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ABSTRACT. This paper presents generalizations of the work in [1,2] to

include controlled stochastic processes which take values in a certain

class of Fr£chet spaces. The crucial result is an extension of the

technique for defining solutions of stochastic differential equations

by an absolutely continuous transformation of measures. The result is

used to prove existence results for stochastic control problems and for

a class of two-person zero sum games.
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1. Introduction and Summary.

Consider a controlled stochastic process represented by the stochastic

differential equation

dX(t) = f(t,X,u(t,X))dt + dB(t), t € [0,1],

where B(t) is a Fre*chet-valued Brownian motion, X(t) is the state and

u(t,X) is the control applied at time t. For the case where the Fr6chet

space is R a satisfactory theory dealing with the problem of existence

of solutions of the differential equation and existence of optimal control

laws isnow available [1,2]. A crucial building block in this theory

consists in defining a solution of the differential equation via an

absolutely continuous transformation of measures. Each control thereby

defines a solution characterized by its (unique) probability law which is

absolutely continuous with respect to Wiener measure. Thus the influence of

a control law upon the system is captured in the Radon-Nikodym derivative

of the resulting probability law with respect to Wiener measure. Questions

dealing with the existence of an optimal control can then be converted

into questions about the compactness (in an appropriate sense) of the set

of Radom-Nikodym derivatives. The measure transformation technique men

tioned above is due originally to Girsanov [16].

This paper deals with these same questions for the case where the

state space is infinite-dimensional. The problem of characterizing

Brownian motion in infinite-dimensional spaces is a difficult one and

has been resolved for certain Frdchet spaces. This is described in the

next section, where some additional properties of Brownian motion such

as sample continuity and stochastic integration are established also.
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In Section 3 the result of Girsanov alluded to above is extended to cover

the differential equation under consideration. Once this has been achieved

the techniques of [1,2] apply without change and the existence of optimal

control and saddle points follows easily. This is sketched in Section 4.

2. Preliminaries for defining Brownian motion.

Measures on Fre*chet spaces are defined using the results of Dudley-

Feldman-LeCam [3] which generalize the work of Gross [4]. Some notation

and definitions will be introduced before introducing the main topics.

While the generality of the discussion is not used subsequently it serves

to indicate some directions along which the results reported here can be

further pursued.

For a locally convex Hausdorff topological (real) vector space X its

topological dual is denoted by X . A dual system or duality over the

reals consists of two vector spaces X, Y and a bilinear form <•,•>: X x

Y -*• R that separates points for both X and Y. For a pair X, Y in duality

FD(x) denotes the collection of all finite-dimensional subspaces of X.

For G Cx, 7/1 (Y,G) is the smallest a-algebra on Y for which every x € G,

regarded as functions on Y, is measurable. Finally, let 6(Y,X) = U

{771(Y,G)|G G FD(x)}. A cylinder set measure on Y is any non-negative,

finitely additive set function m on $(Y,X) with m(Y) = 1 such that m is

countably additive on7?7(Y,G) for each G e FD(X).

The following notion of a measurable seminorm given in [3] generalizes

the one described in [4].

Definition 1. Given a duality X, Y, <•,• > , and a cylinder set measure

m on Y, a seminorm !•I on Y is said to be m-measurable if for each £ > 0
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there is G € FD(Y) such that if F € FD(X) and F jl G (i.e., <x,y > = 0

for x e F, y e G) then

m{y: |y-F~H <_ e) >_ 1-e

or equivalently

m {y: |y-G| £ e> ^ 1-e

where m is the outer measure on jy (Y,X) induced by m.

The next result follows from [3, Theorem 2],

Fundamental Theorem. Let |•| be a Mackey-continuous seminorm on Y and

suppose that it is m-measurable. Then the cylinder set measure induced

by m on the Banach space Y/|•| obtained from Y via the seminorm |•| extends

to a regular Borel measure.

