
 

 

 

 

 

 

 

 

 

Copyright © 1973, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



MARTINGALES ON JUPM PROCESSES II: APPLICATIONS

by

R. Boel, P. Varaiya and E. Wong

Memorandum No. UCB/ERL M409

12 December 1973



MARINGALES ON JUMP PROCESSES II: APPLICATIONS

by

R. Boel, P. Varaiya and E. Wong

Memorandum No. ERL-M409

12 December 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



MARTINGALES ON JUMP PROCESSES II: APPLICATIONS

by

R. Boel, P. Varaiya and E. Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Research sponsored by the National Science Foundation, Grant GK-10656x3
and the Army Research Office-Durham, Contract DAHC04-67-C-0046. Boel also
supported by an ESRO-NASA International Fellowship.



1. Introduction and Summary

This paper is concerned with applying the theory of martingales of

jump processes to various problems arising in communication and control.

It parallels the approaches which have been recently discovered in

dealing with similar problems where the underlying suochastic process is

Brownian motion. Indeed these approaches have recently been extended,

starting with the work of Snyder [14,16,30] and Bremaud [61,28], to the

case of the Poisson process and its transformations. The paper can then

be regarded as a sweeping generalization to this recent work.

The paper can also be considered as an illustration of an abstract

view and a set of instructions which must be followed to obtain certain

concrete results in the areas of communication and control. It is hoped

that this 'tutorial1 function will also be served.

Two results from the abstract theory of martingales form the basis

of this abstract view. The first consists of the differentiation rule

and the associated stochastic calculus formartingales and semi-martin

gales [1], and its application to the so-called 'exponentiation' for

mula [2]. The second result consists of the earlier Doob-Meyer decompo

sition theorem for supermartingales [3]. In order to follow the abstract

view, one also needs a third set of results, the so-called 'martingale

representation' theorems for specific processes. These results form a

bridge between the abstract theory and the concrete applications. The

representation results used here have been obtained in [4], hence the

paper can also be viewed as a continuation of that work.

The paper is organized in the following manner. In the next section

are presented many definitions, notations and results from [1, 2, 3, 4]
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which will be used in the succeeding development. These preliminaries

are certainly longer than can be considered proper, and are justified

partly to serve the tutorial function, partly because there is no

consensus of usage in the literature, and lastly because some of the

published literature contains errors and inaccurate or misleading state

ments which can be exposed only within a carefully and completely

developed context.

Section 3 is concerned with showing the 'global' existence of jump

processes over a finite or infinite interval which satisfy certain local

descriptions. Existence of such processes is obtained by transforming

the laws of 'known' processes by an absolutely continuous transformation.

We also present a wide class of point processes which can be so transformed

to yield solutions to prespecified local descriptions. Sufficient condi

tions are derived which guarantee when this technique is applicable. The

question of uniqueness of the solutions is settled for a wide class of

local descriptions.

Section 4 deals with a specific problem in communication theory,

namely the calculation of the likelihood ratio of a process which may be

governed by one of two absolutely continuous probability laws. The

techniques for Sections 3 and 4 are the same. Section 5 is concerned with

estimating certain random variables or processes which are statistically

related to an observed process. The emphasis here is on obtaining

'recursive' filters. As special cases one obtains a 'closed form' solution

for some of the situations where the estimated process is Markovian.

Applications to optimal control will be made in a future paper.

Throughout, there has been an attempt to link up the results with those

which have already appeared in the literature in as precise a manner as
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limitations of space permit. Any omissions are due to oversight of the

authors.

2. Preliminaries and Formulations

This section describes most of the results from the literature which are

necessary to the sequel. §2.1 is definitional in nature. §2.2 - §2.7

are taken mainly from [1], §2.8 is taken from [2], the remainder is

from [4].

2.1 Processes. Throughout ft is a fixed space, the sampie space. The

time interval of interest is R+ = [O,00) unless specified otherwise. For

each t let c3"t be aa-field of subsets of ft. It will always be assumed

that the family & 9 t &R., is increasing i.e., O" c!Jfors£t

and right-continuous i.e., (j = n <j" . Let a = V 3" be the smallest
11 s>t S t t

a-field containing all the \j . Let P be a probability measure on

(ft,a). Thus one has a family of probability spaces (ft,cJ ,P). It will

always be assumed that probability spaces are complete.

Let (Z*'/*) be a measurable space. Let x: ft * R, -»- Z be a function

such that {<o|xt(<o)£ B}G ^ for all B̂ 'X, t̂ r+. Then (x^^, P)
is a (stochastic) process. Thus every process has attached to it a

family (ft, ui* P), t € R , of probability spaces. The same function x

defines a different process if either the family £f or the measure P

is changed. When the context makes it clear we write (x ,2ft) or (x ,P)

or x instead of (x ,ui> p)» *f (xt,cX ,P) is a process, then so is

(x ,J , P) where C7 "is the sub-a-field of 'Jn. generated by x_, s < t

and P is the restriction to'Sr » V3"x. Two processes (x ,CTL,P) and

(y,.»t7V»P) are said to be equivalent or versions of one another if
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x - y a.s. P for each t, the set {x ^ y } may vary with t. They
t t u t

are said to be modifications if there is a set N with P(N) - 0 such

that for w£ N,x (w) = y (o>) for all t. Given (ft, cf,P), a random

variable, or r.v., with values in (Z, i) is a&-measurable map from

ft into Z. Unless explicitly stated otherwise all r.v.s and processes

take values in (R u M, B) where B is the Borel field.

2.2 Stopping Times. Consider afamily (ft,^?t»P). Anon-negative r.v.

T is a stopping time, s.t., of the family, if

{T < t} € ^ for all t.

The s.t. T is said to be predictable if there exists an increasing

sequence of s.t.s S, _< S2 .1 ••• such that

P{T • 0 or S. < T for all k and lim Sfc * T> « 1
k-*»

The s.t. T is said to be totally incaccessible if T > 0 a.s. and if for

every increasing sequence of s.t.s S-< S« f. •• •

P{S, < T for all k and lim Sfc = T <•} = 0.
k-*»

2.3 Martingales and Increasing Processes. A process (m»£ft,P) *s

said to be a (uniformly integrable) martingale if the collection

{m |t€ R} of r.v.s is uniformly integrable, and if-E(m |^s) = mg

a.s. for 8 <_ t. The collection of all such martingales, for which el •» 0, is

denoted^ •c/t (3i,P). (m ,^ ,P) is said to be a local martingale

if there is an increasing sequence of s.t.s S^, with S. •*• » a.s. such that

(mtAS„ ^t>0}' "^t»P) ^ f°r 6aCh k-
k k
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The collection is denoted ft\QQ (^»p)- (»t»^t,P) is asquare
integrable martingale if m %=.Jw and if sup Em < °». The collection

is denotedJlr (caL>P) and the class of locally square integrable

martingales JAl/' (^ ,P) is defined analogously. It is obvious that

Each m. e M- has a version whose sample paths are right-continuous
t y vloc

and have left-hand limits. Clearly such a version is unique, i.e.,

unique modulo modification. It will always be assumed that local

martingales have sample paths with this continuity property.

A process (a ,£^t»P) is said to be increasing if a =0 a.s. and

if its sample paths are non-decreasing. The collection is denoted

A* ={a eA+lsup Ea,. <-}, A =M - •&'. Members of A+(A) are

said to be integrable (or have integrable variation). a €J\,^ is said

to be locally integrable if there is an increasing sequence of s.t.s

S, +wa.s. such that
k

a. .„ e A. for all k.
tAS.

k

Ai nn ~Air-r, ~d +"loc s^loc -rt loc

SendUmartingales. Aprocess (st, ^ft, P) is asemi-martingale,
respectively local semi-martingale, if it can be expressed as sfc = sQ +

mt +at where mt ^/^(^.P) and at e^t(^/t,P), respectively
mt Gjl^ (9vp) and at e4.0(^t,P)# The families are respectively
denoted0(^t,P) and ^loc<cft>p)-
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2.4 Predictable Processes. The family of all processes (y ,*<£.»*)

which have left-continuous sample paths generates a o-field 1 «' (<Tt)

C 3® iO with respect to which the functions (a^t)** y (w) are

measurable, n ±s called the predictable a-field, and every process

(y t£^ ,P) which is THneasurable is called a predictable process. Note

that if #t C^t, then jl&J Cf(At).
For (at,^t,P) e^Q,

ro

{lytlPUatL (afc) =ht\(yt^t^) is predictable and E1|yt| |dat| <->.
0

P i
Li (afc) •= {y. there is a sequence of s.t.s S. •*• °° such that
lOC t t K.

yt ^t^} GL?(at)} f°r 6aCh k*
The integrals above are Stieltjes Integrals.

2.5 Quadratic Variation Two martingales m ,n in /£. are orthogonal

if their product, mt n e/ki • mt GjYi0c ls continuou8 if its
sample paths are continuous; it is said to be discontinuous if it is

orthogonal to every continuous martingale. Every m €/£ has a

unique decomposition,

c , d
m = m + m.
t t t

c d
such that m is continuous and m is discontinuous. Clearly if

m ^JJ is continuous then it is in/£- . To every path m ,n in

(,/{- is associated a unique predictable process, denoted <m,n) or

«m„,n >,q5" ,P) such that <m,n) e7T, , and
t t t t loc
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(mtnt -<m,n>t) eXjQc(^t,P).

(m,n) is called the predictable quadratic covariation of mt>nt* For
2

m €j£ ,<m> = <m,m> is the predictable quadratic variation of mt.

Note that generally (m,n> depends crucially upon the family CJJ- ,P).

If m ,n in/v have the decompositions mt = mfc +'mt» n = nfc + nt»

then the process

[m,n] = [in ,n ]» <mc,nC> + 2-f Am' An ,
t * t z s<t S

where Am « m - m , An = n - n _, is called the quadratic covariation
s s s— s s s—

of m , n and [m ] =» [m , m ] is the quadratic variation of mt.

It turns out that

mtnt ~ fm,n-'t €v^lloc

M2so that if, furthermore, m , n are iniAl then

[m,nL - <m,n) G./t
• t t loc

9 2

2.6 Stochastic Integration If mt GiKlocC?t>p> and *t GLloc^mV
then <j>t ^ lJ c(<m,n>t) for all nfc e^ioc(9vp) and there is aunique
process, denoted (<J)om) GJt (^Tt,P) which satisfies

<<|>°m,n> =1 <f> d<m,n) for all nt ^Ms • (2.1)
0

The integral on the right is aStieltjes integral. If mt $Jtloc then

one cannot define a stochastic integral in this way. Two other

possibilities are open.
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2 p Id
$ € L_ ((m ) ) H L. (m ), then the process

(♦•m)t -• (<l)omC)t +| 4>g dm* €^oc<^t'p) (2-2)

where (<|x»m ) is defined as in (2.1) whereas the second integral is

a Stieltjes integral.

