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Abstract

In this thesis we present an unified approach to estimation problems,

using the theory of martingales and stochastic integrals. We analyse

the problem of absolute continuity of measures, and obtain the important

result of translation of local martingales under a change of measure.

An application of this result is the calculation of the likelihood

ratio in detection problems.

In terms of martingales we define a generalized stochastic differential

equation and an observation equation. This forms a stochastic system

which unifies the formulation for problems of observations with

Brownian motion noise and of counting process observations. The

filtering, prediction and smoothing problems are considered for the

two above mentioned stochastic systems. The least squares error

criterion is used, and we derive stochastic differential equations

for the optimal estimates. We discuss the resulting filters.
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1. Introduction

Over the last few years a number of new proofs and new results have

been obtained for problems in estimation and stochastic control.

These results concern systems with Brownian motion disturbances.

There is also a recent interest in filtering problems for counting

processes, sometimes, called doubly stochastic Poisson processes.

When one studies the methods available to solve the above mentioned

problems, then one concludes that the method that solves most of

them is the theory of martingales and stochastic integrals. In

this thesis we present an approach to a large class of estimation

problems for continuous time processes. The method we use is the

theory of martingales and stochastic integrals. We discuss both the

method and the class of problems in more detail.

Martingales and stochastic integrals.

As indicated in the book by Doob [1953] on stochastic processes,

there are three main classes of processes: 1. independent increment

processes; 2. martingales; and 3. Markov processes. Although in this

thesis martingales play aprominent role, the other classes are impor

tant but in an implicit form. The early work on martingale theory, as

can be found in Doob [1953], deals mainly with martingale inequalities

and the martingale convergence theorem.' Further work by Meyer [1966]

deals with the decomposition of martingales. The relevant martingale

theory for this thesis consists of the new developments concerning

the stochastic integral. The concept of stochastic integral with

respect to Brownian motion was developed by Ito [1944]. In a series

of articles, the main ones being [Kunita,Watanabe,1967], [Millar, 1968],

[Doleans-Dade,Meyer,1970], the concept of stochastic integral has been
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extended to a class of martingales. A related important result in

applications is the differentiation formula, giving the role for

martingale calculus. A complimentary result to this development

is the so called martingale representation theorem, which gives a

representation of certain martingales as a stochastic integral.

Together these new results are the tools in our analysis of

estimation theory. We will call this method the martingale approach.

Estimation problems.

The classical problems considered in estimation are detection,

filtering, prediction, smoothing and identification. Except for

identification we will discuss all of these. If for estimation

problems we consider the least squares error criterion, then the

optimal estimate is the conditional expectation of the unknown

variable given the a-field generated by the past of the observed

process. This property forms the connection between estimation

problems and martingales. We will show later that certain processes

and their conditional expectation are related in a natural way with

associated martingale processes.

The basic goal.

The basic goal of this thesis is the following:

To analyse and solve estimation problems with martingale theory.

We will define a general stochastic system model in terms of

martingales, that covers both the system with Brownian motion

disturbances, and that with counting process observations. We will

derive for this stochastic system a solution to several estimation

problems, namely detection, filtering, prediction and smoothing. This
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way we construct a general theory that handles a large class of

estimation problems. The stochastic control problem is not dis

cussed here. For systems disturbed by Brownian motion it was con

sidered by Davis,Varaiya [1973]. The extension to other processes

is under investigation.

The results.

We have only partially succeeded in attaining the above stated

goal. The restrictive factor, which is the key to the specific

results, is the martingale representation theorem. This theorem

has only been proven if the underlying process is Brownian motion

or a Poisson process. For these two cases we derive the solution

to the detection problem, and a;stochastic differential equation

for the optimal filtering estimate. The main contribution of this

thesis is the frame work of martingale theory that is relevant in

estimation problems. We comment further on the results in Chapter 7.

Outline of contents.

In chapter 2 we give the mathematical preliminaries, mainly the

theory of martingales and stochastic integrals. We shortly summarize

the main definitions and results, such as to introduce an unified

notation and an easy reference for the reader.

In chapter 3 we discuss the problem of absolute continuity of measures,

its characterization in terms of martingales, and the translation of

martingales under a change of measure. These results have important

applications, such as the detection problem which is discussed in

section 3.4.

In chapter 4 we consider generalized stochastic differential equations,

and give a new definition of a stochastic system. We also consider
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the projection of processes on a family of a-fields, which includes

the concept of innovation process.

In chapter 5 we approach the general estimation problem. After a

review of the literature, we present the elementary concepts of

estimation theory. We then give the elementary results for filtering,

prediction and smoothing.

In chapter 6 we derive in detail the filtering formula's for the

observation equations with Brownian motion disturbances and for

counting process observations. The prediction and smoothing formula's

are also derived. Finally a discussion of the martingale approach

to estimation problems is given.

In chapter 7 we conclude our work with a discussion and conclusions.

Notation.

In all chapters, except chapter 2, we number all definitions,

theorems and other results consecutively. The first two digits of

this label indicate the section in which it is located. In chapter

2 we have labelled every statement and omitted the section labelling.

All real and vector valued variables are denotedby lower case symbols.

Matrix valued variables are denoted by capital symbols.

J+_



2. Stochastic processes, martingales and stochastic integrals.

^ 2.1. Introduction

This chapter contains the mathematical preliminaries, necessary

'* for our investigation of estimation theory. We will state the

main definitions and results, so as to give an easy reference of

* notation to the reader. Slight extensions of some results and some

new definitions are also given. All items are numbered for

reference, a method we have adopted from Meyer. We start with some

concepts from the theory of stochastic processes, and martingales.

Since Brownian motion and the Poisson process play an important

role in this thesis, we discuss them in Section 2.4. In the fol

lowing section we define stochastic integrals and discuss its

properties. In the last section we state a number of martingale

representation theorems, which play a crucial role.

The topics presented in this chapter form the essential points of

martingale theory. The application of these results we will call

the martingale approach.

2.2. Stochastic processes.

In this section we will introduce the main definitions and notation

concerning stochastic processes. Although the basic reference to

stochastic is Doob's book [1953], we will use concepts introduced

;-i by Meyer and his co-workers in the context of martingale theory.

The relevant references are Meyer's book [1966], a subsequent article

* [1968], and primarily the book by Dellacheric [1972]. See also the

first two chapters of the new book by Meyer [1972]. The following

concepts are denoted by the term general theory of stochastic processes.
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We will number the following definitions and results for easy

reference.

o-fields.

1. Let &,F,P) be a probability space, and let F be complete with

respect to P.

2. Let T C R, be the time interval of interest, usually we will take

T = [0,») or T = [0,1].

3. (Ft,t e t) is a family of a-fields satisfying:

a. Sub-a-fields of F : F,.C F, for all t€ T,

b. increasing : if s< tthen Fg CFt»,

c. right continuous : H F = F for all t £ T
s>t s z

d. FQ contains all the null sets of F.

Arbitrary families of a-fields will be understood to satisfy all

these conditions.

4. Define F = V F., i.e. the a-field generated by the union of
ter

(Ft,t e t).

Stochastic processes.

5.. A stochastic process x = (xt, t€ T) is a collection of random

variables, indexed by the parameter t £ T.

Scalar or vector valued processes will be denoted by scalars,

matrix valued processes by capital letters.

6. The stochastic process (x^t G T) is said to be adapted to the

family (F ,t G T), if for all t G T, xfc is Ft measurable.

[Meyer, 1966,IV,D31]. Notation (xt,Ft,t £T), and this notation

will always imply that x is adapted to (Ft,t ^ T).

7. If x is a stochastic process, then (Fxt,t € T) will always denote
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the family of sub-a-fields generated by x, i.e. Fxt = a(xg,Vs<t)

We always take the right continuous family (*xt+»t E T>» where

F , = n F .
xt+ s > t XS

8. If a stochastic process x has sample functions, which, for all

most all to, are right continuous, and have left hand limits for

all t€T, then Ax =xt -xt_ is called the jump of xat time

t. x. = lim x .

fc" s+t S
8a. Two stochastic processes x and y, defined on the same probability

space («,F,P), and taking values in the same measurable space,

are called modifications of each other if xfc * yt a.s. for all

t € t. [Meyer,1966,IVD5].

Stopping times.

9. A random variable x taking values in T, is called a stopping

time 6f a given family (Ft>t€ T) if for all t€T :

{a) e G|x(w) < t} € F . If T - [0,~ ), T may take the value «.

[Meyer,1966,IV,D33]. There exists a classification of stopping

times, for a detailed account see [Meyer,1966,IV,VII;1968;

DelIacherie,1972,III].

10. If (Ft,t G T) is an increasing family, and if x is a stopping

time of it, then F & {A G FJA O {w G q|t(-) <t} S Ft, V t€ T}
x .

F » Frt V {A H {w € filt < x(w)}|A € F^., for some
x- 0

t € T}. [Dellacherie,1972,III,D27].

11. (F ,t € T) is called quasileft continuous if F^ = Ft_ for all

predictable stopping times x. [Deilacherie,1972,III,D38].

12. If (x ,F ,t G T) is a process, x a stopping time with respect to

(F ,t € T), then xtAx « xt I(x>t) + xt I(x<t) is called the

process x stopped at x. I. is the indicator function.
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13. Using stopping times, many properties of processes are

characterized locally. That is, there exists an increasing

sequence of stopping times {x }, lim x = °° a.s., such that for
n

all n, the stopped process x has a certain property. This
n

procedure of proving certain properties locally, will be referred

to as a stopping time argument.

14. If x is a right continuous adapted process, having left hand

limits then:

1. x charges a stopping time x if P(xt ^ x^_, x < ») > 0,

2. x has a jump at x if x f x a.s. on the set {x<»}

[Dellacherie,1972,IV,29].

15. An adapted right continuous stochastic process x, having left

hand limits, is called quasi-left continuous if it satisfies

one of the following equivalent conditions:

1. the jump times of x are totally inaccessible,

2. x does not charge any predictable stopping time,

3. if {x } is an increasing sequence of stopping times, then
n

lim x ° x. . a.s. on the set {lim x < »}.
n n n

[Dellacherie,1972,IV,T32].

a-fields on T x ft.

16. The a-field j? on T x ft generated by all left continuous adapted

processes on T x ft, is called the predictable a-field.

[Meyer,1972,I,5].

17. The a-field W on T x ft generated by all right continuous adapted

processes that have left hand limits, is called the well

measurable a-field. [Meyer,1972,I,5;Dellacherie,1972,IV,T26]

18. A stochastic process (xfc,F ,t £ T) is called predictable (well
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4.

measurable), if it is measurable with respect to (T x ft,p)

(respectively (T x ft,W)). It follows that any left continuous

adapted process is predictable, and any right-continuous adapted

process well measurable. Under certain conditions, processes

have a well measurable or predictable projection, see

[Dellacharie,1972,V].

Increasing processes.

19. The real-valued process (at,t e T) is cabled an increasing

process if:

1. an • 0, 2. for all most all w the sample paths of a are

increasing with T: if s < t, then a < a a.s., 3. a is

sample right continuous.

We define the following classes:

20. BV « {a|a is an increasing process},

21. BV = {a|a « a- - a2, a^ a2 G BV }, aG BV is called a process

of bounded variation.

22. IV+ » {a e BV+| sup E(a )<»}, IV as BV from BV+. a£ IV is
t^T t

called a process of integrable variation.

23. LIV+ -{a €BV+| 3^TnJ» lim T =°° a*s'» Vn :atAx GIV *'
n n

LIV, a € LIV is called a process of locally integrable variation.

Integration.

24. If a6 IV then L. (a) ={<|>|<j> adapted, predictable, E[f U | |daJ]
l Jt

< «»}

25. If a € IV, <(> € L.(a) then (1 $ da ,F ,t G t) is an adapted welli JQ s 8 t

measurable process, the integral is well defined

[Dellacharie,1972,IV,39].
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26. It is known that the predictable projection of a process of

bounded variation need not be of bounded variation. However

the following is true.

27. If a € IV , then there exists unique processes a €• IV , well

measurable, a € IV ,predictable such that for every positive

*GVa)' E[f *sdas] sElJ VSo1 "E[jT<,,8daps]- a"'aP ^
called the dual well measurable, respectively the dual predictable

projection of a. [Dellacherie,1972,V,t28].

2.3. Mart ingales.

In this section we introduce certain classes of martingales, and the

main results of martingale theory. The points given here were developed

by Meyer, the main references are Meyer tl966], Kunita, Watanabe [1967],

Doleans-Dade,Meyer [1970]. In the following let T = [0,«), and we

suppose that some family of a-fields (Ft,t^T) is given, satisfying

the usual conditions.

1. The stochastic (m ,F ,t € T) is a martingale if:

1. it is adapted, 2. E|m |<« for all t^T, 3. E[m |Fg] = mg

a.s. for all t,s £ T, s < t.

We introduce the following classes of martingales:

2. M- = {m|m is a right continuous adapted stochastic process, having

left hand limits, m = 0, m is a martingale with respect to some

specified family (F ,t £ T), and uniformly integrable.}.

3. M~ ={m € M- |sup E(m^) <«}
a ter fc

4. M„ = {m S M«|m is sample continuous}.

5. M = {m|m is a right continuous adapted stochastic process,

m_ = 0, and there exists an increasing sequence of stopping times

{x } , lim x = «> a.s., such that for all n, on the set {x > 0},
n n n

n

tATn 1 -10-



6. M? - {m G M' |m is sample continuous}.

7. M?1 = {m G M- | there exists {x }, lim xn = °° a.s., such that

for all n, in A G M„}.tAxn 2
8. Martingales in the above classes are called martingales, or

local martingales with adjectives integrable, square integrable,

sample continuous, or locally square integrable where suitable.

9. Martingale theory was developed by Doob and Meyer. Attention

focused mainly on supermartingales and M2 martingales. Because

these classes are quite restrictive, the class of local-martingales

was introduced, apparently first by ifco, Watanabe [1965]. Kunita,

Watanabe [1967]also used local-martingales, which are locally

square integrable martingales (M^, ) according to our definition.

Doleans-Dade, Meyer [1970] distinguished between the classes M

and M„, . Note that we have m!: = Mov which can be proven
21oc loc 21oc

by a stopping time argument. However M * M„_ Doleans-Dade

has given a counter-example.

Decomposition of martingales.

10. The martingales m,n G M- are called orthogonal iff (mtnt,Ft,t G T)

G M- [Doleans-Dade,Meyer,1970,Th.7.]. If m,n G M2, then they

are orthogonal iff mn G M-. Similarly m,n G M«- orthogonal

iffmn€Mloc.

11. MT = {m G Mjm is orthogonal to all n G M2}, such m is called

d iscontinuous.

12. Md ={m GM- |m is orthogonal to all nGm£ }.
d i c13. M?1 = {m G u |m orthogonal to all n G M.- }.

c d
14. If m G M, then there exists an unique decomposition m = m + m ,

loc

where mC G M? ,m G M? [Dolean-Dade,Meyer,1970,Th.7.].
loc loc
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If mGM2, then mC GM2, m° GM° [DD-M,1970,Th.4.].

15. If (F ,t G T) is quasi-left continuous, than every mG m1qc is

quasi-left continuous. Hence the jumps of m are totally

inaccessible [Dellacherie, 1972,V,T42].

16. If m.G M? H BV, then m = 0 a.s. [Dellacherie,1972,V,T39].

17. If m G M H BV and predictable, and if (Ft,t G t) is quasi-left

continuous then m = 0 a.s. This follows because by 15 m charges

only totally inaccessible stopping times, but since it is also

predictable, it must be continuous. Then the result follows

by 16.

Increasing processes and martingales.

18. Two processes a-i ,a? e IV are called associated iff they have

the same dual predictable projection [Dellacherie,1972,V,D35].

19. Two adapted processes a19a2 G iv are associated iff (ait-a2t»Ft»t G t)

G M1 [Dellacherie,1972,V,T36].
+ +20. Given an adapted a- G iv and a predictable a„ £ IV . Then a2

is the unique dual predictable projection of a- iff a., and a2 are

associated iff <alt-a2t,Ft,1: E T) G Mi* [Dellacherie,1972,V,T38].
+

Note that this result can be extended to the classes IV, LIV , LIV.

21. If a2 is the dual predictable projection of an adapted process

a-, then a« is sample continuous iff a., is quasi-left continuous

[Dellacherie,1972,V,T40].

Martingales and associated increasing processes.

23. If m G M2 is real valued, then there exists an unique predictable

increasing process (<m,m> ,F ,t G T) G iv , such that

-12-



(m2-<m,m> , F ,t GT) GM-. [Meyer, 1966,VIII23]. <m,m> will
V t t' t i

be called the predictable quadratic variation of m.

24. If m,n GM£ then define <m,n> =•2(<m+n»m+n> " <m,m> - <n,n> ).
25. If mGM2 is vector valued, then <m,m> is matrix valued and

defined element wise (< m ,m > ).

26. If m 6Mfl1 then there exists an unique predictable process
Zloc

<m,m> G LIV+ such that (m*-<m,m>t ,Ft,t GT) GM^. The
proof of this follows by a stopping time\ argument from 23.

27. If m G M, and if m = mC + m is its unique decomposition, then
loc

define [m,m]. = <mc,mc> + £ (Am )z. It will be called the

well measurable quadratic variation. It is well known that

[m,m] < - a.s. for all t G T [Doleans-Dade,Meyer,1970,Th.7.]

Note that because m£qc =M21qc, <mC,mc> is well defined.

28. If m,n G M. , let [m,n] = -? ([m+n,m+n] - [m,m] - [n,n]), then

also [m,n] =<m ,n >t + 2^ (Am )(An ).
t ^,_ s s

s<t

29. Both [m,n] and (m,n) , whenever they exist, have a characterization

in terms of limits of sums of the quadratic variation of the

process [Meyer,1967,II].

30. It will be shown later (2.5.25) that if m,n G M- then

(mtnt-[m,n]t,Ft,tGT)GMloc.

31. Note that if m G M2, then both the well measurable [m,m] and the

predictable quadratic variation (m,m) are well defined and

([m,m]t - <m,m>t, F ,t G T) G m^ [Doleans-Dade,Meyer, 1970,Th5.]

33. We therefore define: If m,n G ML and if [m,n] G LIV then we

denote the unique dual predictable projection of [m,n] by <m,n> .

A characterization for <m,n) is, that it is a predictable process,

adapted, of bounded variation and that ([m,n] -(m,n)t>Ft,t G T) ^

-13-



M. .* The existence and uniqueness follows from (2.3.20).
IOC

We will show later that there exists a case where m^M21oc»

but still such an <m,n> exists. (2.5.21).

33. If (F ,t G T) is quasi-left continuous, then if <m,m> exists,

it is sample continuous (by 2.3.21). <mc,m >is always

sample continuous.

The class M2loc*

In subsequent chapters we concentrate our attention on martingales

in the class M«- . It is therefore of interest to obtain a suf-
Zloc

ficient condition for a martingale to be in M21oc«

34. The martingale mG Mloc is in M21oc if either of the following

is true:

1. E(m )2 <« for all tG T.

2. [m,m] G LIV+.

Proof. 1. is obvious and 2 follows immediately because [m,m] is

2
locally integrable and m - [m,m] G M .

Semi-martingales.

35. An adapted stochastic process (xt,Ft,t G T) is called a semi-

martingale if xt = xQ + at + mt, where aG BV, mG M^. The

class of such processes is denoted by SM. [Doleans-Dade,Meyer,

1970, § 3;Meyer,1971b,D7]. Almost all processes we will

encounter in this report are semi-martingales. An important

subclass are those for which the process of bounded variation

is predictable.

36. The decomposition of the semi-martingale is not unique, however

there are certain intrinsic properties: xQ is unique, since

an = 0, mn a 0. The continuous part of the local martingale

-1U-



mC is unique given the family (F^t^T), Hence we define

x° = mC. Note however that this is not the sample continuous

part of X, since a can be sample continuous too. Axfc is also

unique. [Doleans-Dade,Meyer,1970, § 3,5].

37. Because of the above intrinsic properties we can define:

if xG SM them [x,xk &<xC,x°> + £ (Ax )2 G BV+. Both

terms are well defined. Furthermore «x°»x^ t»Fxt >t: € T^ is
adapted and unique. To prove this we use the differentiation

rule 2.5.23., xf =x2 +( 2x dx +<xc,xC> +£ fox )
t y Jo s<.t

This implies that (l*C**C)t**xtft e T) is adaPted» and the
uniqueness follows similarly. If x has two different

decompositions with respect to different families of a-fields,

xt =at +mt =at +mt> where (mt,Ft,t eT)6 M1qc, (*t>Fxt»t G T),
/ C C\ / C C\ / *C *C\ T£

then the above implies that \m ,m / = \x ,x / = \m ,m / . it

x = m then [x,x] = [m,m].

38. If x = a + m, a G BV, m G m. , and a is sample continuous,

then [x,x] * [m,m]. This is true because the continuous part

of a does not show up in the definition of [x,x]. If x = a + m

= a+m, where a and a are sample continuous, then [m,m] = [x,x]

= [m,m], irrespective of the family of a-fields to which they

are adapted.

2.4. Brownian motion and counting processes.

Brownian motion is a natural phenomenon, the existence of which was

first published by Brown 1827. He observed 'small particles in rapid

oscillatory motion.' For a detailed account on Brownian motion see

Nelson [1967]. This book discusses Brown's discovery of the motion

and the many mathematical theories for explaining its behavior,

2
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including Wiener integrals and certain stochastic differential

equations. An interesting application is the discussion of

quantum physics from a stochastic viewpoint. In this thesis the

name Brownian motion denotes a stochastic process, defined below,

which is a mathematical model of the natural phenomenon. For

reference to the following see Wong [1971a], and Doob [1953].

1. The process (x ,t G T) is a Gaussian process iff every finite
fc n

linear combination of the form £ oux is a Gaussian random
i=l i

variable.

2. A stochastic process (wt,t G T) with values in R, is a Brownian

motion if:

1. it is aGaussian process., 2. E(wfc) = 0, for all tG T, 3.

E(w w ) = a min(t,s), where a is a strictly positive constant.

3. Under certain conditions we can choose a separable version of

the process, and this version will then be sample continuous.

4. If a = 1, we will call w standard Brownian motion in R. Standard

Brownian motion in Rn, will denote a vector valued, process,

whose components are independent standard Brownian motions in R,

so E[w (w )T] = min(t,s)I where i is the identity matrix
t s

in Rn.

5. Brownian motion has the following properties: 1. it is a process,

with stationary independent increments, 2. it is a martingale

with respect to the a-field generated by it, 3. it is a Markov

process. Brownian motion is thus a sample continuous process

that is in all the three main classes of stochastic processes.

6. The martingales characterization. Note that if T = [O,00)

(w ,F t,t G T) G M2lQc with <w,w>fc = t. If T= [0,1] then
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(w ,F ,t G T) G M^ since <w,w> is bounded,
t wt 2

7. Using the martingale characterization, there is an important

equivalent condition. If (wt,Ft,t GT) Gm^qc> and if <w,w>t =t,
then w is a sample continuous Brownian motion process.

[Kunita,Watanabe,1967,Th.2.3.]

8. The Brownian motion process belongs to another class of processes,

namely Hunt processes. This is because any process with stationary

independent increments is a Hunt process. A Hunt process is

essentially a strong Markov process, taking values in a specific

space, that is right continuous, and quasi-left continuous, and

for which the generated a-field satisfies certain conditions.