From here on the discussion is specialized to a fixed, separable

Hilbert space H. It is assumed that there is given for each t £ R a

cylinder set measure p on H such that p is a canonical normal distribu

tion on H with variance parameter t (see [4] or [5]) . It is also assumed

that there is given an increasing family of Mackey-continuous seminorms

|'|., j = 1, 2, ... on H. Let F be the Fr£chet space obtained from H with

respect to the topology defined by the seminorms |•|. by completion modulo

the intersection of their null spaces (which without loss of generality

"hhis means that if Ce (g(H,H) is of the form C= P""1(E) where P is the
orthogonal projection of H onto a subspace L € FD(H) and E is a Borel
subset of L then

Pt(C) =(2lltrn/2 Jexp( -±_ |x|*)dx
where n is the dimension of L, and |•|„ denotes the norm on H induced by
its inner product.
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is assumed to equal {0}). As a corollary to the Fundamental Theorem

it is proved in [3, Corollary 2.1] that each p , t £ R extends to a

regular Borel measure, denoted y , on F. For future reference note that

HCF,F CH =H, and define the maps i: H * F, j: F -*- H , as the

canonical injections. Finally let (Q(F) denote the Borel sets of F.

Throughout H and F denote the spaces introduced here.

For each t e R let F = F. For each finite collection t^ < t« < ... <
t, t t-, t

t in R the joint distribution u on (F x...xF n, (g>(F )x...x fi(F n))
n tl,,*n t± t
is obtained from the marginal distributions u on (F ,/tf(F )) by using

i

the fact that Brownian motion has independent increments. Since each of

the measures \x is a regular Borel measure the projective system of measures

admits a projective limit (see [6], p. 49). The projective limit thus

obtained is denoted (ft,jf,P). Evidently (Sl,}f) =( n Ft, II (Si^))'
t e R^ t <= R^

+ +

It will be assumed that (ft, 3^?) is complete. Let X , t £ R , denote the

F-valued evaluation map. Let 3\. be the smallest a-algebra with respect

to which X is measurable for s < t. It is assumed that 7 is complete
s — t

for each t. Then (X_, 5\.,P)^ <_ _, is a Brownian motion as defined below.
t J t t € R

+

Definition 2. A stochastic process (X ,^ ,P) £ (or simply (X ,P) e R

or X if there is no ambiguity) is said to be a Brownian motion with values

in the Fre*chet space F induced from a family of canonical normal distributions

*

on a Hilbert space H, if for each I € F (the topological dual of F) the

real-valued process ( <£,X >, 3F,.»P). c D is a real-valued Brownian motion
2 2with E <A,X > = t|jJt| . (Here and throughout |«| denotes the norm on H

* *

and j: F -*• H is the canonical injection mentioned before.)

The process (Y. ,P). ,_ _, is said to be a modification of the process
u C *= K, -~———————

+
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(X ,P) , if for each t e R X (uj) = Y (w) a.s. (the null set
t C <= K t t t

{X ^ Y } may depend on t).

For Fr£chet-valued Brownian motion there is a modification which

has continuous sample paths as shown by the following lemma.

Lemma _1. Let (X ,7t»p)t eR be aFr^chet-valued Brownian motion. There
+

is a modification of X with continuous sample paths.

Proof. Since a countable number of seminorms determine the topology of

a Fre"chet space it suffices to verify the continuity of the sample function

of Brownian motion with respect to each of these countable number of

seminorms and therefore it is enough to prove the lemma for a Banach-valued

Brownian motion.

Fernique [7] has shown that for a Gaussian random variable X on a

topological vector space with a measurable seminorm |•| there is an

a > 0 such that

E exp a|x| < «, (1)

Combining (1) with a result of Nelson ([8], Theorem 2) as used by Gross

([9] p. 134) it follows that the Banach valued Brownian motion has a

modification with continuous sample paths. n

Since stochastic integrals will be used subsequently, a family of

processes have to be described that will be the integrands for the

stochastic integrals. The following definition gives such a family.

Definition 3. Let H be a separable Hilbert space. An H-valued stochastic

process (to ) on (fi,7,P) that is adapted to (*2 ) _ n is said to be
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predictable if the map to (oi): R x 11 + H is measurable with respect to

the a-algebra on R x ft generated by the left-continuous H-valued processes
T"

adapted to (!?t)t GR-
+

Real-valued stochastic integrals will now be defined from F-valued

Brownian motion and predictable H-valued processes.

Lemma_2. Let (to ) c be a predictable H-valued process with
~———~— t t fe R,

CO

Ef ItoJ^dt <co, (2)
0

and let (d3 >71 »p) c be a F-valued Brownian motion. Then the real-
t "'t t fe^ R,

valued process (Yfc, ?t»p)t e R >

t =j"<*s>dBs>' (3)

is a square-integrable martingale which has a modification with continuous

sample paths.