Finally if mt e/iJ0C and if (<f>t,^t,P) is alocally bounded2
predictable process, then there exists a unique process ^>om) €/(,

which satisfies

[*< m,n]t -1 $g d[m,n]s for all nGMy\QC- (2.3)

The integral on the right is not in general a Stieltjes integral

unless [m,n]t G^ . The precise interpretation of this integral is

not given here since it is seldom used below. For details see [1].

The process (<J>°m) is called the stochastic integral of <t> with respect

to m. Note that if (<{>°m) makes sense according to more than one of the

three possibilities (2.1), (2.2) or (2.3) then the ressulting stochastic

integrals coincide.

2.7 Differentiation formula. Let s =sQ +m + a. ^jj -c(^7L»p)*

The decomposition is not unique. If s = sQ + m' + a' is another

This is a non trivial restriction on mfc. It holds for the discontinuous
martingales to be introduced in §2.9 below.

<J>t is locally bounded if there is an increasing sequence of s.t.s S. ->• «
such that the process <f>tAg I,g , is bounded for all k. Note that if <fr

is a right-continuous process, having left-hand limits, then the process

t|> • <j> is locally bounded,
t t- -9_



c c
decomposition then the continuous parts m , m' of the local martingale

are modifications. This unique continuous local martingale is denoted s .

Let s = (s , .., s ) be a process with values in R such that

s £ CO- (^t»P) i=l, ...,n. Let F: Rn -*- Rbe atwice continuously

differentiable function. Then the following differentiation formula

holds.

F(st)=FV +( ± |f- (sT.) ds* +±( f J&- (V)d<siC,s^>T
Jn i=l i Jn i,j=l i j

+£ [F(s )-F(s )- Z |f- (s )(s* -s1 )]
x<t T T i=l dXi XT

As a special case one obtains the very useful 'product' rule. Suppose

m and n are in/^,- . Then (since m^ -nQ = 0), and recalling the

definition of [m,n].

t t

m^n «|m dn+ln dm+ [m,n].
tt 1 s- s 1 s- s l,Jt

2.8 The Exponentiation Formula; Let s G jfl (jrt>P) with

Then there is aunique process y £j^L (£ft»P) which satisfies the

equation

c
\ y ds
It- tyt " yo + » y— ds~ ' t - °>

for a pre-specified y. and y is given explicitly by

-10-
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yt -yo exp(st -\ <sc, sc>t). n(l+AsT)e"AsT
T<t

where the second term converges a.s.. y is called the exponential of s

and is sometimes denoted y =» ^st-)* Evidently ^(s ) >_ 0 a.s. if

y j> 0 a.s., and if 1 + As > 0 a.s, If, in addition, mQ j> 0 and mt - mQ

e>^l ^t,P^ then ^(mt^»^t,P^ is asuPermartin8ale i.e.

*<6 (mt) |̂s) <g,(ms) s<t, —

and so in particular

E(£(mt)) <E(mQ), t>0.

Finally if m £ /is is bounded then GOO is a martingale.

2.9 The fundamental jump process Let (ft, £jt,P) be a family of spaces

and let (xfc, ^t,P) be aprocess with values in (Z,^) such that all the
sample paths of x are piecewise constant and have only a finite number

of discontinuities in every finite interval, and such that the sample

paths are right-continuous i.e., for all w, t there is e > 0 such that

xt(w) • x + (w) for 0£ e£ eQ. Let T ,n«0,l... denote the jump times

of the process, defined inductively by Tn = 0 and

Tn+1(w) - finf{t|t >Tn(w), xt(o») t x^, (w)} ,n>0
n

» if the set above is empty

(x ,J ,P) is a fundamental jump process, or a fundamental

process, f.p., with values in (Z,A-), if in addition,

(i) (Z,K>) is a Blackwell space, and then it turns out that the

jump times are s.t.s, and

-11-



(ii) The s.t.s T are totally inaccessible.

Evidently if (x ,^ ,P) is a f.p., so is (x.,^£\,P) where^ is

the sub-a-field of ^T generated by x ,s_< t. For each B^ j let

P(B,t) =g I{ ,}I{ £B}
s<t s- s s

be the number of jumps of x which occur prior to t and which end in the

set B.

Associated with P(B,t) are two unique increasing continuous processes

P(B,t) 6^"i0C(^t,P) and PX(B,t) eAloc&*>*) Such that

Q(B,t) =P(B,t) -P(B,t) eJt2lQC (S^P)

and QX(B,t) =P(B,t) -PX(B,t) ^K\qc (c/X,P).

Furthermore,

<Q(B1,t), Q(B2,t)> = ?(B1 n B2,t),

and <QX(Bx,t), Qx(B2,t)> -P2^ HB2,t)

Finally, the functions P, P, PX, Q, QX considered as random set functions

on »y are countably additive.$

Note: The condition that the T are totally inaccessible is equivalent

to the assertion that the P(B,t) are continuous. See [4] for alternative conditions,

A real-valued function f(z,t) = f(z,u,t) is said to be predictable,

and one writes f € T(jt)9 if it is measurable with respect to

7f® J"®0 and if for each fixed z, f(z,«,») is predictable in the
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sense of §2.4 above. The family "P(^X) is defined similarly. If

fE-f\3D. respectively "^(^X), we call fa^-predictable,
respectively^r -predictable,process. The following classes of

predictable functions are used in the martingale representation results-

l2(px) -{f e^(^IcBfDj)2 =eJif2(z,t) ?tdz,dt) <»}
I R+

LX(iX) -{£ ef(^x)|llffl~ -EJJ |f(z,t)|P^dz,dt) <»}
Z R+

L1(P) ={tE"PC5\)\M1 =E I J |f(z,t)|P(dz,dt) <»}
Z R.

+

L1(QX) - LX(P) HL1^)

It turns out that OfI - HfH~, hence L1^) - LX(P) = L1(QX).

L? (PX) =» {f € v (^X) Ithere exists a sequence of s.t.s S, •*• » such that
loc t &

f(z,t) I{t<g }eL2(PX) for each ft}
Ix

The classes L, (P) etc. are defined in a similar manner. Evidently,
loc

LL«X) • LL<p> - LL(P)

Let f(z,u>,t) be a function which is measurable with respect to

\j®'3-X ®i2) such that f(z,»,t) is >7"X-measurable for fixed zand such
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that E \ \ | f(z,t)|P(dz,dt) <«,. Then there exists a^/-predictable
Z R+

2 iZJX.,function f such that El I If - f|P (dz,dt) = 0. This result follows

Z R+

easily from [22, VT23]. The result will be used in §4, §5 in the

following context: Let f̂ *PC$t) and let f(z,t) =E(f(z,t)|$x); it
can then be assumed without loss of generality that f is\f t-predictable.

2.10 Representation of/62(ffX). For each fG L^(QX) there exists a

unique process (foQX)t G/^(^x) such that for all gG L(QX), aand 0
in R

(<xf + 3g) oQX = «(foQx) + 6(goQX),

<foQx, goQ*>„ = 1 i f(z,s) g(z,s) PX(dz,ds)
Z 0

-a
Conversely if mt e/{, (c?X) then there exists fGL(Qx) such that

mt = (foQX)t.

Similarly, \e/iloc<^^} if and only if there exists fGL1qc(Qx)
such that

mt » (foQ )t.

2.11 Representation o^\vJ^)' If fel1^X> then (f°QX)t G.A &*)
no where

(foQx)t -=jl f(z,s) (ffcdz.ds) =| i f(z,s) P(dz,ds) -I j f(z,s) Px(dz,ds),
Yo Vo Vo
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the integrals on the right being Stieltjes integrals. Conversely if

mt ej{}($\) nA then there is f̂ LX(P X) such that

mt- (foQX)t.

Finally, n^ e/t\0CC$*) if and only if there is f Gl1 (PX)
such that

mj. - (foQX)t - J Jf(z,s)[P(dz,ds)-PX(dz,ds)].
Z 0

Remark 2.1 1. If m G/-/ Cj"t) has continuous sample paths then m =0.

2. If more than one representation above applies then the

representations coincide.

2.12 Local description of a fundamental process. Let (x ,^h ,P) be a
tm 1m

fundamental process with values in (z/4-), and consider the increasing

processes P(B,t) and PX(B,t). Let A(t) = P(Z,t), Ax(t) • Px(Z,t). The

countable additivity of these functions with respect to B G Q, implies

that there exist predictable processes n(9,t) and n (B,t) such that for

all JJ e^-,

(B,t) « 1 n(B, s) A(ds)

0

Px(B,t) '- 1 nX(B,s) AX(ds)

Evidently it can be assumed that n(Z,s) • nX(Z,s) = 1. The system
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{n(B,t), A(t)} or {n(dz,t), A(dt)} is analogous to a Levy system for

a Hunt process [5]. The system {n(dz,t), A(dt)}willbe called an

X X

extrinsic local description of x, whereas {n (dz,t), A (dt)} is called

the intrinsic local description of x, because of the following

interpretation: the probability that x has a jump in [t,t+dt] given
n(B,t), (respectively

^f ,(respectively"^X) is A(dt) + o(dt) (respectively AX(dt) +o(dt)), while/

nX(B,t)) is the probability that x^B given cfj.Cf*) and given that a
jump occurs at t. For future reference we note the following trivial

but important fact.

Fact: Let {n(B,t), A(t)} and {nX(B,t), AX(t)} be extrinsic and intrinsic

local descriptions. Then for all B G <?, and t G R+

e/| n(B,s) A(ds)|^X|« 1nx(B,s) AX(ds) a.s. (2.4)

2.12 Fundamental Example. The results in the succeeding sections will

be specialized to the following example which covers many practical

cases such as Poisson, counting, birth and death, and queueing processes.

Let (x., or ,P) be a fundamental process with values in (Z,'4).

Suppose that from each z G Z the process can make at most n transitions

where n is a fixed finite number. Thus the transitions can be

represented by a 'state-transition' diagram of Figure 1, where the

transitions are labeled o^,...,^. Define the counting processes

P±(t), 1 <. i <. n,

p.(t) = number of transitions of type i made by the process xfc prior

to t.

-16-



Fig. 1. State-transition Diagram for Fundamental Example

~X ""Then there exist increasing processes P.(t) and p^(t) such that

q±(t) -P±(t) -^(t) e^i0C(5t»P)

qX(t) =Pi(t) -̂ (t) G^oc^x,P)

Furthermore,

mt G/{,2(^X,P), respectively/^2oc(^x,P), if and only if there
exist f. GL (pX), respectively Lloc(pX), such that

n

mt • S, (fioqX)t;
1»1

(2.5)

and mt ^M}0*,V) ^A, respectively ^oc(^t»p)» lf and only if there
1 ~x 1 ~x

exist f. G L (p.), respectively L. (p.), such that

n

mt - L (f^i)t»t ±tal

where the integral is a Stieltjes integral.

