Copyright © 1973, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

s |

BUDS: THE BERKELEY URBAN DATA SYSTEM

by
P. P. Macri

Memorandum No. ERL-M412

9 November 1983

——

¥y

fo ©®

BUDS: The Berkeley Urban Data System

by
Philip Pasquale Macri

Memorandum No. ERL-M412

9 November 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering)
University of California, Berkeley
94720

-

(e

BUDS: The Berkeley Urban Data System

Ph.d. Philip P. Macri Dept. of Electrical Engineering

. ;; ‘, and Computer Sciences

. Chairman of‘éommittee

ABSTRACT

One of the difficulties encountered by the urban analyst or
planner is the fact that he is dealing with a{large and complex
systém. Because of this experimengation is albost always impossible
leaving observation and study as primary modes of analysis. However
empirical studies are impeded by the enormous volume and nature of

urban data. One of the things sorely needed is a capability to

.manipulate large quantities of urban data and at the same time

present it in a férm which would aid comprehension. The perkeley
Urban Data System (BUDS) provides this'capability.

Aside from its large volume urban data has other properties
which must be dealt with if the data is to be used effectively.
First of all it is geographic in nature. In maﬁy instances the
analyst is not only interested in data for a certain area 5u: in
neigﬁbofing areas as well. For example the distribution of blacks
and office buildings 1is not uniform qver‘a census tract map of
San Prancisco: Relative sizes, location and composition of areas

are extremely important properties. Topographical properties are

~ also important. For example the existence of a deepwater port will

greatly influence among other things the type of economic activities
and population distribution in its vicinity. Data comprehension is
enhanced by pictorial presentations such as shaded maps. The map

portion conveys geographic and tqpographic properties while shading

conveys quantitative information.

Geographical boundary definitions change from tally to tally.
For example, the nine county Bay Area Census of Population and
Housing for 1970 bas approximately 28% more census tracts than the
1960 census. So a comparison of 1960 and 1970 data at the census
tract level cannot be made on the same map.

Since different agencies collect data, and do it for different
purposes it is obvious that they rarely use the same map to define
tally areas. However, it is sometimes possible to manipulate data
collected over one map to conform to other maps.. For example, census
tr;ct data can be aggregated up to county level.

Data is also time dependent. Not only do geographical boundaries
change but population shifts, economic activitiés change, etc. Since
the dynamic evolution of urban systems is a primary concern of the
analyst and planner intertemporal studies are important. Therefore
a locational correspondence must be made on data over time.

These properties were taken into account in-the design and
implementation of BUDS. BUDS, as described in this thesis is a
portion of what is to be: a comprehensive, general interactive
computer graphics urban research system. The primary system objective
is that it be an effective teaching or research tool. Currently
BUDS is implemented on a 16K-16 bit computer connected to an IBM 2250
graphics console.

The simplest description of BUDS is as follows: a partitioned
map-as opposed to a road map-is displayed on a 12 x 12 inch cathode-
ray tube upon which.a preselected variable is displayed in the form

of dot shading whose density is proportional to the value of the

-iii-

fe ¥

variable in each of the partitions. This form of data presentation
is highly intelligible. Quantitative results are also available.
The system is extremely simple to operate, embodies many
automatic facilities and requires no computer knowledge to operate.
Modularity in botﬁ programming and data structure was maintained
enabling system modifications at minimal cost. Data structures
are simple and it is easy to add or delete data.
The design and implementation'of BUDS resulted in an efficient

and highly effective interactive research tool for urban studies.

iy

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Pravin P.
Varaiya for his many helpful suggestions and his patience through
the many distressing equipment failures. I also wish {o thank
Professor Michael Stonebraker for his helpful criticisms on the
writing of this thesis. ' |

Finally I wish to thank the National Science Foundation for grant
NSF-GK-10656x2 which supported this research. . :

fo ¥

ABSTRACT

TABLE of CONTENTS

ACKNOWLEDGEMENTS
LIST of FIGURES
CHAFTER O The Necessity and Criteria for BUDS
0.1 Introduction
0.2 System Objectives
0.3 Some Remarks on the Usage of BUDS
CHAPTER 1 Urban Data and its Treatment in BUDS
l.1 Introduction
1.2 Urban Data in BUDS

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Map

Map Set

Variable Name

Data Element

Data Record

Basic Variable Data File

. 1.3 Transformation Mapping One Data Record Intoc Another
CHAPFTER 2 Operating BUDS ' '
" 2.1 System Operation

2.2 Varisble Definition and Editing Functions

2.2.1
2.2.2
2.2.3
2.2.k4
2.2.5
-2:2.6
2.2.7

2.2.8

2.2.9

2.2.10
2.2.11

Creating a Va.riablé .

The Append Function

Selecting a Basic Varieble from the Directory
The Varlable Header

The Delete Varisble Function

The Delete Basic Variable Function

The Change Variable Position on D:lspiay
Queue Function

The Display Veariable :# to Screen Leccation #
Function '

The Copy Variable #f to Screen Location ##
Function '

The Variable Expression and its Editing

The Reset Display Queue Function

vi

Pége
ii

<4

w

b EE.

13
13
13
1k
1k
15

19
20

23
28
31
32

33

2.2.12 The Display Veriable Function
2.2.13 The Stop Function

2.3 Map Manipulation and Variable Display Functions
2.3.1 Selecting & Window Using the Global Map

2.3.2 The Move

X and Move Y Functions in the

Global Map Phase
2.3.3 The Display Transportation Function
2.3.4 The Define Varisbles Function
2.3.5 The Map Phase

2.30501 The‘

2.3.5.2 The
2.3.5.3 The
2.3.5.4 The
2.3.5.5 The
2.3.5.6 The
2.3:5.7 The
2.3.5.8 The
© 2.3.5.9 The
2.3.5.]0 The
- 2.3.5.11 The

Display Variable # Function
Display Next Variable Function
Conbine Areas Function
Remove Areas Function
Move X and Mcve Y Functions
Magnify Function '
Reconstruct Map Function
Global Map Function
Display Variable Function
Displey Map Function
Identify f‘unction