For references see [Dynkin,1965,Meyer,1967b;Blumenthal,Getoor,1968]

The only result we need is that the a-field generated by a Hunt

process is quasi-left continuous.

Counting processes.

We will now review the Poisson process, and its generalization the

counting process. These topics are needed in later chapters. Let

T = [0,°»).

9. A real-valued stochastic process (nt,t G T) is a counting process

if:

1. nQ=0,

2. n is constant, except for positive unit jumps at random times,

3. n has right continuous sample functions almost surely.

Note that the above definition implies that n is integer valued.

Since we use only the countability of the space of values of n we

could have generalized the definition, however we have not done

so.
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10. Define the stopping times xm « inf{°°,t G T|nt >. m}, for

m =' 1,2,... . These stopping times are and will be called

the jump times of the counting process n.

11. The counting process n G LIV , is locally of integrable

variation. This follows since n_ £ m.
^ m

The Poisson process.

12. A stochastic process (n ,t G t) is a Poisson process with

constant rate X if:

1. n is a counting process,

2. n has independent increments,

3. (n -n ) has a Poisson distribution, with parameter X(t-s),
t s

where X > 0 is a real-valued constant.

13. If X = 1 we call n a standard Poisson process. A standard

Poisson process n in R , will denote a vector valued process,

whose components are independent standard Poisson processes.

14. The Poisson process has the following properties: 1. n has

stationary independent increments, which is obvious from the

definition, 2. (n -t,Fnt,t G T) is a martingale, with respect

to the a-field generated by it, 3. n is a Markov process. The

Poisson process thus is in all the main classes of stochastic

processes.

15. The martingale characterization: If T = [0,«) then fat"^^^6 T)

GM2 and by definition [nt-t,nt-t]t =nt and hence <nt-t,nt-t>t

= t. If T = [0,1] then (nt~t) G jf. This implies that n and t

are associated. The martingale property follows easily from the

stationary independent increment property. Because n and t are

both in LIV , (n -t) must be a discontinuous martingale.

-18-



Because <nt-t,nt-t>t «• t, which is bounded on T= [0,1] we

have (nt-t)GM2 on T » [0,1].

16. It is interesting to compare the Brownian motion and the Poisson

process. Both are in all the three main classes of stochastic

processes: Stationary independent increment processes, martingales

and Markov processes. These classes were discussed in detail in

Doob's book [1953]. The difference between Brownian motion

and the Poisson process is in the character of the sample func

tions, the first is sample continuous, the second is discontinuous.

This is also shown in that wGM21oc and (nt-t) GM21oc*
17. There are other characterizations of the Poisson process. Such points

can be found in Ross [1970].

18. Since the Poisson process is a process with stationary independent

increments it is a strong Markov process and a Hunt process.

This implies that (F ,t G T) is quasi-left continuous.

19. Since (nt-t,Fnt,t GT) Gm21qc is adapted, by 2.3.15. (nt~t)

charges only totally inaccessible stopping times, and this

characterizes the jump times of n.

20. Using the martingale characterization we have the following

equivalent condition: if the process (nt,Ft,t G T) satisfies:

1. it is adapted, 2. it is a counting process, 3. (nt~t,Ft,t G t)

G M, , then n is a standard Poisson process. The proof will be
loc'

deferred to the end of section 2.5. Note that 2 characterizes

the sample functions of n and 3 gives the martingale

characterization.

Counting processes

Using our characterization of the Poisson process, in terms of
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martingale theory, we will now seek a similar approach for arbitrary

counting processes.

21. Given a counting process (nt,Ft,t^T) that is adapted. Then

there exists an unique predictable process (q^F^tG T) G LIV

such that (nt-qt,Ft,tG T) G M21oc. The process q is just the

dual predictable projection of n, the existence and uniqueness

follows from 2.2.27. and 2.3.20. [Dellacherie,1972,V,T28].

If (F ,t G T) is quasi-left continuous, then q is sample

continuous.

22. Although q is sample continuous under certain circumstances,

in general it is not absolutely continuous with respect to

Lebesgue measure t. However in the case where this is true

we define the following.

23. Given a counting process n, and an increasing family (Ffc,t G t)

satisfying the usual conditions, such that n is adapted to it.

If there exists a process (X ,Ft,t G t), satisfying Xfc >_ 0 a.s.

for all tG T, and 1 Xgds <« a.s., such that M Xgds,Ft,t G t)

G M.. , then we call X the rate of the counting process n with
loc*

respect to (F ,t G T).

Note that if such a process X exists, then it is unique almost

surely by 2.2.27. It is necessary to specify the family of

o-fields with respect to the rate process, as will be seen later.

Since the process a = I X ds is increasing, we see that it is

necessary that X >_ 0 a.s.

24. If (F.,t G T) is quasi-left continuous, then the jump times of the

counting process are totally inaccessible.

25. Let m. = n. - \ X ds, then if X is the rate process,
c z Jo
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.•k.

(m ,F ,t G T) G M„„ . Furthermore by definition [m,m] - n
v t t 21oc t *-

and hence (m,m) • V X ds.
c JO s

2.5. Stochastic Integrals.

In this section we define stochastic integrals. We start with a

short review on the development of stochastic integrals. We are

interested in defining integrals of the form 1 <J>sdxg. As usual

we call <j> the integrand process, and x the process with respect to

which we integrate. If x is a process of bounded variation, and

<J) satisfies certain integrability conditions, then we can define the

integral to be a Lebesgue-Stieltjes integral. However this does not

work if x is not of bounded variation, which is the case if x is a

Brownian motion process. The first to consider such integrals was

Wiener, but he dealt with a limited case and did not really integrate

the process. (See Wiener [1958]). Ito [1944] was the first one to

define stochastic integrals. He considered the case where x is a

Brownian motion process, and <J> an adapted process in a suitable class.

An important property of this integral is that it is martingale.

Next we have to mention the decomposition theorems of Meyer for square

integrable martingales. Using this result Kunita,Watanabe [1967]

defined stochastic integrals with respect to square integrable

martingales. Their work is based on earlier articles by Motoo,

Watanabe [1965], and Watanabe [1964], where similar integrals were

defined for functionals of a Markov process. Meyer [1967,I/IV]

discusses the work of Kunita, Watanabe. The latest main contribution

to the theory of stochastic integrals is the article by Doleans-Dade,

Meyer [1970], where stochastic integrals are defined for arbitrary

local-martingales and a general differentiation rule is given. See
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also the subsequent survey articles Meyer [1971a,b]. The main

new idea is that stochastic integrals with respect to martingales

should be considered as a mapping of martingales into martingales.

The class of integrand processes which makes this true is precisely

the class of predictable processes, satisfying certain integrability

conditions. This idea of defining stochastic integrals to be

martingales was published earlier by Millar [1968]. His work is an

extension to the continuous-time case of some results by Burkholder

[1966] for the discrete-time case. The forth coming book by Meyer

on martingales and stochastic integrals of which the first two

chapters have been published [1972], will undoubtedly contain these

points in detail and should become a major reference.

Integrand processes.

We define several classes of integrand processes, we limit attention

first to real-valued processes. The main reference for this chapter

is [Doleans-Dade,Meyer,1970] which we will abbreviate by [DD-M,1970]

1. If a G iv then

L (a) o {(<frt,t G T) |<p is adapted, predictable, and

E[f |<|> |•|da |] <«}. The family of a-fields to which <j) is
adapted is specified in each individual case.

2. If mG M2- then L2(m) = U|<{> adapted, predictable,

E[f Us|2d<m,m> g] <-}.
3. If mGM21qc then L21oc(*0 = U|* adapted, predictable, and

there exists an increasing sequence of stopping times t^},
SJn 2U | d<m,m> ] < «»}

A °4. If mG M- HLIV then Llloc<m) = f*l+ adapted, predictable,

and there exists an increasing sequence of stopping times
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T
$11

l*sl"ldmsl]< °°}#
5. A process 4 is called locally bounded if there exists an

increasing sequence of stopping times {Tn>, lim Tn = °° a.s.,
n

such that for all n, 1^ .I(xn >0)|<Mr <°°, where the (Mn)
n

are real positive constants.

6. LB = {<j)|<|> adapted, predictable and locally bounded}.

7. A process *G LB is called a predictable locally bounded process.

This class is somewhat restrictive, as has been indicated by

Doleans-Dade,Meyer, but will undoubtedly be extended later on.

This is also the reason for introducing the classes Lnoc(m),

L0, (m) above.
21oc

8. The most usefull example of a locally bounded process, is the

following, if x is a right continuous adapted process, having

left hand limits then (xt_,t G T) G LB. Note that if aG LIV

or mG M- ,then afc_ and mfc_ G LB.

9. For multi dimensional processes the definitions are similar using

appropriate norms in Rn and (♦* d<m,m>s *8) instead of <j>g d<m,m>s.

Stieltjes and stochastic integrals.
/•t

10. If a G IV, 4 G L..(a) then the Stieltjes integral (I <l> dag,t G T) G IV
1 rtJo

11. If aG BV, <|> G LB then the Stieltjes integral (I $sdas>z e T) G BV,

is well defined [Meyer,1971b,D3].

12. If m G M. H IV, cj> G L-(m) then the Stieltjes integral
Jt

* dm ,F„,t G T) G M, n IV [DD-M,1970,prop.2].
0 s s z x

13. If mG M2, <J> G L2(m), then there exists an unique element

(d>.m) = (f <t> dm ,F^,t G T) G M„, called the stochastic integral,
9 Jo s s z 2 ct

such that for all m± GM2: <(<J>.m), m1>t =I <|)sd<m,m1>s
[DD-M,1970,th.3]. Also for all m1 GM2: [(<|).m) ,m1]t =V^gdtm^lg

-23-
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[DD-M,1970,th.6],

14. If mGM HIV, 4G L2(m) Hl^ib) then the Stieltjes integral

and the stochastic integral coincide [DD-M,1970,prop.3].

15. If m G M- , <j> G LB, then there exists an unique element
t

(♦.m) =(C 4> dVFtjt GT) GMlQc, called the stochastic integral
)o s rz

such that for all n^ Gm^: [(4 .m) .blJt =I^[m,*^

[DD-M,1970,prop.5].

16. If mG M21 ,4€L2- (m) then there exists an unique element

(<f>.ffl) GM2lQc such that for all m± GM21oc, <(♦.*).m^ «
$<J> d(m,m1 > .
0s x s

loc nLi" Y""lloc
(J%8dn,8,Ft,t 6T) €Mloc nLIV.

18. The last two assertions follow by a stopping time argument from

13 respectively 12.

19. The extension of the above definitions to multi-dimensional

processes is straightforward. Care should be taken in handling

the quadratic variation process.

20. Examples, the definitions 16 and 17 are given to define:

If w is a standard Brownian motion, 4e L21oc^' then

(f 4dw ,F ,t €T) €m2- =M^ . If nis astandard Poisson
process, then (nt-tfFnt,t e T) eM21qc HLIV, <nt-t,nt-t>t =t.

If *GLnoc(nt-t) then (J^V^^nt^ GT) €̂ nLIV.
Note that <J> € LUoc(t) implies that <j>.€ Llloc'(nT-t) since

E[f n|* |- Idn.-dall 1E[\ U |-(dn+ds)] =E[\ U |'2ds] <-.
Jo 8 Jo J0

21. Example: We can now give an example, that even if m^,m2 G M^qc»

but not in M01 , a predictable process <m.,,m9> as defined in
Ai. OC J- «

2.3.31. exists. Let n be a standard Poisson process, then

Jo
17. If m e M n LIV, <t> e L, (m) then the Stieltjes integral
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(Vt,Fnt,C ET) e M21oc- Let *GLlloc(t)' SUCh that
mt -f4>8(dn8-ds) GMJoc but not in M^

JO /»t
[m,n -t] * I ♦ dn , which is in LIV by definition of <J>. It

z z Jo 8 S ft
has the dual predictable projection <m,nt-t>t »1$8ds.

22. Let xG SM with the decomposition xt = xq + at + mt* where

a G BV, m G m, . Let <J> e LB then we define by 11 and 15
loc t

\ 4> dx • <|>n . xn + 1 $ da + I 4> dm . All terms are well

defined and the integral is again a semi-martingale.

[Meyer,1971b.,D.8].

The differentiation rule.

23. If x e SM in Rn, and if f : Rn "• R is a twice continuously
? 2

, df ,3f 3f v df , 9 f x
differentable function, with -3- = Or— ,... -5—- ;, —« - U a„ )dx 3xx 3xn dx2 3xi3xj ±j
then f(x) G SM of the form:

f(xt) -f(xQ) +̂ §(x8J dxs +£\ Tr[ £| (xs.)d<xC,xc>8]
+ T. [f (x )-f(xo ) - ~ (xe ) Ax 1 [DD-M,1970,th.8].

*-* L N s s- dx s- s
8J<t

where Tr(») denotes the trace of a matrix. From this equation

the appropriate scalar and multi-dimensional function forms can

be derived. An easy extension is to functions f(t,x ), where

f(t,x) is once continuously differentable in t. We give some

special cases:

24. If x,y G SM in R then

xtyt =xQy0 +f xs_dys +f y8_dxg +[x,y]t We will refer to
this as the product rule.

25. A special case of this is if m1»m2 G M1qc then

Now

m, m„
It 2t

$t *t

Qmls- dm2s +)Q m2s- dmls GMloc"
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2 C*26. Also if m G M. then ni - [mtm]. • V 2nT dm which gives a
loc t t Jq s- s

2
characterization of m - [m,m] and also of [m,m].

27. Example: We can now prove the sufficiency condition for a

counting process n to be a Poisson process as stated in 2.4.20.

Let T • [0,1], the extension to T = [0,°°) follows by a stopping

time argument. ,Since n G liv , it is a semi-martingale and by

the differentiation

iun_ iun.
assumption (n -t,F ,t e T) e M., We apply

iun iun *t fun
z »e 8+ \ iue T~ dnT + L (" T—

Jo
iun

rule: e = e +1 iue dn + Z^ (e -e
Jo S<T<t

T-- iue AnT)« Rearranging gives

iu(n-n), _ iu(n -n ) iuAn
E[e * 8 |FJ -1+ E[ L e T S (e T-l) |F ]

8<T<t

» 1

+e teiu(nT.-„8)(eiu_1)dnjF8]
Js

r
Js

. r- iu(n -n )
-1+(elu-l) \ E[e T" 8|Fs]dx

This is an integral equation with solution

iu(n -n) ,
E[e |F ] = exp((t-s)(e -1)) This implies that n has

s

stationary independent increments, and (n -n ) has a Poisson
t s

distribution with rate one, so n is a standard Poisson process.

2.6. Martingale representation.

In the previous section we have seen that stochastic integrals can

be considered as a mapping of martingales into martingales. An

important question now is, is this mapping onto, or in other words

do certain martingales have a representation as a stochastic integral

with respect to a given martingale. The first to consider this

question implicitly was Ito [1951b]. He considered square integrable
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„e»

functionals, on the a-field generated by a Brownian motion process,

and obtained a representation as a stochastic integral with respect

to the Brownian motion. Doob [1953,p.449] also considers this

question, but does not specify the underlying process that generates

the a-field. Under certain conditions the existence of a Brownian

motion is shown with respect to which the martingale representation

exist. Wong [1971] has given an extension of this result to local

martingales. The result by Ito was extended by Kunita, Watanabe [1967].

Their work is based on previous articles by Motoo, Watanabe [1965] and

Watanabe [1964], who first derived a representation result for certain

functionals of a Markov process. Kunita, Watanabe [1967] extended

these results to square integrable martingales. The underlying process

that generates the family of a-fields to which the martingale is

adapted, must be a Hunt process. The Brownian motion and the Poisson

process satisfy this condition. Meyer [1967III] discusses these

results. Clark [1970] independently derives a representation theorem

for local martingales on the a-field generated by a Brownian motion

process. For the case where the underlying a-field is generated by

a Poisson process, the result by Kunita, Watanabe [1967] only holds

for square integrable martingales. The extension to arbitrary local-

martingales was done by Davis [to appear]

Let (w ,t G T) be a standard Brownian motiom, and let F • a(wg,Vs £ t)

be the a-field generated by it. The family (Fwt»t £ T) will be the

underlying family of a-fields in the following theorems.

1. Theorem: [Kunita, Watanabe, 1967; Clark, 1970]. If (mt>Fwt,t G T) G

G M2, then m has the representation mt * 1 <f>gdwg » (<t>#w)t

a.s. for all tG T for an unique process (<J>t,Fwt,t G i)G L2(w).
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Then m is sample continuous.

2. Theorem:

If (m ,F ,t e T) G M„, then m has the representation m = (^'w)
t wt 21oc

for an unique process (<*>t»Fwt»t G T) GL2ioc^* Then m iS
sample continuous.

3. Theorem: [Clark,1970].

If (m ,F ,t G T) e'M, then m has the representation m = (<J>»w)
x t* wt loc

for an unique process (<*>t»Fwt»t e T) e L2loc^' Then m ±S sample

continuous.

4. Note that the given m are such that mQ = 0, otherwise consider

m - mn. Theorem 1 can also be deduced from Ito [1951]. Kunita,

Watanabe's result is more general then 1. Theorem 2 can be

deduced from 1. by a stopping time argument. Because of the

difference of the classes M. and M2- we need result 3, however

the resulting representations are the same, since m will then

c csample continuous and M. = M21 . The sample continuity

follows from the representation and cannot be asserted on fore

hand.

5. Let (n ,t G t) be a standard Poisson process, and let (F »t e T)

be the family generated by it, which will be the underlying family

in the following theorems.

6. Theorem: [Kunita, Watanabe, 1967].

If (m -F t,t G t) G ft then m has the representation
i-. nt z

m = I ^ (dn -ds) = (iir(n.-t)) a.s. for all t£T for an uniquet JQ s s t ^
process 0J> ,F ,t G t) G L2(n -t). Then m G fc-#

7. Theorem:

If (m ,F ,t G T) G m . then m has the representation m = (i|/*(n -t))
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for an unique process O^F^t* G T) G I^loc^t'O' Then mG M21qc

8. Theorem: [Davis, to appear].

If (m ,F ,t G T) G }i then m has the representation m = (^•(nt.-t))

for an unique process (t{> >F t»t G T) G Llloc(nt-t). Then

mG M? and in LIV.
loc

The martingale representation theorem plays a crucial role in derving

the results of this thesis. If we could extend the representation

result to a larger class of underlying processes that generate the

family of a-fields, then we could obtain many new results. A quite

general representation theorem was given by Kunita, Watanabe [1967]

but this works only if the martingale is square integrable, and if

the underlying process is a Hunt process. The square integrability

is an important restriction, and there are few examples of Hunt

processes, except stationary independent increment processes. An

extension pf the martingale representation theorem is thus of great

importance and a point of future research.
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3. Absolute continuity of measures and related topics.

3.1. Introduction.

In this chapter we discuss problems of absolute continuity of

measures and its relation with martingales. The main interest

is in the translation of martingales by a change of measure.

A partial converse problem is an abstract version of the detection

problem which is well known in electrical engineering. We will

analyse these problems using the martingale approach. An

important concept is the exponential formula, which was introduced

by Doleans-Dade [1970.a.]. Using this concept we will characterize

a change of measure by a local martingale. Then we can prove

the main result, theorem 3.3.5, of translation of local-

martingales by a predictable process under a change of measure.

This result is a generalization of a translation concept for

Wiener integrals, introduced by Cameron and Martin [1944],

and for Brownian motion by Girsanov [1960]. In the last section

we will show how these results apply in a special case and we

discuss the detection problem.

3.2. The exponential formula.

An important concept in the study of absolute continuity of

measures is the solution to a certain stochastic differential

equation, which is called the exponential formula. The sample

continuous version was known earlier, but the most general case

for martingales was solved by Doleans-Dade [1970 a.], which is

the basic reference for this section. A special case of the

exponential formula can be considered a martingale analogue of
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the concept of multiplicative functional of a Markov process.

3.2.1. Theorem: (Doleans-Dade, 1970a.)

If (x ,F ,t G T) is a real valued semi-martingale, xQ = 0,

then l. There exists anunique semi-martingale, (z ,F.,t G T)

t =l +(
Jo

satisfying z^ = 1 + \ z dx
S-" s

1 co "~Ax
2. z is given by z. = exp (x - •=• <x ,x > ) II (1+Ax )e s

t t £. t . S
S<t

Definition: We denote z = e(x.) and call it the exponential

formula of x.

Remarks:

1. The solution to the above stochastic differential equation is

called the exponential formula, because it is similar to the

•x

differential equation for f(x) = eX: f(x) = 1 + V f(y) dy.fJo
c

oc!
2. If xGM then e(x) GM ,and if xGm£ then e(x) G^

a similar relation holds if x G Mr

3. Note however that xG M2 does not imply that zG M2, it only

gives that z G M

4. Doleans-Dade also discussed when the exponential formula has

a multiplicative decomposition. We will not state this result,

but just note the special case: if x G M_ , then z - e(x )

=H*Ct +4) =efc£ •«<x*), where e(xc) £M^, .(J) €^
5. Some examples of exponential formula's are:

1 cIf w is Brownian motion, then e(wfc) = exp(w - ^OGM-
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If n is a standard Poisson process then

e(n -t) = exp(n £ (2)-t) G m? .
*- t n loc

Strictly positive exponential formulas.

In the following section we need results concerning exponential

formulas that are strictly positive. We will mention some

conditions for this property and then state a converse result to

the previous theorem. From here on we assume that T = [0,1].

3.2.2. Lemma.

1. If x G SM, x = 0, Axt >-1 a.s. for all t G T, then zfc = e(xt) G SM

satisfies z > 0, z > 0 a.s. for all t G t. If T = [0,1]

then we require (x ,x >. < «» a.s.

2. If (zt,Ft,t G T) G M ,and if z. > 0 a.s. then z , zt_ > 0 a.s.

for all tG t [Meyer, 1966, VI, T15]. If zfc = e(x ), xG SM,

then z , z > 0 a.s. for all t G T implies that Ax„ > -1 a.s.
t t- t

for all tG T. If T = [0,1] then (x^x0). < °° a.s.

Proof. 1. From the expression for z = e(x ) it follows that

Ax > - 1 a.s.implies that z > 0 a.s. Since z = z Ax ,

we get z = z /Ax + 1 >0 a.s. 2. Similarly Ax£ = (zt/zt_)

-1 >-1 a.s. If T= [0,1] then e(x£) >0a.s. iff <x°,xC> <«>

a.s. from the expression for e(x ). H

In the case of real variables we can write x = exp(fcn(x)) if

x > 0. We liave the following analogous result in our case,

which is mentioned in [Doleans-Dade, ]970a].

3.2.3. Theorem: If (z ,F ,tG t) is a semi-martingale, and z*., zr > 0
t t U L.—

a.s. for all tG T and zfi = 1, then there exists a semi-martingale
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(x ,F ,t G T) G SM, xQ = 0, Ax > -1 a.s. for all tG T, such

that z = e(x ).

JQ s-

Proof. This follows by setting x^ = \ — dz , which is well

defined, and applying theorem 3.2.1. to dzt = z dx . Another

way of getting this result is taking £n(z ) and applying the

differentiation rule. This will yield the exponential formula

directly whithout refering to 3.2.1.