** "" "*X ~xWe call (pj,...,p ), respectively (p.,..«Pn)» the extrinsic,

respectively intrinsic, local descriptions.

-17-
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Remark 2.2 If (xt,^,P) is acounting process then Fig. 1simplifies

to Figure 2 and there is only one transition. Hence in this case

n = 1 in (2.5) and (2.6).

©—-^—G-^^y^—0-r—0-
i ~i -I vi

Fig. 2. State-transition diagram for counting processes.

For this special case Bremaud [5] has obtained the representation for

'('loc(3't)> whereas Davis [7] has extended it to the class ^L cwv)»

However both these results were obtained only for the case where the

law of (x.,^? ,P) is mutually absolutely continuous with respect to the

law for a standard Poisson process (see §3).

3. Solutions to Specified Local Descriptions by Change of Law

In §3.1 we present a very useful technique for transforming one

fundamental process (x »^f ,P) with a l.d. (n,A) to another process

with a different prespecified l.d. The questions of uniqueness of the

solutionis discussed in §3.2. §3.3 consists of some sufficient

conditions which guarantee that the technique is applicable. Finally

§3.4 presents a class of processes which can be transformed

into other processes with this technique.

Let (xt,*3 ,P) be a fundamental process with values in (Z,^) and

with intrinsic local description (l.d.) (n (dz,t), Ax(dt)) so that

3
A counting process is an integer-valued process which starts at 0 and
has unit jumps.
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pX(B,t) =11 nx(dz,s) AX(ds), tGR+
BO

Since we will be only dealing with the 'intrinsic' a-field^x in
^ t

this section, the superscript x will be omitted here. Hence *J SSJX9

P = PX etc.

3.1 The Transformation Technique

Let P^ be another probability measure on (ft,'?) and suppose that

Px « P,

i.e., P- is absolutely continuous with respect to P. It is evident

that the same function x (w) defines another fundamental process

(xt, Jt**{) with a possibly different l.d. (n^B.t), A^t)) say. We are

going to determine the relationship between the two descriptions.

dPlLet L • «jj- be the Radon-Nikodym derivative. The r.v. L^ 0 and

E(L) =1. Let Lt «E(L|^t). Then (Lt,^t,P) is auniformly integrable
martingale, lim L£ =La.s. and in L1 by ([3], remark after VI. T6).

t*»

Proposition 3.1 i) If L > 0 a.s. P then for almost all u>, L (u>) > 0 and

Lt(w) > 0 for all t.

ii) Let

T(w) = inf {t|Lt_(w) •0or Lt(u) =0} (3.1)

Then for almost all u), L (w) « 0 for t >_ T(w).

Proof i) Clearly L> 0 a.s. implies Lfc > 0 a.s. and then the second

part of the assertion follows from (ii), and the latter follows from

[3,VI. T15]. n

4
E, E^, denotes expectation with respect to P, P .

-19-



Remarks 3.1 (i) If L > 0 a.s. P, then in fact P « Px i.e. the two

measures are mutually absolutely continuous.

(ii) It is easy to give examples such that L > 0 for all t but

P(L=0) > 0.

For e > 0 let

Tc(o)) o infltlL,. (w) < e} (3.2)

Proposition3.2 T is a s.t. for all e and

lim T£(w) = T(w) a.s. P
e-*0

Proof The fact that T£ is a s.t. follows from the fact that the

process L is left-continuous and from [3, IV. T52]. Now T£ is

clearly non-decreasing with e. Let

T0(u>) = lim T (to)

Suppose T(w) = » and per contra Tq(o>) < «>. Then there exists a

sequence t^ increasing to tQ < » such that L _(w) -*• 0. By left-

continuity L (u>) = 0 and so T(u>) < tQ. Next suppose T(w) < °°.
C0~

By Proposition 3.1, for almost all such w TQ(a)) < T(w). If TQ(w) < T(w)

then a repetition of the previous argument will end in a contradiction.

Once again TQ(a)) = T(co). n

For e > 0 let

Lt(w) = LtAT Mt tG V
e

Then L^ -LQ g/C1(P) and l| _> efor all t. By §2.11 there is a
e 1predictable functionf (z,t) G L^^ (P) such that
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,* »1+11fe(z,s) Q(dz,ds) -1j fe(z,s)[P(dz,ds) -P(dz,ds)] (3.3)

Since —=— £ —, therefore the process

Lt- '

*E(z,s) -f£(2l8) € l* (P),
Le loc
s-

and hence

me(t) -' Ij «J>e(z,s) Q(dz,ds) e/t1^,?) (3.4)
Z 0

which upon substitution into (3.3) gives

.t

L: = 1 + 1 L* dm*
s— s

,.1+
0

By the Exponentiation formula of §2.8

L* = &{m\) -exp(m* -\ <me,c,me'c>t) n(14Am*)e ""8 (3.5)
s<t

e,c _By the Remark in §2.11, in ,v* = 0, hence (3.5) simplifies to

-Am

L* »exp(m*) H(l+Am^e 8 (3.6)
s<t

Rewriting (3.4) as

Here it is being assumed that Ln = 1 which is indeed the case if JO is

trivial. Otherwise, in the sequel, replace the martingale L,. by —.
C L0
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m£(t) =1I 4>£(z,s) P(dz,ds) -jj 4>C(z,s) P(dz,ds) (3.7)
Z 0 Z 0

and acknowledging that the second integral has continuous sample paths

(since P is continuous) it follows that for almost all w

Am£(u>) «me(u>) -m£ (o>) « l<J>e(z,s)(o>) [P(dz,s)(u>) -P(dz,s-) (u>)] (3.8)
s s s- J

Also since P(B,s)(w) - P(B,s-)(w) equals 1 or 0 depending upon whether

or not x (u>) $ x (u>) and x (o>) G b, therefore the term (1+Amg) in (3.6)
s- s **

can be written as

(1+Ame)(w) = i (l+<J>£Cz,s) (<*>)) [P(dz,s)(u>) -P(dz,s-) (w)] (3.9)

From (3.8), (3.9) it follows respectively that

£ Ame(u>) = £ (J)e(xc(a)),s),
s<t s<t

V^s

n (1+Ame(a))) = H (1-H>e(x (oj),s))
s<t S s<t

x ^x„
s- s

which upon substitution, together with (3.7), into (3.6), yields after

some cancellation the first interesting result

LE = n [1-H>£(x ,s)] exp(- JI <J>e(z,s)P(dz,ds)) (3.10)
z 8<t S Vo

x ^x„
s- s
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Finally let e. > 0, k°l,2,... be a sequence decreasing to 0, let

S0 = °» Sk " Te »k=1»2,..., and let
k

oo e

<Kz,s) « £ 4> (z.s) I(q <s<c >
k=l 1Sk-l S- V

ek
<J> is predictable since <j> is predictable and Irg < s < S } is

e e'left-continuous. Since by definition Lfc « LfcAT for e' < ewe have
e

proved the following result.

dPl xTheorem 3.1 Let Pj « P» and let Lt =E(^p-|GfX).. Let

T= inf(t|Lt_ «0or Lt = 0}

Then there exists a predictable function <Kz,s) and an increasing

sequence S. pf s.t.s converging to T such that

and

Vm)"Km) iffl <s.} ei* <£)

-ifLtAS = n t1+*k(xs's)] eXp[~ ) J *k(z,S) P<dz'd8>J <3-U)k s<t Jz JQ
s- s

The product on the right converges a.s. whereas the integral is a

Stieltjes integral.

dPiRemarks 3.2 (i) If L * jp- > 0 a.s. then T = « a.s. so that the result

above implies that <J> G L- (P). However if this is not the case then it
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is not true that in general <|> e L . Some additional properties of $

are given in Theorem 3.2 below. Nevertheless, very loosely speaking,

one can interpret (3.11) as

L = n [1-H>(x ,s)] exp[- II <Kz,s) P(dz,ds)], for t<T (3.12)

X £x„
s- s

Indeed some such loose interpretation is the only way in which the

results of [6, 23] can be construed as correct.

(ii) The characterization (3.11) has been derived earlier [23^ 24] for

the case where (x ,^ ,P) is a Brownian motion. The techniques for the

proof are identical except that in deriving (3.4) one qbserves that

every martingale on a Brownian motion sample space is a stochastic

integral of theBrownian motion (see [5]), and that all martingales

are continuous so that (3.5) simplifies to

L = exp(m — -^vm »m / ;

(iii) For the fundamental example the representation (3.11) becomes,

using §2.12,

n

L1-AS = H { ntASk i=l S<t
[1+^(8)1 exp[-l ^(s)pX(ds)]}

(xs-'xs)Gai

4 i 1 '"X
for some predictable <j> (s), l<i<n, such that <|>k G Lloc(P±)« Here the

notation (x ,x ) G a. means that x makes a transition of type i at
s- s l
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time s.

If (x^^J- >P) is a Poisson process then in the above n=l and as is

well-known pX(ds) = ds. For this case the result was first obtained

by Bremaud [6] with the loose interpretation of (3.12), and for the case

L > 0 a.s., by Van Schuppen, [24], and by Davis [7] who proves in addition

that then 4> G l, . Bremaud [6] also obtains this representation for
loc

the case where the example is a Markov chain.

We proceed to obtain the relations between the local descriptions.

The next result seems well-known.

Lemma 3.1 mt ^H^^f*!* if and only if mtLt €Kioc(3i'P)

Proof Let S^ •*• °° be a sequence of s.t.s such that for each k

\*h Lt*sk I(sk >0} ê <*> <3-13>

First of all

ElK*Sk X{Sk >0)1 • EL'mMSk I(Sfc >0)

BL"sJVsk 1{sk *0}l by (3'13)

< 00

Next for s < t

. E<mtASk LtASk I{Sk >0>l^s>
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From (3.13) and the fact that Lt G/£, (p) the right-hand side simplifies

to

msASk LsASk I{Sk >0}
" iTT— "msASk I(sk >0}

which proves the "if" part of the assertion.

Conversely suppose that

\*s, ^s,. >o) eA>!> <3'14)
'k "Tc

It will be shown that for s < t

E<LtASk mtASk J{Sk >0}l^s) "L8ASk msASk I(Sk >0} a-8' P (3-15)

So let A G J- . Then
s

E(IALtASk mtASk I(Sk >0}} " E1(IA mtASk X{Sk >0}}

which proves (3.15).