2.3.12 The Print Function
CHAPTER 3 Data Structures and Implementation

3.1 Introduction

3.2 The Master File
" 3.2.1 The Directory Faging Structure

3.2.1.1 The Basic Variable Page Construction
3.2.2 Calculating the Basic Variable Data Disk

‘kecord Address

3.2.3 Seccndery Attribute Lists and Decoding
Selected Secondary Attributes

3.2.4 The Map Lists and Map Level Decoding

3.2.5 The Map-

Basic Variable Hierarchy

3.2.5.1 Implementation of the Map-Basic
Varisble Hierarchy

vii

Page
38

.39
39
ko

SEFEES

L7
48

¥R YB3

52
53
53
53

55
56
59
61

62

66

Page

3.2.6 The Transportation Map-Map Hierarchy 70
¢ 3.3 Map Files TL
3.3.1 The Glcbal Map T2
v 3.3.2 The Subarea Data Structure T3
3.3.2.1 The Subarea Sector Boﬁnda.ry Date
Structure v
3.3.2.2 The Subarea Sector Center Data
8tructure o 75
3.3.2.3 The Subarea Sector Shading Data
Structure 76
3.3.2.4 The Subarea Alignment Data Structure T7
3.3.3 The Sector Neme Data Structure 78
3.4 Transportation Files , 19
3.4.1 The Transpcrtation File Structure 4 80
CHAPTER 4 Concluiing Remarks
bh.1 Concluding Remarks : 82
APPENDIX ' ‘
A.1 TInputing Numerics for Program Control 132
A.l.1 Integers 132
A.1.2 Reals 132
A.2 Computing the Normalization Constant ' 133
A.3 The i’a.riable Expression Grammar 134
A Converting Primary Attribute Entity Values to
Character lefinitions 137
A5 The Picture DPata Tile ‘ 138
BIBLIOGRAIY . 143

‘e

L

viii

LIST of FIGURES

Figure
1 The Computer Equipment
2a The Program Function Keyboard
Z2b Function Accessibility
3 A Created Variable
4 Changing the Variable Header
5 A Low-High Query
6 A Page of Basic Variebles
Ta A Created Variable: County Level
T The Map of Figure Ta .
Tc The Map of Figure Ta with Transportation Facilities
Td The Regpc:ise to the Query of Figure Ta
3 Mixing Maps in a Created Variable
9 An Intertemporal Comparsion
10 Removing Sectors
11 ‘Conbining Sectors
12 The Directory Paging Structure
13 Detailed Directory Paging Structure
14 The Data Structure Necessary to Construct a Page
of Basic Variables ‘.
15 Structure to Compute a Basic Variable Disk Record
Address ’
) Example of & Disk Record Address Calculation
17 Secondary Attribute List Rebtrieval Structure
18 Map Tdists and Decoding Structure
19 The Map-lasic Variable Deta Yierarchy Graph
20 Implerentation of the .‘ap-Basic Variable Hierarchy
21 Structure to Match Transportation Maps to Display
Maps '
22 The Global Map Data Structure Implementation
23 The Subarea Sector Boundary Data Structure
2h The Subarea Sector Center Data Structure
25 The Subarea Sector Shading lata Structure
‘26 The Subarea Alignment Data Structure

(RN
“

Page

85

101
101
102
103
104
104
105
105
106
107
109
111

113
114
115

1i6
117

118

119
120

121

123
124
125
126

@

v

_

Figure

The Sectbr Names Data Structure

The Transportation File Structure

Structure to Access Urban Name Character Definitions
Structure to Access Primary Attribute Character
Definitions

Structure of PICDA

Page

128
129

130
131

CHAPTER 0

THE NECESSITY AND CRITERIA FOR BUDS

0.1. Introduction

One of the difficulties encountered by the urban analyst or
planner is the fact that he is dealing with a large system with an
accompanying large number of variables. Because urban systems ténd
to be large and complicated experimentation is almost always impossible.
This leaves the analyst with observation an& study as primary modes
of analysis. However there is the problem of comprehending the
data if only because of its sheer size. Oneof the things sorely
needed is a capability to manipulate large qﬁantities of urban data
and at the same time present it in a form whiéh would aid comprehension,

Aside from its large volume urban data has othér properties
which must be dealt with if the data is to be used effectively. Firét
of all it is geographic in nature. In many instances the analyst is
not only interested in data for a certﬁin area but in neighboring
areas as well. For example the distribution of blacks and office
buildings is not uniform over a census tract map of San Francisco.
Relative sizes, location and compesition of areas are extremely
important preoperties. Topographical properties are also important.

For exarple, the existence of .a deepwater port will greatly influence
among other things the type of~ecoﬁomic activities and population
distribution in its vicinity. Data comprehepsion is enhanced by
pictorial presentations such as shaded maps. The map portion conveys
geographic and topographic properties whilé shading conveys'quantitafive

information.

Generally, the investigator must rely on data gathered by a
number of different data collection agencies, or particular studies.
This implies non-uniformity of data which can occur in many ways
even within agencies. First of all, thedata accuracy may vary. 1Is
this random sample data truly a random sample? That is, does it
represent a ﬁrﬁe cFoss-section? Is the 25% sample as good as the
100% sample? ' Questions of this sort are beyond the scope of this
thesis, and will not be discussed. Secondly, assuming the data to
be accurate, there are problems when one wishes to use it.
Geographical boundary definitions change from tally to tally.

For example, the nine county Bay Area Census of Population and
Heusing for 1570 has approximately 287 more census tracts than the
1960 census. So a ccmparison of 1960 and 1970 data at the census
tract level cannot be made on the same map.

Since different agencies collect data, and do it for different
purposes, it is obvious that they rarely use the same map to define
tallyAareas.» However, it is sometimes possible to manipulate data
collected over one map to conform to other maps. For example, census

tract data can be aggregated up to county level.

Data is also time dependent. Not only do geographical boundaries

ckange but pepulatica shifts, eccromic activities change, etc.
Therefcre if intertemporal studies are to be undertaken a locational
correspondence must be made on the data over time.