Remarks:

1. In the case of a positive exponential formula we have an

alternative way of writing it, which one can use. Let x G M

c 1 c c d ^"^then e(xJ = expfc - - <x ,x > ) exp(x. - 7. [Axe - An(l+Ax )]).
t t 2 s<t S

2. If zGM. , or z G M- and z = e(x), then x G M]L . Note

however that z G M- does not imply in general that x G M2- , only

c c
if z G M. then x G M-,

3. Some examples. If w is Standard Brownian motion and $ E LB,

then e(\ $ dw ) = exp(\ <j> dw - 1 y<j> ds). If n is a
Jq s s Jo s Jo

standard Poisson process, *E LB and i^ >0 a.s. for all tG T then

e(\ (* -D(dn -ds)) =exp(f *n(»|> )dn -\ (* -1) ds). Since
Jos s Jo Jo s

K > 0, A\ (i|> -l)(dn -ds) = (* -1) An > -1 a.s., so thet jQ s s t u

exponential formula is strictly positive.
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Martingale exponential formula's.

A problem in some applications in the next section is, when is

e(x) a martingale. We will pay some attention to this problem.

3.2.4. Lemma: If (xt,Ft,t G t) G i^ Xq = q, and e(X;L) >0 a.s.

then e(x) G ^ iff E[e(X;L)] = 1.

Proof: If e(x) G j^, then E[e(X;L)] = E[e(xQ)] = 1

Suppose E[e(x )] = 1. Let U = E[e(x..)|F 1, then
i t J. t

(Pt»Ft,t G T) G M1, and we show that yt = e(xt) = zt a.s. Since

zG Mloc» let ^Tn^ * 1a-s* be such that ztM G \" If

t > s then E[z |F 1 = z and by Fatou's lemma
tAT ' S SAT

n n

E[z |F ] <^ z or z is a super martingale. This gives
t s s

u = E[e(x1)|FJ < z^ and E(zJ < E(z ). Since E[e(xn)]
t ••- t t t s i

= E[£(xq)] = 1 this gives E[e(xt)] = 1 for all tG T. Now

E[ptl = E[e(Xl)] = 1= E[e(xt)]. So E[ut - e(xt)] = 0 and

u-e(x)_<0 imply u = e(x ) a.s.

3.2.5. Theorem: T = [0,1]

If 1. (x ,F ,t G T) G M_ , xn = 0, Ax„ > -1 a.s. for all t G T,
t t loc 0 t

/ c c N
\x ,x /. < «> a.s.,

2. (<x,x>t,Ft,t G T) G LIV exists, the dual predictable

projection of [x,x], and satisfies d(x,x) = ty dt, where

(if> ,F ,t G T) 6L (t) satisfies U I<K(t) a.s. for
t t Hoc t —

all t G t, for some positive valued function K: T •> R

then E[e(.0] = 1.
JL

A
Proof. Let z = e(x ). By definition of z = e(x) G M

L c loc

there exists an increasing sequence of stopping times {x },
n

lim t = 1 a.s., such that z^ G M.. Now
n tAT 1

n n
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c n[z ] = 1 + E[ \ z dx ] = 1, hence by Fatou's lemma
tAT Jf\ s~ s

n u

E(z ) <. 1 for all t G T. Define the stopping times

t = inf{l, t G Tl[z,z]„ > n>, hence lim t = 1 a.s. We use the
n i *• * Jt — n

n

differentiation rule:

\ 2 z2 dx +\
Jo s" s Jo

z2 =1 +\ 2 z2 dx +\ z d[x,x]
t K s- s 1- s- s

Let y^ = z^ I(t<x ), then yfc < n. Now
•'t tn Jt —

yt±1+$ 2ys- dxs +f ys- d[x'x]'

E(y*) <1+E[f yn_ d[x,x]g] =1+E[£ yg_ d<x,x>s]

since the local martingale term vanishes, and by definition of

<x,x>. Using condition 2:

E[\ yn d<x,x> ]=e( yn ty ds] <f K(s) E[yn ]ds
Jo s~ S Jo S_ " Jo

Now E[yn] <_ 1+ \ K(s) E(yn ) ds implies that by the Bellman
z Jo s"

Gronwall lemma E(yn) <exp( I K(s) ds) _< exp(\ K(s) ds).
z Jo Jo

Since lim t = 1 a.s. E(z2 ) < exp(l K(s) ds) for all t < 1.
n •'O

Also E(Zl)2 =1+E[l z2_ d[x,x]g] <1+f E(Zg_) K(s) ds <«>.

Let {t } be such that z„AT G Mn. Thus
n tAT i

n

E(zn) = E(ztAT )= E(z") = 1. for all tG T.
n
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2
Since sup E(z #t ) _< » by the above, by [Meyer, 1966, II T22],

n n

the (z } are uniformly integrable. By [Meyer, 1966, II T21]

n
and because z 21 0 a.s. we get

lim E(zn) = E(zt) =1 for all t^ T, hence EfeCx^] =1.
n-x»

3.2.6. Corollary:

If w is standard Brownian motion, <J> e LB and if | <j>t | <, Ka.s.

\:for all t£ T where K is a positive constant, then E[e( \ <J>g dwg)] = 1.

The proof is obvious by dx = A dt, d<x,x> = <J> dt and using

3.2.5. This result was proven earlier by [Girsanov, I960].

Similarly we have

3.2.7. Corollary:

If n is a standard Poisson process (1,F ,t G T) € LB, and if

\\\> | <Ka.s, for all t^T, where K is a positive constant, then

f
Jo

E[e(l ij>g (dng-ds))] = 1.

Remarks:

1. The proof of 3.2.5. is essentially an extension of the proof

by Girsanov [1960] for lemma 1. The main point is to show that

£(x) £ M , which establishes the uniform integrability of e(x),

which give the result.

?. An example: Let (w ,t^[0,l]) be standard Brownian motion,

then w £ m, , <w,w> = t. Hence
loc t

E[e(wt)] =E[exp(wt --| t)] =1for all te [0,1].

-36-



3.3. Absolute continuity and translation of martingales.

In this section we discuss some results on absolute continuity

of measures and its relation to martingales. We start by

characterizing a transformation of measure by a local martingale.

Next we present our main result, the translation of a local

martingale by a predictable process into a new local martingale

under a transformation of measure. Some historical comments

will be provided later. The result we give here is widely used

in problems of absolute continuity, especially showing existence

of solutions to stochastic differential equations and in

detection problems.

Absolute continuity.

3.3.1. Definition. Given the measurable space (ft,F) and two probability

measures P and P0 defined on it. The measure P is said to be

absolutely continuous with respect to PQ, if for all A^ F such

that P0(A) = 0 we have that P(A) = 0. We denote this by P « PQ.

P and Pn are said to be mutually absolutely continuous, or

equivalent, if P « V and PQ « P ,which we denote by P - PQ.

If P << P0 then the Radon-Nikodym theorem says that there exists

= j y(w]a measurable integrable function such that P(A) = 1 y(w) PQ(dw)
"A

A major point of interest is the characterization of the Radon-

Nikodym derivative y, which we also denote by

y =-^ . If P ~.P0 then y>0a.s. In the following we denote

expectation with respect to the measures Pq, P by Eq(«)> E(»)

respectively. Using the martingale approach and the results
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concerning the exponential formula we have the following

characterization of -rr—

dP0'

3.3.2. Theorem:

1. Given a probability space (n,F,PQ). Let (xt,Ft,t £ T) G M ,

be such that xA = 0, <x ,x >_ < «> a.s., Ax >-l a.s. for all
0 ' 1 t

tG T, and E0[e(X;L)] = 1, then (Gi^'F^t G T) e^. The formula

-7p— = e(x..) introduces a new probability measure P on (&,F)
0

and P is equivalent to Pn.

2. Given a measurable space (ft,F) and two probability measures

P and P0 defined on it, and assume that P and PQ are equivalent.

Then 4=- >0 a.s. Let (F_,t G T) be any family of sub-cr-fields
dPo t

with the usual conditions. Let y = ErJdpH^* Then ttiere

exists a process (x ,F ,t e T) G M ,xQ = 0, AXfc >-1 a.s.

for all te T, <x°,xc> <°° a.s., such that yfc = e(xt) a*s* for

all t G T.

Remark: The above theorem shows that a local martingale x,

satisfying certain conditions introduces a new probability measure.

Conversely the estimate of the Radon-Nikodym derivative of

two measures given some family of a-fields is characterized
i

by a local martingale x.

Proof. 1. Given (x ,F ,t e T) € \oc* we have that eW G^oc

and e(x-) > 0 by the conditions assumed. The condition EQ[s(Xl)] = 1

guarantees that in fact e(x) e M, as was shown in 3.2.4. The

set function P(A) = \ e(x,) (w) PQ(dw) now defines aprobability.
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dP
2. Note that ~7^~ > 0 a.s. by assumption. Let

yt =Eo[dl~ 'Ft]' then (VFt,t: GT) e Mr and Mi >° a*s* imPlies
0

that y , y > 0 a.s. for all t G T. By 3.2.3. there exists

(x .F -t *= T) G M- such that y^ = e(x^) and x has the given
t' t' loc t t' a

properties.

Remark: The main reason for using absolute continuity of measures

is in calculating expectations or in doing derivations based

on it. Suppose that z is an integrable random variable, let

P - P then E[z] = E0[ze(x,)]. The last integral might in

some cases be easier to integrate than the first. This point

was made earlier by Cameron and Martin [1944] and by Benes

[1971], and is the main argument for the results of this

section.

Translation of martingales.

We now are going to look at how a transformation of probability

measure influences martingales. Before reaching our main

result we have to do some preliminary work.

3.3.3. Definition. The notation (xt,Ft,t G T) G M1qc (Pq) denotes that

x is a local martingale under the measure Pq.

3.3.4. Lemma. If P, Pfl are equivalent probability measures on (ft,F) and

if |£- =eC^) where (x^F^t €T) G\ocCPQ)

then (mt,Ft,t G T) G M^P) iff (mt e(xt),Ft,t G T) GM;L (PQ)

Similarly m G m (P) iff m e(x) G m1qc (PQ).

. ••
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Proof. We do the proof in one direction, assume,that (m. e(x),

F ,t G T) G m (PQ). Since P and PQ are equivalent

\ ^p- » e(x,) > 0 a.s.
0

Note that E|mt| =E0[e(x1) |mfc|] «EQ[|mt eU^I] <» for all tG T.

Now for any s, t G t, by [Loeve, 1963, p. 344]

EQ[mt e(x1)|F8]

E[mt|F-]= V^l'j ••
Let s < t then

E[mt|Fs] - E0[mte(xt)|F8]/e(x8) - m8

hence (mt,Ft,t G T) G m^P)

The converse direction is similar and the extension to local

martingales follows from a stopping time argument.

Remark: We discuss a condition assumed in the following theorem.

If x, y G m then [x,y] G BV. In 2.3.31. we have defined
Xvv

<x,y> G BV to be the dual predictable projection of [x,y], whose

existence follows if [x,y] G LIV.

3.3.5. Theorem.

•< If 1. (P,,F,PQ) is a probability space.
jp

2. We do a transformation of measure -;=- = e(x1) » characterized
0

l<? by the local martingale (x ,F ,t G T) G ^oq(^q)» real-

valued, xn = ty<x ,x )- <» a.s. and Ax > -1 a.s. for all

t G T and satisfying EQ[e(x1)] = 1,

3. (yt»Vt eT) e^WV in **'
4. there exists a process, denoted (<y,x>t,F ,t G T) G BV,

predictable, such that (Iy,x]t.- <y,x>t,F ,t G T) G M^CPq)
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\

then P is a probability measure on (ft.F), and the process m

defined by m * y -<y,x> satisfies (m ,F ,t^ T) ^ M- (P),
t t c t t xot*

i.e. m is a local martingale under the measure P. If in addition

<y,x> is sample continuous, then [m,m] = [y,y].

Proof. By condition 2, and theorem 3.3.2, P is a probability

measure on (fi,F). To prove that m G M- (P) by lemma 3.3.4. it

suffices to show that me(x) G ^ (PQ). We apply the differentiation

rule to me(x) :

mfe(x.) = 1 mo de(xe) + \ e(x ) dm + [m, e(x)]t t j0 s- s jQ s s r

•JQ V e(xs}- dxs +j0 e(xs>- dys -J0 e(xs-) d<y'x

+ 1 e(xg)_ d[m,x]g

Note that under PQ m « y- - <y,x> is a semi-martingale, where

y GM^. <y,x> G BV, so mt =y and Amfc » Ayfc -A <y,x>t

Now [m,x] =<mC,xc> + y. Am Ax = [y,x]. - \j A<y»xLAx«
c t s<t s s s<t S S

55 [y»x]t - 1 A<y,x>s dxg =

= [y,x]t - I Uy>x)a - <y»x>s_) dxs-.

mte<xt> =)Q V c(xs*- dxs +JQ e(xs)- dys +

+\ e(xs)_ d([y,x]s - <y,x>g) - 1 e(xs)_ «y,x>g - <y,x>g_) dx£

>s
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Since this is a sum of stochastic integrals of predictable processes

with respect to local martingales, m e(x) G m. (Pq) hence

m G m, (P). If in addition <y,x> is sample continuous, then
loc

by 2.3.38. [m,m] = [y,y].

Remarks:

1. Condition 4 in the theorem is satisfied in the following

casess

1. If x,y GM?1 then <y,x) exists, see 2.3.25.

2. If x,y GM5 then <y,x >exists and [y,x] - <y,x> = 0 a.s.
loc

3. If [yd,Xd] = 0 a.s. then <yC,xC >will do, since

[y,x] - <y ,xc >= 0 a.s.

4. In general the existence of the process <y,x >must be shown,

this is most easily done by first calculating [y,x] and

then guessing the form of the process <y,x> .

2. The foregoing result does not hold if it is changed to the

form n^ = yt - [y,x]t.

Example: let x = yfc = nfc - t, where totjFflt^ G T) is a

standard Poisson process. Then after a transformation of

probability m. = yfc - [yjx]^ (n -t) - nt = -t which is not

a local martingale.

3. The theorem as given here seems the most general result

possible, and it includes many earlier versions as special

cases. It seems by the remark above that the predictability

of <y,x> is required. Another way of looking at the foregoing

result is considering it as a transformation of a martingale

y, into a semi-martingale y = m + <y,x), where the associated
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process of bounded variation is predictable.

4. Some historic comments. The concept of translation was first

introduced by Cameron and Martin [1944] in the context of

Wiener integrals. The translation was that of the Wiener

process y into the process y - <y,x >. Using the definition

of a stochastic Ito integral for a Brownian motion process,

Girsanov [1960] gave a similar approach for Brownian motion

processes (Corollary 3.4.3), which he called the transformation

of a stochastic process. This result is widely used in

problems of absolute continuity, for the Brownian motion

process. The extension of Girsanov1s result, first to

Poisson processes [Bremaud, 1972] and then to the martingale

case [Van Schuppen, Wong, to appear], was done in cooperation

with Wong.

5. We give some general examples.

Let x G M. (PQ) be given, and characterize the transformation

of measure. We consider different forms for y.

X" y= Xe'WV' then mlt = Xt - <X'X>t GMloc(P)

\ s\0 *s dxs eWV* xe^WV then2. If y,

m2t =J0 *s dxs "JQ *s d<x'x> =JQ *s dmis

3. If xt =J *s d2s where (zt,Ft,t: GT) GM21oc(P0)

then m3t = z - \ *g d<z,z>gGM]1oc(P)
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,. If Xt =( ij>s dzg, yt =J <f>g dzg, where (zt,Ft,t GT) GM^^p^

Then mAt =J .4>g dzg - f *g *8 d<z,z>g =̂ VV^s d<z,z>g)

-$
t

*s dm3s

6. Now we have stated the translation theorem one could consider

a converse problem. Given two measures Pq, and P under one

y is martingale, under the other y is a semi-martingale,

under which conditions are P and PQ equivalent and what is

the characterization of the Radon-Nikodym derivative. This

problem cannot be solved whithout additional assumptions, we

will discuss this problem in the next section.

Using the translation theorem we can give a more general condition

on a local martingale x such that E[e(x]L)] = 1. The following

proof is inspired by a similar proof for the Brownian motion case

by Clark.

3.3.6. Theorem: T = [0,1]

If 1. (xt.Ft,t GT) GM^oc, xq =0,
2. <x,x>, <_ K a.s. for some positive constant K,

then E[e(x.)] = 1.

Proof. From 3.2.5. E[e(x )] <_ 1 for all t G t. Note that

zt ^e(xt) =exp(xt -\ <x,x>t) GM^c =M^. Let (Tn) be
an increasing sequence of stopping times, lim x = 1 a.s., such

n

that for all n z = z. G M0. Since sup E(z ) < «, for fixed n,
t tATn 2 tGT t

we conclude by uniform integrability that for all n E[z ] = 1

for all tGT.
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nNext we establish the uniform integrability of (z^,n=l,2,...).

First sup E(z^) <. 1. Fix n, then E(z^) =1, so we can define
n dP

the probability measure ^jp- «• z^ on (fl,F). Let xfc « xtAT .

Now \ z\ dP(w) =Pn(Zi>c) =Pn(xi "^<*n»*n>i -> loS c)
J(zn>.c)

S=Pn(x^-<xn,xn>1+-|<xn,xn>1±logc) <

P (xn - <xn,xI1>1 >\ log c) +P(<xn,xn> >log c)
n 1 i *-

n A n / n n\By the translation theorems y * xfc - \x ,x >t,

(y*.*t.t e T) G*£oc(Pn). Also <yn,yn> =<xn,xn >since x11 Ĝ (P)

Now sup E (y?)2 <sup E (<yn,yn> ) <K, so yD € M^(P ).
tGTnttGTn .

We now use the martingale inequality by Doob:

Pn(xn -<**>**)! >\ log c) =Pn(y" >|log c) <

Pn(sup|y I >. J log c) 2 - 2 - , 2
n tGT t log c log c log c

Note that if log c > K or c > e then

P (<xn,xn>, > log c) = 0 for all n. Now
n i —

sup f zn dP(w) <• —^| C">°0 »0independently of n.
n J log c

(z^>c)
n

This establishes the uniform integrability of (z ,n=l,2,...).

Now by [Meyer, 1966, II T21]

lim E(zn) =1= E(Z]l) = E[e(x1)].
n-*00
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3.4. Applications of the translation theorem.

In this section we discuss an important special case of the

translation theorem, this result will be used in the next

section for showing existence of solution to a certain stochastic

differential equation. Its two corollaries, one for the

Brownian motion process, which is known as Girsanov's theorem,

and one for counting processes, first given by Bremaud, are

stated. Next we discuss an abstract version of the detection

problem.

3.4.1. Theorem:

If 1. (n,F,PQ) is a probability space, T = [0,1],

2. (vt,Ft,t GT) eM21oc(PQ) in Rn, and (Ft,t GT) is quasi

left continuous,

3. ($t,Ft,t GT) GLB in Rn, I <J>g d<v°,vc g <j>g <»a.s.,
n T

(^.F^.t GT) G LB in R , and ^ Avfc + 1 >0 a.s. for all

tGT.

4. Define zt =1 <J>g dvg +C ^ dvg, then (zt,Ft,t GT) e Mloc(p0)

5. Let <j) and \\> be such that EQ[e(z1)] = 1,

dP

6. We introduce a new measure P on (ft,F) by dPQ = e(z,)>

then 1. P is a probability on («,F),

$t ^.t , ,
d <vC,vC>g <t>s - 1 d<v ,v )

c d(mt,Ft,t G T) G ^^(P), [m,m] = [v,v], m= m + m ,

s *s;
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3. »* *v°- <vC,zC>t =v^ -^ d<vC,vC>g *g,
(m^Ft,t € T) GM^oc(P), <mC,mc> =<vc,vC>.

4. md =vd -<vd,zd>t =vd -j' d<vd,v\ Vs>
(md,Ft,tG T) GM^oc(P), [md,md] =[vd,vd].

Proof. We apply 3.3.5. and check its conditions:

[v,z]t=i d<vc,vc>g<j,s +J d[v ,v ]g Vj

where ^Rn and <vc,vc> takes values in R

(t Tt d dd<vc,vc>s *8 +I d<v ,v >g ^/g since it is

the dual predictable projection of [v,z]. Assertion 1 and 2 now

follow from 3.3.5. Because (F ,t G T) is quasi left continuous

by assumption, ( v,z> is sample continuous, and hence by

2.3.38 lm,m] - [v,v]. If m° is defined as in 3. then by

applying 3.3.5 again we see that m G M^^P). Now

md =m- mc GML (P). Let k GM^ (P) be arbitrary. Consider
the semi-martingale m under PQ, where <v ,z >is sample

continuous, and let us apply 2.3.38.

[md,kl =[vd,kl =£ (Avd) (AkJT =0 a.s., hence

md(k)T GMn and thus md GMd (P).
loc loc

Remarks:

There are several points to note in the previous theorem.

1. First we wanted to make explicit the decomposition of the

s'
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martingales into their continuous and discontinuous part, and

the characterization of the translation. Note that m is

characterized by vC and zc and a similar characterization

holds for m . Another point we want to mention is the

special form of the martingale z as a stochastic integral

with respect to v. Note that is is necessary that v G M^^.
T

2. We discuss the condition <J> Av + 1 > 0 a.s. for all tGT.
^ t

If v has only jumps of a fixed height a G R, then we can

easily find a'condition on ij>. If the jumps are bounded we

can find a condition too, but if v has arbitrary positive

jumps, then it is better to take i|>t > 0 a.s. for all tGT.

Remark that it is necessary to distinguish between the

positive and negative jumps of v.

3. The above theorem leaves an important question open: when

d d / d d v
is m G m (p) and if so, what is the process (m ,m ;

in terms of processes defined previously. This question can

easily be answered if v has only jumps of a fixed height.

The proof is straightforward, one considers the translation

of the local martingale [v,v] - <v,v>. In general, when v

has arbitrary jumps we cannot solve this question. However

this problem can be approached better if we analyse

discontinuous martingales using the Levy measure [Watanabe,

1964], but this theory has some difficult and non-rigorous

points, so that we have decided to omit this.
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We give two main applications, first the Brownian motion case.

3.4.2. Corollary: [Girsanov, 1960]

If 1. (ft,F,PQ) is a probability space.

2. (w ,F. ,t G T) is a sample continuous Brownian motion, in R ,
1

3. (»t,Ft,t eT)eL2ioc(w) in Rn> ( l*s I2 ds '< °°a-s- p0»

and satisfies En[e(\ $ dw )] = 1
>0 s s

jp

4. we introduce a new measure -=— = e(l <J>* dw )

then P is a probability measure,

mf = *+ ~ \ 4>s ds

(mt,Ft,t GT) GM^qc, <m,m>t =<w,w>t =t,
hence m is a sample continuous Brownian motion under P. (by 2.4.7.)

Comment: This result was first published by Girsanov [1960],

whose proof is rather complicated. Several other proofs exist

in the literature [Benes, 1971; Kailath, Zakai, 1971]. In condition

3 we have imposed the condition that <J> G "L (w), while in

3.4.1. 4> G LB. The result of 3.4.1 with <t> G L«- (w) also holds,

the proof is similar. The same remark applies to the process

X in 3.4.3. We now discuss the case for the Poisson process.

3.4.3. Corollary:

If 1. (P.,F,Pq) is a probability space,

2. (nfc,Ft,t G T) is a real-valued standard Poisson process,

(nt-t,Ft,t6T)6M^(P),
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$:

3. (A ,F ,t G T) 6L, (t),X^ >0 a.s. for all tGT, and
t t Hoc t

!o[£(f0satisfies Ert[e(\ (X -1) (dn -ds))] = 1
s s

4. we introduce a new measure

dP
^p s e<\ (K'V (dVds))
dPo h s

then P is a probability measure.

