+N £ j&,

C ASC(A, 1* M), ASC(B, 1, N), MERGBCA, B, C, I, J, K),

C (K a 0 .CR. (K > 0, C(K) £ A(I), C(K) £ B(J), ASC(C, 1, K)))

This control path involves statement number 1 aM the four state

ments which Immediately follow it. The restrictions in the path

all follow from the Initial assertion (remembering that MERGE(A,

B, C, I, J, K) implies K = I+J-2). Back substitution yields the

following conclusion (omitting the case K = 0, which never happens):

i £ i, i £ m, m £ a, i £ j+i, j+i £ n, n £ a,

MfN^£, ASC(A, 1, M), ASC(B, 1, N), EP(P, (l.JC+1)),

(A(X) » (J£ P(X) = K+l infill B(J) eige. C(PCX))), X .IN.

C1..I-D), CBtt-Cl-D) =» (if PCX) a K+l then BCJ) else

CCPCX))), X .IN. CI..K+1)), K+l = I«£*a-*,
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K+l > 0, B(J) < A(I), B(J) < B(J+1),

(K = 1 .CR. (ASC(C, 1, K), C(K) £ B(J)))

to be derived from the initial assertion and the conditions

A(I) £ B(J) and J+l £ N (using the modified value of J) occur

ring in the path. The last condition arises from writing ASC(C,

1, K) in the final assertion as ASC(C, 1, K-1) and C(K-l) £ C(K),

and then applying back substitution, remembering to separate out

the case K = 1.

Of all these final assertions, 1 £ I, I £ M, M < m, N < £,

M+N£ P., ASC (A, 1, M), ASC(B, 1, N), and (K = 1 .CR. (ASC(C, 1,

K), C(K) £ B(J))) are clearly preserved, while B(J) £ A(I) and

J+l £ N are conditions found in the path. Also, 1 £ J+l follows

from 1 £ J; K+l = I+J+l-2 follows from K = I+J-2; K+l > 0

follows from either K = 0 or K > 0, one of viiich must be true;

and B(J) £ B<J+l) follows from ASC(B, 1, N), 1 £ J, and J+l £ N.

This leaves only the assertion about the existence of a permu

tation with certain properties. If the assertion in the hypothe

sis (on the set (1..K)) is denoted by P, and the assertion in the

conclusion Con the set (1..K+1)) by PP, then we may determine PP

in terms of P as follows J

PPCK+1) = K+l, (PP(KK) = P(KK), KK .IN. (1..K))

The conclusion about the permutation PP then reduces to

(A(X) = C(P(X)), X ©IN. (1..I-D), .(B(X-(M.)) = C(P(X)),

X ©IN© (I..K)), B(K+1-(I-D) = B(J)

and this reduces to the initial assertion. In particular, K+l-

(1-1) = J, because K = I+J-2 initially.

- lfl6 -



Another sorting-related process is that of exchanging. We

shall use this term, as it is often used, to refer to

\ a process whereby two pointers, initialize d to point to the be

ginning and the end of a table respectively, move toward each

other, ultimately meeting in the middle of the table, and, every

so often, the elements of the table to which they point are ex

changed. We shall present the exchange process which is used as

the first stage in the radix exchange sort, another fast in-place

sorting method.

The effect of our exchange process will be to get all nega

tive elements of the array A in front of all positive elements.

Successive stages of the program then sort the negative elements

and the positive elements separately. CThe sort actually acts on

a single bit of the sort key; the first stage acts on the leftmost

bit, which is taken to be the sign bit. If unsigned quantities are

being sorted, this first stage of the sort would be different.)

The program is as follows:

DIMENSION AQj)

C N^lf N£A

1*1

J = Nfl

C 1 £ I, I < J, J £ N+l, N£ £, (A(K) <,0* K .IN.

C (1..I-D), (ACK) £ 0, K .IN. CJ..N))>

1 IF CACD .(E. 0) GO TO 3

^ 2 I a I + 1

IF CI ©IE© J) GO TO 1

00 TO h

f* C 1 £ I, I<J, J£ N+l, N£,fl, CMK) 3,0f K .IN.
C C1..I-D), CACK) £ 0, K ©IN. CJo.N)), ACI) £ 0
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3 J = J - 1

IF CI #EQ. J) GO TO h

IP CA(J) .GE. 0) 00 TO 3

T = A(I)

A(I) = A(J)

A(J) = T

GO TO 2

C (A(K) < 0, K .IN. (1..I-D), (A(K) £ 0, K .IN. (I..N))

1*. CONTINUE

Note the slightly unsymmetrical treatment of I and J. This is ne

cessary because, among other things, when Iand Jare equal, A(I)
must be either the last negative element or (as in this version of

the algorithm) the first positive element of A.