For these reasons and others it was decided that computer
manipulation of data would be the only feésible app;oach. A survey
of existing data sy’stems1 was made and all were rejected for one or

more reasons. If a system were to be adopted it would have to be

1'l'he systems described in 7,8,9,12,13,14 +20 are‘typical of the ones
surveyed. Others may be found in 21,22,23.
-2-

o4

gy

”»

implemented on existing university computer equipment. Batch data -
manipulating system were ruled out because of inflexibility,
inefficiency or they just didnot perform the tasks we had in mind.
The in;eractive systems require large time-sharing machines which
are not at our disposal and rental costs would be prohibitive. The
idea of adopting pieces of different systems and piecing them together
was deemed infeasible. For these reasons it was decided that if we
wanted an effective urban data system we would have to design and
implement our own. It was also decided that a comprehensive, general
interactive urban research system was too ambigous a task at that
point. Secondly the design and implementation of a portion of the
svstem would serve as a pilot project to test the feasibility of
such a system on the computer graphics equipment we decided to use.
This pilot project has been completed and is the subject of this

thesis. The resulting system is called the Berkeley Urban Data

" System which will be referred to in the text as BUDS.

0.2. System Objectives

BUDS, as described herein, is a portion of what is to be a
comprehensive, general interactive computer graphics urban research
system. Tie overall system is envisioned to encompass two fully
integrated portions; an infornation storage retrieval system and an
analysis system. The primary system objective is that it be an
effective teaching or research tool. ‘Currently the system is
implemented on a Digital Scienﬁific Corportation Meta IV. It is a

16K-16 bit general purpose computer [4] which is microprogramable

“and emulating an IBM 1130. (Figure 1 illustrates the hardware.) It

-3-

has.a single IBM 2310 type disk unit with a storage'qapacity of
.512,060 words. This amount of secondary storage is a limiting
factor and is one of the reasons why a general information retrieval
system was not contemplated in the initial design. Funds have been
appropriated and negotiations are underway to purchase a 2314~type
disc unit.

A Documation M600 cardreader is the principle input device and
an IBM selectric typewriter is the principle output dévice. A
modified IBM 2250 model III Graphics Console operating on a cycle-
steal basis from the Meta IV memory is the graphicsvbottion of the
system. The 2250 is a refresh vector graphics system with an
alphanumeric keyboard, prcgram function keyboard2 and light pen.
The light pen is a light sensitive device and is used to identify
objects on the CRT. Although this equipment is‘expensive similar
equipment is éurrently on the market at very reason;ble prices. For
example the Digiﬁal Equipment Corporation GT44 Graphics System
with a PDPli/dG costs $34,500 and is comparable to our equipment in
present usage with the exception of the graphics terminal.3 The
costs of this type of equipment continues to decrease with time
naking such systems attractive to urban planning and research agencies
with limited financial rescurces. .

The availsbility of the gfaphics equipment and the geographical

nature of urban data prompted the idea of presenting urban data in

[4

2The acronym PFKB will be used for program function keyboard.

3The screen 1s approximately 65% the size of the IBM 2250 and on a

1ine basis it is estimated that 25% fewer lines may be drawn before
flicker occurs. Aside from these drawbacks the GT44 has some advantages
over the IBi{ 2250. These include programable intensity, character
generating huvduare, etc. ‘

o

4

a manner as illustrated in Figs 7 and 8. The simplest description
of BUDS is as follows: a partitioned map-as opposed to a road
map-is displayed on a 12 x 12 inch cathode-ray tube upon which a
preselected variable is displayed in the form of dot shading whose
density is proportional to the value of the variable in each of
the partitioms.

Using this as an introduction we now focus attention on the
system objectives which guided and ﬁopefully will continue to guide
the future development of BUDS.

1. . Intelligibility of data presentation. By this we mean the
following attributes characterize data display:.

A. <It_presents or preserves the following locational data:

bl) The physical shape of the area or areas in question
are presented. |

2) The relative size of the areas is preserved.

3) Bodies of water, rivers, major tributaries and
transportation networks are displayed. By this we mean the relative
location and distance of neighboring areas is'displayed.

B. A visual comparison of an urban variable in the form of shading
in neighboring araas.is made. That is the densiﬁy.of the shading is
proportional to the magnitude of the variable.

Intelligibility applies not only to queries results'but td
generation of queries as well. For example a directory of the
variableé stored in the computer data bank is presented to the user
in a noncluttered h?ghly intelligible form (Fig. 6). A simple
mechanism allows him to scan through the directory. Selection of

variables to be included in his query is accomplished by touching

-5~

that variable with the light pen. The query definition itself is
also highly intellible (Fig. 8a).
2. It allows for a quantitative study as well as a qualitative
study. That is, numerical results can also be obtained from a query.
3. The system is interactive and as such provides excellent response
time.
4. The system is extremely simple to use and requires no programming
or computer knowledge to operate.4 Once activated program control.
i1s accomplished through the program function keyboafd, PFKB, of the
2250 graphics console (Fig. 2a). The user simply selects the button
corresponding to the desired function. Throughout program execution
the user is guided as to which subset of functions are allowable or
actions are expected at that particular moment. This is done by
illuminating those button switches in the PFKB which correspond
to set of allowable functions and by displaying messages on the CRT.
The system is "idiot proof." Automatic facilities insure that
illegél actions are not taken. Thus the system is fully protected
against the reacﬁability of ambiguous or calamitous states.
5. Modularity:
Modularity in programming and data structures is maintained
so that new functions may be added and old ones modified with
minimal reprogramming of unmodified functions.
6. Data structures are simple and it is easy to add or delete data.

Furthermore careful consideration was given to data structures so

"

>

that it would be easy to design and implement a data management

alt takes approximately 25 minutes to instruct people to use the
systen.

-6-

program which would automatically make the appropriate changes to
add or delete data.

7. BUDS provides the user with the capability of performing macro
or micro studieéiand to switch from one to the cther easily. The
system allows this without redundancy of data by au£omatically
aggregating data for small areas so that it represents data for
large areas. For egample aggregating or summing census tract data
to county level.

8. Automatic facilities are provided to guarantee query integrity.
This occurs at two levels. First the query 1is automatically checked
for syntactical errors. Secondly the query is checked for data
:ansisténcy. Urban d:ta has locztional properties therefore it is
important to ensure that only urban data over common locations are
combined. For example forming an expression in which census tract
data of San Francisco is combined with that of Los Angeles is not
.allowed. |

9. Intertemporal studies can be easily performgd. The concept of
time in urban systems is of fundémental importance. It is the
dynamic evolution oflurban systems that is of primary concern to the
analyst and planner. They are constantly seeking answers to questions
of the sort: How does a city grow? Therefore a facility to perform

intertemporal studies with ease is especially important. (Fig. 9)

0.3. Some Remarks on the Usage of BUDS

From the users point of view these objectives have interesting

5These approaches are described by Birch [5] and Rogers [10]. Macro
studies analyze the urban region in terms of highly aggregated units
while the latter focuses on disaggregated units.