Proof. Let e > 0. By the monotone convergence theorem there exists a

*

finite-dimensional orthogonal projection P on H with P H C jF such

that

09

EJ |(I-Pc)*tlj[dt <e (4)

where I is the identity operator on H and j: F -*• H = H is the natural

injection. Let (Y (P )) g- denote a modification with continuous
t £ t ^ R,

sample paths of the real-valued martingale
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L.

'(P )= f <P to dB >. (5)tv £ | e 8 s

Let £ >0 n = 1, 2, ... be a sequence decreasing to 0 and let P£ be an
n ' . n

increasing sequence of orthogonal projections with P£ H C jF satisfying
n

inequalities corresponding to (4). By Doob's inequality [10, p. 353] the

sequence of martingales (Y (P »t eR converges uniformly and for each t

the sequence of random variables Y (Pe )converges in L (G, J^P). The
n

result follows.

Corollary 1. Let 0|>t>t eR be apredictable H-valued process with

|dt <» a.s. (5)
0

Then the real-valued process Z defined by

t

Z = I <to ,dB > (6>t ) rs' s
J0

is a locally2 square-integrable martingale which has amodification with

continuous sample paths.

The following representation of square integrable functionals on the

F-valued Brownian motion probability space will be useful subsequently.

For Revalued Brownian motion K. ltd [11] has obtained this representation

by describing results of Wiener [12] and Cameron-Martin [13] in terms of

stochastic integrals.

2m is said to be a locally square-integrable martingale if there exists
a sequence of stopping times Tq t » a.s. such that m^ is a square-
integrable martingale for each n. n
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Proposition 1. Let (ft, J?*,P) be the probability space for a F-valued

Brownian motion (B ,"}.). ^ „ . Let f be a real-valued square-integrable
t t t fe K,

functional on (ft,3*,P). Then f can be represented as

f=c+ J <^s,dBs > (7)

where c = Ef and (to ) is a predictable H-valued process with
t t fe K

+

oo

EJ kj2dt <co

Proof. Since H is separable so is F, hence by the Hahn-Banach theorem

there is a countable family T C F that separates points of F. Consider

the random variables <y» / dB > where y fe" r, t fe" R, and let c9 be the
Jo s +

algebra of real-valued random variables formed from these and the constant

random variables. Since the random variables <y> I dB > are jointly

j i Jo
Gaussian it follows that csr C L (P) and furthermore

n

exp( ]C aiifii} Gl2(p)
i=l

'0 s

A.for a S R and f fe" en . Using a result of Segal ([14], Lemma 2.1) it

follows that the family ^ which generates the a-algebra *3~ is dense in

L2(P).

Let f fe" L (P). There exist a sequence g in c>4 such that E |f-g | -*• 0

By properties of finite-dimensional Brownian motion g has a representation

of the form (7) (see [15]) i.e.,
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00

5 «c + I <ton,dB >'n n J rs s (8)

,n
where c = Eg and to is a predictable process with values in some

* 2
finite-dimensional subspace L of H and with L C jF . Since L (P)-convergence

implies L (P)-convergence it follows that c converges to c. Furthermore

the stochastic integrals in (8) must be Cauchy hence

oc

I E|^ -♦■£dt -0,

,m
as m, n -*• <». Since the sequence of processes to are predictable there

must exist a predictable process to such that

00

0

and evidently (7) is satisfied. a

3. Transformation of measures.

Theorem 1 below describes how Fre*cbet-valued Brownian motion is

transformed by changing the probability measure by an absolutely continuous

substitution of the measure. This result was first established by Girsanov

[16] for the case of R -valued Brownian motion. The result has been pre

sented in [17] and a related result is given in [18].

Theorem 1. Let (B . ^f_,P)^ ^ ,. ,, be an F-valued Brownian motion and let
t -Jt tfe [0,1]

0lOt £ i-a ii be a predictable H-valued process such that

1

|tot|2dt <•a.s. P. (9)/
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Define the non-negative process (M ,9* ,P) . .... by

t

Mt =exp[ f <#8,dB8 >- \ I kg|2ds] (10)
'0 t>

then

E(M1) <_ 1 (11)

Suppose that

E(MX) - 1, (12)

then the process (B ,3v»P)t e rn n is an E-valued Brownian motion

where,

t

B,. = B„ - | ito ds,

0•>•->-L
and the probability measure P is given by

dP 1

Proof. Define the increasing sequence of stopping times Tn>

T =<

n Ll if the set above is empty

inf {t|M„ > n}
1 t

Because of (9) M has (a modification with) continuous sample paths, so

T t 1 a.s. P, and in particular

lim M„ _, = M^ as P. (13)
t AT t

n -»• « n
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By the main result in [19], the processes M and M satisfy
n

t

M_ = 1 + I M <to ,dB > (14)I = 1 + I M < to ,dB >
t I s s' s

t AT
n

MtAT =1+ / WdV (15)
n J0

So that since M . is bounded (15) implies that it is a martingale and
n

hence

E(Mt>\T ) = E(HT } = 1
n n

An application of Fatou's lemma to this result and (13) proves (11).