=h<h msASk I(Sk >0}> b* (3'14)

53 e(lsas1 h n8AS. I(s1, >oP
k k k

Theorem 3.2 Let (x ,3~,P) be a fundamental process with values in

(Z,^) and with (intrinsic) l.d. (n(dz,t), A(dt)). Let PJL « Pand let

L =E(Tp^|^:) have the representation (3.11). Then 6ct,^,P1) has
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l.d. (n^dz.t), Ax(dt)) where

A1(t) «p A(dt) and nx(dz,t) » (1-H>(z,t)) n(dz,t) (3.16)

Furthermore, it can be assumed that

(1-H>) «0 and (1-H>) € L?" (P) with respect to probability (3.17)
loc

measure P,.

Proof By §2.9 there exist continuous increasing processes P1(B,t)

G A* (P, ) such that
loc 1

Q1(B,t) •- P(B,t) -P^B.t) e^ioc(P!) <3'18>

Hence to show (3.16) it is equivalent to prove that

VB.t)- jj (1-H>(z,s)) P(dz,ds) (3.19)

BO

Let S , $ be as in Theorem 3.1, and let

Q*(B,t) »Q1(B,tNS±) «P(B,tAS±) -P^B.tASj), (3.20)

mt -P(B,t/VS±) -JI (1+^(2,8)) P(dz,ds) (3.21)
B 0

It will be shown first that mfc e/£loc(p1>- By ^emma 3.1 it is enough

to show that

LtmtG^L<p)-

Since *± GL* (P) therefore mt is in*^QC(P), also Lt G/{J(P) CG?1oc(P).
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Hence one can apply the differential formula of §2.7 to obtain

m=(m dL +fL dmg +£ [A(msLs)-ms_AL8-I,s_Ams] (3.22)

From (3.21)

( V*"b- I vp(B'ds)-J J
•'o 0 BO

Ls_(l-H>) P(dz,ds),

and since A(m L_) = (m +AmJ(L +4L ) -to L - m AL + L Aid + AL Am ,
s s s— S S"" s S— S— s— S S— S So

therefore the last term in (3.22)equals

tASjL

£ ALs Ams » IJ Lsj>(z,s) p(dz,(
^ B 0

from (3.11) and (3.21). Substituting these relations back into (3.22)

gives

t tAS± tAS£
Lm = I m dL + ff L (l+cJ>)P(dz,ds) - L (l-Hj))P(dz,ds)
t t J s" s Jbjo s" jbjo 8"

t tAS±

- I m dL + JI L (l-h|>)Q(dz,ds)
JQ s" s Vo s~

which is clearly ln^ioc(p)- Hence mt e/^l0c(Pl)' SinCe
Q*(B,t) G/^ioc(P>» subtracting (3.21) from (3.20) implies that
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tAsi

Pjtt.tAS^' -jj (1-N>(z,s)) P(dz,ds) GM^^Ct))
BO

But this process has continuous sample paths, hence it must vanish i.e.,

for almost all w (P1 measure)

tAS.

Pjfr.tASj) =Jj (l+*(z,s)) P(dz,ds) for all t.
B 0

which proves (3.19) and thereby (3.16). The assertion contained in

(3.17) follows from the fact that P, has increasing sample paths and

isin^^P,).

Remark 3.3 (i) It has been shown that <{> G L1qc(P) in the probability

space (S2,CT,P-) and not in (ft/3\P).

(ii) The transformation of l.d. for the case where (xt,P) and

(x ,P-) are both Hunt processes has been obtained in [5]. For this

case the local description is called a Levy system.

(iii) For the case of the fundamental example with l.d. (p1>»"fPn)

under P, the l.d. under P^^ is ((1+<J> )j?v..., (1+* )Pn) where the <f>

are as in Remark 3.2 (ill).

Theorems 3.1, 3.2 allow us to obtain in certain cases processes

which have certain specified l.d. from known processes with other

descriptions. Put differently, we have a 'synthesis' procedure for

obtaining 'global' solutions for a class of l.d.s. This is summarized

in the following theorem, whose proof is now immediate.
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Theorem 3.3 (Existence of solutions to local desqritpions). Let

(x ,\X>P) be a fundamental process with values in (Z,'4-) and with

intrinsic l.d. (n(dz,t), A(dt)). Let <Kz,s) be a predictable function

such that

<Kz,s) GL*oc(p) (3.23)

and

i L dP - 1 (3.24)

where

|l ♦<••'Lt = n [1-H>(xs,s)] exp[ -11 *(z,s) P(dz,ds)]. (3.25)
sxi Z 0

s- s

Then (x ,or ,P-) is a fundamental process with l.d. (n^(dz,t), A(dt))

where

n^dz.t) = (l+^Zjt)) n(dz,t)

and where the probability measure P^ is given by

dPx - L^dP

Remark 3.4 (i) This result is extremely useful in practice since given

an arbitrary l.d. there is no way to determine whether or not there

exists a process with such a description. On the other hand from the

viewpoint of dynamical processes a l.d. is much more natural and useful,

(ii) For the case of Brownian motion the result corresponding to the
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above was first obtained by Girsanov [9], and the technique was soon

adopted in stochastic control problems [10, 11, 12, 13].

(iii) Bremaud [6] was the first to use this result, for the

special case where (xt,'5j.,P) is a Poisson process, to obtain existence

of several "self-exciting" counting processes (x ,cF jP-,)* Snyder

[14] and Rubin [15] introduce several jump processes through their l.d.

However they do not discuss whether or not there indeed exist

processes with these descriptions. The result above can be used to

solve this problem.

(iv) The condition (3.24) is a non^-trivial restriction. For the

Brownian motion case some sufficient conditions on the local description

have been derived which guarantee (3.24). See [10, 11]. For our case

similar conditions are given below in §3.3.

(v) Theorem 3.3 does not address itself to the question of

uniqueness of the solution. This question is discussed next.

3.2 Uniqueness of Solutions with Specified l.d.

To discuss uniqueness of laws of solutions it is convenient to

assume that Q is the space of sample functions and that the process x

on U is merely the 'evaluation' process i.e., x (w)•» w . The probability

on U is then the law of the process. We will be dealing with two

such processes, x and y with the same set of sample functions but

with different laws. Hence we must have two different probability

spaces (aX,^X,PX) and («y,^,Py) where (GX,^X) and (fl*,^) are
copies of the same family (G,J^). In particular, then, xand yare
identical functions on fi x [0,1].

Since we are unable to obtain any interesting results for the
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infinite time interval, therefore in Theorem 3.4 and Corollary 3.1,

t G [0,1].

Definition 3.1 An (intrinsic) l.d (n,A) is said to have unique solutions

if all fundamental processes (x ,3l,P) with l.d. (n,A) have the same

law.

Theorem 3.4 Let x . y , 0 < t < 1 be fundamental processes with
• t t — —

values in (Z,(«l), and on the (sample function) spaces (G^^Jt'P*)*

(O^/c^P"7) respectively. Let (n,A) be the l.d. of xand ((l-H»)n,A)
the l.d. of y for some predictable function <£.

Suppose that (n,A) has unique solutions, and suppose that for each

e > 0 there exist Z G f*v-and k < « such that

(i) Px(Be) =1-e

where B„ » {w|x„(w) G z for 0 < t < 1>,
£ ' t e — —

<"> j) lifers)' C^Cto-d.) +5y(dz,ds)) <k£ for »GB£
Z 0

where these are Stieltjes integrals.

Then

1^(0)) Py(dw) « 1 and dPX » %dPy

ft

where

\ " 6<(^Q/)t)» and *--^

^y ^Proof The process (m.^JijP7),
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m
t
= <Kz,s) Qy(dz,ds) «j1 <J/(z,s) [Py(dz,ds) -Py(dz,ds)]

Z 0 Z 0

is, by (i) and (ii), well-defined as a Stieltjes integral. Hence

mt G^o^*t,py) so that it: is in ioc^py^* Th^refore by §2*9 there
is a unique process (&t,W71,P ) where

*t - £<«t>-

Let e > 0 be a decreasing sequence converging to 0. Define the

predictable functions

ty (z,u,s) «( <Kz,to,s) if z G z
£
n

10 otherwise

Because of (ii), the process (m ,*Jy,P )where

mn =jj *n(z,s) Qy(dz,ds)
Z 0

is a bounded martingale. Hence by §2.9 the process (&n,'cr ,Py) is
t t

martingale, where

Furthermore from the definition of ty

!?M = M«0 for all t and in ^ B (3.26)
t l £n

By Theorem 3.3 the fundamental process (yw" »Pn) where
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d"P n11 r« «-.\—•= - *, (3.27)
dPy x

has a l.d. ((l-HjFn)(l+<J>)n, A), and by the definition of if>n and *

(l+^Xl+tXz.io.t) - 1 for all t, w G B^ and zG z^
n n

Since (n,A) has unique solutions, it follows that

J Pn(dw) -J Px(dw)
B *B
£ £
n n

> 1 - £ by (i)

From (3.26), (3.27) this implies

L ^M Py(dw) >1
e
n

and since £ > 0 is arbitrary the assertion follows. n

Note; We must have Px(B,t)(o>) » Py(B,t)(w) and Py(dz,t)(w) » [l+4>(z,t)] x

n(dz,t) A(t).

Corollary 3.1 (uniqueness) Let (x ,j"t>P) be a fundamental process

with values in (z» t) and with l.d. (n,A) which has unique solutions.

Let $ be a predictable function such that

+(zt8) GlJqc(PX), E[^((<|>oQX)1)] =1

Suppose that $ satisfies (i) and (ii) of Theorem 3.4. Then the l.d.

((l+$)n, A)) has unique solutions
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Proof By Theorem 3.3 and the hypothesis there is asolution (yt?^t»P^)

with l.d. ((l+*)n,A) where dPj^ ="^((<l>oQx)1)dP.

Suppose (yt,^y,P2) is another solution with l.d. ((l-H>)n,A). By

Theorem 3.4

dP - £1 d?1 = l2 ^2

and since dP± «LjdP it follows that l± >0 a.s. ?v 1=1,2. Evidently

then P2 aP,' n

Remark 3.5 (i) Theorem 3.4 is inspired by [9,Lemma 7] and the

development there suggests how the result can be generalized.