-7-

implications. First of all the user gets a completevpicture for

the question he has asked. Relevant attributes such as geography

and transportation facilities and the influence of neighboriné

areas are before him. Because the system is 1nteractive and several
variables (up to ten) can be selected beforehand, the user can sit
before the console and get the whole history of the aréa in question
rapidly. As an example, he can quickly spot population shifts from
one time period to the next. Since pictures can be stored in
secondary memory; thef can be accessed rapidly (without reconstructing
them) for compérisons.

The system can be used to validate hypothesis and theories
quickly. Continuing with the preceding example, the investigator
.can check theories of population shifts by querying the system for
the variébles thought to cause population‘shifts. Indeed, the user
may even generate a new hypothesis and test it immediately. The
interactive nature, speed, and economies of BUDS afford the user
latitudes that ﬁe normally would not have with conventional batch
processing or manual means. Continuing the proceeding example: not
only could the user spot population shifts but he can also ascertéin
the k:ind of shift, (young, minority, etc.) and accompanying changes
(property tax, housing age, construction of new freeway); all within
a few minutes.

From the preceding remarks it is obvious that BUDS was designed
to carry on empirical studies such as the weil known work of Hoover

and Vernon [6] in Anatomy of a Metropolis. This important piece of

work describes in empirical detail tﬁe trends and forces the authors

observed to have been instrumental in the development of the New York

-8-

metropolitan area. The amount of effort that wenﬁ into data
manipulation and presentation for this research must have been
monumental. BUDS has the capability of performing this kind of
study orders of magnitudes faster.

Urban systems are not understood very well. In fact, there is
precious little in the way of theory. Attempts to apply existing
theory to real life situations have not been entirely successful [1,2].
One of the reasons for this state of being is the lack of a tool
[{3,5,11] with which empirical studies can be performed effectively and
efficiently. It is hoped that BUDS will provide.our Urban Systems
Gréup with this capability and that it will enable us to better
understand urban systems thus augmenting our theoretical studies.

From 5 computer science point of view BUDS can be viewed as an
example of man-machine interaction. The design cf BUDS involved
at least four basic research areas.

1. Interactive computer systems

2. Design of data base structures and access methods

3. Daia presentation technqiues

4, Buman factors.

The inﬁeraction of these four areas as applied to the particular
problem at hand resulted in a tool which enhances'our urban research
capabiliries.

First of all the user is not forced to think or interpret.data
in a peculiar fashion. Furthermore system operation is also natural.
That is the user needs no knowledge of computers or computer programming.
He simply choses thé appropriate sequence of functions necessary to

accomplish his goal. Chapter 2 shows that selection of this sequence

-9-

of functions is virtually obvious in that the user simpl} executes
his normal thought process. Thus the user is not distracted by
operational procedures and can concentrate on the real problem at
hand.

Secondly BUQS.aids the analyst not only by guiding him but
also in helping‘him to translate his query into a precise statement.
For example in many instances the analyst's query is "fuzzy." A
typical question is "Where do the young people live?" The term
young is relative and must be ﬁranslated into a specific age group.
Even the term people may be translated into male, female, married, etc.
The presentation of a directory of variables which is easily scanned
can halp the user formulste the precise queries he really wants.

For example the above question can be translated into "What is the
distribution of black males between the ages of 0-19 as a fraction
of the total population in San Francisco in 1970?" |

This introduction is concluded with a brief description of the
contents of the remaining chapters.

Because. of the attributes of urban data namely time, quantity
and location considerable attention was given to theif interrelations.
This resulted in data structures which are efficient and flexible.
Chapter I is concerned with basic data definitions which explicitly
tie vtogether 16cationa1 data to quantitative data with respect to
time.

Chapter II describes the functions which allow the user to
generate and receive answers to queries.

Chapter III describes the data sttuctu?es and how they are used.

Finally Chapter IV contains concluding rematrks.

-10-

"

o

[N

.

CHAPTER 1

URBAN DATA AND ITS TREATMENT IN BUDS

1.1 Introduction

This chapter illustrates the interconnection and types of
locational data and quantitative data in BUDS. In so doing it
also gives an overall view of how urban data is manipulated. It
does this through a series of defiﬂitions. The formal structure of
quantitative data files is given. Although all of the definitions
presented are not used in this chapter they are ﬁresented here to
exﬁlicitly define the nature of data treated in BUDS and for the
sake of continuity. The reader may skip to Chapter II and return if

detailed knowledge is desired.

1.2 Urban Data in BUDS

We now give a few definitions which will help to describe the
treatment of urban data in BUDS. Only numerical data is treated.
Practical experience indicates that this is not é serious
restriction because when collected data of a qualitative nature is
usually aggregated into a number. For example, the number of sound
housing units in census tract BEOOL.

In aﬁy eveﬁt, qualitative data can usually.be quantized. As
an example, the numbers 1,2, and 3 may be attached to the attribﬁtes
sound, deteriorating and dilapidated housing units, respectively.

We also assume that the quantative data is taken over finite
areas, and that it is distributed uniformlf over these areas.

Aside from its name, there are three attributes which characterize

an urban variable:

11~

1. time

2. quantity or quality (assumed to be a real number)

3. location

As an example, the population (name of urban variabié) of census
tract BEOOl (location or area over which tally took place) #n 1960
(time) was 4050 (numeric describing quantity).

We begin with describing the treatment of location.

1.21 Map We consider a fixed, finite, two dimensional area A
partitioned into a finite number of disjoint polygonal subsets
Pl""’Pn' Hence

m
A= U P and P NP, =¢ if i # j

= 11
A map M is any partition {Sl,...,Sn} of the area A which is a
pefinement or cover of the partition {Pl,...,Pm}. That is for each

1,1 < 1 < n there exists integers il,...,ik such that

k
S, = U p furthermore
i _ i, . :
=1 7j
n
A= U S andsS. NS, =¢ for i .
i=1 t iy T ter A

If M = {Sl,...?Sn}, the subsets S; are called sectors of M.

This definition is quite general since it allows sectors to be
the union of any finite set of pélygonal areas. Thus, sectors may be
entirely within the outer boundaries of other sectors or they may

consist of non contiguous polygonal areas, etc.