From now on suppose that (12) holds, so that from (14) it follows

that (Mt, *$t>?)t e rn n is in fact a martingale. Let I GHbe fixed

and consider the process (N , 3" »P) e rQ ,, where

t

Nt.=<Jl,BJ.> =<£,B4.> - I <£,to > dst t t | s

The theorem will be proved once it is shown that

(N , J. ,P) is a martingale, (16)

E(N2 -N2| Trs) =|A|H(t-s), (17)

where E denotes expectation with respect to the measure P.

Now to prove (16) it is sufficient to show instead that
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(MtNt> 3^,P) is a martingale. (18)

Because suppose that (18) is true. Then using the fact that (M ,P) is

a martingale,

E(MN|3b
E(Ntl V ' E(Mti^s) b? t20> p- 345i

M N

ir hy(13)
s

= N

which is equivalent to (16). Now

t

MN =M <£,B > - Mfc I <£,to > ds.
t t t t t I ,rs

"'0

Applying the differentiation fromula for continuous martingales [15] gives

Jt t t

M U,dB > - | M <£,to > ds + / K dM
8 8 Is S / S S

t

/+ I M• <A,to > ds
s s

'0

t

JM <£,dB > + I
88 I

<fc.dB > + I N dM
*• • s s

0

which clearly implies (18).

It remains to prove (17). To this end note that
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E<Nt - Nsi ?S) —HH—£' (19)

2
and apply the differentiation formula to MN to obtain

t

MN2 - MnN2 = I N2dM +2 f AH U,dB > -2| MN U,to >ds
tt 00 I ss I ss s I ss s

•V» •'a •'a'0 '0

t

+ 2 J NM <£,to >ds+ I MU|2ds.
I s s s I s1 'H

J0 J0

Substitution of this into (19) gives
.t

i(N2.N2|3-s) ._^_ |£|2(t.s)
s

and so (17) is proved. n

In many applications of the transformation of measures technique of

Theorem 1 the crucial difficulty is to verify that P(ft) = 1 The next

result gives a sufficient condition for P(ft) = 1.

Lemma 3. Let (B ,J ,P) c rn n **© an F~valu«d Brownian motion. Let

(to ) rn ,•, be a predictable H-valued process such that

l*(t,B)| < K + K! sup |B | (20)
H te [0,1]

where |*| is a seminorm on F and K' is a sufficiently small constant.

Then there is a > 1 and M < », depending only on K1, such that
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E exp .if

In particular,

(to ,dB >
rs* s

1

it |toJHds] <M

1 1

/<*s'dBs> if l*slHds] -1'E exp[ J <to ,dB >
s s

Proof. From (20) it is immediate that

I*«!«** K °° a-S*s'H

(21)

so that the terms in the exponential in (21) are well-defined. Let a > 1

It is clear from the way that (11) was proved that for any real number $

Eh (8) ± 1, where

ht(B) = exp[ 6 I <*g,dBg >
"0

t

-i*2 f K\fa

In particular for $ = a this gives E(f(a)) < 1 where

f(a) =exp[aj <tos,dBs >-\ a3 J |*s|2ds].

Let

g(a) = exp[ >sl>]

Then (21) is equivalent to E f(a)g(a) < M. By Haider's inequality

Ef(o)g(o) l[E(f(a))a E(g(a))

-15-
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Now on the space \p of all F-valued continuous function on [0,1] the

real-valued function on \p defined by z -+• II zll , where

II zd = sup |z(t) | ,
t £ [0,1]

defines a seminorm on Q> . The result of Fernique [7] implies the existence

of y > 0 such that

o

E exp y llBll < «.

From (20) one immediately obtains

1

I |to(s,B)|2ds <_ 2K2 + 2(K,llBll)2.