(ii) Condition (i) and (ii) of Theorem 3.4 are usually easy to

verify in practice. Consider a special case of the fundamental

example where (x /$• ,P ) is a Poisson process with rate 1. Then

Z is the space of integers and y„ is then a counting process with local

'intensity' rate 1 + <J>(o),t). Suppose <f>(w,t) is expressed explicitly as a

function of the past of x i.e., <Kw,t) =* f(xf0 t1(w),t). Then the

conditions (i) and (ii) are satisfied if,for instance, there is an

increasing function fQ such that

lf(xtO,t]'^I+|l+f(x|0t](t)| if0(N) when I.«tl4 N-

For a similar condition in the Brownian motion case see [11]

(iii) Corollary 3.1 extends in an obvious way to the time interval

R+. However Theorem 3.4 does not.
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3.3 Sufficient Conditions

Let (x »^t,P) be afundamental process with values in (Z, oJ)

and with intrinsic description (n(dz,t), A(dt)). Let <|>(z,t) eLioc(^

and define the process L , t G [0,1] by

L = n [1+<(>(x ,s)] exp[- 1 1 (()(z,s) P(dz,ds)] (3.28)

X fX '
s- s

then L also satisfies

dLt = Lt_dmt, (3.29)

where,

mt = (4»oQ)t <3.30)

We assume that 1+ <|>(z,t) • 0, then Lfc _> 0, Lfc is a supermartingale and

EO^) « 1

The three results below state conditions on <J> which guarantee

EO^ =1

The following assumption is made throughout this subsection.

Assumption 3.1 There exists an increasing function y: R+ -»• R+ such

that

P(Z,t) < y(t) a.s. (3-31)

(Note that this Implies P(B,t) < y(t) for all B G a ).
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Proposition 3.2 Suppose that for some K < »

1*1 < K (3.32)

Then Eft,) » 1.

Proof From (3.28), (3.31) and (3.32)

Lt 1 <K+1) exP Ku(t)

Hence

IV ♦<*»t>!2 1K2(K+1)2 exp 2K y(t),

so that

jj |Lt_*(z,t)|2 P(dz,dt) <E| K2(K+1) 2
E 11 r^.*(*rt>| P(dz,dt) < E 1 K (K+l)fc exp 2Ku(t) y(dt) < «>,

Z 0

which implies that

Lt_ 4>(z,t) eL2(P)

By §2.10, L is a square-integrable martingale, and in particular

EO^) = E(LQ) « 1 h

Proposition 3.3 Suppose that for some K < » .

JJ (l+*(z,t)) Un(l+<J>(z,t))]2 P(dz,dt) <K a.s. (3.33)
'Z 0

Then EO^) = 1
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Proof Define the function $ so that

f<Kz,w,t) if ^ <1+ <Kz,w,t) <n
.n, N i n
<l> (z,w,t) = <

Lo otherwise

and let L*| be obtained from (3.28) by replacing <fr with $. By

Proposition 3.2 E(L^) * 1and it is clear that L1 converges to L1 in

probability. Hence by [3, II. T21] E(LX) « 1 if and only if the set

of r.v.s ^1^1,2,...} is uniformly integrable. Define the probability

measures P_ by
n

dPn n•Jp-(w) = L^w).

By Theorem 3.3 (x .j£,P ), tG [0,1], is a fundamental process with
t t n

l.d. ((l+<|>n)n,A) and so the corresponding martingales are given by

(^(B.t) =P(B,t) -Pn(B,t) =P(B,t) -Jj (l+<(,n(z,s)) P(dz,ds)
B 0

Because ^ is bounded and because of (3.31), (^ Gy^(Pn). For later

reference define £n e Ms (P ) by

£n = Un(l+<t>n> oQn)t,

and note that

If.n „nv I I r« .r, ..n%-i2/,J.,nx ~

Z 0

<Sn,r>t= 11 [*n<l+Or<14*n) P(dz,ds) (3.34)
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We are ready to show that {L-} is a uniformly integrable family.

Fix M < w. Firstly,

I L*(u>) P(du>) -P^L* >M}
{Ln > M>

Next, (l£ >M>

={exp[j J An(l+4>n)P(dz,ds)Jxexp[- 1
Z o :

« {exp jj An(l-H>n)[P(dz,ds) - (1-H>n

Z 0

)P(dz,ds) ]] xexp JJ [(l+$n)
Z 0 Z 0

An(l-Hn) -«(>n] P(dz,ds)J >M}

C{II £n(l-H>n) [P(dz,ds) -(1-H>n) P(dz,ds)] >|An M>
Z 0

So

Fl U F2 Say*

U{[ f [(l+4»n) An(l+<|>n) - 4>U] P(dz,ds) >| An Ml
JZJ0

P„{Lm >M} < P (F.) + P (F?)
n 1 — n i n z

From (3.33) it is immediate that P (F )• 0 for all sufficiently, large M.

On the other hand F~ » {£ > t An M} so by the Chebychev inequality,
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(AnM) JJQ

< 4 oK by (3.34), (3.33)
(AnM)

It follows that for all n,P (L? > M} > 0 as M + «s i.e. {Ln} is
n J.

uniformly integrable n

For the next proposition express P(dz,ds) - n(dz,s) P(Z,ds) (see §2.11)

Proposition 3.4 Suppose that there exist a > 1 and K, K' finite such

that

f (l+<Kz,t))an(dz,t) < K + K'[P(Z,t) + P(Z,t)] a.s. (3.35)

and suppose that for all 0 < M < °°

E exp[M P(Z,1)] < «> (3.36)

1

2
Then for 1 < y <_ a ,

sup E Li < «, (3.37)
tG[0,l] Z

in particular E L_ = 1.

Proof If (3.37) is satisfied then by [8,II.T22] the family is

{L ; 0<t<L} is uniformly integrable and so by [8,VI.T6] Lt is a uniformly

integrable martingale, hence E(L,) ° 1.
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2
For a > y > 1 define

ft(Y) «exp[Y J1An(l-N») Q(dz,ds) +JJ[Y An(l+<|>) +̂ -<14^> ]
Z 0 Z 0

P(dz,ds)],

f fc y2gt(Y) -exp[ JJ[-Y* -̂ +(1^) ]P(dz,ds)
Z 0

First of all

ft(Y) gt(Y) -expfYj J An(l-H>)Q(dz,ds)- JJ Yft-An<!+♦)) P(dz,ds)]
Z 0 Z 0

-Lyt by (3.28)

Next it can be checked by substitution in (3.28) that [^(Y)] is

obtained from (3.28) by replacing (1-H>) with (1+$) . Hence if
2

2 Y 1
Y < 2 so that (1+$) G L- (P), then we must have

loc

E[ft(Y)]Y <1for all t

Now by Holder's inequality

I _Y_Iil
ELyt <(E[ft(Y)]Y) (E[gt(Y)]Y"1) Y

so that
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Next,

[g

Ill

ELY <(E[gt(Y)]Y"1) Y

-1- f f' *2t(Y)]T*"1 iexp IJ [Y- i+(1^) 1P(dz,ds)
Z since 1-K(> > 0 implies -Y* <Y

2, f'
<expt*-^ M(t) +1 {K+K'(P(Z,s) +P(Z,s))} P(Z,ds)]

0 from (3.31), (3.35)

2

<exp[(1^ +K+j- u(t) +K' P(Z,t)) u(t)] from (3.31)

<: exp 3 exp K' u(l) P(Z,1) for some constant 3

Hence

E LY < (exp 3) E[exp K* u(l) P(Z,1)]

and the result follows from (3.36).

Remark 3.6 (i) Suppose (x ,^£,P) is as in the fundamental example with

corresponding increasing processes p,(t), ..., Pn(t)» Then Assumption

3.1 translates into the following: there exists an increasing function

A: R.. + R. such that
T "F

n

E P.(t) < A(t) a.s,
1=1
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Similarly (3.35), (3.36) become: there exist a > 1 and K, K' such that

I U+Mt))a <K+ K' I <Pl(t) +;.(t» . (3.38)
i=l X ~ i=l X 1

(ii) .Now suppose that (x ,4 ,P) is a standard Poisson process. Then

(3.38) becomes

(l+<J>(t))a£ K+ K'(x(t)+t) .

Suppose that <f>(t) = c(x(t-))a for some a < 1. According to Feller [27, p.452]

a counting process x with rate [1+ 4>(t)] has infinitely many jumps in a

finite interval, so that it cannot be a fundamental process. Thus Proposition 3.4

is false if a < 1. We have been unable to resolve the case of "linear"

growth, i.e., a • 1.

Remark 3.7 Propositions 3.2, 3.3, 3.4 are inspired by corresponding results

in [6], [24], [28] respectively.

3.4 A Class of Poisson-measure Processes

In order to apply the transformation technique presented earlier one

must begin with a fundamental process (with a known l.d.) whose existence is

guaranteed. In this section we present a large class of such processes for

which the increasing processes P(B,t) are deterministic.

Let (Z,<2.) De any Blackwell space and let y be any positive measure

on the space (Z*R+, #®B) where 8 is the Borel field on R+. Suppose

that for all t < », y(Zx [0,t]) < ».

Let ft' be the space of all (non-negative) integer-valued measures N
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on (Z*R+, £®B). For each TeR+ let ^' be the family of all subsets

of ft' of the form

{N e fi'| N(C) e K}

where C e £®8[0,T] and KC I the set of non-negative integers. Evidently

^' is a a-algebra on ft'. Let

j' -v 2' .
T T

Now, for each T define the set function P.J, on (&',^£) by

P'(N(C) 6K)a [If-" e-»(C> .
1 keK KI

Note that y(C) < «> since C C Zx[0,T]. By [31] P' defines a probability

measure on (G',>£'). Furthermore if C., C2 are in Zx [0,T] and

C1 H C« = 0, then the two random variables defined by

NH- N(C ) , N »• N(C ) , N e fif

are independent. Finally the random variable N **- N(C) has a Poisson distri

bution. For A e 2, consider the counting process P'(A,t), t e R+ defined

on the family («'.^^P^» by

P»(A,t)(N) - N(Ax [0,tAT])

Evidently E(P'(A,t)) « u(A x[0,tAT]), and if A^A^^ then P'CA^t)

and P'(A«,t) are independent processes.

Next by Moyal [32], there exists a jump process xfc, t e R+, with values
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in (Z,p, defined on afamily (ft,^,PT) such that i) (ft,^,PT> is

isomorphic to (ft', ^"IAT>P.J.) and ii) the counting processes P (A,t)

corresponding to x are "isomorphic" to the processes P'(A,t) constructed

above. Furthermore

Px(A,t) = y(Ax [0,tAT])

To finish the construction we merely note that if S < T then the

probability measure P„ on (fl,^ s) coincides with the restriction of

P (defined on J-*,) to «4X. By the Kolmogorov consistency theorem
T T S

therefore, there exists a probability measure P on (Q,#J such that

PX(A,t) -u(Ax [0,t]) , Aep teR+ . (3.39)

However the process x may not be a fundamental process. To guarantee

this we must be sure that the jump times are totally inaccessible. As men

tioned in §2.9 this is equivalent to the requirement that P (A,t) have

continuous sample paths, and hence, from (3.39), to the requirement that

y(Ax [0,t]) be continuous in t for each fixed A. We summarize the main

conclusions as follows.

Theorem 3.5 Let (Z,«D be a Blackwell space and let y be any non-negative

measure on (ZxR+, 2®8) such that

(i) y(Zx [0,t]) < °° for all t e R+,

(ii) y(Ax [0,t]) is continuous in t for all AeJ.