Let us abbreviate our assertions here as in the preceding

section:

Al = (N £ 1)

A2 = (N £ s)

A3 = (1 < *M.>

A^ = (1 £ I)

A5 = (I < J)

A6 = (J £ N+l)

A7 = (A(K) < 0, K ©IN. (1..I-D)

A8 = (A(K) £ 0, K .IN. (J..N))

A9 = (A(I) £ 0)

AlO = (A(I) < 0)

All = (I + 1 * J)

A12 = (1 £ I + 1)

A13 = (I + 1 < J)
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Al*f = (A(K) < 0, K .IN. (1..D)

Al? = (I + 1 = J)

A16 = CACK) £ 0, K .IN. (M..N))

A17 = CACK) £ 0, K ©IN. Cla.N))

A18 = CACJ-1) Z 0) :

A19 = CJ - 1 £ N + 1)

A20 = CACK) > 0, K .IN. CJ-1, N))

A21 = CACJ-1) < 0)

A22 » U + 1 4 J - 1)

A23 » C(if K = I than ACJ-1) filge ^KW-l then

A(I) §2aSL A(K)) < 0, K ©IN. (1..D)

A2M- a C(££ K a I then A(J-l) else if K = J - 1 tften

A(I) else A(K)) £ 0, K ©IN. (J-1..N))

A25=(I + 1-J-1>

A26 = C(££ K a I then A(J-l) else J£ K = J - 1 then

A(I) ej.se, A(K)) £ 0, K ©IN. (I+1..N))

For convenience, we list only the hypotheses and the con

clusions in the verification condition of each control path;

showing that the conclusions actually follow from the hypotheses

will be left to the reader©

Control path 1 starts at the beginning of the program and

ends at statement number 1. hypotheses are Al and A2© Conclusions

are A3, A2, and the tautologies 1 £ 1, N+l £ N+l, CACK) < 0,

K ©IN. (1..0)), and (A(K) £ 0, K ©IN. (N+1..N)).

Control path 2 starts at statement number 1 and ends at

statement number 3© Hypotheses are A1*, A?, A6, A2, A7, A8, and A9©

Conclusions are the same as the hypotheses.

Control path 3 starts and ends at statement number 1.

Hypotheses are A*f, A?, A6, A2, A7, A8, AlO, and AH© Conclusions
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are A12, A13, A6, A2, Al**, and A8©

Control path h starts at statement number 1 and ends at

statement number k-. Hypotheses are A1*, A?, A6, A2, A7, A8, AlO,

and A15© Conclusions are Al*f and Al6o

Control path 5 starts at statement number 3 and goes im

mediately to statement number *f© Hypotheses are Ah, A?, A6, A2,

A7, A8, A9, and A15© Conclusions are A7 and A17«

Control path 6 starts and ends at statement number 3» Hy

potheses are A*f, A5, A6, A2, A7, A8, A9, All, and Al8© Conclu

sions are A*f, A13, A19, A2, A7, A20, and A9«

Control path 7 starts at statement number 3, passes through

statement number 2, and ends at statement number 1© Hypotheses

are A*f, A?, A6, A2, A7, A8, A9, All, A21, and A22. Conclusions

are A12, A13, A6, A2, A23, and A2^.

Finally.; control path 8 starts at statement number 3, pas

ses through statement number 2, and ends at statement number h9

Hypotheses are A^+, A?, A6, A2, A7, A8, A9, All, A21, and A25o

Conclusions are A23 and A26©

There are restricted commands in control paths 2, 3, **-, 6,

7, and 8© In each case, the restrictions follow from assertions

A*f, A59 A6, and A2. Thus the program is partially correct©

To prove that the program is correct, we notice that J-I is

a loop expression© This program is noteworthy in that, although

there are several loops in it, there is one loop expression for

all of them©
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NOTES

The remarks on timing in section 10-1 are related to the

idea of termination, although not in a straightforward manner.

That is, if we prove the partial correctness of a program, using

a final asssertion which says that the program terminates in e_

steps (where £ is some expression in the variables of the pro

gram), this still does not prove that the program terminates; it

only proves that j£ the program terminates, it does so in e. steps.