\ k<v« -Jo <xs"1) ds •nt -f0
<VFt.t6T)6M21oc(p)wlth

[m,m]t =nt, <m,m>t =1 Xg ds

Proof. The proof follows from theorem 3.4,1., and since

i

X ds
s

(X -1) ds is sample continuous [m,m] = [n -t,n -t] = n .

»m>' =JoBy definition of m we conclude that (mjm)^ = \ X ds since it is

predictable and well defined by assumption. Bremaud [1972]

has given a first version of this result.

The detection problem

We will now look in more detail to the detection problem, of

which a version was formulated at the end of section 3.3. In

this section we will formulate an abstract version of this
j

problem, and then discuss the likelihood ratio method for solving

it. Next we will try to solve the problem in terms of martingale

theory.
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3.4.4. The detection problem.

Given a measurable space (ft,F) and two probability measures

P, PQ, defined on it.

Under P0: (yt,Ft.t € T) £ M^

Under P: y = afc + mfc, where (at,Ft,t G T) G BV and predictable

and (mt,Ft,t G T) G M^

The measures are associated with two hypotheses H_, H- concerning

the process y. The process y is being observed. The problem

now is, given the observed process y, to decide which hypothesis

to accept.

The likelihood ratio method.

Recent interest in solving the detection problem centers on the

likelihood ratio method, using the martingale approach. In a

particular problem it can be shown that the measures P and P

dP

dP
are mutually aboslutely continuous, hence -=— exists. Using our
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previous results concerning the translation theorem, we will show

how to estimate -j=- given the observations. Having done this,

the likelihood ratio method then prescribes a statistical test

dPo
on the estimate of -r_— , to decide which hypothesis to accept.

We first discuss the problem of absolute continuity of the

measures P and P_.

In the case the detection problem is formulated for the Brownian

motion process this problem has been investigated in several

articles. They all vary in the conditions assumed and in the

method of the proofs, the most detailed are [Kadota, Shepp, 1970;



Kailath, Zakai, 1971].

j, For the general problem that we have formulated here, we have

not found any useful conditions to guarantee absolute continuity

,? or equivalence of P and P0. One method would be to use the

translation result of the previous section, but this leads to

1 strong conditions even in the Brownian motion case.

Calculating likelihood ratios.

We now assume that the measures are absolutely continuous and

discuss the problem of calculating the likelihood ratio. We

first give a lemma that combines the general martingale theory

arguments in the derivation.

3.4.5. Lemma: T = [0,1].

Given the detection problem 3.4.4., where

1. under Pn y G M-
0 J loc

2. under P yfc = at + mt, (at,Ffc,t G T) G LIV and predictable,

(mt,Ft,t GT) GMloc(P),

3. We assume that P and P~ are equivalent,

then V^ »e [__|f it^e likelihood ratio given the observations,

% is characterized by a local martingale (z ,F ,t G T) G M. (pn)>

satisfying Az > -1 a.s. for all t G T, zQ = 0, <z ,z >. < « a.s.,

Proof. By condition 3 and P and Pn are equivalent, so •—- > 0 a.s.0 dPQ

Let ut =E0[||-|Fyt], then v± >0a.s., and (ut,Fyt,t GT) Ĝ (P^
By 3.3.2. there exists a process (z ,F ,t G T) G M, (prt)

t yt loc 0

9
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having the above described properties and such that

/.t

dz
s

Note that in general we cannot assert more than that z G M_

With this lemma we can derive the solution to the detection

problems for the Brownian motion case and the counting process

case. The reason why we cannot solve the general detection

problem as formulated in 3.4.4. is that a general martingale

representation theorem does not yet exist.

3.4.6. Theorem: [Duncan, 1970; Kailath, 1970 c] T = [0,1].

Given the detection problem:

C n

1. under Pq yG M2 is standard Brownian motion in R

2. under Pyt=l hg ds +m where (h ,t G t) is an adapted

f1 2 cmeasurable process, E[l |h | ds] <°° , and (m ,F ,t G T) G M9
J0 s t t ^

is standard Brownian motion in R .

3. Assume that P and P~ are equivalent,

then the likelihood ratio given the observations y can be calculated

by

h - E[h If ],
t l t1 ytJ

yt =X+J0 ys hs dys where'

t= exp(JQ *s dys " JQ 2l^sl2 ds>'
Proof. We apply 3.4.5., for which the conditions are satisfied.

Then by 2.6.3. (z ,F ,t e T) e M (P ) has the representation
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dzt = ♦t dyt, where (4>t»Eyt,t G T) G L2loc(y)(V* We apply

A - f*the translation theorem 3.3.5.: m^ - y.-(y,z>t =y -1 $g ds,

f1 2(mlt,Fyt,t € t) e Mloc(P). Since E[V |hg| ds] <«, we can

define ED^I F t] a.e. on T and put it zero otherwise. We get

a process (E(h |F ),F ,tG t). Then it is easy to prove
t yt yt

(see also 4.4.3.) that

^ ** - J E(hslFys> *» <VV'' eT> €1W(P>- N0W
St

[E(hg|F g) - 4>g] ds € m^qc HBV, hence by 2.3.16.

A A |

it vanishes. Define h = <J>. , then h = E(h |F ) a.s. a.e. on T.
t t t t yt

The result follows.

3.4.7. Theorem: [Bremaud, 1972; Davis, to appear]. T = [0,1].

Given the detection problem:

1. under Pn yt - \ - t, where n is a standard Poisson process,

2. under P yf = n - t a l (X -1) ds + m or n = I X ds + mt
1 t Jo S t * Jo s

where (Xt,t G t) is an adapted measurable process, Xt > 0 a.s.

for all t € T, E[\ X ds] < ».
Jo 8

3. assume that P and PQ are equivalent.

then \ =V§H V •
the likelihood ratio given the observation y,can be calculated by
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ut= 1+ \ Ug_ (Xg-1) (dng-ds)

where (*t>F ,t e T) is apredictable modification of E^^F ),

and y =exp(\ In (Xg) dng -f (Xg-1) ds)

Proof. We apply 3.4.5. for which the conditions are satisfied.

By the martingale representation theorem 2.6.8. (zt»Fnt»t T) Mioc

has the representation dz = ^t(dnfc-dt), where

(^»F ^,t G T) G l,- (n -t). We apply the translation theorem
xrt' nt Hoc t

3.3.5. so mlt &(nt-t) -f ^ ds, <mlt.FQtft GT) GM^CP).

r1Since \ > 0 a.s. and E[\ X ds] we can define E(X |F ).t j0 s t nt

Note that E(Xt|Fnt) > 0 a.s. Define

m = (n -t) - V [E(X |F ) - 1] ds then it is easy to prove

(see 4.4.4) that (i^F^.t ^ T) ^ Mlo(,(P). Now

mlt -m,. =( <B<X8IW -1-*8) d8 GMloc °BV henCe ±t:

vanishes by 2.3.16. Define Afc = ^ + 1 then (\.»Fnt>t e T) is

an adapted predictable process and X = E(X |F.) a.s., a.e. on

T. Also X > 0 a.s. for all t e T. The result follows.

Remarks:

1. Note that we do not calculate ~ts~ but Un = E[-^=-|F ,] whichdPn, 1 dP ' yl0' *• aro y

dP,
is the estimate of -j$- given tne observed process y in T.

0
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The calculation of the likelihood ratio is done recursively

while the process y is being observed.

2. Note that h or X in 3.4.6 respectively 3.4.7. are

estimates of quantities that are not directly observed.

They must therefore be estimated given the observations.

This indicates that before we can calculate u we must first
Kt

solve an estimation problem and this requires further

assumptions on the processes h and X. This point is the

fundamental connection between filtering theory and detection

theory.

3. The results mentioned before are important by itself, but

also because they can be used in applications where one needs

an expression for the likelihood ratio, as for example in

certain methods in filtering theory.

4. The result 3.4.6. for the Brownian motion case is well known

and several different proofs exist. Duncan [1970] was the

first to approach this problem in terms of martingale theory.

Several articles by Kailath give the solution and alternative

proofs [Kailath 1970 a; 1970 b; 1970 c; Kailath, Zakai,

1971; Kailath 1971 b].

5. Recently several articles have been published discussing

the problem for the Poisson process case. Snyder [1972 a.]

discusses the problem. Bremaud [1972] gave a result similar

to 3.4.7. but the proof contained an error. The proof could

only be given correctly when the martingale representation

theorem on a Poisson process a-field was found and proven,
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as was done in [Davis, to appear]. This article also

derives the solution to the detection problem but in a less

direct way.

6. Skorokhod [1957] discusses the problem of absolute continuity

and characterization of the likelihood ratio, for the case

of independent increment and Markov processes. We could

rederive these results and obtain other new results, by

following the martingale approach as outlined in this

section, if only we had martingale representation theorems

covering these cases.
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4. Stochastic system equations

4.1. Introduction.

The purpose of this chapter is to define a stochastic system,

using concepts from martingale theory. In section 4.2. we

discuss stochastic differential equations, where we use several

results from the previous chapter. In section 4.3. we discuss

stochastic system equations that have been used in the past, and

we will define our semi-martingale model. In section 4.4. we

discuss the concept of the innovation process, and a generalization

of it, both topics are needed in the next chapter on estimation

theory.

4.2. Stochastic differential equations.

In system theory one usually considers dynamical systems for

which the state equation is described by a differential equation

of the form:

^•-f(t.x(t)).
When one started investigating dynamical systems disturbed by

noise processes, one considered the equation

.&&- = f(t,x(t)) + v(t)

where v is usually taken to be white Gaussian noise. This is

sometimes known as the Langevin equation, after Langevin who

considered this equation in connection with investigations of

the phenomenon of Brownian motion. See Nelson [1967] and

Wonham [1970]. It soon became clear that a more rigorous

approach should be taken, using stochastic differential equations
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as introduced by Ito [1951 a]. He proved the existence and

uniqueness of the solution to a stochastic differential equation

of the form:

dxt = f(t,xfc) dt + g(t,xfc) dvfc

where f and.g satisfy certain conditions. The disturbance

process v is a process with stationary independent increments,

for which the well known Levy representation is used. Wonham

[1970], in notes written earlier, introduces the work by Ito

for Brownian motion processes to workers in system and control

theory. A more extensive recent reference for this is Wong

[1971 a]. There is a recent interest in extending the concept

of stochastic differential equations, and the natural class of

processes to consider is martingales. In this section we will

deal with this problem in detail.

To be specific we consider the following stochastic differential

equation, first published by Kazamaki [1972]:

dxfc = f(xt) d <m,m>t + g(xt) dmt, xQ ,

where (mt,Ft,t G T) G M2lQc. If one lets m =w a standard

Brownian motion, then the above equation reduces to the familiar

form. The main question is of course the existence and uniqueness

of the solution to the above stochastic differential equation.

4.2.1. Theorem: [Kazamaki, 1972].

Given the stochastic differential equation

dx- = f(xfc) d<m,m>t + g(xfc) dmfc, xQ ,

where (m. ,F ,t G T) G M21qc, (F tt G T) is quasi-left continuous,

and all processes are scalar. f,g G C'(R) and f and g satisfy
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a uniform Lipshitz condition i.e. |f(x) - f(y)| _< K |x-y|,

Vx, y G r. Then the stochastic differential equation has an

unique solution x. •

The proof is the classical method of Picard iteration, as used by

Ito [1951 a] and Wong [1971 a].

Remarks:

1. The above result can be extended to the multi-dimensional case,

and f and g can be allowed to be time varying. No new concepts

are needed.

2. Note that when the stolution exists, then x is a semi-

martingale.

3. The above theorem covers several special cases which were

known before.

If m = w, a standard Brownian motion, we get the usual form.

If m = n - t, where n is a standard Poisson process, then

we get dx = f(x ) dt + g(x ) (dn - dt).
t t t t

Both these cases are covered by the form considered by Ito

[1951 a], where m = v, v a process with stationary independent

increments.

4. In the Brownian motion case, where one is concerned with

stochastic control theory, it was felt that the uniform

Lipschitz condition on f and g in 4.2.1. was an important

restriction. In the control problem formulation f depends

on the control u, so that only a limited class of control

laws can be considered. Because of this problem Benes

[1971], has introduced an alternative way of defining a
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solution to the stochastic differential equation for the Brownian

motion case.

The translation method for proving existence.

We will first state a theorem with two corollary's, afterwards

we will comment on these results and interpret them.

4.2.2. Theorem:

If 1. (P-,F,PQ) is a probability space,

2. (r »F »t e T) G ML- (P«) in Rn with the decomposition

c d
r = r + r , and where (F ,t G T) is quasi left continuous,

3. (<J>t,Ft,t G T) G LB, (*t,Ft,t G T) G LB satisfying

f T / c c v T\ f d \r ,r / <j) < « a.s., ij> Ar +1 > 0 a.s. for all

tGT,

d

s s
4. Let z^. = V d> dr + \ \b dr

fc Jo 8 s Jo 8

5. Let <f> and ty be such that Ef)[e(z1)] = 1,

then there exists a measure P, equivalent to Pfi, such that

(r ,F ,t G T) is a solution to,

dr = d <m ,m > d> + d< r ,r > \\> + dm

where (mt,Ft,t GT) G^^(P), m=mC +md, <mC,mC> =<rC,rC)
and [m ,m ] = [r ,r ].

Alternatively written

dr„ = d <m ,m > <!)«. + dm,., m G M- ,
t t Tt t loc

dr =d<r,r>^ ^^ + dm, mGM
t t t t loc

Proof. By 3. both terms of z are well defined, we then apply
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3.4.1. to get the result. Before making some comments let us

state the two most important corollary's.

4.2.3. Corollary: [Benes', 1971].

If 1. (P,,F,PQ) is a probability space,

2. (r ,F ,t G T) is a standard Brownian motion in R ,

'•°[40

•rJo

fs drs)] " *'

3. (f ,F.,t GT) GLB, V |fg|2 ds <»a.s. and

then there exists a probability measure P equivalent to PQ,

such that r is a solution to

dr = f dt + dn^

where (m^jF. ,t G T) 6i (P), <m,m) = I.t hence m is a
t t ioc t

standard Brownian motion.

4.2.4. Corollary:

If 1. (ft,F,P0) is a probability space,

2. (nfc,F ,t G T) is a standard Poisson process in R ,

3. (X<.,Ft,t G T) G LB, X > 0 a.s. for all tGT, such that

!°u(C (Xg-1) (dng-ds))] = 1,

then there exists a probability measure P equivalent to P , such

that (nt,F ,t G T) is a counting process satisfying

di^ = Xfc dt + dm,., where (mt,Ft,t G T) G M21qc(P),

i,m> =(
c Jo

m,m)^ = \ A(X ) ds.

1 7 n
Notation A(X ) = diag(X,X ,...X ).

s s s s
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The corollary's follow from 4.2.2. or from 3.4.2. and

3.4.3.

Remarks:

1. In 4.2.3. notice that the essential point we have proven, is

that the process m, defined by dm = drt - f dt is a local

martingale under the constructed measure P. Suppose that f is

a function of r , or of the past of r. Then we can interpret

this result as a solution to the stochastic differential

equation

dr = f (r) dt + dm

where m is a standard Brownian motion. What we have proven

this way is the existence of a solution to this stochastic

differential equation, under the conditions given. This

method of showing existence of solutions was first given by

Benes [1971]. In connection with the solution to the

stochastic differential equation we need to pose the question

of the uniqueness of the solution. This problem can be

considered as part of a measurability problem, which we

discuss in section 4.4. However, this problem has not yet

been solved satisfactorily.

2. We now consider the general case of 4.2.2., which shows the

existence of the martingale m under P. This implies, if

<j> and ty depend on r, the existence of a solution to the

stochastic differential equation

dr = d (m ,m ) (J> + d (r ,r ) ty + dm .

Note that <|> and ty can depend on r in any way, satisfying the
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conditions of the theorem. The method we have used is

constructing a new measure P under which a given process

satisfies the above equation. Again we have to ask the question

about the uniqueness of the constructed solution but this

question has not been resolved in general.

3. Consider the result of 4.2.2. as the solution to the equation

dr = d (r ,r ) • ty. + dm

with m G m i but nr G mo_ . However <r ,r > is defined
loc 2loc

under Pfl but has no interpretation under P. In special

cases <r ,r > is absolutely continuous with respect to

<m ,m ), or an explicit form for it can be found in which

cases we can simplify the equation. In general no satis-

/ d dv
factory explanation has been found to interpret \r ,r /

under P. The result of 4.2.2. is thus in an important way

different from 4.2.1.

4. We discuss some of the conditions that are assumed in 4.2.2.

Note that the conditions of 4.2.2. do not require that <{> and

ty satisfy an uniform Lipschitz condition, as is necessary in 4.2.1

However 4.2.2. has the condition EQ[e(z,)] = 1, which is an

implicit condition on <J> and ty. We have sufficient conditions

for this to hold 3.2.5., and 3.3.6. but those seem rather

strong. No other sufficient condition for this is known

at this moment. In the case of 4.2.3. it is known [Benes,

1971], that if f depends on r only, a Lipschitz condition on

f guarantees that E0[e(z.,)] = 1.
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5. Corollary 4.2.4. as given here seems new. It deals with a

counting process n, satisfying the stochastic differential

equation

dnt = Xt^ dt + dlV With m GM21oc*
In 2.4.23. we have defined X to be the rate process of the

family (F ,t G T) associated with n. Note that Xfc can depend

on the complete past of the counting process. The result is

that we have a stochastic differential equation with as

solution a counting process that influences its own rate.

4.3. Stochastic Systems

In this section we consider the problem of modelling continuous-

time processes by stochastic systems. We first review some of

the models that are used in stochastic problems. We then define

a semi-martingale model and show that it covers most known problem

formulations.

Stochastic processes.

Up to recently, most engineers used the white Gaussian noise

'process* in stochastic problems. This approach however is non

rigorous, and was mainly used because it leads to simple analytical

calculations. It was Wonham [1970] who introduced the Brownian

motion process for stochastic problems in estimation and control.

Brownian motion is a well defined stochastic process, and it

relates to white Gaussian noise, because this process can be

considered as a generalized 'derivative' of Brownian motion.

The reason one takes Brownian motion as a noise process is because

it is completely determined by the properties: 1. it has
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independent increments,, 2. it is sample continuous. Both

assumptions seem reasonable justified from a physical point of

view, the independent increment assumption because a noise process

is generated at microscopic levels.

Stochastic system models.

We discuss several stochastic system models for observation

processes, which are used in filtering and estimation problems.

In the filtering problem phrased by Wiener [1949], the observed

process y is assumed to be the sum of a signal process h and

a noise process v: yt m\ + vt • T^ie processes h and v are

assumed to be stationary and of second order. The model is

further specified by giving the covariance matrices or their

Fourrier transforms, of the processes h and v and their depen

dence relation. In the article by Kalman, Bucy [1961] on linear

filtering, it is assumed that the above noise process v is a

white Gaussian noise process, and further the signal process h

is modelled as the output of a linear system disturbed by another

white Gaussian noise process:

x(t) = A(t) x(t) + wt, ht = c(t) x(t).

Observe that the form of the above linear model for the signal

process is an essential assumption.

This way of modelling, which allows non stationary processes,

was inspired by concepts from linear system theory as developed

by Kalman and others during the 1950's. This model makes more

explicit the dynamical structure of the signal process. The

above model can be recast in terms of Brownian motion processes,
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using stochastic differential equations, we get

dx = A(t) x dt + dwlt

dyt = C(t) xt dt + dw2t

where w.. , w„ are Brownian motion processes [Wonham, 1970]. This

stochastic system model can be further extended to account for

control operations and nonlinear systems.

The counting process observation equation.

Because later on we consider certain applications of counting

processes we will define a stochastic system equation for such

processes. Snyder [1972 a] considered the same problem but used

the concept of doubly stochastic Poisson processes. Since that

method has certain drawbacks, we will follow here the martingale

approach first applied by Bremaud [1972]. Recall from section

2.4. that if n is a counting process, then X is it's associated

rate process if (n,. -1 Xg ds, Ffc, t€ T) G M^, which we can

rewrite as dn = X dt + dm , n. = 0. Note the analogy with the

output equation for the stochastic system with Brownian motion

disturbances. We can complete the stochastic system model by

specifying the dynamical equation for the rate process X, say

dX = f(t,X ) dt + dm- . We call this stochastic system model

the counting process observation system.

The stochastic system model.

We now introduce a stochastic system, using concepts from our

earlier investigations concerning martingales. Our goal is a

stochastic system that covers both the equation with Brownian
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motion disturbances, and the counting process equation as

special cases.

4.3.1. Definition: The stochastic system.

We assume given the following equations forming the stochastic

system:

1. the observation equation,

dyt =d <m2,m2>t ht + dm2t> yQ =0, y e R ,

2. the state equation,

dxt =d(m^m^ ffc + dmlt, xQ, xG r

3. where (F ,t ^ T) is some increasing family satisfying the

usual conditions, and quasi left continuous,

(mit,Ft,t €T) €M^ i„ Rn, (m^.F^t €T) eM21oc, i„ Rk,
4. (f ,F ,t e T) is adapted, predictable, and

f |f | |d<m2,m >g|< «» a.s.,
Jt

(h ,F ,t G T) is adapted, predictable, and

V |hg| |d ^2^2^^ - a.s., and f^ Amlt +1 >0 a.s.,

h Am + 1 > 0 a.s. for all tGT.

f, h can depend on x in any way, such that dxt is a stochastic

differential equation and y a semi-martingale.

Remarks:

1. We consider the problem of the existence of a solution to the

stochastic differential equation, dx = d<m,,nL. > ffc + dmit> xq»

If f is a function of x , f: T x R -> R , satisfying a Lipschitz

condition in x, then by 4.2.1. the stochastic differential equation
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has an unique solution. If m1 e^oc then we can show existence
* of solution for arbitrary(f ,t G t), depending on the past of

x by 4.2.2. The general case of showing existence of solution

has not been solved yet.

2. We call the equation for x the state equation, and x the

state process, although it does not satisfy the usual

definition of a state in deterministic system theory. We

assume that the process h depends on x in some way. Since

y is observed it will be called the observed process, it

provides information about the state process x.

3. Note that x and y are semi-martingales. We can write the

above equation in different forms. One is to write it in

one equation, if

x mlt ft
rt = (y >» mt =(m >» *t =(h >»<mi»m2> =°a's"

dr = d(m,m) <j>t + dm ,Tq.

A different way of considering the above equation, in

analogy with 4.2.2., is

•• , dxt =d<m£, m£>t fu +d<md, m^ f2fc +dm^,
dyt =d<m£, m2>t h^ +d<md, md>t h2t +dm^.

>

However there is no general existence proof for the

stochastic differential equation for x.

By specializing the definition, we get the equation with Brownian

motion disturbances, and the counting process equation.

4.3.2. Definition: the equation with Brownian motion disturbances.

We define the equation with Brownian motion, by taking in 4.3.1.
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n» e m°loc' ^m>mV = * t» hence m is standard Brownian

motion. We write the stochastic system as:

drt = ft dt + dn^t r

4.3.3. Definition: The counting process equation.

We define the counting process equation, by taking in 4.3.1.