Then there exists a fundamental process x on a family (flf^-^P) with

values in (Z><P such that

Px(A,t) « y(Ax [o,t]) , Ae 2, te R+
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Remark 3.8 (i) The x process has independent increments in the sense

that the P(A,t) have independent increments. If x were vector-valued

this would indeed imply that x has independent increments in the usual

sense.

(ii) The most useful version of this result would be when y is a

product measure y(dz,ds) » n(dz) A(ds) where n is a finite measure on

(Z,2) and A(t) is a continuous increasing function on R+, in which

case (n, A) would be a Levy system.
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4. Detection

The prototypical detection problem in communication theory is the

following. We observe a sample x (w), 0 £ t < °° of a stochastic process.

The process is known to be governed by one of two laws P or P . Based upon

the observed sample one has to decide which of the two hypotheses, P or

P1, is true. The term "detection" arises from a particular instance of

this hypothesis testing model, namely, when the process x has the repre

sentation

dx = white noise , under P

* (4.1)
dx„ = white noise + s. , under P,

t t ' 1

where s is called the ''signal". Thus deciding which hypothesis is true

is, for the example, equivalent to "detecting" whether the signal is present

(hypothesis P.) or absent (hypothesis P).

Very recently this problem has been considered for the case where

x is a counting process under P. and a Poisson process under P [6,7,15,

16,17]. The case where x is a Markov chain under P has also been dis

cussed [6]. We generalize these results by considering problems where x

is a fundamental process.

A well-established procedure for judging which hypothesis is true

dPl
consists in first calculating the "likelihood" ratio -r=-(x(o))) and then

in accepting P. if ^p > ct and rejecting P- otherwise. The selection

of the "threshold" a is discussed in [18]. The procedure is often called

the "threshold detector".

Evidently for this procedure to be meaningful one must assume P1 « P.

Also to obtain results of practical value one must specify precisely how the

- 47 -



"signal" affects the observation, as for instance in (4.1) where it is

assumed to be additive. We proceed to the mathematical model.

Let (ft,*tf\), t 6 R+, be a family of spaces and P, P- two probabilities

on (ft,tf*). The observed process is a family of measurable functions

x : (ft, 4-/) -*• (Z,0) such that (x ,s4 ,P) and (x .<? ,P ) are both
t t a tt tti

*** "^X x
fundamental processes. The processes P, P, Q and P , Q are the extrinsic

and intrinsic (i.e., relative to ^t) processes corresponding to (xt»P).

Similarly P , P , P. etc. correspond to (x ,P.). The extrinsic and intrinsic

l.d.'s are (n,A), (nx,AX) for (xt»P) and (n^), (n*,AX) for (x^P^.
We now give the model corresponding to the "signal plus noise" model

of (4.1).

Assumption 4.1 There exist ^--predictable processes y(B,oj,t), BG M"f and

^ -predictable processes g(z,u>,s) and g,(z,b),s) such that E|g(z,s)| < °°

and E.|gj(z,s)| <» for all z, s, and

P(B,t) = n(B,t)A(t) = g(z,U),s)y(dz,0),ds)
JBj0

Px(B,t) =n1(B,t)A1(t) =JIg1(z,0),s)y(dz,0),ds)

where the integrals are Stieltjes integrals,

Interpretation: In communication theory terms we can say that the "jump rates"

P(B,t) are "modulated" by the signal through the functions g, g^.

Definition 4.1 Let E(g(z,t)|^X) «£(z,t) and E^g^z.t) |#X) =^(z.t).

Proposition 4.1 PX(B,t) = g(z,s)y(dz,ds) a.s.
JBJ0

*X(B,t) » g (z,s)y(dz,ds) a.s.
1 JbJq *

PX
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Proof It is enough to prove the first assertion since the proof for the

second is identical. Fix BeJ, We know that

Q(B,t) =P(B,t) -ffg(z,s)y(dz,ds) eO^-.Ci.P) (4.2)
JB*' 0

QX(B,t) »P(B,t) -PX(B,t) eJ^0C(^»P> • <A'3>

Let T , n * 0,1,... be the jump times of x.. The T are stopping
n t n

times for the family & ) as well as for 0t). Furthermore

E|P(B,tAT )| < n. Hence E|Q(B,tAT )|< », and we can define a process
n ~~ . n

(Q(B,t)^x,P) such that

Q(B,tATn) =E(Q(B,tATn)|^X)

and it is trivial that Q(B,tAT )€ t/^(^X,P). Now P(B,t) and y(z,t)
n c

x
are ^ -measurable, hence

fftAl

n E(g(z,s)|^x)y(dz,ds)
B'O

Subtracting this from (4.3) implies that

tAT

BJ0

px(B,tAT )-f[ nE(g(z,s)|4x)y(dz,ds) e Oi1^)

On the other hand it can be directly verified that

tAT

ff [E(g(z,s)| ^X)-g(z,s)]y(dz,ds) e i^0X,P)

Therefore
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CAT

Px(B,tAT )-ff g(z,s)y(dz,ds) e c^CfxP) .
n J nJ n t

But this is a continuous process. Hence it must vanish, i.e.,

>x(B,t) -Jfg(z,s)y(dz,ds) .
JB;0

iX
Remark 4.1 The processes (Q(B,t),J ,P) are called the innovations

processes of the process (x ,^ ,P), in analogy with the Brownian motion

case [21]. These processes will be used in the next section.

dpi
Theorem 4.1 Suppose that P « P . Let L - E(~

hood ratio and let

i-x) be the likeli-

T= inf{t| L =0 or Lfc_» 0}

Then there is a sequence of J- s.t.'s S, t T a.s. P such that

MZ,8) i „x
^7 T1 e Lloc(? >8(z»s) (s<Sk> l0C

and

L
tAS.k s^..,k

Xs-* Xs

8i^x„»s) f f k l1(z»s)g,^x ,s; t t \s. g.u.s;.

11 Ififa \s 3exP[" (j^7r-l)8(«.a)u(d«.d8)J.(4.4)
< tAS, 8<Xs,S> JZ'0 *^>s>

Proof By Theorem 3.1 there exists s.t.'s S, + T and an 4r -predictable
'k ~ t

•lo o^von Yiv ('•
tAS,

function <j> such that L„AC is given by (3.11), and by Theorem 3.2 the
X AXN , / X .x

k

intrinsic l.d. of (x ,P ) is «14$)n*,A*) where (n\A~) is the intrinsic

l.d. of (x ,P); so from Proposition 4.1 we can conclude that
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(l+4>(z,s))nX(dz,s)Ax(ds) =-• (1-H)(2,s))g(z,s)y(dz,ds)

=g1(z,s)y(dz,ds) = nX(dz,s)Ax(ds) .

Therefore

g1(z,s)

1+<*,(z's) =T(^T

which upon substitution into (3.11) yields (4.4). n

Corollary 4.1 Suppose in the above that x is as in the fundamental

example of §2.12. Suppose there exists a 3- -predictable process y(t), and

^.-predictable processes X (t), X-^t), 1<i< n, such that

P±(t) «|Xi(s)y(ds) , Pifl(t) -jaJ(s)y(ds) , 1 < i < n

Then the formula (4.4) changes to

*i, N tAS. Ci, NAJL(s) r k Ax(s)
LtAS

K - - _ --k
(x ,x )e a,

s- S J

- II { n [7* ]xexp[- (T7 l)X1(s)y(ds)]} .(4.5)
i«l s<tAS, Xx(s) j0 X1(s)

Proof Follows from Theorem 4.1 and Remark 3.2(iii). n

Remark 4.2 (i) Very special cases of (4.5) have appeared in the recent

literature. Suppose in Corollary 4.1 that (xt,3-X,P) is aPoisson process

with rate X. Then in (4.5) n= 1, X(s) = XQ, y(ds) = ds and (4.5)

becomes

tAS,
«!(->, f k.n 4 exp[- (X1(s)-X)ds] . (4.6)

<tAS,VJ io 1 °
- w,wk

x ^ x
s- s
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This version together with the comment in footnote 5 yields the result in

[16, p.95]. Actually in [16] some strong unnecessary assumptions are

also imposed. (4.6) has also been derived in [6] and [7]. Formula (4.5)

for the case n = 1 and y(ds) = ds appears in [15], although the deri

vation is not satisfactory, and various additional assumptions, some of

them unverifiable, were made there.

(ii) In [6] we can also find (4.5) for the special case where (xfc,J ,P)

is a Markov chain, in which case the X can be interpreted in terms of

various transition probabilities as suggested in §2.11, §2.12.

We apply formulas(4.5) and (4.6) to calculate the mutual information

between two fundamental processes. Let x and x' be two such processes

on (ft,># ,P) with values in (Z,2) and (Z',21) respectively. Let

y(dz,ds) and y'(dz',ds) be ^X- and 3* -predictable processes and

g(z,s), g'(z*,s) be two ^-predictable processes with finite expectation

such that

n(dz,s)A(ds) = g(z,s)y(dz,ds)

n'(dzl,s>A'(ds) = g'(z\s)y'(dz',ds) .

Let P , P . denote the restrictions of P to ^X and 3~X respectively.
x x1

Assume that &t =3\®3* , the product a-algebra and let P^, =Px®pxt

denote the product measure on 4- » 3r ®3 . It is trivial that P « P t-

Assume further that P . « P. The mutual information between x, x' is
xx

the quantity

I(x,x') - E(An dP v
xxf

Let
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£(z,t) = E(g(z,t)|4X) ,

g'(z',t) - E(g'(z',t)|iX') .

By Remark 3.2(i),

^l) <p) , £e l] (p») .
g loc g' loc

Assume further that

*n(£)e LX(P) , *n(&l)e L1^') .
g g

Then by Theorem 4.1,

g(x ,s)
dP

dPxx' xe .
s- ss

£' (X' 8 ^ f &&

x{ n tft.^?' J«p[-[ (|J4|^i4-l)if(z,s)y'(dz',ds)]}
x' *x' 8 ^V ; jZ''0 8 K * }
8- S

so that

g(x ,s)

8- 8

(4.7)

x'9«x * v s,0/ JZ"0
S 8

g(x ,s)

Since £n(?) G l (P) therefore
8

L *»<¥o6o> - U0in(tfef}>*(z'8)u(d2'd8)
s

ffAn(f^si)[P(dz,ds)-P(dz,ds)] e ^(i.P)JZJ0 g(z,s) t

x ^
s- s
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so that

g(x ,s) r r
E[ I faL s> J] - E *n(f£M-)g(z,s)y(dz,ds)

x 4 x 8(Vs) JzJo gU,S}
s- s

Similarly

g'(x',s)

x' ? x e s *Z *M
s- s

Taking expectations in (4.7) and substituting these relations gives the

following result.