Also

(g(a)) " = exp [ ±|a2(a+l)f |to |2ds],
•'o

hence if K' is sufficiently small so that

a2(a+l)K' <^ y
a

a-1
then E(g(a)) < «> and (21) follows. The final assertion is then immediate

because (21) implies that

t

exp [J <^s,dBg >

is a martingale.

if K\fa

Corollary 2. If in the lemma above |to(t,B)| <_K then E exp a[\ <to ,dB >
1 f1 9 JO S S
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4. Preliminaries for optimization.

The system to be controlled is represented by the stochastic differen

tial equation

dX(t) = if(t,X,u(t,X))dt + dB(t), t e [0,1] (22)

where B is an F-valued Brownian motion, X € F is the state with Xn = 0

a.s., and u is the control law taking values in a prespecified compact

subset U C F called the control set. The function f takes values in H and

i: H -*• F is the canonical injection. The first difficulty to be resolved

is to define the solution of the differential equation (22) for a large

class of control laws. This is achieved in the following manner. One

starts with aprocess (Xt, 3't^Q)t e rQ 11 which is an F-valued Brownian

motion. For a given control law u an F-valued process B is defined by

>t =xt-J if(s,X,u(s,X))ds.

0

Next the probability measure Pn is replaced by another probability

measure P such that the process (B ,-t>P )t e ro -. •» is an F-valued

Brownian motion. The process (X ,'£,? ) £ rn n is then regarded as

the solution of (22) corresponding to the control law u. To make this

procedure precise the following notations and definitions are useful.

Definition 4. (a) £? is the linear space of all F-valued continuous

functions, denoted by z, on [0,1].

(b) For tfe" [0,1] J) is the smallest a-algebra of subsets of (^»

which contain all sets of the form {z fe" £S|z(s) fe" A} where s fe" [0,t] and
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A is a (topological) Borel subset of F. £ = £ .

Throughout the remainder of this paper ft is a fixed probability

space with an increasing family of c-algebras J. , t fe" [0,1]. JT = j£T.

It will be necessary to consider different probability measures on the

space (ft, J*). If Y is a family of measurable functions on (ft, j) and

if P is a probability measure on (ft,5*) the stochastic process corresponding

to P and the family Y will be denoted by (Y ,3* ,P) G rQ -,. Then the

same family Y generates different stochastic processes corresponding to

different probability measures. Finally let PQ be a distinguished

probability measure, and let X be a distinguished family of F-valued

measurable functions on (ft, JM >tfe* [0,1] such that the process (Xt>

3* ,P.) , ., is an F-valued Brownian motion with continuous sample

paths. Unless mentioned otherwise the process X refers to this process.

Also Eft will denote expectation with respect to PQ. The measure induced

on (£,«£) by the process X is denoted by u and will be called the Wiener

measure on (£,J[).

The following conditions are imposed on the function f in (22).

fl f is a map from [0,1] x jS xU into H and f is measurable with respect

to the product a-algebra & ® Jf ® (gu where (£?( (£>u) is the family of
Borel subsets of [0,1] (U).

f2 For te [0,1] f(t,»,«) is J 0 (t^-measurable.

f3 For (t,z) e [0,1] x £ f(t,z,»): U -»• H is continuous.

f4 There is an increasing function fQ: R+ -»• R+, and aseminorm |•|on

F such that for (t,z,u) € [0,1] x fc x U

-18-



|f(t,z,u)|H <f0(BzD)

where II zll = max |z(t)|. Throughout the remainder the symbols |»| and
t e [0,1]

II •II will denote the seminorms assumed here.

f5 For (t,z) € [0,1] x £ f(t,z,U) = {f(t,z,u)|u € U} is a

closed and convex subset of H.

Definition 5. (a) An admissible control (law) is a map u: [0,1] x \o -*- u

which is Q> © JS-measurable and, further, is such that for each t fe" [0,1]

u(t,*) is jO -measurable. LA. denotes the set of all admissible controls.

(b) The drift corresponding to u fe" l/. is the function g given by

gu given by gu(t,z) =f(t,z,u(t,z)). fa,= {gju eU}.
(c) For g fe" J^Land positive integer n, g is the function given by

n rg(t,z) if |z(s)| < n for s€ [0,t]
g(t,z) =̂ Q otherwise

Definition 6. A function (j>: [0,1] x j£ -* H is causal if it is Q © 4 -

measurable and if <j>(t,«) is -Q -measurable for t fe" [0,1].