(mt,Ft,t G t) G m21qc in R,d<m,m>t = A(X ) dt, where

(X ,F ,t G t) is a predictable process in R , A(X )

= diag(Xt,.. Xn), Xt >0a.s. for all tGT and

1

X ds < °° a.s. Furthermore <t> = 1 and r is a counting
s t$0

process denoted by n. We write the stochastic system as

dn = X dt + dm , nrt » 0.
t t t* 0

Note that m is the martingale associated with the counting

process n with rate process X, as defined in 2.4.23.

4.4. Representation of the stochastic system, the innovation

process.

In this section we consider the concept of projection of

the semi-martingale model on an increasing family of o-fields,

and the related concept of an innovation process. Both of

these topics are needed in the next chapter on estimation

theory. We first give an example of what an innovation

process is, and then discuss it for the more general

case of our stochastic system model.

An example.

Let T = [1,2,..N] be discrete. Let y = (y ,t G T) be a

discrete time observed process satisfying E|y | < °° for all
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tGT. Let F - a(y ,Vt _^n). We define the process:

ij. =71 ~E(yi), mt -m^ ±yt -Ety^F^], t=2, ...N.
Suppose now we observe the process y, say we received the

observations up to (t-1), so all our information is

contained in F . Our estimate of the new observation
y t—i

y given F , in the least squares sense is E[y |f ].

Now we observe y . The new information we have received

by observing y is y - E[y If n]=m - m . This is why
t t t yt-1 t t-1

this random variable is called the innovation, or new

information, and the process m is called the innovation

process. The name innovation process was introduced by

Masani and Wiener [1950, p. 136] in the above context.

Note that the innovation process is defined in terms of the

observed process only, and that m is actually a martingale

with respect to F . We can rewrite the above process m as

\-\-i =(yt - yt-i> - Etyt - yt-i IVi] •
We now consider the continuous-time case heuristically. In

analogy with the above equation one can define the innovation

process by

<tat £dyt -EldyjF^],
which again can be interpreted as the new information

gained by observing dyt. One sees intuitively that

(m ,F ,t G T) is a martingale,
t yt

A short review

As mentioned earlier the innovation process was introduced

by Masani and Wiener D.958 ]• In a series of articles Kailath
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[1968], Kailath, Frost [1968], Frost, Kailath [1971] used the

innovation process to analyse and derive results concerning

filtering. The use of the innovation process has been much

advocated by Kailath, for example in detection problems

[1970 a]. There is a more recent article [Kailath, 1971 a]

where the innovation process is considered in terms of

martingale theory, an approach also followed by others.

Meyer [1973] discusses and slightly extends the innovation

process result.

The innovation process for the equation with Brownian motion

disturbances is well known to be a Brownian motion process,

hence a martingale. We now consider the innovation process in

a martingale context and derive several results.

4.4.1. Theorem:

If 1. given the semi-martingales

xt = x0 + alt + mlt

yt " a2t + m2t

2. E|xQ| < co,

3. (mlt>E »t G T), (i"2t»F it G T) are martingales,

m10 = °» m20 = °'

4. (alt,Et,t G T) G IV, (a2t»Ft,t: G T) G IV,

then xt = xQ + alt + n^

yt = a2t + m2t

where (alt,Fyt,t G T) is au - E(alt|Fyt), similarly

(a2t»Fyt,t: e T) is a2t =E(a2tlFyt)>
(it,Fyt,t GT) is xt AE(xt|Fyt),

(^lt,Fyt,t: G T) and (™2t,Fyt,1: G T) are mSLTt±a^ales'
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Proof, a- G iv implies that sup E|an I < », hence we can

define a-- = E(a- |F ), and the process (ait»Fvt»t e T) •

Similarly we define a„. Since m, is a martingale by

the conditions 2, 3 and 4

E|xJ < E|xQ| + E|au| + E|mlt| <»for all tGT.

We let x = E(x |F ) and get the process (x ,F ,t e T).
A A A ^ A

Let m. = x - x. - a. , then it is adapted

(tL ,F ,t e T). By the above Elm, |<» for all

teT, and El^-mjF^] -E[xt -x, - S^ +^Jf^]
=EtE[mlt -nLLs|Fs]|Fya] =0so O^.F^.t €T) is a
martingale. The proof for nu is similar.

In subsequent chapters we need a special version of this

result which cannot be deduced from it directly. We state

it in 4.4.2.

4.4.2. Theorem: T = [0,1].

If 1. given the semi-martingales

=t =x0 +j0 fs ds +"it

W>s ** + m2t

2. (n^^ft G T) is a martingale

<n2fFft€T>eMloc
3. (f ,F ,t G T) is an adapted measurable process,

sup E|f I < <»,
tGT l
(h ,F ,t G T) is an adapted measurable process,

sup Eh I < »,
tGT
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4. E|x0| <»,

ft
then 1, x^ = xrt + \ f ds + m.

•.-£ h ds + m0fc
0 S 2t

2. where (ffcfF ,t £T) is ffc =E(fjF ), similarly

(ht,Fyt,t €T) is ht =EChjF^).

3. (x ,F ,t <= T) is a modification of E(xt|F t),

which is right continuous, having left hand limits,

4. (mit>F t»t e T) is a martingale,

5. (m2t»Fyt»tG T) G^oc' ^2'^V =<m2»m2> a,s,»
rAd ^d, r d d,Inu^l = Ln^.n^J a.s.

Proof. Since sup El f I < », we can define f = E[f |F ].
t€T y

B[J f8 ^] <E[J E[|fsllFys] ds] =E[J |fs|ds]

< 1•sup Elf. I< «. Similarly we can define
ter *

(h ,F ,t ^ T) and E[l |h |ds] < ». By the conditionst yt JQ s

2, 3, 4,E|xJ <«> for all t G T, so we can define

E(xfc|F ). Since FQis the trivial a-field

E(xo'FyO) =E(V- Let m3t - E(xtlFyt) " E(x0>
f t .

- \ f ds, then E|nu | < « for all t € T. Now
Jo s

Elm3t " "3.1 *y«3 * ««*tl V " E(XslFy3>

-J '^IV dTiV =E[E[mu-,nisiFsMV =0-
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So (nu. »F , t GT) is a martingale, and has thus a
a

right continuous modification ("hi-t^i-jt € T),

having left hand limits. Define x = E(x0)

/•t

+ \ f„ ds + m1fc, thus x is a modification of
J0 s uo• mlt!

E(x |F ) and has the properties given above.

Similarly we can show that

"2t "yt "( \ ds' <"2t»V' £T) £"loc by a
•'O

stopping time argument. By 2.3.38.,

A A A

[nujiiu] = [y,y] = [nu,m2] which characterizes nu.

Note the difference between the two previous theorems. In

4.4.2. we have given a more explicit form to the processes of

bounded variation. This allows us to obtain a more explicit

result. Applying just 4.4.1. to the semi-martingales x and y of

4.4.2., does not give a valuable result, since we would get

E[l f ds|Fy ], which is not of bounded variation in general.
Jo S

However the form of 4.4.2. gives us a process of bounded

variation.

We state two corollary's to 4.4.2,

4.4.3. Corollary: T = [0,1]

If 1. dyt = ht dt + dmt
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2. (m ,F ,t ^ T) £*£ in Rn, <m,m > = I.t, so m Is standard

Brownian motion,

3. (h ,F ,t G T) is an adapted measurable process,

sup E|ht| <-, let nt =EChjF )
tGT

then dy = h dt + dm

(m ,F ,t € T) € *£, <m,m>t «I.t, hence m is standard

Brownian motion. We call m the innovation process.

4.4.4. Corollary: T = [0,1],

If 1. given the scalar counting process observation equation:

dn = Mt + dmfc

2. (mt,Ft,t eT) eM^, d<m,m>t =At dt,
3. (At,F ,t G T) is an adapted measurable process, At > 0 a.s.

for all tGT, sup E(A ) <«, let A = E(*t|Fnt)
ter

then dn = A dt + dm
t t *•

(mt,Fnt,t ^ T) e m^, d <m,m>t = At dt, we call mthe

innovation process.

Proof. By 4.4.2. [m,m] = [n,n]t = nfc hence <m,m> has the given

form.

Remarks:

1. Consider 4.4.1. and the semi-martingale y. What we have

A A

achieved is the following y = a„ + m^ = a«t + ^t' Both

are representations of the semi-martingale y, but with respect

to different families of a-fields, the first (Ft,t G T), the

second (F ,t G t). We will refer to this property as the
yt

representation of a semi-martingale with respect to a family
A

of a-fields. Now consider the semi-martingales x and x of
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4.4.1. and their representation. This representation is a

straightforward extension of the different representations

for y, the only difference being the conditional expectation

of x with respect to (F,t G T).
yt

2. If the semi-martingale y is an observed process, then we will

call m^ the innovation process associated with it. Comparing

4.4.2. with our earlier discussion on the innovation process

we note that dm = dy -h dt = dyfc - ht dt - E[E(dmt|Ft) F )=

= dy - E[dyjF ] which has the intuitive interpretation given

earlier.

3. In 4.4.1. and 4.4.2. we have considered special cases of the

semi-martingale system model as defined in 4.3.1. At this

moment it is not quite clear how 4.4.2. should be generalized.

The corollaries 4.4.3. and 4.4.4. have been given for later

reference.

Equality of a-fields.

A related problem of considerable interest is the following, we

state an abstract version of it.

4.4.5. Definition.

Given a semi-martingale y and its representation with respect to

(F ,t G T), yt = afc + m ,where (a^F ,t G T) G LIV and predictable,

(mt,Fyt,t G T) Gm^. Let F^ => a<ms,V8 <t), then F^ C Fyt for

all tGT. The problem is under what conditions do we have that

F «. = F- , for all tGT.
yt mt

Remarks:

1. The version of this problem which has been considered, is
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that of 4.4.3. The equality of o-fields was proven under

general conditions for the case of linear filters for

linear systems [Kailath, 1968a; Kailath, 1972], A more

general proof under the condition that h and m are independent

and h is uniformly bounded is due to Clark. Several attempts

to prove the above equality are known but no rigorous proof

has been published yet. This is a point of active research.

The equality of the o-fields has the interpretation that all

the information contained in the observed process, is also

contained in the innovation process.

2. If under certain conditions a result as defined in 4.4.5.

exists then it has two main applications, the first one being

estimation theory. If F = FA and if we consider the output

equation with the Brownian motion disturbances, then by 4.4.3.

A

m is standard Brownian motion. By 2.6.3. any (m ,F ,t G t) =

A

= (m ,F* ,t G T) thus has the representation dm = 6 dm .

Using this point Kailath [1968] and Frost, Kailath [1971]

derived results for the filtering problem. However since

the equality of the o-fields can only be proven under strict

conditions, this approach is not useful. We will see in

section 5.3. that it is not necessary to prove the equality

of o-fields to obtain the above representation result. A

second application of the possible equality of o-fields would

be the uniqueness of solution to stochastic differential

equations, using the method given in the second part of

section 4.2.
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5. Estimation theory.

5.1. Introduction.

In this chapter we start our investigation of estimation theory.

The purpose is to solve the estimation problem using martingale

theory. In section 5.2. we give a review of earlier work on

estimation, primarily filtering theory for the equation with

Brownian motion disturbances and for counting process observations.

In section 5.3. we derive two crucially important martingale

representation theorems. In section 5.4. we pose the filtering,

prediction and smoothing problem, discuss the least squares

estimation method, and outline the solution to the filtering

problem. In section 5.5. we derive general results concerning

prediction and smoothing.

5.2. A short review of estimation theory.

The estimation problem.

We start by defining the problems that are usually considered

under the heading of estimation problems. Let (G,F,P) be a

probability space, and T be the time interval of interest. It is

called either discrete-time or continuous-time depending on the

character of T. All estimation problems deal with an observed

process, denoted by y, defined on (ft,F,P) and T. There are three

main estimation problems:

1. The detection problem: where one wants to choose between two

hypotheses concerning the distribution of the process y. This

problem was considered in section 3.4. and some references were
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given there. We will not comment on this problem further

here.

2. The filtering, smoothing and prediction problem: here another

process x, also defined on (£2,F,P) and T, is present. The

filtering problem is to estimate the process x at time tGT,

given the observations y up to time t, and this for all t €= T.

The smoothing and prediction problems are related, see the

definitions, 5.5.1, 5.5.3.

3. The identification problem: here the distribution of the

process y, or alternatively the dynamical equation for y and

related processes, depend on an unknown parameter. The

identification problem is to identify this parameter. We

will not discuss this problem in this report.

The time interval.

There are several important distinctions between the discrete or

continuous-time case. In the discrete-time case with finite

observations the problem is relatively simple. After some

calculations one can then generate the estimate recursively. This

approach however does not work in the continuous-time case.

Another point is that in the continuous-time case it is difficult

to store the past of the observed process, without special

devices. This point leads to the concept of recursive estimation,

where we store only the current estimate, and this estimate and

the observed process, generate the new estimate on a continuous-

time basis. We will now restrict our discussion to continuous-

time processes and concentrate mainly on the filtering problem.
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General solution methods.

The estimation problem as given before, should be further specified

as to how to choose the estimate from the many possible ones.

Depending on the performance criterion for the estimate, the

solution method will vary.

The least-squares method.

Estimation theory started with Gauss, who developed the least

squares method in 1795. The method was used for estimation

problems that appear in astronomy, (for comments see Sorenson

[1970]). The least-squares estimation error method, as we will

see later, leads to the optimal estimate E(x |f' ), i.e. the

conditional expectation of x given Fyt. Using this an estimator

has to be derived which accounts for the dynamical evolution of the

x process. This can be done in a relatively straightforward

manner, using ideas of martingale theory as developed in this

report. An alternative way of deriving an estimator for x is

finding an expression in terms of the unnormalized or normalized

conditional density for xfc given F . Then however an equation

should be derived for the dynamical evolution of this density.

An alternative method for solving estimation problems is by

first deriving the conditional density of x given F , which then
^ yt

is maximized with respect to xt» This is called the maximum

likelihood method, which we will not consider here.
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Filtering theory for the Brownian motion model.

The following methods all deal with the estimation problem for

versions of systems with Brownian motion disturbances. We restrict

the attention to the main methods and papers. Although Kolmogorov

[1941] first published a discussion on the estimation problem

for discrete-time processes, it was Wiener [1949] who first

worked on the continuous-time problem. The problem formulation

was: given an observed process, which is the sum of a signal and

a noise process, both, stationary; the covariance matrix of both

processes and their correlation is given. The least-squares

estimation error method was discussed and applied to this problem.

The optimal linear filter specified by its impulse response is

being sought. A minimization approach then leads to the so-called

Wiener-Hopf equation, which is in terms of the covariance matrices

only. The problem now is entirely non-probabilistic, and the Wiener-

Hopf equation is solved by a frequency factorization method, which

was discovered earlier by Wiener. The design procedure was rather

cumbersome and was difficult to apply to multi-dimensional

observations. In 1961 Kalman and Bucy published their paper

with a new approach to linear filtering and prediction. Their

problem statement is more general; they assume the observation

and state process to be modelled by a linear, possibly, time-

varying system representation; the noise process is assumed to

be white, but not necessarily stationary; the system model is a

multivariable system, allowing multi-output observations; and
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crucially the filter is restricted to be linear. The method they

« use is applying the orthogonal projection theorem. From this

they derive the Wiener-Hopf equation, which then gives both the

* form of the optimal filter equation and the non linear Riccati

equation for the error covariance. For a discussion on the

history and a perspective of the Kalman-Bucy filter see Sorenson

[1970]. A large number of investigators have considered the

linear filtering problem, and special versions of it, and have

derived the same results by different methods.

The innovation process in estimation theory.

As described earlier the innovation process was defined by Masani

and Wiener [1958], but its importance in estimation was first

stressed in a series of articles by Kailath [1968] and others.

The main point is that if the system and the filter are restricted

to be linear then the observation and the innovation process

generate the same a-field. It is this property that allows one

to derive the linear filter equations much easier, avoiding the

Wiener-Hopf equation. Kailath [1968], Kailath, Frost [1968]

: show how this method can be applied to the linear filtering and

smoothing problem. In Frost, Kailath [1971], the innovation

process approach is used for nonlinear filtering problems.
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A stochastic differential equation for the optimal estimate.

In the following articles the same stochastic system model is

discussed. The observation equation has the usual Brownian

motion model, but x is assumed to be a Markov process. There are

no constraints on the form of the filter. The first to consider this

problem was Stratonovich, in the context of conditional Markov

processes. His result however must be interpreted in a special

stochastic calculus, different from the martingale or Ito calculus.

Kushner [1967a] first derived a stochastic differential equation

for the optimal estimate. The conditions stated are rather

strict, but they are necessary to derive a dynamical dquation for

the conditional density of x given F . From this density the

stochastic differential equation for the optimal estimate follows.

Bucy [1965] in a short note gives a similar approach but with a

different proof. Next follow the articles by Kallianpur and

Striebel [1968, 1969]. They rederive Kushner*s result but under

more relaxed conditions, and using martingale theory arguments.

Fujisaki, Kallianpur, Kunita [1972] finally clarified the proof

and extended the result. Their method is the martingale approach

which we are following in this thesis. The basic points in the

derivation are the martingale representation theorem on the

a-field of the observations, given in section 5.3., and the

analysis using the innovation process as given in section 4.4.

Using this method under quite general conditions the stochastic

differential equation for the optimal estimate can be derived.
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The unnormalized conditional density method.

<* Zakai [1969] gives an alternative method to the approach by

Kushner. See also the similar approach in the book by Wong

* [1971, Ch. 6]. Instead of the conditional density, the unnormalized

conditional density of x given F is considered. Using results

concerning the likelihood ratio as developed in Chapter 3, one

can derive an equation for the optimal estimate in terms of a

conditional likelihood ratio. This last quantity in turn

satisfies a dynamical equation. However the application of these

formula's seems to be complicated and few examples of filters are

known. It gives however additional insight in the problem.

Approximations to nonlinear filters.

Kushner [1967b] first considered applications of nonlinear

filters. It was his analysis that no finite dimensional filters

exist, that one gets a sequence of conditional moments of the

optimal estimate. Then some approximation procedures were given.

Several other approximation procedures have been published,

usually they involve an expansion of the nonlinear functions

T around the optimal estimate, and retaining only first or first and
o

second order terms. Such filters are mentioned in Sage, Melsa

[1971].

> Estimation problems for counting processes.

Given one observes a counting process. As defined in section 2.4.

under certain conditions, we can associate with it a rate process.

The problem is given the observed process, to detect or to estimate

the rate process, or some other unobserved process, that is of
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interest. Specialized problems of the above are of course the

* detection problem and the filtering, prediction and smoothing

problem. The above problem is an abstract version of problems

encountered in nuclear medicine, communication theory and

operations research. See Snyder [1972a] and Bremaud [1972] for

detailed problem areas. The first to consider the filtering and

detection problems in detail was Snyder [1972a]. Instead of using

the martingale approach as we do here, counting processes are

modelled as doubly stochastic Poisson processes. The method given

by Snyder is to derive the evolution of the conditional density

of the unknown random process with respect to the o-field of

the observations. This is the analogue of Kushner1s method for

the Brownian motion model. Using this equation a general dynamic

equation can be derived for the optimal estimate. Then the usual

first order approximation procedure is used to derive finite

dimensional filters. In a subsequent article, Snyder [1972b],

discusses the smoothing problem, the same approach is used.

Bremaud [1972] in his thesis, deals also with counting processes

r or point processes, but uses the martingale approach. The existence

of a point process with a stochastic rate is shown. A formula

for the likelihood ratio is given, however the proof contains an

error. The general form of the result however is correct. Next

the filtering problem is considered, the unnormalized conditional

.» density is derived. This approach is analogous to the method by

Zakai [1969] for the Brownian motion model.
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5.3. Martingale representation theorems.

In section 2.6. we have seen that certain martingales on the

o-field generated by a Brownian motion or a Poisson process,

have a representation as a stochastic integral with respect

to the underlying process. In this section we will derive a

representation theorem for certain martingales on the a-field

of the observation process y. Since y is not a martingale, the

representation theorem for martingales as stochastic integrals will

be with respect to the martingale associated with y, the innovation

A

process m.

5.3.1. Theorem: T = [0,1].

If 1. dyt =ht dt +dmt, y^Rk
2. (m ,Fyt,t e T) £ Ky, <m,m> = I.t, so m is.Brownian motion,

A

£ dm a.s. for all t ^ T,
s s

.(3. (nt»EYt»t £ T) is an adapted measurable process, J |hg| ds
y r

< °° a.s.

4. let (m„,F „,t G t) G m in Rn
t* yt' ' loc

then m has the representation

•t=f
_n*kfor an unique process (E ,F ,t e T) G \, (m) in R

Then also m is sample continuous.

Proof. We give the proof only for the scalar case, without loss

of generality.

Step 1. Define z„ = I - ti dm. then (z\ ,F t,t G t) G M^n .t Jq s s' t' yt ' ' 21oc

Define the stopping times x = inf{l,t G t|<z,z> _> n}
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n A r-
and let them be also such that m. = m _ fc M. for all n.

t tA i JL
n

Since (z,z).. = I |h | ds < °° a.s. by condition 3.,
Jo S

lim xn = 1 a.s. Define Z|. = ztAT , m - mtAT , mt = m^ .
n n n n

Step 2. Since <zn,zn> <_ n, by 3.3.6. EQ[e(z*)] =1,

dPn "n
so -=— = e(z-) introduces a new probability on (ft,F)

We now apply the translation theorem 3.3.5.:

tAT
$n

A n
h ds = y = y^ and

s Jt "'tAT
n

(yt,FytAT 9t GT) GM21oc (pIl)- Since <mIl»2n> is sample

continuous, <y ,y > = [y ,y ] = [m ,m ] = tAx .

Now (yt>FytAT »t G t) is standard Brownian motion under P .
n

Step 3. Note that because z1 Gm£, [mn,zn] -<mnC,Sn> =<mn,zn>.
We now again apply the translation theorem: let

q* £mn -<mn,zn>t,(q^,Fyt,t €T) GM^CP11). We now
apply the representation theorem 2.6.3. Since under P on

[0»T ]»y is standard Brownian motion, dq - a dy , on
n ' tss

[0,xn] where (\»Fyt't GT> GL2loc(m) under ***
We calculate

$t /• n c n
n , n i n,An I n / *n *nv

°« dyc = \ °l dmo + I a d<m,z >
oSs30ssJo 8 s

Because a G L (y ), there exists a sequence of stopping
21oc

s
Jm z

|on| ds] < » hence
r s
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sm n2
|o I ds < °° a.s. P and by equivalence also a.s. P.

0 SJ
tAT

Now under P measure
C n n -(J o^ dms,Fyt,t €T) is alocal

martingale. From above we rewrite

tAX_ tA-t

1 i
m

$n /* n
n ,An / n An\ ,1 n jAn Anv

a dm = \ m , z > + 1 a d\ m , z /0 s s » t J0 s s

£ M? (P) Hbv and hence zero by 2.3.16.
ftAX

n

a11 dm for all n.
0 s S

Step 4. Define afc = a on the set {(t,<o) G TxQl t < x (a))}

then since lim x = 1 a.s.
n

n

**- i°„ dni a.s. for all tGT.
s s

This implies that m G m„ = *£ , so there exists a
loc 2oc

sequence of stopping times {s }, lim s = 1 a.s., such
n

that for all n m G M . Now

f n «
E[<mn,mn> ] = E[\ \o | ds] < «>. hence

i JQ s

A

a e'L21oc(m) under P.