Theorem 4.2 Suppose P . « P and &n(g/g) GLX(P), fcn(g'/g') GLX(P). Then

I(x,x') =E[ jjV§g$+fg$ -l),(...)u(d.,d.)

+

'z'Jo

Remark 4.3. This result for the case where x, x' are both counting processes

has appeared in [6].
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5. Filtering

A popular model for estimation and filtering problems in communication

and control is where the observed process, x , depends upon the "signal"

or "state" process, y , according to

dvt » g(yt)dt + dBx(t)

dxt = f(xt,yt)dt + dB2(t)

where B_, B are Brownian motions. The problem is to determine E(y \3- ).

Note that in the above y is a semi-martingale.

We begin this section by examining this situation when (x ,^.,P) is

a fundamental process with values in (Z,2). We need a preliminary fact.

Lemma 5.1 Let (m ,.£ ,P) 6Ot ^t»p)# Then there exists an ^-predictable

process h(z,t) such that

e I ]|h(z,t)|2P(dz,dt) <°° ^5-1>
Z'O

and

<m ,Q(B,t)> = IJh(z,s)P(dz,ds) for all BeQ . (5.2)

Proof. The set, say L, of all processes (h°Q)t where h is any pre

dictable process satisfying (5.1) is easily shown to be a stable subspace

of dt2C£ ,P) (see [19] for a definition of a stable subspace). Therefore

by [19], there exists a unique decomposition of m , m = nt +^t> wit^

I e L and <nt»^> = 0 for all &'t 6 1. Let &t = (hoQ)t and the

assertion follows. n

- 55 -



Assumption 5.1 There exist J-x-predictable processes y(B,t), Be£ and

an £ -predictable process g(z,t) such that

P(B,t) =[fg(z,s)y(dz,ds) . (5.3)
Notation; In the following for any process (ft>3^>P)> ft - E(ftlc7"t)
Theorem 5.1 Let (x >$- ,P) be a fundamental process satisfying Assumption

5.1. Let (y,^-4;>P) efcA^J nave the representation

yt Syo + at + mt (5'4)

with a. e Ay-J, m e c<(. (J- ). Then y. satisfies the filtering equation,
t t t t t

?.. * y + n + k(z,s)QX(dz,ds)
z ° •'Z-'O

where ti eA0X), QX(B,t) =P(B,t) - If g(z,s)y(dz,ds), and
BJ0

where the £• -predictable process k satisfies

[(y -yo +h(z,s)]g(z,s)
S— S—

k(z>8> Scl^o"

and h, g are as in (5.2), (5.3) respectively

Proof Let yfc =E(mt|J-X). Clearly yfc e^2(4X). Now write at =afc-a~
where a*, a~ 6A+0*t,P). It is easy to verify that the 4*Xr-measurable
processes a+ « E(a*|^X), of = E(a~|s*X) are submartingales. By the Doob-

t t t t u t
+ - 1 X

Meyer decomposition theorem [3], there exist martingales £t> £t in ^sH, (^fc)
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and $ -predictable increasing processes n , r\ in A,(^) such that

Hence

at " *t+T1t ' at = *t+nt

yt C yo + at ** at + mt

«y0+ (n^-V +<-^+yt)

• yQ + nt + Ct , say (5.5)

,l^xwhere r\ eA(£*)t Cfc 6A (4*). By §2.11 there exists a ^-predictable
1 -x

process k(z,s) e L- (P ) such that

£ =f[k(z,s)QX(dz,ds) . (5.6)

It remains to evaluate k. By the differentiation formula of §2.7

yJP(B,t) -fye P(B,ds) +fP(B,s-)dyc + [m.,Q(B,t)]

Since P(B,t)-P(B,t) and [mt,Q(B,t)] -<mt,Q(B,t)> are in >tioc(^.)»

therefore, from the above, for some y , y1 e /*doc(^t)

ytP(B,t) =Jys-P(B,ds) +JP(B,s-)dyg +<mt,Q(B,t)> +Yt

83 ff(ya +h(z,s))g(z,s)y(dz,ds) +fP(B,s-)dac +y' (5.7)
jbjo Jo

using (5.2), (5.3) and (5.4).

Now apply the differential rule to yJP(B,t) to obtain
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ft ft
yP(B,t) * y P(B,ds)+ P(B,s-)dyo + [£.,QX(B,t)] .t JQ 8- JQ St

Recalling that P(B,t) - PX(B,t) and [^,QX(B,t)] - <£t,QX(B,t)> are in

u-, C^X)» the relation above implies that for some 6t» 6£ 6 /tjtoc^t^*

ZP(B,t) = f y PX(B,ds) +[ P(B,s-)dye +<£ ,QX(B,t)> +6
c Jns" Jn st

u:(y + k(z,s))g(z,s)y(dz,ds) +
s-

rt

P(B,s-)dn + 6' ,
s t

(5.8)

using Proposition 4.1, (5.5), (5.6).

Next we make the following observations, which can be verified directly

from the martingale definition.

(I J(y +h(z?s})g(z,s)u(dz,ds)) - fI[(y +h(z,s))g(z7s5]y(dz,ds)
JBJ0 S" JBJ0 S"

6*LX>

(j P(B,s-)das) -JP(B,s-)dns e^0C^X) •

Using these facts and the fact that (ytP(B,t)) = ytP(B,t) we conclude

from (5.7), (5.8) that

|j{(y8_+k(z,s))g(z,s) -[(ys_+h(z,s))g(z,s)]}y(dz,ds) ek\qc^

and since this process is continuous, it must vanish identically, so that

we may assume
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k(z,s)
f(y +Mz,s))g(z,s)]

g(z,s) - y«-

Ky«-" ya. + h(z>s))g(z,s)]
S- 'S

g(z,s)

Corollary 5.1 Suppose in the above that x is as in the fundamental

example of §2.12 and that there exists an ^ -predictable process y(t) and

^ -predictable processes X. such that

p,(t) =fXi(s)y(ds)

and let <m ,q (t)> = h (s)p (ds) for some ^--predictable processes h .
t i ^0 * t i

Then

with

and

1=1 * 0

[<yt -9* +h.(t))XX(t)]
k. (t) C~ Z~^. , l£i<n
1 ^(t)

xq^(t) =V±M - | X^(s)ds .- JV.

Remark 5.1 (i) Suppose in (5.4) that a is given as

a^ ° | 3 dslt ° ftfz Jo
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1 ^ fc~for some predictable process 8fc in L (3\). Since a. *> 3 ds is int t t Jq s

/{, ($ ) it follows that in the representation for y we have the further

specification

nt =

rt^
3 ds

0s

(ii) Corollary 5.1 has appeared in the literature for the case where

(x 9j-.,P) is a counting process, i.e., n = 1. Even here some additional

conditions ,have been imposed on the y process (such as e.g. y is Markov

[6,16]) or on the x process (such as e.g. (xt>*t'P^ is 0Dtained from a

Poisson process by an absolutely continuous change of measure [6,20]).

(iii) Theorem 5.1 has been inspired largely by the procedures of [21],

where the underlying process is Brownian motion. See also [24] for the

Brownian motion case.

(iv) While Theorem 5.1 has some value in terms of clarifying the issues

involved in obtaining the filtering equations it is of little practical

importance since these equations do not lead to a realization by a dynamical

system. This is so because the filtering equations

contain the terms T\ , k and g which are not computable in terms of

y and x . In other words, the filtering equation is not recursive. This

difficulty persists even when one imposes additional conditions such as y

is Markov. In the remainder of this section we seek to determine conditions

under which the filter is recursive.

We impose* conditions on the dependence between the "signal" or "state"

process y and the "observation" process x which are considerably

stronger than those of Assumption 5.1. For the remainder of this section

the following assumption holds.
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Assumption 5.2 (&,^t), te R+, is a family of spaces and P, P1 are two

probability measures on (ft ,4*). x and y are measurable functions on

(ft,4 ) with values in (Z,2) and (Y,/) respectively. The following

properties are satisfied.

(i) Z is a Borel subset of Rn, 2 is the Borel field. (The most

important practical cases are Z = R and Z is the space of all z e R

with integer components.) Y is a locally compact Hausdorff space, V is

the Borel field. Sr » 4Xv J-y.

(ii) Under the measure P

(a) (x ,4 >P) is a fundamental process with independent increments,

i.e., x -x is independent of J- (under P), for s <• t,
t s s ™—

0>) (yt»4v>P) is a Markov process whose sample paths are right-

continuous and have left-limits, and the jump times of y are totally

inaccessible,

A X
(c) the processes x and y are independent, i.e., J- and

j? are independent.

(iii) P1 « P, there exists an 3-.-predictable process fe L^0C(P)

with a representation

f(z,(D,t) = <Kz,yt_(co),U),t) ,

where <!>(•,y,*,') is ^-predictable for fixed y6 Y, and there also

exist J. -predictable processes y(B,t) for B 6 9. such that

E(|f(z,t)|) + E1(|f(z,t)|) < «> for all z, t and

dP f ft
L- " E^l >£> m n C1+<l>(xe,ye ,s)]exp[- <|>(z,y ,s)y(dz,ds)] .t dP t g < t s s- jzJ0 s

X "? X
s- s

Note that we must have 1+ <J> > 0.
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Let Q, P and QX, f* be the processes associated with (xt,# ,P) and

(xt,JX,P). Similarly let Q1, P]L, QX, PX be the processes corresponding

with (x ,4- ,P,) and (x >^ ,P-) respectively. From Assumption 4.2 and

Proposition 4.1 it is Immediate that

P(B,t) = PX(B,t) - y(B,t)

P(B,t) =* ff(l+f(z,s))y(dz,ds)
JBJ0

Px(B,t) -[[(l+f(z,s))y(dz,ds)
1 JbJo

where f(z,t) »E^f(z,t) |̂ X).

For any t let A- V4. ^- ° V £» ^t- " V*s-
* s<t s r s<t s c s<t s

Proposition 5.1 For t6R+, 4X_ =>X, 4y_ -4\, ^ -^.

Proof The jump times of x and y are totally inaccessible, hence by

[4, Prop. 3.1 and 22, III.D38] 4X_ -4* and iy_ -iy. The last assertion

follows because $t_ =$\j 3\_ and *t"^tV^t' *

Proposition 5.2 L = L a.s. P.

Proof Follows from [22, VT10] using a stopping time argument. n

Proposition 5.3 yfc = yfc- a.s. P.