Definition 7. $ is the collection of all causal functions such that

|<Kt,z)|R <f0(M) for (t,z) e [0,1] x£. $n ={(J, G♦||«(tfz)|H <n
for all (t,z)}.

The next result which follows immediately from ([21], Lemma 1) gives

a very useful characterization of ^c/.

Lemma 4. A causal function g is in M±f and only if g(t,z) fe" f(t,z,U)

for all t, z.

-19-



Definition 8. Let <f> be a causal function such that

JL

(23)I |<j>(t,z)|2dt <- for all zfe" £?.

Then ^t^^' t,Po\ fe" TO 11 denotes the continuous real-valued process

defined by

Ct(*) = J <4»(s,X),dXs >-| J|to(s,X)|2ds

Let c(to) = ^(6). Note that (23) is always satisfied for 4e $.

The problem of the existence of solutions of (22) is resolved in the

following result which follows immediately from Theorem 1.

Theorem 2. Let u e Zc be such that

EQ exp c(gu) = 1, (24)

where EQ denotes expectation with respect to P0. Define the probability

measure P by
u

dPu = exp c(gu)dPQ.

Then the process (Bfc, 3*.,P ) ^ t- m 11 defined by
t t' u t fe [0,1] J

t

if(s,X,u(s,X))ds

0

1

^-\-f

is an F-valued Brownian motion.

The next result shows that (24) must be satisfied by every solution
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of (22).

Lemma 5. Let to fe" $. Let (Y ,}•,?) e j.Q .,, be any process with

continuous sample paths such that the stochastic process (B ,SljP)^ c rn l1

defined by

dBt = dYt - ito(t,Y)dt

is an F-valued Brownian motion. Then

Jexp[ - f <to(s,Y),dBs >-| I" |to(s,Y)|2ds]dP =1
ft 'V -x)

Proof. Define the function 6: [0,1] x ^ -»- Hby

to (t,z) »f ♦<*»"> if lz(s)l infors6 t0'^
V 0 otherwise

From the definition of $ it follows that

|ton(t,Y(u>)) |H <. fQ(n) for t € [0,1], u e ft.

By Corollary 2

where
1 -L

2

Jexp £(-<J>n)dP « 1,

H>n) =- J <ton(s,Y),dBg> -± I |ton(s,Y)|

By Theorem 1 the process (vn(t), ?t»Pn)t <= [0 11' where:
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t

'n(t) = J iton(s,Y)ds +B(t),

dPn » exp cH>n)dP,

is a Brownian motion with continuous sample paths and hence induces Wiener

measure u on (£,J1)» Let e > 0, and n be so large that

P (ft ) = P (S Y I < n) = y( z 6 $ lllzll < n) > 1-e.
n n n n x ' ' —

Now it is clear that IIY (a))ll < n only if Oy(u))H < n and hence

so that

Yn(w,t) = Y(w,t), <J>n(w,t) = <Kw,t) for to e ft^, te [0,1],

SPn(Gn) = J exp c(-<j>n)dP « fexp ?(-to)dP >_ 1-e.
ft ft
n n

Since e > 0 is arbitrary, the result follows. n

Corollary 3. Let <J> € $ and (Y ,? ,P) c ta 11 satisfy the hypothesis

of Lemma 5. Let v be the measure induced by the process (Y , 3l,P) on

the measurable space ((? ,Ji). Then v is mutually absolutely continuous

with respect to u and

|K. (Y(u))) -exp e(-to)(u>).

Remark. This corollary implies that the solutions of (22) are unique in

a weak sense i.e., all solutions of (22) which have continuous sample paths

must induce the same measure on (£,>j6*-)» The qualification "weak" is
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inserted because only the uniqueness of the probability law has been

proved.

Recall that (X ,i ,Pn) g .... is an F-valued Brownian motion with

continuous sample paths. Also recall Definition 8.

Definition 9. For any subset AC$define Sf{h) CL (ft, ^,Pq) by

&(A) = {exp c(+)|+ e A}

The corollary to Lemma 3 implies the next assertion.

Proposition 2. SX^11) is abounded subset of L (ft, J*,PQ).