5.3.2. Theorem: T = [0,1].

If 1. dyt = dnfc - dt = (Xt-1) dt + dmt,

2. where (nt,t G T) is a counting process in R ,

3- ^t,Fnt,t: ^ T^ an adaPted measurable process, right

continuous, having left hand limits, and A , A > 0 a.s.

for all tGT,
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4. (;t,Fnt,t et) em^1oc,
5. given any Ont»*nt»t ^ T) ^ M in Rn,

then m has the representation,

m<=C
A

E din a.s. for all t e T,
s s

for an unique predictable process (E ,F ,t e T) e L-- (m„)

in RnXk. '

Proof. We give the proof only for the scalar real valued case.
A

Step 1. Since A has the properties given above, we can define

dzt &(-1 +1/Xt_) «tot, (zt,Fnt,t e T) €M]U)c
A

Define the stopping times x « inf{l,t e t|A ^ n,
A

1/Afc j> n>, and such that mtAT Gm^ By the properties of
a n

A, lim xn =1 a.s. Note that d[z,z] « (-1 +1/A _)Z dn ,
• n t- t

so using 1 we conclude that d<z,z> = (-1 + 1/A )2 A dt
t t— t—

s <\-_ "2 +U\_) dt

Define An £ a\ , zn =z , m11 =m , m11 =m ,
t tAX ' t tAX ' t tAX * t tAT '

n n n n

yt =ytAx ' Now l^t- "2 +1/*t-l -Zn +2> so bv 3-2-5-
vnE[e(z^1)] = 1.

^ dp^ _ *n, ^__ «Step 2. Let ^j— = e(z,), then P is a new probability measure on

(n,F). We have d[mn,£n]t =(-1 +1/A*J dnt, which has
the dual predictable projection d<mn,zn> = (-1 + 1/A )

At_ dt = "(At_~i) dt. We now apply the translation

theorem 3.3i. 5.,
tAT

n *
(At_-1) dt =m. - Mn ,z ;t =»- + J (x^-l) dt =y = yn =

0 n

("t " »> tAT • (VFnf' e T> £ ^(P") «d n is a
n
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-f

counting process. Now by 2.4.20. n is a standard Poisson

process on [0,x ], under the measure P .
nJ

Step 3. Note that (n£,F .t G T) G M~(pT~so by"3^374.
t nt ±

n£[e(z")]""e M^P11) CMlQc(Pn). By 2.6.8. under Pn this
rtATn

martingale has the representation \ <J> dy for
J0 s s

(*t> Fnt>t: GT) GLlloc(yI1) under ptl-
We now apply the differentiation rule under P to

ftATn
n /n» ,l ,n . n* _ ^ n A /"nvz = e(zt)(j <f»s dyg). Let yt = e(zt), and note that

this is a semi-martingale under P , which can be proven by

3.3.5.

We calculate:

yt yt- t = yt- * 1'xtJ dmt»

U*. J- ^ d,»]t- „»_ ♦» (-1 +l/^_) dnt>
ftATn-

d\ =(J +s dys> C (_1 +1/3£-> d\ +•£. *t d\
, n n ^n nv . . n n , . , , .^n x ,
+ yt. <f>t <*t_ }dt + Vt_ 4>t C"1 + !/*£_) dnt

tAx -

= a dm
« s

which also holds under P.

tAx

Now m. = \ a dm
'Jo s s

n

dm
s

Step 4. Define afc = ot on [0,xn) then (ot**nt*t G T) is adapted,
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predictable. Since lim x = 1 a.s.,
n

^"$o°-m. = \ o dm a.s. for all tGT. Since m, nu e M ,

and the integral is defined, it follows that

o€4loc("2)-

Remarks:

1. Theorem 5.3.1. for the case where m is square integrable,

was first proven by [Fujisaki, Kallianpur, Kunita, 1972].

Davis [1971] has given a slight extension of their result to

local martingales. The last part of the proof of 5.3.1.

differs from [Fujisaki et al., 1972], where we used techniques

developed in Chapter 3 of this thesis.

2. The main points in the proof are the following: we do a

transformation of measure, such that under the new measure the

observed process y becomes a martingale, actually a Brownian

A

motion. The transformation martingale z is chosen such that

this is the case. Next the given martingale m is also

translated into a local martingale on (F ,t G t). Then the

martingale representation theorem on the c-field generated by

a Brownian motion is used. The result then follows by returning

to P measure.

3. Theorem 5.3.2. as given here is new, the method of the proof is

similar to that of 5.3.1., only some minor details are different.

Any martingale representation theorem can by line above outlined

procedure be converted in a martingale representation theorem

on the j-field generated by the associated semi-martingale.
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4. The two previous theorems are of great importance in any

problem where we deal with martingales on the o-field

generated by the observed process. The two main applications

are estimation theory and stochastic control (see Davis [1971])

5. Under the condition that the a-fields generated by the

observation and innovation processes are equal, we can

derive 5.3.1. in a different way. Consider the assumptions

A

of 5.3.1. then m,the innovation process,is a Brownian motion.

Now if F = F* then by the representation theorem 2.6.3.

A

(m. ,F„^.,t G T) G m, has the representation dni = <J>„ dm,..\ t» yt» / ^QC r t t t

The real problem however is that the equality of the o-fields

F = F" has only been proven in some special cases, see

the discussion at the end of section 4.4.

5.4. Estimation theory for continuous-time stochastic processes.

In this section we will review some of the basic aspects of

estimation theory. We give the least squares estimation method

for obtaining the optimal estimate. Then we discuss the general

filtering problem and give a solution in the form of a dynamical

equation. We start our discussion by defining the problem.

5.4.1. Definition: The estimation problem.

Given 1. T C R, the time interval of interest, usually T = [0,1],

or [0,~),

2. (x ,t G t) a stochastic process of interest that is not

observed,

3. (y^-jt e T) a stochastic process that is observed, and

that provides information concerning the process x,
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4. let Fyt = a(ys,Vs < t), (Fyfc,t e T).

The filtering problem: to obtain for all tG T an estimate of xt

given the observations y on [0,t], or equivalently F .

The prediction problem: to obtain for t, s G t, with s < t, the

predicted estimate of x given F .

The smoothing problem: to obtain for t, s e T, with t < s, the

smoothed estimate of x_ given F .
t ° ys

Remarks:

1. We have not yet specified the dynamical equations for x and y

nor the way y depends on x. This will be done later.

2. There are obviously many ways of obtaining estimates of x

given F . We will now specify a cost function that associates

a cost with each estimate. We will take the least squares

error criterion, because it requires the least number of

assumptions and does not require specification of a priori

statistics or distributions. As pointed out by Wiener [1949,

section 0.7.] this criterion has a physical interpretation,

since the square of the estimation error is proportional to

power.

5.4.2. Definition: The least squares error estimation problem.

Given 1. (y ,F ,t e T) the observed stochastic process,

2, (x ,t G t) the unknown stochastic process, with

E|x |2 <« for all tGT.

3. let t, s G T be given but fixed.

Problem: to find a random variable z(t|s) such that

1. z(t|s) is measurable with respect to F
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2

2. E|z(t|s) | < oo

3. z(t|s) minimizes the cost E|x - z(t|s)| =

-E([X(. -z(t|s)]T [xt -z(t|s)])
Definition: 1. such z(t|s) is called the least squares error

estimate of x given by F .

2. e (t|s) - x - z(t|s) denotes the estimation

error.

5.4.3. Lemma:

Given the above problem, then

1. the minimal least squares error estimate of x given F

is x(t|s) =E[xjF ]a.s.

2. if z is any random variable measurable with respect to F ,

and E|z I < » then

E[z* eX(t|s)|F ]-0=E[z* eX(t|s)]
a ys • S

o

Proof: Since e|x. I < «», E[xJf ] is well defined.
1 t1 t1 ys

Assertion two follows by the property of conditional

expectations

E[z* eX(t|s)|F ] = zT E[x„ - E[x If ]|F ] = 0
s ' y| ysJ st l t' ys ' ys

Now take x - z(t|s) = x - x(t|s) + x(t|s) - z(t|s)

hence we get

2 „, - , .,2
E |xt - z(t|s)r = E|xt - x(t|s>r + E |x(t|s) - z(t|s)

T+ 2E[(x(t|s) - z(t|s))A (xt - x(t|s))] >

E|xt -x(t|s)|2
where we used assertion 2. Since this holds for all z(t|s)

with equality only for x(tls), the result follows.
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Remarks:

1. The above proof is essentially the projection theorem in

Hilbert space. This is related to the fact that conditional

expectation is projection of a random variable on a a-field

Hence the above proof uses only properties of conditional

expectation.

2. We remark that here we have taken the projection on F .

In Kalman and Bucy [1961], the orthogonal projection was

also considered, but then on the space of all linear

functionals of the past of the observed process.

3. The above two equations are the essential points for deriving

the optimal filter. The optimality of the filter is determined

by using these results.

4. We note that the least squares error estimate x(t|s) has

the property that it is unbiased:

S[eX(t|s)] = E[xt - x(t|s)] =0.

5. We now limit our attention to the case where s = t, the

filtering problem. The prediction and smoothing problem are

considered in section 5.5.

Filtering theory.

Remarks:

1. We can define as before x = ECxjF ) for all tG T and hence

obtain a stochastic process (x ,F ,t G t). Note that if
c y t

yQ •» 0, then F » contains only null sets, so we get

xo = E<xolFyo) = E(xo)-
2. We now have to specify the model or the dynamical equations
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for the processes x and y. This has to be done to get some

structure in the problem. We will assume that x and y are

semi-martingales of a form as assumed in the previous chapter.

5.4.4. Definition: The filtering problems

Given: 1. (Ffc,t G T) some family of sub-o-fields,

2. (xt,t G T), xt = xQ + alt + mlt, satisfying E|xfc| <«,

for all tGT, (alt,Ft,t G T) G IV, (nt^.F^t G T) G M^,

3. (y ,F ,t G T) the observed process,
t yt

yt =1 d<m2,m2> hg + m^, (ht>Ft,t G T) is an adapted

measurable process, (m„ ,F ,t G T) G M„.

The problem is to derive a generalized stochastic differential

equation for the optimal estimate x, given the observed process.

This equation will then be called the filter.

Remarks: i. Note that the processes x and y are specified in the

form of semi-martingale equations, where a, and h are unspecified

No distributions for x and y are given. Note also that the

equations for x and y are non-anticipative, by the adaptivity

of a1,h, m-, nu. The relation between x and y is implicitly

specified by the adaptedness to (F ,t G T).

2. In the above definition we do not specify the structure of

the filter or of the equation that x must satisfy. This is

done in the case of linear filtering by Wiener [1949], and

by Kalman, Bucy [1961].

3. If we derive a generalized stochastic differential equation for

A

x, then by adaptivity it is necessarily non-anticipative, in
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the sense that it does not need the future observations.

However we cannot say whether the equation depends only on

the current estimate, or on the complete past of the estimate.

5.4.5. Assertion:

Given 1. the filtering problem of 5.4.4., where the observations

contain Brownian motion noise (nu ,F ,t GT);

eiyt = ht dt + dm2t

2. the Innovation process as defined in 4.4.3.,

dm2t ^dyt -ht dt
then the optimal least square error estimate satisfies

dxt = dalt + Zt dm2t, xQ = E(xQ)

where (Z ,F ,t G T) is a predictable process, and

~alt *E[altlFyt]-
5.4.6. Assertion:

Given 1. the following problem of 5.4.4., with counting process

observations

dn = A dt + dm0j_
t t 2t

2. the innovation process as defined in 4.4.4.

dm0fc = cuv - A^ dt
zt t t

then the optimal least squares error estimate satisfies

dxt = dalt + Et dm2t, xQ = E(xQ),

where (E ,F ,t e T) is a predictable process, and
t yt

alt =E[alt|Fyt].
The precise results are deferred to the sections 6.2. and 6.4.

Here we only point out the main points. Similar to 4.4.1. we

get that x satisfies x\ = xA + al4. + ml4., where (nL,F.tGT)GM-
t u it it it yt loc
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Now using the martingale representation theorem 5.3.1. or 5.3.2.,

A A A

we get dm = Z d™2t' wnere mo *s tne innovation process, and

this gives the result. These assertions give the basic result,

note the importance of the martingale representation theorem.

One problem that still rests is, what is the process Z. In the

next chapter we will see that with a further specification of

the process a^ we can find an explicit expression for Z. Note

also that by the martingale approach we can give a similar

derivation to the counting process observation problem, and for

the equation with Brownian motion disturbances.

5.5. General prediction and smoothing problems.

In this section we will discuss in a general format the prediction

and smoothing estimation problems.

5.5.1. Definition: The prediction problem.

Given the stochastic system model, satisfying the assumptions of

theorem 4.4.1.,

xt = x0 + alt + mlt

and (y^t G T) the observed process.

The prediction problem consists of finding a generalized stochastic

differential equation for x(t|s), the least squares error estimate

of xt given F where s < t. The following prediction problems

can be distinguished: x(t|s)

1. if t is fixed, we call it fixed point prediction,

2. if s is fixed, we call it fixed interval prediction,

3. if t - s = 8 > 0 is fixed, we call it fixed increment prediction,
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5.5.2. Theorem:

Given the prediction problem of 5.5.1., and let by theorem 4.4.1
AAA A

\ = *0 + alt + mlt
then the predicted variable satisfies, s < t

x(t|s) =x(s|s) +E[alt|Fys] -als
where x(sls) = x is the filtered estimate.

' s

Proof. By conditional expectation x(t|s) =E[xt|F 1=E[xt|F ].

Furthermore: x(t|s) - x(s|s) =E[xt -xg|F] =E[alt - als +

+ m. - m, |F„ ] = E[a_ IF ] -a..
It Is' ysJ It1 ys Is

5.5.3. Definition: the smoothing problem.

Given the unknown process (x ,t e T) satisfying E|xJ <«for all

tGT, and the observation process y satisfying

•t

•.- 0d<m2'ra2>sh8 +m2t

with the usual assumptions.

The smoothing problem consists of finding a generalized stochastic

differential equation for the estimate x(t|s), of xt given

F where t < s. The following smoothing problems can be
ys

distinguished x(t|s)

1. if t is fixed we call it fixed point smoothing,

2. if s is fixed, we call it fixed interval smoothing,

3. if s - t = 6 > 0 is fixed, we call it fixed lag smoothing.

Remark: The distinction between these special problems was given

in [Kailath, Frost, 1968].
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5.5.4. Theorem:

Given 1. the smoothing problem of definition 5.5.3.,

A

2. let m« be the innovation process,

3. we restrict us to the observation equation with

Brownian motion disturbances or to counting process

observations

then the smoothed estimate satisfies

x(t|s) = x(t|t) +I £(t,x) dm2T ,t<s

for a predictable process (Z(t,t), FyT>Te U,l] ,t € T)

Proof. Let t be fixed, and define

mg =x(t|s) -x(t|t) then (mg,Fys,s ^ [t,l]) G \
because t < t < s: E[m - m If ] « E[x(t|s) - x(t|t)|F ] = 0.

s t y t j i

Now for the Brownian motion or counting process case we have the

martingale, representation theorem of section 5.3;, which gives

the result.

Remark: The foregoing basic results will allow us to derive the

detailed prediction and smoothing equations in the next chapter,

for more detailed stochastic system models.
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6. Stochastic differential equations for the optimal estimate.

6.1. Introduction.

In this chapter we derive in detail the stochastic differential

equations which the optimal estimates satisfy. In Section 6.2. we

derive the stochastic differential equation for the filtering problem

for observations with Brownian motion noise. In Section 6.3. we

discuss the question when the derived filters will be finite

dimensional. In Section 6.4. we derive the stochastic differential

equations for the filtering problem for counting process observations.

In Section 6.5. we derive the stochastic differential equations for

some special estimation problems, such as prediction, smoothing and

systems with delays. In Section 6.6. we discuss in general the

martingale approach to estimation problems, primarily to filtering.

6.2. Filtering from observations with Brownian motion noise.

In this section we derive the general filtering equations for the

case where the observations are disturbed by Brownian motion.

6.2.1. Definition: the observation equation.

In this section we assume that:

1. T - [0,1],

2. the observation equation is given by

dyt = htdt + dm2t, yQ = 0

3. where (m. ,F ,t 6 T) G M^ is standard Brownian motion,

4. (h_,F. ,t € T) is an adapted measurable process, sup E|h | < °°.
t c t^r

The conditions of 6.2.1. are necessary to derive the following lemma, which

recalls some points proven earlier.

6.2.2. Lemma: Under the conditions of 6.2.1.

1. We can define ht = EChjF ), (nt,F' 9t G T) adapted, measurable,
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„ , h A , ; , _i hi2
2. let e = h -h , then sup E e < °°,

Co ter r * o3. E[l |h |Zds] <», E[l |h |Zds] <«,
TA Jt4. dm2t =dyt -htdt =e£ dt +dm2t, (m2t,Fyt,t eT) ^u*, is the

innovation process as defined in 4.4.3., it is Brownian motion,

5. the conditions for 5.3.1 are satisfied, so if (m ,F t>t ^ T) G M.

then dm = Z dm« , for an unique process E €: \, (m«).

Proof: 1 and 2 follow from 6.2.1.4. By the same condition

E[\ |h |2ds] = \ E|h |2ds <1. sup E|h |2 <~. Since
h s Jt s ter

E|hJ2 =E|E(h |F )'|2 <E(E[|h |2|F ]) » Elh |2 we have
1 s• s' ys — s' ' ys ' s'

E[i |h |2ds] =f E|h |2ds £| Elh I2ds <~. 4follows from 4.4.3,
h S Jt S h S /•

a —. c I i* 12
and because T = [0,1], m„ € M . Because E[l |h | ds] < «>, the

conditions for 5.3.1 are satisfied.

The stochastic differential equation for the optimal estimate.

6.2.3. Theorem:

Given the observation equation with the assumptions of 6.2.1. Given

the semi-martingale dx = f dt + dm.. , xQ,

1. where (m. ,F ,t e T) e M.., hence ^m^,m„) exists, assume that

d<mrm2> t =*i2tdtf where (*i2t,Ft,t: GT) e Ll(t)'
2. (f ,F ,t € T) is an adapted measurable process, sup E|f

t t 2 tf=T C
3. sup E|xf| <» ,

tGT

then dxt =ftdt + (2t(x,h) +E[<t>x2t|Fy|_]) dm2t, xQ =E(xQ),
A ^

dm« = dy - h dt, the innovation process,

1. where (x.F .t^T) is a right continuous modification of
t yt

E[x |F ], having left hand limits,

2- ^t-WtiV*
3. £t(x,h) =E[e^(e^)T|F fc], will be called the conditional

covariance of x and h.
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Proof. By condition 2 we can define the process ^t»vyt*t G T)»

ft =E[ft|FytJ. Note that E[J |f8|ds] =J E|fg|ds <1. sup K|f^|< «>.
We now apply 4.4.2 and get dx = f dt + dm , where(x ,F ,t G T)

is a modification of E[x |F ] having the above described properties
t yt

and (m ,F ,t 6T)G mioc* Bv 6.2.2.5 we can apply 5.3.1 to get

the representation dm. = £tdm2t* when ^t,Fvt,t: e T) € L21oc^m2^'
f A A

The problem now is to determine an expression for Z. Let e = f - f

then we calculate:

deX ^ dx - dxfc = efdt + dm. - Z«. dm0<.
t t t t It t 2t

d*2t = etdt + dm2t

d[ex,m2]t =d[x,m2]t - d[x,m2]t =d<mj,m2>t - Zfcdt =^12t^t)dt
by condition 1. We use the differentiation rule,

x,- .T x,- NT ,f* X.,- .T _, f ,x,- J f ,r x - ,
V"^ =es(m2s) +)s ex(dm2x) +)8 dex(m2T) +Jsd[e ,m2]x

X/- nT ,Ct x, hNT, ,Ct *,a .T ,Ct J,* >?,
=8s(m2s) +\ex(ex) dT +\ eT(dm2T) +I ex(m2x) dT

Js Js Js

+fdmlt(,i2t)T -fW^/+f(*12T-Zx)dT
JS J 8 J 8

By condition 3 and 6.2.2.4, e and nL are square integrable so by

5.4.3 we have, if s < t,E[ex(nL ) |F ] = 0. Now eliminating the
t £•t ys

F _ and F^_ local martingales and using that
yt t

Etf •T<*2T)*T'Fy«1 =E[ftE[e^(ii2T)T|FyT]dT|Fys] =0,

E[<<»2t)T|Fys] -0=E[jV(e*)T +*12 -ZT)dT|Fy8]
s

Because of the integrability of the first two terms by the conditions

x, hNT|
Uyf "^Ufyf

Remarks

1, 3and 6.2.1.4 we get Ifc =E[eX(e^)T|F ]+E[*12tlFyt]-

1. The semi-martingale x represents any unobserved process, which can
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be modelled this way. The processes f and m. are unspecified.

Note that f can be any adapted process, which can depend on the

past of x, and not necessarily just on the current state x .

This formulation is an extension of earlier stochastic system

equations.

2. The conditions in 6.2.3 on x,f, and m. are of course related

by the expression for x. The way theconditions are stated, is

the form in which they are needed in the proof. In a subsequent

proof we will use this result again. Of course equivalent or

stricter conditions could be stated, however it was left that

these conditions were most easily to apply.

3. The result stated is similar to that of [Fujisaki, Kallianpur,

Kunita, 1972], except that we have considered a more general

case. The proof is new, and was partially inspired by a simple

example given by Wong [1972], also Wong [1973]. For a further

discussion on the method used see Section 6.6.

4. Note that the derived result has a similar interpretation as the

Kalman-Bucy filter. If the conditional covariance matrix Zt(x,h)

is large, then the optimal estimate x relies more on the innovation

process. If this covariance is small, then the innovation process

plays a lesser role, and the optimal estimate relies more on the

estimate of (f ,t £ T).

The stochastic differential equation for the conditional covariance.

We now define the stochastic system, for which we will derive a

stochastic differential equation for the optimal estimate and the

conditional covariance.
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6.2.4. Definition: the stochastic system equations.

Given the observation equation as defined in 6.2.1 with the

conditions assumed there. Given an unobserved process x, a

semi-martingale, and suppose that the process h, as defined in

6.2.1, is also a semi-martingale:

dxt = ftdt + dmlt' x0»

dht = rfdt + dm3t, hQ,

where we impose the following conditions:

1. (mlt>Ft>t e T) e M2, (m3t,Ft,t e T) e M2, <m;L,m2> =0, <m3,m2> =0,

d<m1,m3>t =<J>13tdt, d<m3,m3>t =<f>33t.dt, (*13t>*t>t eT)6 L-^t),

(<J>33u>Ft,t e T) e L-^t),

2. (ffc,F ,t e T), (r ,F ,t e T) are adapted measurable processes,

3. sup E|x | < «>, sup E|h | < °°,
ter t^T

4. sup E| f | < °°, sup E|r | < »,
ter z ter

5. sup z|<f> | < ~, sup E|$„ | < °°.
ter 1Jt ter JJt

Remark: consider the conditional covariance

Zt(x,h) =E[eX(e£)T|Fyt] =E[xt(ht)T|Fyt] -xt(nt)T. One usually
derived a stochastic differential equation for the estimate of

T
x. (h ) . Here we take a different approach and obtain directly a

stochastic differential equation for Z (x,h).