-12-

fa

g

bl |}

1.2.2. A map set is a collection of maps MS = Ml""’Mq . In

what follows MS denotes the map set stored in BUDS.

1.2.3. Variable Name. A variable name, Vis is a description of a

variable. For example, total population is a variable name. Variable
names belong to a finite set V = {vl,...,vr}. Each data gathering
effort such as the U.S. Census generates a subset of variable names
V,. However, we restrict the members of V to those stored in BUDS.
We shall see later that the set V serves as a directory for the

retrieval of data in BUDS.

1.2.4 Data Element

Each data gathering effort generates a map, Mm, and a subset,
Vz, of variable names. Data is gathered for each sector Sj € Mm and
each variable name vy € Vz, i.e. a uumeric is assigned to each sector
- for each variable name. To insure uniformity data for several
variables is usually gathered at the same time,.tk. "For example,
the 1970 U.S. Census of Population and Housing was completed over
an interval of time which was small enough to rule out significant
changes in the items being enumerated. Each numeric is called a
data element. We now give a more formal definition.

Given a data gathering effort (census, inventory, etc.) which at

time tk generates a subset of variable names V, = {vl,...,vq} and

£

amapM = {Sl,...,Sn} a data element D is that quantity’

B jkim
assoclated with the variable name vy € Vz and the sector Sj € Mh.

Data elements may be thought of as representations of the functions
Eom V128508 = DEyyian

-13-

for all 1 < i <qand all 1 < j < n. As in previous instances the
set of data elements is limited to those stored in BUDS.

We conclude this section with an example of a data element.
The total population (vi) in 1960 (tk) in the MTC1 zpne 4 (Sj) was

13,900 according to the 1960 U.S. Census of Population.

1.2.5. Data Record. A data record, DRiklm’

components are data elements. The components correspond to the sectors

is a vector whose

of the maps associated with the data elements. Using the notation

of the previous section

DRyom = PEijem, " PEinkem)

Data records as defined here are actual logical data records as

implemented in BUDS.

1.2.6. Basic Variable Data File

A basic variable data file2 BVDFm is an ordered set of data

records. Continuing with the notation of sections 1.2.4 and 1.2.5

BVI)Fm = (DleR.m’ cree DRrklm)

with the following constraints. The data records in BVDFm must all
be of the same dimension. This constraint is imposed only. for data
storage, retrieval and manipulation efficiency. It may be violated

without any retrieval errors or reprogramming if the aforementioned

lThe Metropolitan Transportation Commission, Claremont Hotel, Berkeley,
California,a regional commission partitioned the 9 county Bay Area
into 290 zones which are aggregations of census tracts.

2For the sake of brevity in the text the term data file will be used
for basic variable data file whenever there is no possibility of
confusion. . . '

-1h4-

te

({7

inefficiencies are tolerable. The constraint means that all data
records in a particular data file must be over the same map or

maps with the same number of sectors. This is a natural organization
scheme which simplifies data management but is is not necessary.

The order of the data records is immaterial although it is
advantageous to have certain natural groupings. For example, the
records corresponding to the total, white, black and Spanish surname
population should be sequential in the data file. Sections 3.2.1 and
3.2.2 will show that certain groupings of data récords make the
directorysmore comprehensible and offer economies in data record
address calculation.

This section is concluded with an example. The U.S. Census of
Population and Housing for 1970,tk, induced a subset of variable
names VE = {vl,...,vz} and a census tract map Mm = {Sl,...,Sn}
for the nine county San Francisco Bay Area. With these, the Census
generated a set of data records which form or are part of one or
more data files. The variable names serve as pointersh to data
records. A one-to-one correspondence between the components of a
data record and the sectors of the map provides the mechanism through

which data for individual census tracts may be accessed.

1.3. Transformation Mapping One Data Record Into Another.

Sometimes it is necessary to compare or examine urban data

3 .
A directory of variable definitions stored in BUDS is presented to

the user during query generation for light pen solution. Figure
6 illustrates a page of the directory.

4
The mechanisms through which this is accomplished is discussed in
sections 3.2.1 through 3.2.4.

-15- .

defined over maps. As an example, suppose that we have census tract
Alevel data and we wish to look at the data at county level, or
éerhaps we wish to form a census tract per city type user generated
variable.5 For example the black population in eacﬁ census tract
of San Francisco divided by the total population of Saﬁ Francisco.
In thiscase we would have to aggregate (sum), the census tract data
up to the city level. Note that it is not always possible to
aggregate data defined over a lower level map to a higher level map.
For example, the Department of Human Resources, State of California
Yearly Employméﬁt Statistics collects data over local areas. There
are seventeen (17) local areas in the nine county San Francisco Bay

Area. These 17 areas comprise only a small fraction of the entire
nine county Bay Area. Secondly, the Palo Alto area includes parts
of San Mateo and Santa Clara County. In this case one could calculate
.the fractional part that lies in one couﬂty and the fractional part
lying in the other county and form some kind of.weighted average.
However, it is not clear how this.average should be ﬁeighted,
especially since thé data is taken over certain urban centers. The
extrapolation to the rural parts of Santa Clara county, etc. would
be difficult to make. In any event, extrapolating datg in this
fashibn has been ruled out at present. Note however that it is
possible to aggregate census tract data up to county level.

Formally we have:

A Data Record DR,,, € BVDF, can be transformed into another

ikim

Data Record DRikzp where

User generated or created variables are discussed in section 2.2.

-16-

(]

L

M = {5],5,,...,5.}

Mp = {Sl’SZ""’Sr}
and

0<r<n

. if for every Sj € Mm there exists a non empty sequence {alj,azj,...,afj}

such that

Using this formulation is is easily seen that transformation from
Mﬁ to Mp defines an rxn matrix x6 such that

M =XM
P m

This obviously can be carried out using Data Files,

BVDF_ = X BVDF
P m .

but in implementation only data records need transformation.

This transformation eliminates considerable amouﬁts of
redundancy in the data at the cost of increased computation. It is
through this transformation that the macro and micro approaches
discussed in section 0.2 can be made. Implementation is discussed in
Chapter 3.

These definitions are simple yet broad and they form the basis

for the interconnection of maps and urban data. They also form the

’ 6The components of this matrix are either O or 1 and the number of
ones in any column is at most one.