Lemma 6. Sfan) is aclosed subset of L (ft, *3t;Pq) •

Proof. Let $.., <j>9, ... be a sequence from $ and let p be such that

lim EQ|p -exp 5(<l>n>|2 =0, (25)
n -»- °°

and

lim exp £(<|> )= p a.s. PQ (26)
n -»• »

Since En exp £(<J> ) = 1 for all n, Eq p « 1, a&d so by Proposition 1 there
o n i

is afunctional tf» such that EQ I |i|/(t,x)|Hdt <« and

p=1+ I <i|>(t,X),dXg >a.s. PQ. (27)

Define the martingale p by

Pt - E0{p|3-t}, t€ [0,1]
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By taking modifications if necessary it can be assumed that the martingales

p and £ (A) have continuous sample paths so that, by Doob's inequality

[10, p. 353], it follows from (25) that

Pt = lim exp £ (<J>n) uniformly on [0,1] a.s. PQ. (28)
n -*• oo

Next

exp c(<f>n) =1+1 exp c'c^) <̂(t) ,dX(t)

so that from (25) , (26)

1

lim E

n •*- »

Q I |exp c*^) *n(t) ->(t)|2dt =0

and hence by taking subsequences if necessary it can be assumed that

*<t) = lim exp ?'(♦ )c|>n(t) a.s. I © PQ. (29)
n •> »

where I denotes Lebesque measure on [0,1]. Now p > a.s. PQ, because if

PQ(A) =PQ{ p =0} >0 then (26), together with the fact that |<f>nlH £n,

implies that

1

> = - oo on A.

But then

lim J <<J>n(t) ,dX(t)

1 i

=Eo If <*n(t),dx:;t))|2 <.e0 j |*n(t)|2dt < N2,

so that to avoid the contradiction one must have P > 0 a.s. Pfi. It
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follows that p > 0 a.s., and hence combining (28) and (29) gives

iig-- lim *n(t) a.s. I © PQ.
^ n -*- oo

Thus there is a causal map <\> fe" $ such that

<f>(t,X) = lim <f> (t,X) a.s. I © PQ
n ->- oo

and evidently p = exp C(♦) • n

The proof of the next two results is identical respectively with the

proof of [2, Lemma 4] and [2, Theorem 2] with some obvious notational

changes. Hence the proofs are omitted.

Lemma 7. 0"(<&n) is a convex subset of L (ft, J,?..).

Theorem 3. Let

^° ={gej^| EQ exp c(g) =1>

Then 'QiM )is a closed, convex subset of L (ft, 3\Pq)•

5. Applications.

The results developed above immediately imply the existence of optimal

control laws for a broad class of problems. Consider the control system

dX(t) = if(t,X,u(t,X))dt + dB(t), t e [0,1]

with X(0) «• 0 a.s. Suppose that f satisfies the assumptions fl to f5

and in addition the function fQ in f4 satisfies assumption f6.
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f6. There exists K, K1 and a > 1 such that f (n) <_ K + Kfn and

a2(a+l) K1 <y

where y is defined in Lemma 3.

Note that f6 is automatically satisfied if fn has less than linear
f0(n) °

growth i.e., if lim —— = 0.
n -*• »

Let L: y> •> R be a fixed bounded JL -measurable function. For each

u e 1X the cost incurred by u is defined to be

SJ(u) «= EQ[(exp 5(gu))L(X)] = lL(X(w))exp (gu(a))dP(). (30)
ft

Theorem 4. Under assumptions fl to f6 there exists an optimal control

u e % i.e.,

J(u*) <_ J(u), ue Yl.

Proof. From Lemma 3 it follows that E exp C(g^) = 1 for all u fe" C( and

furthermore there exists a > 1 such that

sup En exp cte(g ) < oo.
u e J0 u

Hence by [6, Chapter 2], &(-h) is a uniformly integrable subset of

L (ft, ^P ). By Theorem 3 ^Oi.) is convex and strongly closed in

L (ft,3-,PQ). So that by [6, Chapter 2 ] f$(JU) is weakly compact in

L (ft,*3r,P0). Hence the linear functional exp t;(g )^ E L(X)exp £(g )

attains a minimum.

-26-



In a manner corresponding exactly to the argument developed in [2],

the results presented above can be used to obtain the existence of a

saddle point for a class of two-person zero-sum games. Since there is

nothing new here the details are omitted.

Remark on [2]. It is necessary to make the assumption of uniform integra

bility of the family of densities to obtain the results in Theorems 4 and

5 of [2]. One sufficient condition for this uniform integrability is that

the growth of the drift term is at most linear. This fact is shown by

Bene£ [1] by verifying that the family of densities have a bounded ath

moment for some a > 1.
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