Timing proofs may, however, be modified so as to constitute valid

proofs of termination, as is done in section 3»8 of CGood 703©

The binary search program of section 10-2 was used in

CFloyd 711 as an example illustrating the operation of an in

teractive program verifier; Deutsch has written a verifier which

proves the correctness of this program CDeutsch 733.

The fact that a sorting program is not proved correct until

it is proved that the sorted values are a rearrangement of the

original values was noted in CLondon 703 and in CHoare 71b3. The

use of an array of initial values of the variables to be sorted,

not appearing explicitly in the original program to be proved cor

rect, appears in CLondon 703; the theorem concerning the preser

vation of the PERM assertion when an interchange is performed was

first noted (although not formally proved) in CHoare 71b3©

The tree sort of section 10-^ was originally written by

Floyd CFloyd 6*f3 and proved correct by London CLondon 703© Exer

cise 10, below, is based on CHoare 71b3©
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EXERCISES

1. Complete the proof of correctness of the linear search ^%

routine given at the beginning of section 10-10

2. Insert into this linear search routine the assertions

concerning its timing which are given near the end of section

10-1, and prove the correctness of the resulting program, thus

proving that this routine is linear in N.

3» Prove, using the methods of section 10-1, that the

binary search routine of section 10-2 is logarithmic. (In other

words, show that the total number of steps taken by this routine

is bounded from above by an expression of the form a log N + b,

and from below by another such expression.)

*f. Prove the correctness of the hash table routine of sec

tion 10-2©

5o Prove the correctness of the following program (commonly 1

known as a "bubble sort") using the methods of section 10-3*

DIMENSION A(ij)

C N £ 2, N £ n, (A(K) = A0(K), K ©IN© (1©©N))

J = 1

C 1 < J, J < N, N £ n, PERM(A, AO, N), ASC(A, 1, J)

1 I = J

Q = A(I+1)

C 1 £ I, I £ J, J < N, N £ 3,

C Q£ A(I+1), ASC(A, 1, J), (I = J ©CR. ACJ) £ ACJ+D), s
C EPCP, C1..N)), Q = AOCPCI+D),

C CA(K) = A0(P(K)), K .IN. ((1..N) J). Cl+1))) i

2 IP CQ .CE. ACD) GO TO 3 ^
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ACM.) = ACI)

1=1-1

IP CI .NE. 0) GO TO 2

C 0 £ I, I £ J, 1 £ J, J < N, N£ rH CI = 0 .OR. Q £ ACD),

C Q £ ACI+1), ASC a, 1, J), CI = J *CR. ACJ) £ ACJ+D),

C BPCP, 0—N)), Q a AOCPCI+D),

C (ACK) a AO(PCK)), K .IN. ((1..N) ©D. (I+l)))

3 ACH-1) = Q

J = J + 1

3F CJ #NB© N) GO TO 1

C PERMCA, AO, N), ASC (A, 1, N)

CONTINTE

CNote that it is np£ necessary to use unsortedness to prove that

this program terminates©)

6© Find lower and upper bounds for the number of steps Cexe-

cutable statements) taken by the program above, and prove that

these are in fact the bounds. CHlntt The program is fastest when

the given array is already sorted; it is slowest when the array

is sorted in reverse order©)

7© The loop in the SIFTUP program of section 10-4 contains

an unconditional GO TO statement© Such a loop can usually be

shortened; in fact, we could rewrite this program as

SUBROUTINE SIPTUPCl, N)

core « ACD

GO TO 7

5 IF CACJ+1) .IE© ACJ)) GO TO 6
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J a J + 1

6 IF CACJ) ©IE. COPY) GO TO 8

A(I) = A(J) ^
I a J

7 J a 2*1

IF (JM) 8, 6, 5 "

8 A(I) = COPY

RETURN

END

Produce a proof of the correctness of this program by modifying,

as little as possible, the proof of correctness of the original

program©

8© Prove that the modified program (in the preceding pro

blem) is faster than the unmodified program, by determining the

number of statements executed in each program according to the ^

method of section 10-1©

9© Complete the proof of the merge program of section 10-?©

10© The exchange process of section 10-5 may be expanded

into a program which finds the F-th element in order in an (ori

ginally unsorted) array, and simultaneously performs interchanges

in such a way that A(F) > A(G) implies F > G and A(F) < ACG) im

plies F < G, 1 £ G £ N, as in the program below© For convenience,

let

Al = CACP) ©IE. ACQ), P .IN. Clo.JM.), Q ©IN© (M..N)) ^

A2 = (A(P) ©IE. A(Q), P .IN. (1..NN-1), Q .IN. (NN..N))

A3 = (A(P) .IE. R, P .IN. (1..I-D)

A*f = (A(Q) ©GE. R, Q ©IN. (J+1.©N)) '
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Then the program is as follows. CNotei Not all of the necessary

intermediate assertions have been given.)