6.2.5. Theorem: the general filtering equations.

Given the stochastic system as defined in 6.2.4. The optimal filter

has the form:

dnu = dy - h dt, the innovation process,

dxt =^tdt + zt(x>n)dm2t, xQ =E(xQ),
dht = rtdt + Zt(h,h)dm2t, hQ = E(hQ),
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dZt(x,h) =.[Zt(x,r) +Zt(f,h) - Zt(f,h) Zfc(h,h) + E[<|)13t|Fyt]]dt +
+ Zt(h,h,h)dm2t, ZQ(x,h) = E[eX(eQ) ],

dZt(h,h) - [Zt(h,r) + Zt(r,h) - Zt(h,h) Zt(h,h) + E[<f>33t|Fyt]]dt +
+Zt(h,h,h)dm2t, ZQ(h,h) =E[e£(eQ)T].

A A

Remark: Still unknown, f , r and several terms in the equations

for Zt(x,h>, Zfc(h,h).

Notation: Z (x,r) = E[(x -x )(r -r )|F ] and similar expressions

for the other conditional covariance matrices.

Zt(x,h,h)dm2t = (Zt(x,h,h)dm2t,..., Zt(x,h ,h)dm ), in the scalar

case ot(x,h,h) =E[eX(e£)2|Fyt].
Proof: Because of notational problems we give the proof for the

h
scalar case only. From 6.2.2.4. dm,. = e dt + dm,^ . The conditions

J 2t t 2t

1, 3, 4 of 6.2.4 imply that we can apply 6.2.3 to the semi-martingales

x and h,

dxt = *tdt + at(x,h)dm2t,

dfit = rfcdt + at(h,h)dm2t,

The problem now is to derive a stochastic differential equation for

o (x,h). We calculate, let

x A * f _ * r *• . .et - xt - xt, et - ft - ft, et = rt - rt, then
X fdet = etdt + dmlt - ut(x,h)dm2t,

= [et - at(x,h)et]dt + dmlt - at(x,h)dm2t,
x hd[e ,e ]t = d[m1,m3]t + at(x,h)at(h,h)dt,

d(exet) =atdt +dm^,

at -eX(e^ -ot(h,h)e^) +(e* -ot(x,h)e£)e£ + <J>13t + at(x,h) at(h,h)

dm4t = etdmlt + etdm3t " fat(x'h)et + etat(h»h^dm2t
+ d([m1,m3]t - <m1,m3>t),

x h(m^t»Ft,t E T) eMioc» Note that (e e ) is a real valued semi-martingale,
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of the form assumed in 6.2.3, which result we now want to apply.

We check the conditions. We have to check that sup E|a | < «. This
ter z

follows from the conditions 3, 4 and 5 of 6.2.4, for example:

E|eXe£ot(h,h)| <E|eXe£|2 E|ot(h,h)|2 <E|eX|4 <E|e*|A) <
K E|x |'4 (E|h |*) 3<«>, where K is apositive constant.

Similarly by condition 3 of 6.2.4 we have

|e^e^|2<K E|xt|4 E|h/ <-E

Now by the equation for (ex e£), E|m4t| <«, hence m4 is amartingale
and d[mA,m2]t =d<m4,m2>t =-[ot(x,h)e£ +eX ot(h,h)]dt. We now

x h
can apply 6.2.3 to (e e ) and using that

dNm, ,m„/..
ET -.—— If ] = 0, and the notation introduced before, we get
L dt ' ytJ

dat(x,h) = [at(x,r) -at(x,h)at(h,h) +at(f,h) -at(x,h)at(h,h) +
+ E[<J>13t|F t] + ot(x,h)at(h,h)]dt + ot(x,h,h)dm2t, which

gives the result. The equation for a (h,h) follows from this.

Note that

at(x,h,h) -E[(eX e^ -at(x,h))(h^) |Fyt] =E[ex(e^)2|Fyt].
Remark:

Theorem 6.2.5 is the main result of this section. It gives the
A *

stochastic differential equation for the optimal estimates x,h and

for the conditional covariance Zt(x,h). The filtering problem is

not solved with these equations, as indicated by the unknown variables

mentioned. In the next section we discuss in more detail the

implementation of this filter, which in general will be infinite

dimensional.

Applications.

At this point we want to point out a modelling guideline and give a
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special case of the above formula's. We assumed the unknown process

x to be a semi-martingale, some special forms of which are:

xt =X0J xt =X0 +V xt =X0 +V Where ae BV» mGMioc' Now
A ^

x =xQ for all te T, leads to dxt =0, hence dxt = 0, xQ =E(xQ),
A A

so this is not usefull. Similarly xfc = xQ + at leads to dxt = dat»

Note that in both cases there is no 'feedback1 correction using the

innovation process. This follows because the equation for x does

not include any martingale term, which represents the disturbance.

So as a modelling guideline processes to be estimated should be

modelled by an equation which includes a martingale term. In the

case where we suspect x to be approximately constant it can be

modelled as x = xQ + m ,where me Mlo(,. We state the result.

6.2.6. Corollary:

Given the system of 6.2.4, with scalar quantities

dyt = htdt + dm2fc, yQ = 0,

ht = h0 + n3f
2

hn an unknown random variable, E(hQ), E(hQ) given,

(m3t,Ft,t e T) eM2, d<m3,m3>t =<J»3t.dt, <m3,m2> =0. Then the

optimal filter for h is:

dm9 = dy - h dt, the innovation process,

dht = at(h,h)dm2t, hQ = E(hQ),

dat(h,h) =[E(<J>3t|Fyt) - a2(h,h)]dt +at(h,h,h)dm2t,
aQ(h,h) = (h0-E(hQ))2.
This follows from 6.2.5.

The stochastic system model with Brownian motion disturbances.

We now specialize the discussion to what is generally regarded as

the nonlinear system, with Brownian motion disturbances.
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6.2.7. Corollary:

Given the stochastic system

dxt = f(t,xt)dt + G(t,xt)dml£, xQ,

dyt = h(t,xt)dt + dm2t, yQ = 0,

that satisfies the assumptions in 6.2.1 and 6.2.4

nl
Furthermore (m, ...F ,t e T) is a standard Brownian motion in R ,

independent of nu.
n n n n n nv*ni

f:TxRx-»-Rx, h:TxRX-"Ry, G:TXRx-*-R are jointly

measurable functions, f(t,x), h(t,x) are assumed to be twice continuously

differentiable in x and once in t. Furthermore f and G are such that

the above stochastic differential equation has an unique solution.

Then the optimal filter is

dxt =* f dt + Zt(x,h)dm2t, xQ = E(xQ),

dht =r^dt +Zt(h,h)dm2t, hQ =E(h(0,xQ)),
and the equations of the conditional covariances as in 6.4.5.

ft ^E[f(t,xt)|Fyt], ht =E[h(t,xt)|Fyt].
Proof. The theorem follows from 6.4.5, since by the assumptions,

f(t,x ) and h(t,x ) are semi-martingales, for which we can derive

a detailed semi-martingale expression by the differentiation

rule.

6.2.8. Corollary: The Kalman-Bucy filter.

Given the stochastic system, satisfying the assumptions of 6.2.7,

dxt = A(t)xtdt + B(t)dmlt, xQ,

dyt = C(t)xtdt + dm2t, yQ = 0,

where F. = o(m. ,m« »x0,Vs _< t), m.,m2 are standard Brownian motions,

<m.,m9) » 0, E|xn| < °°, x is a Gaussian random variable.
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The optimal filter is

dm2t = dyt - C(t)xtdt,

dxt -A(t)xtdt +Zt(x,x)CT(t)dm2t, xQ =E(xQ),
dZ (x,x) =[Zt(x,x)A(t) +ATZt(x,x) +B(t)BT(t) -Zt(x,x)CT(t)C(t)Zt(x,x)]dt,

ZQ(x,x) =E[eX(ex)T].
The proof follows from 6.2.5 with the following observations. Since

xn is Gaussian, and m1 is Brownian motion, x is Gaussian and by

linearity so is y. Actually ex = x - x and y are jointly Gaussian,

and since they are uncorrelated, they are independent. Now

ot(x,x,h) =E[(eX)?(e£)|Fyt] =CE[(eX)3|Fytl => CE(eX)3 =0.
The general formulation of the first part of this section allows us

to obtain the equations for another class of problems. We discuss

here the scalar case only.

6.2.9. Definition: Given the system equations.

dnt = Xtdt + dmit* no ° °'
dyt = ntdt f dm2t, yQ « 0,

satisfying the assumptions of 6.2.4, where (nt»Ft,t e T) is a counting

process, (X ,F ,t € T) its rate process, where X > 0 a.s. for all

te T, Xe L1(t), (mlt»Ft»t e T) e M2, d<m1,m1>t - Xtdt. The problem
is to obtain an estimate of the counting process n, given the

observations y.

6.2.10. Corollary:

Given the filtering problem of 6.2.9 the optimal filter is:

A A

dm9 = dy - n dt, the innovation process,

A * ' * A

dnt = Xtdt + 0t(n>n)dm2t, no = °»

dat(n,n) = [2at(n,X) + X - at(n,n)]dt + at(n,n,n)dm2t,

aQ(n,n) =0.
A

Still unknown X ,o (n,X), a (n,n,n).

This result follows from 6.2.5. Note that the estimate n of the
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counting process does not necessarily assume integer values. The

above theorem is a general result, more specific formula's can be

obtained by assuming certain models for the rate process X.

6.3. Nonlinear filters.

In this section we discuss in more detail the nonlinear filters

derived in the previous section. Little research has been done on

this subject, but without these points this thesis would have been

incomplete. What follows is a nonrigorous discussion of the problems

and an outline of possible solutions to implement the derived filters.

Problem statement.

Given the stochastic system as defined in 6.2.1 and 6.2.4, where all

variables are real valued:

dyt - htdt + dm2t, yQ = 0,

dxt = ftdt + dm1(;, xQ,

dht = rtdt + dm3t, hQ,

where (f ,t G T), (r ,t e T) are still unspecified.

The stochastic differential equations for the optimal estimates are

dm
2t

= dy - h dt,

dxt = ftdt + at(x,h)dm2t, xQ = E(xQ),

dht = rtdt + at(h,h)dm2t, hQ = E(hQ),
A A

still unknown f , r., a (x,h), o (h,h).

The problem is this: given further specification of the stochastic

system, how many variables and which ones do we have to estimate to

determine (x ,t e t), in other words what is the order of the filter

A

for x.

Consider which variables need to be estimated, first we need x and h.
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A A

The equations for these quantities contain ft, rfc, at(x,h), ot(h,h)

as unknowns. To further specify the above stochastic system, we

assume that f and r are also semi-martingales of the form assumed

for x. By this assumption we get two more unknown processes, and

two unknown conditional covariances. Depending on further speci

fication of the system we continue this way indefinitely. Even if

f , r are known, then the stochastic differential equations for

a (x,h),o (h,h) (see 6.2.5) still contain the unknown variables

a (x,h,h), o (h,h,h). For these we can again derive stochastic

differential equations, which however contain fourth order conditional

moments and so etc.

The conclusion from this argument is that in general the filter is

infinite dimensional. This fact is well known from the literature,

for the case of nonlinear stochastic systems with Brownian motion

disturbances, see for example Kushner [1967b]. The question now is

for which stochastic systems do we get finite dimensional filters.

From our preceding discussion we see that to get finite dimensional

filters two conditions need to be satisfied:

1. the processes f and r need to be known,

2. the sequence of conditional higher moments must stop after a finite

number.

We discuss both these conditions in more detail.

Filtering equations and Hermite polynomials.

Rather than talking in general terms we will give an example that

demonstrates some essential ideas. It satisfies one condition for

obtaining finite dimensional filters.
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Example:

Given the stochastic system model of 6.2.7 of the form:

dxt = ~xtdt + dmlt* xo*
dyt - h(xt)dt + dm2t, yQ - 0,

where m., m9 are independent Brownian motions, and h :Rh- R is a

twice continuously differentiable function. By the differentiation

rule 2.5.23 we get that

dh(xt) =[-xth'(xt)] +|h"(xt)]dt +h,(xt)dmlt.
To prevent the filter from growing in order, we now restrict the

class of functions, h, and demand that the equation for h is linear

i.e.

[-xth1(xt) -\ hM(xt)] »ch(xt) for some constant c.
However this equation is a differential equation:

h"(x) - 2xh'(x) - 2ch(x) = 0.

For c = -n, n « 0,1,2,.... it has as solution the Hermite polynomials
2 ,n 2

h (x) = (-l)n ex *-- (e~x ).
n dx11 2
The first few polynomials are: hQ(x) = 1, h^x) « 2x, h2(x) = 4x - 2,

h3(x) =8x3 -12x, h4(x) =16x4 -48x2 +12.
We now give the filtering equations for our example.

3 2Let h(xj =h3(xt) = 8xtJ - 12xt> and let h2(xt> = 4xfc - 2,

h2t =E[h2(xt)|Fyt], h3t =E[h3(xt)|Fyt]. Then
dm2t ^dyt -h3tdt

A A ^ "dx = -x dt + ot(x,h3)dm2t, xQ,

dh2t » -2n2tdt + «rtCh2,h3)dm2t, h2Q,

dSt =" fi3tdt +at(h3'h3)di2t, So*
We can also state the stochastic differential equations for crt(x,h3),

a (h2,h3), a (h3,h3), which after some simplifications only
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contain the unknown o (x,h3»h3), at(h2,h3,h3), at(h3,h3,h3).

It turns out to be necessary also to estimate the lower order

polynomial h2(x ).

Let us review what has been done and draw some conclusions. By

taking a special stochastic system, where we take in the observation

equation a Hermite polynomial, we can derive the filtering equations,

in which as only unknowns the higher conditional moments are left.

We will discuss this problem in the sequel.

The way we obtain the Hermite polynomials, is by enforcing linearity

in the stochastic differential equation for h. That we get the

Hermite polynomials is not so surprising, since they are closely

related to the Gaussian distribution, see the way they are defined.

More research could be done on the use of Hermite polynomials in

this context. Several extensions of the above ideas have been con

sidered but no usefull results have been obtained. Hermite polynomials

have been used before in statistics and estimation. One application

is the approximation of arbitrary functions by a finite number of

Hermite polynomials. This method is well known in mathematical

statistics, it is called the Gram-Charlier series representation.

For this see Cramer [1946], which has references to earlier work,

and Deutsch [1969 section 8.4.3]. A recent reference on the use of

Hermite polynomials in estimation is Srinivasan [1970].

Conditional covariances.

The next problem in obtaining finite dimensional filters is the

sequence of conditional moments. Not much research has been done on

this problem. The problem is to find conditions such that the

sequence of conditional moments stop, by having one of them vanish.
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In the scalar case this leads to the problem, when is

E[(e£)3|Fyt] -0, or E[eX(e£)2|Fyt.] => 0.
For the case of a linear system, with Brownian motion disturbances

we have that e « c ex. Then ex and y are jointly Gaussian,

uncorrelated, hence independent, so

E[(eX)3|Fyt] -E[(eX)3] -0.
Actually to obtain this result, only the symmetry of the conditional

distribution of (e ) given F is needed. No further points have

been found concerning this problem, specifically for the example

derived earlier we have not been able to show that the third order

conditional moment vanishes.

The foregoing gives a short summary of the little work we have done

on nonlinear filters. We have concentrated attention on the problem,

when is the optimal filter finite dimensional. We have not considered

approximations to the optimal filter, since this approach is well

known and established in the literature. For references see

Schwartz, Stear [1968], which compares several nonlinear filters and

gives further references.

6.4. Filtering for counting processes.

In this section we derive the general filtering equations for the

case where the observation process is a counting process.

6.4.1. Definition. The observation equation.

In this section we assume that T = [0,1],

1. the observation equation is given by

dnt = Xfcdt + dm2t, nQ = 0,

2. the rate process X is given by

dXt = rtdt + dmlt, XQ,
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-9

3. where n is a counting process in R ,

4. (m2t,Ft,t eT) eMd, d<m2,m2>t -A(Xt>dt -diag(X^,. .Xpdt,
5. (X ,F ,t e T) is a supermartingale, X > 0 a.s., sup E(X ) < •

v t* f 1 ter

6. (m- ,F ,t e T) a right continuous martingale, having left hand

limits,

7. (r ,F ,t e t) an adapted measurable process, sup E|r |< ~.
t t* ter t

We recall some points derived earlier.

6.4.2. Lemma. Under the conditions of 6.4.1:
A A A1. dXt =Jdt +dmu, XQ »E(XQ),

2. where (r ,F ,t e T) is an adapted measurable process, rfc = E(rt'Fnt^

3. (m ,F ,t e T) is a right continuous martingale, having left

hand limits,

4. (X ,F ,t e T) a right continuous modification of E(Xt|Fnt), having

left hand limits, a supermartingale,

5. X > 0, X > 0 a.s. for all t E T,

6. let e* ^ A - L, then sup E|e | < «,

7. E[l A ds] < co, E[l A ds] < «.,
Jt k - T A8. dm = dn - A dt = e dt + dm2t is the innovation process as

defined in 4.4.4, O^t^nt'* 6T) eMd, d<m2,m2>t =A(Xt)dt,
9. the conditions for the martingale representation theorem 5.3.2

are satisfied.

Proof. 1, 2, 3, 4 follow from 4.4.2. Similarly 8 follows from

ff 4.4.4, and 6, 7 and 9 are obvious. By definition of \1 = ECX1 |Fnl)

\± >0a.s., Since E[At|Fns] -E[E[At |Fg] |Fng] <. Ag,A is asuper-

* martingale, so by [Meyer,1966,VI,T15] it follows that

A > 0, A _ > 0 a.s. for all t e T.
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Remark: The supermartingale condition is necessary to prove that

A > 0 a.s. for all t e T. This last point is absolutely necessary

A%-1
in the subsequent formula's, since we will use A . We suspect

that we can drop the supermartingale condition on A, and replace

it by the condition A is a semlmartingale of the form given in

6.4.1.2 satisfying Afc > 0, A >0a.s. for all td. However we
A_l

have as vet no proof that this Implies that A > 0 a.s.

The stochastic differential equation for the optimal estimate.

6.4.3. Theorem:

Given the observation equation 6.4.1 and the conditions assumed there.

Given the semi-martingale:

dxt = ftdt + dmfc, xQ,

1. Where (m ,F ,t e T) is a martingale, and there exists <m,m2> ,

satisfying d<m,m2>t =(J^dt, (<|>t,Ft,t <= T) <= L^t),

2. (f ,F .t e t) is an adapted measurable process, sup E|f
t t t^T

< »,

23. sup E|xJ <
ter 2

4. in addition to 6.4.1 sup EJA | <
ter

then dm = dn - A dt, the innovation process,

dxt =ftdt +(Zt(x,A) +E[*t|Fnt]) A(X^)d^2t' X0 =E(X0)»
1. where (x ,F ,t GT) is aright continuous modification of E(xt|Fyt).

having left hand limits,

2. V-E[ft|Fnt],

3. Zt(x,X)= E[(xt-xt)(Xt-Xt)|Fnt] a.s., called the conditional

covariance of x and A,

4. A(Al1) =diagonal ((xV\-...(aV1)
t L l-

A

Proof. By condition 2we can define the adapted process (ft,Fyt>t e T),

f =E[fjF 1. Now E[f |fs|ds] <_ 1- sup E|f |<».
t l t' ytJ Jt ter
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AAA A

By 4.4.2 we have that dx = f dt + dm , where x has the properties

stated above, and (m ,F ,t e T) e M^ . By 6.4.2.5 we can apply
A A

5.3.2 to get the representation dm = ^t^^t' wnere S is an uni<lue

predictable process. The problem now is to determine an expression

f A
for Z. Let e - f - f , then we calculate

deX =dxt - dxt =e^dt +dmt - ^t^2t,
dm2t =e*dt +dm2t
d[eX,m2lt =d[x,m2]t - d[x,m2]t « d[m,m2]t - Ztd[m2,m2]t

53 (<J>t - Zt A(AtJdt +d([m,m2]t- <m,m2>t) - Ztd([m2,m2]t - <m2,m2>t) j

eX(m2t)T =eX(m2s)T +C^^J1 +JsS-C^/ +jV.^l,
-<^f+ sfse'(e")TdT+D-(d^)T+"fcfeA
+f dmT(m2x_)T - f Zxdm2 (m2xJT +£[<f>T-ZT A(XTJ]dx

+J(dm4T+dm5T)
By condition 3and 6.4.2.8, eX and m2 are square integrable, so by

5.4.3 we have, if s<tE[eX(m2t)T|Fns] =0. Now eliminating the
F and F martingales and using that
nt t t

E[( efT(;2T)Tdx|Fns] =ElC E[e^;2T)T|FnT]dx|Fns] =0,
Js •'8

we get

E[e^(,i2t:)T|Fns] =0 =0+E[f\e^)T +♦,-£, A(XT_)]dT|Fns]
5

By the conditions 3 and 4 the first term on the right hand side is

integrable, by condition 1 the second, hence we get

ZtA(XtJ=E[eX(eAt)T|Fnt]+E[*t|Fnt]
- zt(x,x> +it

which we define predictable.

^—1 A Ai —1Since X >0 a.s. for all te T, we can define A(Xfc_) = diag((Xt_) ),

so Zfc -IZt(x,X) +Jt] A(X~*).
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The stochastic differential equation for the conditional covariance.

6.4.4. Theorem.

Given the observation equation 6.4.1 and the conditions assumed

there.

In addition assume that

1. n^ e m2, and dXn^m^ =4>tdt, (<J>t,Ft,t e T) e L^t),

[m^nu] = 0 a.s.,
• i42. sup E|X I < «» ,

3. let Qt ^ eA[e^-Zt(X,X) A^e*]1 +[e^-Z^A.A) A^1)^] (e*)T +*t
+Zfc(X,X) A(X^2At) Zt(A,A)

4. dm3t ^ e^(dmlt)T +dmlt(e*JT - [Zt(A,A)A(A-l)(e*_)T +
•»- (eA_)A(A~];)Zt(A,A)]dm2t; +d([m1,m1]t - <m1,m1>t) +
+Zt(A,A)A(r];)d([m2,m2]t- <m2,m2>t)A(A"^)Zt(A,A) .

then d<m3,m2>t =<l>32tdt» where

4»32, =Zt(A,A)A(r2At)Zt(A,A) - Zt(X,X)A(X;1Xfc) (e*)T- e^A^X^Z^X^)
5. Assume that sup E|Q | < », and E[\ 4>q9 ds] < «>.

ter c Jo Ji:s

then dZt(X,A) =[Zt(X,r) +Zt(r,X) -Zt(X,X)A(X~Vt(X,X)+E[<jgFntJ]dt
+[2t(X,X,X) -Zt(X,X)A(X^1)Zt(X,X)]A(X^)dm2t

x At
Notation: Z (A,A) = E[e (e ) |F ] is a right continuous modification

having left hand limits. Zfc(r,A) =E[e£(et) |FntJ is apredictable

modification, Zt(A,A,A)dm2t = (Zfc(A,A ,A)dm2t, Zt(A,A ,A)dm2t).

Proof. VTe give the proof for the scalar case only.