Proof Prob{y 4 y _} » Prob{t is a jump time}. However, since the jump

times are totally inaccessible, this probability must be zero. n

For a real-valued function g on Y we are interested in determining
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a(recursive) expression for the process E-(g(y )| 3^). Now

v E(g(y )L \*l)
E1(g(yJ|$\) - * « ' . (5.9)
1 z * E(L|4X)

It turns out that the numerator of the expression in the right is much

better behaved than the ratio, and, furthermore, the denominator does hot

depend on g. Hence we will seek to determine instead an expression for

E(g(yt)Lt| J-x).

Definition 5.1 Let G be the family of all bounded, measurable, real-valued

functions g on Y. For g e G and t e R+ let

TTt(g) -E(g(yt)Lt|iX) . (5.10)

Proposition 5.4 E(Lj J-y) -1 a.s.

Proof Immediate from the assumptions that ^X, J are independent under

P and y(B,t) is ^-measurable. n

Now fix g 6 G. Since L satisfies

't =X+flL*-d(<M)s »

substitution into (5.10) gives

TTt(g) - E(g(yt)| j?) +E[j g(yt)L8ji(<i>pQ)s|4X]

- E(g(yt)| ^X) +J.J E[g(yt)Ls-<l)(z,ys-,s)| iX]Q(dz,ds) . (5.11)

- 63 -



a"X. aY
Since 3- and 3- are independent under P,

E(g(yt)MX) -Eg(yt)

Also

(5.12)

E[g(yt)LsJ>(z,ys_,s)| J-X]

- E[g(yt)Ls<J>(z,ys,s)|^X]

- E[E{g(yt)Ls<J)(z,ys,s)

» E[LJ>(z,y,s)E(g(y )
s s *-

= E[Ls4.(z,ys,8)E(g(yt)

- EtL8i(i(z,ys,s)E(g(yt)

= E[Ls(f><z,y8,s)Ht>s(g)

by Propositions 5.2, 5.3

4*^} •Tt]

x ^yby independence of 3 »j£

V 4*] since y is Markov

^1

since x has independent increments and where

Ht>8(g)=E(g(yt)|ys) .

Substitution of (5.12) and (5.13) into (5.11) gives

ft

^(g) - Eg(yJ + TT (<|>(z,-,s)H (g))Q(dz,ds)t t )ZJ0 e t,s

(5.13)

Note that the integrand in the above expression is a predictable process,

for each fixed t, as explained at the end of §2.9.

We summarize the above.

Theorem 5.2 Under Assumption (5.2) the process irt(g) satisfies
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*t(g) -Eg(yt) +JjTTs(<Kz,-,s)Ht>s(g))Q(dz,ds) (5.14)

where

Ht>s(g) -E(g(yt)| yg) , (5.15)

and

Q(B,t) = P(B,t) - P(B,t) . (5.16)

Remark 5.2 (i) Because of Proposition 5.4

Eg(yfc) -Elg(yt) and Ht>s(g) =E]L(g(yt)| yg) .

(ii) From (5.10), irt(l) =» E(Lt|>t), where 1 denotes the function

on Y which is identically equal to unity. Hence from (5.9),

IT (g)
E1(g(yt)|^)-i^I5-

Eg(yt) +JjTrsOt>(z,',s)Ht>8(g))q(dz,ds)

JzV
1+| ITTs(<J>(z,-,s))Q(dz,ds)

from (5.14).

(iii) Suppose (x ,^ ,P) is as in the fundamental example. Then (5.14)

simplifies to

irt(g) -Eg(yt) + I JTTs(<|)1(-,s)Ht:>8(g))[pi(ds)-pi(ds)] .(5.17)

(iv) We now derive a more familiar-looking version of (5.14). For any

set A e /
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W - «<Vt^t> •

If P(y 6 A) = Pi(yt 6 A) * 0 then fftdA) • 0 a.s. Hence there exists

a measurable function U : Y -*• R such that
t

irtCA) -JUt(y)Pt(dy) (5.18)

where P is the marginal distribution of y under P and P^. Evidently

if h e G then

TTt(h) -Jh(y)Ut(y)Pt(dy) .

Next let P(A,t| y, s), A 6 V, s£ t, be the transition kernel of the

Markov process y so that

(Ht>g(g))(y) =Jg(y,)P(dy,,t| y,s)

and let P(A,s| y,t), A 6 V, t > s, be the backward kernel so that for

h e G

E(Mys)| yt) =Jh(y')P(dyf,s| yt,t) .

Substituting these relations into (5.14) leads to

Jg(y,)Ut(yi)Pt(dy») -Jg(y,)Pt(dy')

+JJ[J (<Kz,y,s) Jg(y')P(dy',t|y,s)}Us(y)Ps(dy)

• Q(dz,ds)
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-[gCy^P.Cdy1) +[g(y')[f f{[ <Kz,y,s)U (y)P(dy,s| y1 ,t)}Q(dz,ds)]
;Y z Jy jzJ0 jY

• Pt(dyf) .

Since g e G is arbitrary, the process U (y) evolves according to

U(y) -1+ff[f ♦(«,y,,8)U (y,)P(dy',s| y,t)]Q(dz,ds) . (5.19)
JzJq ^Y

Remark 5.3 (i) For the case of the fundamental example (see (5.17)) the

equation above simplifies to

My) '- 1+ if {f *,(yf>s)Ufl(y»)P(dy,,s|y,t)}[p.(ds)-p1(ds)] .(5.20)

This equation has been derived in [28] for the special case where (xt,^,P)

is a counting process, so that n =* 1, and with the additional condition

that p(ds) = ds.

(ii) Equations (5.14) and (5.15) are not yet recursive since the

functions <Kz,y»t), <j>j(ytt) are allowed to depend on the entire past

x , 1 < s < t. We will see later how under additional conditions these
S* — —

equations become truly recursive.

(iii) Notice that unlike the representation for y. obtained in

Theorem 5.1, those for ir in (5.14) and Ut in (5.19) are not semimar-

tingales because the integrands depend upon t. This dependency can be

eliminated by some additional assumptions as follows.

For the remainder of this section the following holds in addition to

Assumption 5.2.
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Assumption 5.3 The operators H of (5.15) have the following properties:
t,s

(i) lim H =1, the identity operator on G , (5.3D
S+t t,S

(ii) there exist operators A , t :> 0 on G such that

X*m 7<Ht+e,s-Ht,s)(g) =Ht,sAt<S) . (5.22)
e+0

We do not elaborate on the precise theoretical status of the operators A

(i.e., the precise definitions of their domain, range, etc.), since it would

take us too far afield and since this topic is well-covered in the semigroup

theory of Markov processes (see e.g. [29]). We merely note that (i) is a

continuity assumption, (ii) is a differentiability assumption. The operators

A are often referred to as the infinitesimal generator, especially when

y is a Hunt process. If y is a k-dimensional diffusion, for example,

then A is just a (partial) differential operator of the form

k 2 k

1 i,j«l 1J dyidyJ i=l yi

We now develop the simplifications induced by (5.21), (5.22) in (5.14).

First of all, recalling that PQ(dy) is the probability distribution of

Vq and that y is Markov, we get

Eg(yt) -J(Ht)0(g))(y)P0(dy) =E(Ht>Q(g) (yQ)) .

This, together with (5.22), implies that

E(g(yt+e)-g(yt)) -fv<Ht+e>0- V0)<g)<y)P0(dy)
J(Ht>0At(g))(y)P(>(dy) =eE[ (At(g)) (yt)]

Y
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Substituting this into (5.14), and using (5.21) and (5.22), leads us to

r r r' •(7r^c"7Tf)(8) Z eE(A (g)) + e ir (<|>g)Q(dz,dt) + e ir (flL Af.(g))Q(dz,ds)
CT6. t z *Z Jz-'O

- ej irt(*g)Q(dz,dt) +eTrt(At(g)) .

Hence

Mg) " *n<*> + I T-CA g)ds +[ f tt ((|>(z,-,s)g)Q(dz,ds) . (5.23)
t ° J0 s 8 Vz s

Theorem 5.3 Under the additional conditions of Assumption 5.3, the repre

sentations (5.14) and (5.17) simplify to (5.23), (5.24) respectively.

ft n rt

Mg) =VS) + ir.CA„g)d8 + I tt (*,(•,s)g)[p. (ds)-p (ds)] (5.24)
t u Jo i«=l h ii

As an example illustrating (5.24) suppose that under P x and y

are independent standard Poisson processes. Then Z = Y = I,, the set of

-negative integers. Also n = 1 in (5.24), p(t) «.x and p(t) = t.non

For g: I •* R,

so that,

Ht>s(g)(y) -E(g(yt)| ys-y)

IsW^-^ ,
k=0

00 Ir

~(H e(g))(y) - J -^7i-e_(t"s)[g(y+k+l)-g(y+k)] ,3t t,s k^Q k!

and hence
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(Atg)(y) - (Ag)(y) «g(y+l)-g(y) . (5.25)

Consider the "indicator" functions 6,: I+ •*• R where

1 if y * k

By the linearity of ir ,

6k(y) -
10 otherwise

irt(g) - Ig(k)irt(5k)
k»0

so that it is enough to determine the processes ^(^t k ~ 0,1,2,.'

Substitution of 6 for g into (5.24) gives, using (5.25),

W "W +f^V^-l^V6^8 +J0»8»<-.»>V(d*.-d8)
=iU(«J + f rir (6. ,)-ir (6, )]ds + f 4>(k,s)TT.,(6, )(dx -ds)Ok J. s k-x s k. J0 t, K. s

since <J>(y»s)6j(y) - <|)(k,s)6 (y). Now

W = E6k(y0) " .0R KU ,0ifk>0

1 if k = 0

and 6=0, so that the expression above simplifies to

VV " X" jWd8 +j <M°»s>VV(dxs~ds) '

W " jV6k-l)d8 "| W*8"1"} ♦<M>V6k)(dVds) ' k- lf

and these can be rewritten respectively as
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eSrt(6o) -1+J<K0,s)eSTTs(60)(dxs-ds) ,

eV(6k) =Je8TTs(6k-1)ds +J<J)(k,s)eS7Ts(6k) (dxs-ds) , k>1,

These linear integral equations can now be solved inductively to yield the

explicit formulas

tt (6 ) » e-t n [l+<J)(0,s)]exp[-
8<t

X f X
8- S

ft

<j>(0,s)ds] » (5.27)
0

M«v> =fe"(t"s)7T (6, ,){ n [l+<j>(k,T)]exp[-[ (J)(k,T)dT]}ds ,
C K JO S<T<t ;S

xT-^T k > 1 . (5.28)

Remark 5.4 The result just obtained illustrates the power of the formu

lation of Theorem 5.3 over the more usual formulations which involve obtain

ing a relation for the conditional density (e.g. [16]). We believe that

equations (5.14), (5.20), and (5.23), (5.24) are much more useful since

they are linear in the "unknown" linear operators ir whereas the evolu

tion equations for the conditional density are nonlinear. Of course the

latter can be easily derived from the former.
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