SUBROUTINE FIN>(A, N, P)

DIMENSION ACN)

INTEGER P, R, W

C 1 £ P, P £ N, CACK) = AOCK), K .IN© (1..N))

M= 1

NN = N

C PERMCA, AO, N), M£ P, P £ NN, Al, A2

1 IF CM ©CE. NN) GO TO 8

R a ACP)

I a M

J = NN

C PERMCA, AO, N), M£ P, P £ NN, M£ I, *J_£ *. Al, A2, A3, Ah

2 IP CI .GT© J) GO TO 6

C PERMCA, AO, N), M£ P, P £ »N,^M£TJ, J £ N, Al, A2, A3, A**

3 IF CACD ©GE. R) GO TO If

1=1 + 1

GO TO 3

C PERMCA, AO, N), M£ P, P £ NN, M£ I, J £ N, Al, A2, A3, Ah

If IF (R .GE. A (J)) GO TO 5

J a J - 1

GO TO If

5 IF (I .GT. J) GO TO 6

W = A(I)

A(I) = A(J)

A(J) = W

1=1+1
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J = J - 1

GO TO 2

6 IF (F .GT. J) GO TO 7

NN = J

GO TO 1

7 IF (I .GT. F) GO TO 8

M = I

GO TO 1

C PERM(A, AO, N), (A(P) £ A(F), P .IN. (1..F)),

C (A(F) < A(Q), Q ©IN© (P©©N))

8 CONTINUE

Prove its correctness©
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INDEX

Absolutely pure procedure, 337
Acyclic program, 307
Algorithm

for control path determi
nation, 223-22^

for forward and back sub
stitution, 231

for local verification, 3h5
for loop expression se

quences, 323
ASC (assertion), 3®+
Assertions, 2ffJ

in loops, 25**

Back substitution, 227
Backward transfers, and con
trol points, 279

Brackets (used for restric
tions), 23*f

Branch-forward program, 307

Cauchy^ criterion, 305
Closed loop, 307
Closed loop condition, 278, 311
Control paths, 205, 311
Control points, 20^
Correctness. 20*f
and semantics, 209-215

Cycle, 307

EI, EP (functions), 268
Euclidfs algorithm, see OCD
Exists (an integer, etc.). 268
Extra variables in assertions,

215-216

FEQ (assertion), 370
Final assertion, 203
Finiteness of the number of

control paths, 311
FLA. FID, FLM, FIS (functions),

fmax and fmin. 366
Forward substitution, 226

GCD program (example). 201, 337
Globally verified, 3*w

IBA and JDA, 3**9
Inductive inference, 253
Initial assertion, 203
INRA (assertion), 372
Instruction behavior (constancy)
assertion, 3^9
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Instructions, as restricted
commands. 336

Intermediate assertion, 2W

Language of assertions, 26l
Lexicographical order of
sequences. 321

Local verification. 3^1
Loop expression, 29*f, 296
loop expression sequence, 321

Matrix multiplication (example), 31*f
max and min. 356
MERGE (assertion), H-13
Minimum increment (decrement), 299

Nonconstructive loop expression, 305
NCKM (assertion), 372
KBTEPS (special variable), 385

Offset assertions, 259, 260
Overflow, 356

Partial correctness, 208
PERM (assertion). 396
FFW (function), 365
Prime test (example), 269
Program-reduced program, 309
Pure procedure, 335

Recursive definition of asser
tions. 261

Restricted command, 23*f

SEQ (function), 325
SET (function). 265, 266
Sets, in assertions, 261
Sieve program (example)« 277
Simpson fs rule (example), 300
.ST. ("such that"), 265, 267
Straight-line programs, 307
SUM (function), 266, 267

Terminate, to. 291
Termination at a particular

point, 381
23rd-power algorithm (example),

2kS

Dhsortedness, k02

Verified purity, 3^-1
Verification conditions, 205


	Copyright notice 1973
	ERL-394 (1 of 3)
	ERL-394 (2 of 3)
	ERL-394 (3 of 3)