The conditions above imply that we can apply 6.4.3 to the semi-

martingale A,

dAt = r dt + at(A,A)At_ dm2t,

where at(A,A) =E[<e£)2|Fnt]• Let e* =rt -rt, then
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A r A—1 *de = e dt + dmlt - at(A,A)Atjim2t

=[e^-at(A,A)A"^(e^)]dt +dn^ - at(X,X)X^dia2t.
A A 2 "—2Now d[e ,e 1 = dlm^rn^ + at(X,X)Xt_d[m2,m2]t

=d([m1,m1]t - <m1,m1>t) +4>tdt +a2(X,X)X~ Xfcdt
+a2(X,X)X^2d([m2,m2]t - <m2,m2>t)

d(eX)2 «2e^de^ +d[e\eX]t
=[2eX(e^-at(X,X)X^1eX) +<J>t +a2(X,X)X~2Xt]dt
+[2e^_dmlt -2e£_at(X,X)X^dm2t +d([m1,m1]t - <m1,m1>t)
+a2(X,X)X^2d([m2,m2]t - <m2,m2>t)]

= q dt + dm as defined above.

Note that [m2>m2]t - <m2,m2>t =m2t, and

[[nL^] - <m1,m1>, m2] =0 a.s. Using that [m^n^] =0 a.s.

d[m3,m2]t =[o2(X,X)X~2 - 2e^_ot(X,X)X^]d[m2,m2]t
such that d<m3,m2>t =[a2(X,X)X~2 - 2e£at<X,X)X^]Xtdt - *32tdt
which gives <J>32 as above.

Note that by condition 2. sup E|e | <. 2 sup E|X | <«».
ter u ter

Now the conditions of 6.4.3 are satisfied for the semi-martingale

d(eX)2 =qfcdt +dm3t. We get that
dot(X,X) =[2ot(r,X) -2a2(X,X)X"1 +E(*t|Fnt) +a2(X,X)X^]dt
+[a^(\,X,X) +a2_(X,X)X~* -2a2_(X,A)A~*] <X'*)di2t

where a(X,X,X) =E[(eX)3|Fnt] the predictable modification,
which gives the result.

Remarks:

1. Theorem 6.4.3 is the first result, it gives the stochastic

differential equation for the optimal estimate. The semi-

martingale x represents any unobserved process, and by this

formulation we obtain a quite general result. The conditions
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in 6.4.3 on the variables x, f and m are of course related by

the equation for x. The way the conditions are stated, is how

they are needed in the proof.

2. Theorem 6.4.5 is the second main result of this section, it gives

the stochastic differential equation that the conditional

covariance Z (h,h) satisfies. To be able to use 6.4.3 in the

proof, it is necessary to impose quite complicated conditions.

Condition 5 of 6.4.5 could be replaced by proper conditions on

the processes X and r, but this has not been done to keep the

proof simple.

3. The derivation of 6.4.3 is similar to the proof of 6.2.3 for

the filtering problem with observations with Brownian motion

noise. A result similar to that of 6.4.3 was given by Snyder

[1972a], but a different method was used, and a more restricted

problem was considered. Little research has been done on the

implementation of the filter derived in this section. We have

not found any finite dimensional filters. Snyder [1972a] outlines

a method to obtain approximations to the optimal filter and gives

several examples.

Applications

We now limit our attention to real valued scalar processes, and

concentrate on filtering for the rate process only. We first make

an important observation. In 6.4.1 we assumed that the super

martingale X is such that X > 0 a.s. which implies that Xfc > 0,

A > 0 a.s. for all t e t. Since A is a super-martingale it is

also a semi-martingale. By 3.2.3 there now exists a semi-martingale

(xt,Ft,t e T), such that Xfc = XQ e(xt), or dXt = Xfc_ dxt and x has
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certain properties. This implies that every rate process can be

modelled by an exponential formula of another semi-martingale x.

We rephrase the previous result using this point.

6.4.5. Corollary:

Given the stochastic system, satisfying the assumptions of 6.4.4,

when all variables are real valued:

dnt = Xtdt + dm2t' n0 = °'

dxt = ftdt + dmlt' x0 = °*
dXt = Xt_dxt = Xtftdt + Xt_>dmlt, XQ,

where X = e(x) is an exponential formula.

Assume that (mlt,Ft,t e T) e M2, d<m1,m1>t =(f)tdt, (4>t»Ft,t e T) e ^(t)

(m.. ,nu) = 0.

The optimal filter for the rate process is:

dm9 = dn - X dt, the innovation process,

dXt =E[ftXt|Fnt]dt +at-(X,X)X^dm2t, XQ =E(XQ),
dat(X,A) =[2at(Af,A) -A^a2(A,A) +E[A2<j>t|Fnt]]dt +

+[at(A,A,A) -\jj2_(X,X)]X^; dm2t,
aQ(X,X) =E[(X0-XQ)2]
Still unknown Etf^jF^] ,ot(Xf,X) =E[ (ftVE[ftXtlFnt])(Xt"V' Fnt]'

at(A,A,A) and E[X^t|Fnt.].
We have done little research on the question whether there exists

finite dimensional filters, for this type of problem. However one

special case is given.

6.4.6. Corollary: T= [0,1].

Given the stochastic system, satisfying the assumptions of 6.4.4,

dn = Xfcdt•+ dm2t, nQ = 0,

dAt = a(t)Afdt + Xtdmlt, XQ,
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where (nu ,F ,t e T) is standard Brownian motion,

and a : T •-*• R is a measurable deterministic function, a(t) <. 0 for

all t e T

1 Ctthen Xt = Xf) exp(mlt -^ t) exp( 1 a(s)ds).

The optimal filter is:

dm« = dn - X dt, the innovation process,
4h»t Km Km

dXt =a(t)Xtdt +at_(X,X)X^dm2t, XQ =E( Q),
dat(X,X) =[(2a(t)+l) at(X,X) +X2 -rXa2(X,X)]dt +

+[at(X,X,X) -X^a2_(X,X)]r];dm2t,
aQ(X,X) =El(X0-X0)2].
Still unknown at(X,X,X).

The proof of 6.4.6 follows from 6.4.5, and using that

a (X,X) =E[X2|F ]-X2. From an example following 3.2.6, we see
£ t ill* l»

that on T= [0,1], E[e(mlt)] = E[exp(mlt - 2t)] = 1, hence,
$t

a(s)ds) which gives the interpretation for X.
0

If a(t) - a < 0, the rate process is a decaying exponential.

The above result has a certain analogy with the Kalman-Bucy filter.

6.5. Some special estimation problems.

In this section we discuss some special estimation problems. We

start with the case where the observation equation is disturbed by

Brownian motion.

6.5.1. Theorem:

Given the prediction problem as defined in 5.5.1 for the following

stochastic system. Given the observation equation with Brownian

motion disturbances as defined and with the assumptions of 6.2.1.

Consider the semi-martingale x:

dxt = ftdt + dmlt* X0'
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1. where (f ,F ,t e T) is an adapted measurable process, sup E|fJ <
t t ter

2. (m ,F ,t e t) is a right continuous martingale, having left
XU Km

hand limits,

3. E|x0| <«>,

then the optimal prediction estimator is given by:

dx(t|s) =E[ft|F ]dt, x(s|s) =xg, where s <t or

x(t|s) =is+JsE[fTlFys]dT
The proof is an easy application of 5.5.2, using 4.4.2 and that

E[fE(fTlFyr)dT|V =J E<fxlFys)dT-
J S 8S

6.5.2. Theorem:

Given the smoothing problem as defined in 5.5.3 for the following

processes. Given the observation equation with Brownian motion

disturbances as defined and with the assumptions of 6.2.1. Given

any (x.,t e T) measurable process, sup E|x | <«.
t ter

Then the smoothing estimator is

x(a|t) = x(a|a) + \ Z(s,a,x,h)dm2s, a< t, a,t €= T, where

x(a|t) -E(xa|Fyt),
Z(t,a,x,h) =E[(xa-x(a|t))(ht-ht)|Fyt].

Proof. From 5.5.4 we have that if a < t,

x(a|t) = x(a|a) + \ lsd*2s'
J a.

The problem is to determine Z . Let

r =x -x(a|t) =xa -x +x(a|a) -x(a|t) =eX -\Esdm2s.
t a ad «* «/a-f'
Note that by 5.4.3 if a < s < t

E[rt(VTiy =E[E[rt(VTlFyt]|Fys] - °-
y =v +( hds +mn -m, so applying the differentiation rule
yt a j s 2t za ^

rt(yt)T =rS(yS)T +jdrT(yT)T +jgrT(dyT)T +$sdlr,y1^
and d[r,y]t = - Ztdt so
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E[rt(yJT|F 1=0=0+E[- ( E>2T(yT)T +J' MV^
h T Cl , s+̂ (d^/ - JaVHV

now the local-martingale terms drop out, and we get

fE[rT(hx)T -2TlFysldT -0 or
Zt =E[rt(ht)T|Fyt] =E[xa-x(a|t))(ht-ht)T|Fyt]

« Z(t,a,x,h)

6.5.3. Theorem:

Given the smoothing problem as defined in 5.5.3.

If in addition to 6.5.2 we assume that

1. dht = rfcdt + dm3t,

2 (r .F .t e T) is an adapted measurable process, sup Ejr | <
t t teT

3. (m3t,Ft,te T) €Ml, <m3,m2> =0 a.s.,
4 (h F .t e T) is an adapted measurable process, sup E|h | <

5. (x ,t e T) is any measurable process, sup E|x |4 < °°,
t teT

then the optimal smoothing estimator is
ft

x(a|t) = x(a|a) +1 Z(s,a,x,h)dra2g,
Ja

dZ(t,a,x,h) = [Z(t,a,x,r) -Z(t,a,x,h)Zt(h,h)]dt + Htdm2t

Z(a,a,x,h) =Z(x,h) =E[e](eJ)Vl,
av ' ' l a a ' ya

where

Z(t,a,x,h) =E[(xa-x(a|t))(ht-ht)T|Fyt],
TZ(t,a,x,r) =E[(xa-x(a|t))(rt-rt) |Fyt],

ailHtdm2t =(H];dm2t,..Hkdm2t:) /where (Hn) an matrix valued stochastic
processes, still unknown.

Proof. We give the proof for the scalar case only.

Note that
rt C heX(a|t) =xa - x(a|t) =eX - J o(s,a,x,h)dm2s =eX - J o(s,a,x,h) (esds+dm2s)
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et =ea +feId' +Sadm33 "Sa°8(h,h)d;i,2s
t ft ft

=ea +( [es - °s<h.h>es]ds +) dm38 "J•.Ch.lOd.j,
[ex(a|t),eh]t =Ca(s,a,x,h)og(h,h)ds

Ja

We apply the. product rule again:

ex(a|t)eb =exeh +(V(a| s)de* +Cl*6*X{a\ s) +Cd[ex(a| s),eh]g
1 t a a Ja s ja s ja

=eXeh +(t[eX(a|s)er - eX(a| s)o (h,h)e^ - o(s,a,x,h)(e^)2
a a 1 s s » "

Ja

+o(s,a,x,h)a (h,h)]ds +( eX(a| s)dm3 - I ex(a| s)og(h,h)dm
s Ja jb.

-J e a(s,a,x,h)dm2
a

- qtdt + dm^t.

We now want to apply 6.2.3 to this semi-martingale. The conditions

2,4 and 5 imply that sup E|q | <•. Also
t€T

sup E|eX(a|t)eV <k sup E|x |A. sup E|h |4 <-.
teT z tST u t€T
Furthermore (m4t,Ft ,t € T) € M1qc and a process <m4,m2> eixsts, since

d<m4,m2>t =[-ex(a|t)at(h,h) - e£o(t,a,x,h)]dt.
We can now apply 6.2.3 and using the definitions given earlier

da(t,a,x,h) - [a(t,a,x,r) - a(t,a,x,h)ot(h,h)]dt + Htdm2t.

Note that a(a,a,x,h) «E[(xa-x(a|a))ejFya] =aa(x,h).
Theorem 6.5.3 works for any pair a,t e T, so it covers all the three

smoothing problems as defined in 5.5.3. Kailath, Frost [1968], discuss

the smoothing problem for linear stochastic systems with Brownian

motion. Because of the linearity of the system, they are able to derive

a more detailed recursive solution. Such a solution does not seem to

exist in the nonlinear case.

Systems with delays.

-127-



The foregoing theory, with the general results derived earlier,

allows us to derive the filtering equations for systems with delays.

The general nonlinear case with Brownian motion disturbances follows

easily using 6.2.4, and the previous results of this section. Here

we only give an example, of a linear system.

6.5.4. Theorem:

Given the stochastic system model, which contains a delay, scalar

equations:

dxt =ax(t-h)dt + dmlt, x(s): -h<s <_ 0given.

dyt - xtdt -> dm2t

satisfying the assumptions of 6.2.1, where a,h e R are constants,

h > 0, and m- is standard Brownian motion.

The optimal estimator is

dm2t = dyt - xtdt

dx. = a x(t-h|t)dt + o (x,x)dm2 ,xQ = E(xQ)
Czx(t-h|t) = x(t-h|t-h) + 1 0(s,s-h,x,x)dm2g
Jt-h

do (x,x) = [2ao(t,t-h,x,x) - aa(t,t-h,x,x)at(x,x) + l]dt
a 2+ at(x,x,x)dm2t, aQ(x,x) =E[(xQ-x0) ]

da(t,t-h,x,x) = [aa(t,t-h,x,x) - a(t,t-h,x,x)at(x,x)]dt + ktdm2t

a(t-h,t-h,x,x) = ot_h(x,x)

Still unknown: a (x,x,x),kt.

The proof follows easily from 6.2.5 and 6.5.3.

The above result was derived earlier by Kwakernaak [1967].

It is difficult to say something about the third order conditional

moment.

Prediction and smoothing for counting process observations.
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6.5.5. Theorem:

Given the prediction problem as defined in 5.5.1 for the following

stochastic system. Given the equations with counting process

observations, as defined and with the assumptions of 6.4.1.,

dnt = Xtdt + dm2t' n0 = °
dXt = rtdt + dmlt, XQ

Then the optimal prediction estimator of the rate process X is given

by

dX(t|s) =E[rt|Fns]dt, X(t|s) =E(Xt|Fns), s<tor

X(t|s) -X. +fBfrjF )dx.
Js

The proof is immediate from 5.5.2, similar to the proof of 6.5.1

6.5.6. Example:

Consider the prediction problem 6.5.5 for the real valued semi-

martingale X given by

dXt = a(t)Xfcdt + xtdmlt, XQ,

where a : T -*• R, is measurable.

Then tha optimal prediction estimator is
St

a(x) X(x|s)dT , s < t or
s

X(t|s) = <|>(t,s)X(s|s)

where <J>(t,s) is the transition function associated with a(t).

6.5.7. Theorem:

Given the smoothing problem as defined in 5.5.3. Consider the

equations with counting process observations, as defined and with

the assumptions of 6.4.1,

dnt = *tdt + dm2t' n0 ** °
and (X ,F ,t e T) an adapted measurable process real valued,

2

sup EJX | < «> .
ter z
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Then the optimal smoothing estimator for the rate process X is:
ft" ^-1 A

X(a|t) = X(a|a) + \ a(s,a,X,X)Xg_dm2g,
awhere X(a|t) = E(Xa|Fnt), a<t,

o(t,a,X,X) =E[(Xa-X(a|t))(Xt-Xt)|Fnt] a.s.

Proof. From 5.5.4 we have that if a < t then

X(a|t) =X(a|a) +1 ^d^s*
Ja'

The problem is to find <kt.Fnt.t e T) * ThiS follows easily fr°m
the by now well established procedure.

eX(a|t) =Xa-X(a|t) =eX +\& - X(a|t) =eX - J kfdm„_ =

- ( kgegds - \ 1
Ja •'a

ksuul2s

s e a " \ Vsas * \ ksdm2s-

By 5.4.3 E[eX(a|t)m2t|Fnt] =0, so
E[eX(a|t)m2t|Fng] =0=0+E[( eX(a|t)eXdT +J eX(a|T-)dm2x

*EL &

Now the martingale terms drop out, and we get

(E[eX(a|x)eX - VjF^dx - 0
Ja

kX = E[eX(a|t)eX|F ]= a(t,a,X,X) a predictable modification.
C C*" l- ill*

This gives the result.

Just as in 6.5.3 under suitable assumptions one can derive a stochastic

differential equation for o(t,a,X,X).

6.6. Comments on the martingale approach to filtering problems.

In this section we want to discuss the martingale approach to the

filtering problem, which we have given in this chapter. We compare

our method with previous methods.

The stochastic system model.

The filtering problem that was considered in recent years, was for a
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nonlinear dynamical system, that was disturbed by a Brownian motion

process. In this thesis we have considered a more general model,

with semi-martingale equations, as defined in Section 4.3:

dx = f dt + dmlt

dy = htdt + dm2t.

This is a generalization in two directions: first we allow m1,m2

to be certain martingales, and secondly the processes f and h need only

be adapted. Most of the recent liberature deals with the case where

x or h are Markov processes, and where thus f depends only on xfc.

The generalization allows us to solve at the same time, problems where

we have systems with delays, or similar type of problems. Snyder

[1972a] discusses the filtering problem for what he calls the doubly

stochastic Poisson process. He also noted the similarity in the

filtering equations for problems with Brownian motion noise and for

counting process filtering. This similarity was also noted by

Bremaud [1972]. We now of course know that the similarity arises

because both are derived from similar semi-martingale equations.

This similarity allows us to solve both problems with analogeous

methods. We will discuss the Brownian motion and the counting process

filtering problem together.

The derivation of the filtering equations.

We emphasize the main points in the derivation of the filter equations.

The first one is the definition of the innovation process, and the

associated projection of semi-martingale equations on the o-field of

the observations. We have

dx = f dt + dm-

dy = h dt + dm2t
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where m,, m„ e M, . The innovation process was emphasized by
1 2 loc

Kailath [1968] for the Brownian motion model. The Important point

however is, that it is a martingale. The projection of the semi-

martingale x is seen to be an extension of the innovation process

property. The second important point, which is the crucial one,

is the martingale representation theorem on the a-field of the

observations, i.e. if 6alt>Fyt»t eT) eM^, then mu =J4>sdm2s'
for some process <j>. This representation theorem has been proven

for the case of Brownian motion and for counting processes. In

Frost, Kailath [1971] a similar result was obtained, but through

the equality of F = Fnu , which has only been proven under rather

strict conditions. Although this equality may hold in more general

cases, there is no real proof. Here we have followed the approach

by Fujisaki, Kallianpur, Kunita [1972], who prove the martingale

representation theorem by a translation argument. Using the above

two points the calculation of the optimal filter equation is a

straightforward operation. One only uses the stochastic calculus,

and the optimality of the estimate, i.e. the orthogonality of the

estimation error and the observations. A similar equation can be

derived for the conditional covariance.

The derivation of the filter equation for the Brownian motion case

is the one given by Fujisaki et al. [1972], except for a generalization

of the model and for slightly different proofs. Here we have given

a stochastic differential equation for the conditional covariance.

The approach given also uses ideas from Wong [1972]. The extension

of this approach to the filtering problem for counting processes is

relatively obvious. One only needs to use the respective martingale

properties.
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Extension of the filtering problem to other processes.

We are interested in extending the results of this chapter to more

general stochastic system equations. It turns out that the only

limiting point is the absence of a martingale representation

theorem. It is thus of prime importance to prove for a large class

of underlying martingale processes the martingale representation

theorem. This was done in a somewhat limited case by Kunita-Watanabe

[1967], but their result needs careful interpretation. Once such

a martingale representation theorem has been proven, we can consider

stochastic system models disturbed by such processes, as defined in

Section 4.3. The innovation process property and the martingale

representation on the a-field of the observations, then easily follow

from the approach given here. The equation for the optimal estimate

then results.
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7. Discussion and conclusions.

The goal for this thesis was to analyse and solve estimation

problems using the theory of martingales and stochastic integrals.

Here we discuss the results obtained and state some of the problems

that are still open. The main tools in the martingale approach

are the stochastic integral, the differentiation formula, the

martingale representation theorem, and martingale theory proper.

The main concept used from estimation theory is the least squares

error criterion, which leads to the optimal estimate of conditional

expectation. All our results are derived from this basic

principle using stochastic claculus.

Discussion of results.

It should be kept in mind that all practical results depend on

the martingale representation theorem, which has only been proven

if the underlying process is Brownian motion or a Poisson process.

In Chapter 3, the main result is section 3.3., where we

characterize a change of measure by a local martingale, and where

we obtain the translation of local martingales under a change of

measure. The converse of the translation theorem is the abstract

version of the detection problem, which we can solve only for the

two cases for which we have a martingale representation theorem.

In Chapter 4 the main result is the generalized definition of a

stochastic system and of stochastic differential equations. A

complementary result is the projection of semi-martingale processes

on a family of o-fields, which includes the concept of innovation

process. In Chapter 5 the main result is the general formulation



of and the elementary solution to the least squares error

filtering, prediction and smoothing problem. Of equal Importance

are the two martingale representation theorems on the a-field

of the observations. In Chapter 6 the main result is the derivation

of the stochastic differential equations for the optimal filter,

prediction and smoothing estimates and for the conditional

covariances.

The novel points in the thesis.

The results we have obtained in this thesis area generalization

in the direction of martingale theory. Instead of considering

separately, systems with Brownian motion disturbances, as was

done usually before, or the counting observations problem,

martingale theory gives a unified approach to both of these problems,

and to possible new problems which can be formulated in this

framework. The analysis of absolute continuity with martingale

theory has opened a new way of thinking, and led to a more

general formulation of the detection problem. The stochastic

system consisting of the two semi-martingales x and y, is also

an extension of previous system equations. It covers systems

with Brownian motion disturbances, including systems with delays,

as well as counting processes with a rate process. Regarding the

filtering, prediction and smoothing problem, martingale theory

has many advantages. The derivations, apart from difficult

details, are straightforward and clearly show the basic principles

involved. It avoids assumptions on the existence of conditional

densities as was necessary in the work by Kushner and others.

-135-



Open questions and future research.

There are essentially three problem areas for future research.

1. Martingales and stochastic integrals.

The first problem area is the development of the stochastic

integral and the associated martingale theory. The theory as

known now is still far from complete, there are still open

questions concerning the class of integrand processes and dis

continuous martingales. The main problem however is the extension

of the martingale representation theorem, to a larger class of

underlying processes.

2. Absolute continuity.

The second problem area is that of absolute continuity and related

topics. In section 3.4. we formulated an abstract version of the

detection problem, which can be solved for any case where we

have a martingale representation theorem. Apart from this there

are several applications of the likelihood ratio and other

properties of absolute continuity, where the results of chapter

3 are of interest.

3. Filtering problems.

It is believed that more filtering problems, some not yet

formulated, might be put in the framework of martingale thoery,

specifically in the semi-martingale equations presented in chapter 4,

It is further believed that for the defined stochastic system,

the stochastic differential equation for the optimal estimate can

be obtained. However the limiting factor is the martingale

representation theorem. Such a generalization was attempted by
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the author but did not seem useful. The results derived in

Chapter 6 have several limitations. The first is that we only

considered the time interval T = [0,1], which is equivalent to

any finite time interval. The extension of this result to

T = [0,«) is unsolved. Related to this, as experience with linear

systems shows, is the concept of observability, which has not

been defined for stochastic systems. The major point is that the

derived filters are in general infinite dimensional. The question

now is, which systems give finite dimensional filters. This

question and related topics on the implementation of these filters

remain unsolved. Whether martingale theory can provide any help

in obtaining finite dimensional filters and provide further insight

in estimation problems is open to research.
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