-17-

basis for data storage structures (data bases) and retrieval

mechanisms in BUDS which are discussed in Chapter 3.

-18- :

2

it

e

[

CHAPTER 2

OPERATING BUDS

2.1. System Operation

The user activates BUDS by requesting the computer to execute
DQEP, VARDP1 or DDQEP. DDQEP will reinitialize the state of BUDS
to a default value of time, To’ whereas either of the other two
programs will set tﬁe state of BUDS to what is was at the time BUDS
was last stopped. From time to time the computer malfunctions
putting BUDS in a nonrecoverable state. These states are nonreachable
while operating BUDS and usually are nonsensical. When this occurs
DDQEP must be executed.

Once BUDS is activated, program control is through the program
function keyboard,2 PFKB, of the IBM 2250 Graphics Console which is
shown in Fig. 2a. The.set of allowable functions, (Fig. 2a) can be
_ partitioned into two classes of functions, the set of variable
‘definition and editing functions and the set of map manipulation
and display functions.3 Throughqut program execution the user is
guided as to which subset qf functions are allowable at that partic-
ular moment. This is done by illuminating the bﬁtton switches in

the PFKB, corresponding to each function in the allowable subset of

functions. The selection of a non-allowable function is ignored.

1DQEP is the acronym for display queue editing program while VARDP
is the acronym for variable display program.

2In what follows we will use the abbreviation PFKB for Program
function keyboard.

3The former are in DQEP and the latter are in VARDP

-19-

2.2, Variable Definition and Editing Functions

This portion of the system enables the user to generate queries.
As such it has an extensive editing facility to enable the user
‘to generate variables using basic variablesa and to_modify previously
user-generated variables. Eéch user-generated variable or created

variab1e5 is an arithmetic expression specified by the user; the

N

arithmetic expression may involve up to ten basic variables. We call
this expressibn the variable expression. Figure 3 shows a user
generated variable with two basic variablea whose expression indicates
the user is interested in their difference. Functions 15 through 26
on the PFXB (Fig. 2) are dedicated to editing. Many automatic
features are incorporated into these functions which aid the user.
They also guarantee that the created variable makes sense (syntax
and data consistency) and prevent the computei from getting into an
‘ambiguous or calamitous state.
Up to ten created variables may be defined at any instant of

‘time. Created variables are said to reside on.the display queue
and are referenced by queue numbers one through ten. Due to the
limited screen size only three created variables may be displayed

(Fig. 9) at one time during variable definition aﬁd editing .
Thei: corresponding screen location are 1, 2 and 3 with 1 at the

bottom. These screen location numbers are not to be confused with

. 4d

queue numbers which refer to variable position on the display queue.

“h

4Ba31c variables are virtually synonymous with variable names defined

in Section 1.2.3. Basic variables contain more information than
variables nimes. In addition to discribing the variable (e.g. total
population they also contain time (e.g. 1960) and locational information
(e.g. county). See Section 2.2.3.

5From this point on the terms user-generated variable and created

. variable will be used synonymously. Furthermore the term variable will
be used interchangeably with created variable or basic variable when
there is no possibility of confusion.

-20-

Before discussing DQEP functions a few remarks éoncerning the
method of creating variables in BUDS are in order. A great deal of
emphasis was given to system objectives because the usefulness of
the query and query system depends on how well queries represents
what the analyst wants. To this end the system objectives dictate
that BUDS must help the analyst to formulate queries. For‘this
reason it was decided to allow the user to select basic variables
from a directory displayed on the CRT and to express his query with
a mathematical expression involving these basic variables. Figure 6
illustrates a page of the directory and Fig. 3 illustrates a created
variable or query.

The ability to flip through pages of the directory displayed on
the CRT and to choose basic variables with a light pen is superior to
the method of query generation on many other systems. For example
fhe IBM system [12,13] requires the user. to type in the complete
.‘query. The IBM system is cumbersome in that the user must thumb
through a paper bound directory for the proper basic variable and
correctly type it on an alphanuméric keyboard. While doing this he
must separate basic variables with operators. The resulting query
aside from being difficult to generate is also difficult to read.

In BUDS query specification is separated from Basic variable selection.
Basic variable selection is facilitated as well as query specification
and comprehension. To specify the query letters corresponding to
basic variables along with operators are typed in. The resulting
query is more concise and easier to understand than those generated

on the IBM system.

The next thirteen sections describe the functions associated with

-21-

creating and editing variables. Figure 2b illustrates the order in

which these functions are accessible.

2.2.1. Creating a Variable

The user begins creation of a variable by selecting the START B

NEW VARIABLE function on the PFKB (function number 23 in Fig. 2a).

“

If all ten queue numbers have been allocated, a warning is sounded6
and the function is aborted. If all ten queue numbers have not been
allocated, the message SCREEN LOCA.TION‘{O}7 is displayed in the
lower right corner of the screen. The user must theg enter a screen
location using the IBM 2250 alphanumeric keyboard (keyboard).8

Entering any number other than 1 through 3 abdrts the function
with a bleep. Entering a proper screen location number results in
the following sequence of events:

If a variable is being displayed on the screeﬁ at the desired
‘1ocation its definition is stored on the disc and it is removed from
the screen. The next position on the display queue is assigned to
the new variable and the variable header is generated (Fig. 4a).

The variable header contains information which controlé the type of

display and the queue numﬁer9 of this variable. It is discussed in

6Error which cause a function abort are signaled by an audio signal
which sounds like a "bleep." From now on this signal will be called
a bleep.

7In what follows all characters within brackets {} in a message displayed
on the screen may or must be replaced by the user using the alphanumeric
keyboard. The brackets do not appear on the screen but merely serve

the purpose of delineating certain characters for convenience in this
text. The term within brackets usually is a default value and is
replaced with characters as they are typed in by the user. Refer to
section A.1 for details, :

81n what follows the term keyboard will mean the IBM 2250 alphanumeric
keyboard shown in Fig. 1.

- re

: 9Queue numbers are allocated sequentially ‘to create variables. Thus for
example if seven variables have been created already, eight would be the
. next available queue number.

-22-

section 2.2.4.

2.2.2. The Append Function

By selecting the APPEND function (number 19 in Fig. 2a) the
user is able to append basic variables to a variable. If there are
no variables being displayed on the screen the function aborts with.

a bleep. Otherwise the user responds to the message SELECT APPENDING
POSITION by selectihg the exact location for appending a basic
variable using the light pen. The function is aborted with a bleep
if the user selects a non-variable item such as the message or if

he selects an appending position in a variable which.already has

its full complement of basic variables. The appending position is
the position just beneath the entity touched by the light pen.

The entity touched by the light pen is brightened to indicate
this position. The user must now confirm or reject his selection
using the REJECT or the CONTINUE/ACCEPT buttons on the PFKB. Rejection
.aborts the APPEND function. If the user accepts the appending position
the message LIGHT PEN OR BASIC VARIABLE LIST appears, the functions
RETURN and BASIC VARIABLE LIST (functions 30 and 17 of the PFKB
respectively) are availablé for selection and the light pen is activated.
Up to n basic variable may be selected, where n equals ten minus the
number of basic variables already in the created variable.

The user may select basic variables appearing in any created
variable on the screen with the light pen. If a basic variable is
selected it is brightened and the selection must either be accepted
or rejected using those functions on the PFKB. In the event basic
variable selection is desired from the directory the function BASIC

VARTIABLE LIST (number 17 or the PFKB) is selected. Basic variable

-23-

selection may then be continued from the directory.‘

"2.2.3. Selecting a Basic Variable from the Directory

Because the screen has a finite size the description of all
variables stored in the data bank cannot be adequately displayed
on the screen-at once. Taking this into consideration and all of
the system objectives, namely intelligibility, ease of use, ease
of data insertion and deletion, and the fact that we are dealing
with a small machine, the following strateg& was adopted for the
directory.

A number of year list pages are stored in secondary storage.
Each year liét pagelo consists of a list of years. For example
years 1950, 1960 and 1970 may comprise a year list page. Each
year on each page serves as a pointer to seé of basic variables
called a page of basic variables. If the number of bgsic variables
for a particular year is such that their description cannot be
adequately displayed on the screen at once, then that year is put
onto the second year list page as weli. The process is continued
until all of the basic variables for that year are accounted for.
Each.year on a year list page corresponds to one and only one page
of basic variables. Only one page of basic variables is displayed
on the screen at one time. Basic variable selection is made from a
basic variable page.

Having selgcted the BASIC VARIABLE LIS? function a year list

pagell together with its page number is displayed on the screen.

1oThis structure is detailed at length in section 3.2.1.

llPresently there is only one year list page with only the years
1960 and 1970. This is due to the limited capacity of secondary
storage and the available data.

=24

"

b

The user must then indicate the page of basic variables from which
he wishes to select a.basic variable. This is accomplished by
selecting a year from the year list page displayed on the CRT using
the light pen. One of the years in the list is brighter than the
rest of the entries on the list and is used as a default selection.
In making his selection the user may be satisfied with the default
year, select a different year from this page using the light pen
or display another year list page by selecting the DISPLAY YEAR LIST
function (number 16 in Fig.2a), The message NEW PAGE NUMBER {0}
is diéplgyed in the lower right corner of the CRT and the desired
page number is entered via the keyboard.12

Satisfied with his year selection the user displays the page
of basic variables by selecting the BASIC VARIABLE LIST function
(number 17 in Fig.2a). This causes the list of basic variables
‘corresponding to the above selection to be displayed (Fig. 6). At
" the bottom of the screen the page number and year indexing the page
'of basic variables is displayed.

In accordance with the systém objectives advantage was taken
of the peculiarities of urban data. Typically an urban variable
has several attributes which were divided into two classes; primary
attribufes and secondary attributes.

A basic variable consists of a name13 and primary and secondary
attributes which characterize it and a map which determines the map
aggregation level. For each urban variable there is only one list

of primary attributes, one list of secondary attributes and one map

121f the user inputs the same page number as is currently displayed
the function is aborted. If the user requests a non-existent year
list page the function is aborted with a bleep. In either case the
message disappears once page number input is terminated.

1 .
3If there are no primary modifiers then the name itself comprises the
list of primary attributes and we say the name is null.

list in BUDS. Primary attributes modify the name so that the name

" need not te repeated. This is indicated in Fig. 6. The list of
secondar}' attributesl amodify the list of primary attributes providing
a further description of the variable. These are tgpically parameters
relating to race, sex, age, etc. They are included as a list so that

the name and primary attributes need not be repeated for‘each member

[

of the secondary attributes list.

Selecting a primary attribute with the light pen causes the
appropriate secondary attribute list and map list to be displayed.
Members of these lists once displayed are available for selection
using the light pen. Thus a basic variable is specified by selecting
with the light pen15 one primary attribute, one secondary attribute
from a list of seccndary attributes if it exists and a member of the
map list. The light pen selection of the basic variable may be
accepted for inclusion in the created va;iable only by selecting the
- ACCEPT function on the PFKB.

The map list indicates the levels of aggregation possible fpr
the selected-baéic variable. The bottom-most level on the list is the
lowest level possible which is usually the level at which the data
 is stored in secondary memory (data records). The names in the map
list are descriptive as to the level they represent (e;g. county).

This scheme of presentation of basic variables has several
distinct advantages some of which will be indicated below. First of

all, it presents a list of variables in an intelligible uncluttered

b/

fashion. In fact the list is larger and more intelligible than many

, 14There may not be any secondary attributes in which case the list is -
null and is not displayed. _

. 15Whenever a 1list is displayed for light pen selection default values
are preselected. Selection of an entity with the light pen causes it
to be brightened and the previous selection to be unbrightened.

-26-

alternative methods of presentation. Secondly it provides a
convenient facility for automatic aggregation of data elements as
described in section 1.3.1. For example if data is stored at the
census tract level and the user selects county level the census
tract level data must be aggregated to county level.

Finally an address consisting of a file number and a record
number is needed to. access data for a basic variable. In BUDS the
record number is calculated. This saves time and secondary storage
when compared to table look up methods. The mechanism for basic
variable data address calculation is discussed in detail in
section 3.2.2. '

Satisfied with his selections the user completes the APPEND
function by selecting the RETURN button of the PFKB. However, if
the user wishes to view another page of basic variables because he
1is unsatisfied with any of the choices p;esented to him or for any
- other reason he can do so by two mechanisms. In either mechanism
‘he must display a year list page and repeat the process described
in this section. He accomplishes this by selecting either the
SELECT NEW YEAR function or the DISPLAY YEAR LIST function (function
numbers 15 and 16 in Fig. 2a). The former displays the year list
page that the user last used whereas the latter displays the requested
year list page as detailed above.

After selecting the RETURN button the selected basic variables
if any are appended in the proper location. It is noted here that
the return function could have Eeen selected without having requested
the directory. In either event the RETURN function performs the

same function. The RETURN function is automatically engaged if the

-27-

number of accepted basic variables reaches the appending limit in
which case there will be ten basic variables in the created

variable.

2.2.4. The Variable Header ’ -

Before proceeding to discuss other functions we pause to dis-
cuss the role of the variable header.

The va;iable héader is the information preceding the list of
basic variable in a created variable and is used to control the
type of display (Fig. 4a). Touching NEW of the phrasé NEW NORMALIZATION
CONSTANT with ﬁhe light pen will brighten the phrase an& afford the
user the option of changing NEW to SAME and vice versa (Fig. 4b).
Thé option is exercised by selecting the ACCEPT function and -
nullified by selecting the REJECT function of the PFKB. Selection
of either button unbrightens the phrase and selection of the former
_ also changes NEW to SAME and vice versa.

Selecting SAME NORMALIZATION CONSTANT will forée the normalization
constant for this variable to have the same normalization constant
as the previous'variable on the display queue. Normalization refers
to the procedure which must be undertaken in order to properly shade
the sectors. The normalization constant is computedvsubsequent to
variable computation and in the following way.16‘ The sector sn the
screen for which the variable has the greatest value is found. The -
density of shading dots in this sector is fixed a priori to be 72

dots per square inch and the density of shading dots in the other

L7

sectors will be in the same proportion as their value is to the

‘s

greatest value. If this a-priori density is too large the computed

168ee Section A.2 of the appendix for details.

-28-

shading will overflow the allotted display memory space. If this
happens the a-priori density is decreased dynamically until all of
the shading can be accommodated in the allotted display memory
space. Thus if sector A is the sector with maximum value and
sector B has half the value as sector A then the density of shading
dots in sector B will be half of that in sector A.

Normalization must be undertaken for each new normalization
constant variable because of the following:
1. The value of a variable in each sector has a wide range of
possible values and the density of dot shading is proportional to
the value of the variable in each sector. Absolute values range

128 to 10127.

from 10~
2. Since variable definition is under user control it is possible
that negative variable expression valugs could be generated. This
increases the range of possible values still further and introduces
the problem of shading for negative values.

3. The amount of computer memory which can be dgdicated to display
or picture definition is limited.

4. The number of display items which can be placed on the screen
is limited.

5. Physical damage to the screen is possible. If too many objects

intersect at the same point on the screen, a hole will be burned

in the phosphor of the screen.

Therefore, if normalization is not adapted to the variable values
being displayed, then with a very high probability either there will
be no shading at all or there will be too much shading.

Many situations arise in which the user will want to make

-29- .

comparisons of fwo or more distinct pictures. To make appropriate
comparisons he will then want to use the same normalizﬁtion constant
for the pictures he is comparing. Typically these compérisons are
to be made over time or location or both. For example he may wish
to compare the relative number and distribution of professional
people in 1960 in San Jose with those in San Francisco. Or he may
want to compare the relative number and distribution of professional
people in San Jose for the years 1960 and 1970. |

| Automatic facilities help to insure that meaningless results

do not occur. For example, the system will not allow the first
variable on the display queue to be a "same normalization constant"
variable since_there is no variable preceding it on the display

queue. If a "same normalization constant" variable should become

the first variable on the display queue by one of several mechanisms

it will automatically be changed to a new normalization constant -
variable. The system will not allow a variable to be a "same
normalization constant" variable if the map of this variable is
incompatible with the map of the freceding variable on the display
queue. In fact if the mapxof any "same normalization constant"”
variable is incompatible with its predecessor it is automatically
changed to a new normalization constant variable when transfer to
VARDP is requested. Refer to section 2.2.12.

Touching NORMALIZATION CONSTANT with the light pen causes the
message CHANGE TO LOW HIGH to appear on the screen. It also affords
the user the option of changing from the density shading mode to the
Low-High mode of shading (Fig. 4c) using the accept or reject
buttons as described above. The Low-High mode of display uniformally

shades all areas on the screen with characters in the following way.

-30-

4

v

n

All areas having the variable value less than the low real number
are shaded with the low character. All areas having the variable
value greater than the high real number shaded with the high
character and all other areas are shaded with the medium character.17
These characters and numbers may be changed at any time by the user.
This is accomplished by touching the object to be changed with the
light pen and entering a new value via the alphanumeric keyboard.

This mode of display allows the user to create a limited set
of Boolean functions. Figure 5 is an example of a Low-High query.
Touching LOW HIGH with the light pen affords the user the option
of changing to the Dot Shading mode of display by using the ACCEPT
or REJECT buttons to indicate his wish.

In reference to the automatic facility discussed above the
system will not allow a "same normalization constant" variable to
'be preceded by a Low-High variable on the display queue. If the
‘user attempts to change a "new normaliéation constant" variable
preceded by a Low-High type variable to a '"same normalization
constant" type his attempt will ﬁe aborted by a bleep. vaa variable
is changed to a Low-High type and the next variable is a "same
normalization constant' variable the latter will be automatically

changed to "new normalization constant."

2.2.5. The Delete Variable Function

The Qser may delete any created variable whose definition
appears on the screen by selecting the DELETE VARIABLE function

(number 18). This causes the message DELETE VARIABLE to appear

17The medium character is the character between the real numbers

in Fig. 4c. The low character and low real number are on the left

of the medium character while the high real number and high character
are on its right.

in the lower right corner of the screen. Touching any part of the
variable to be deleted with the light pen causes the variable to
be deleted from the display queue. The message and the deleted
variable are then removed from the screen. Removal of a variable
from the display queue causes the display queue to bé cdmpacted
in the following manner. If the deleted variable is ﬁhe last
variable on the display queue, the number of variables on the display
queue 1is simply decremented by one., Otherwise all of the variables
following the deleted variable on the display éueue are moved up
and the number of variable is decremented by oné. If the deleted
variable is a "new normalizatioﬁ constant" type and the next variable
on the display queue is a "same normalization constantﬁ variable,
"same" is automatically changed to "new."

AIf the message (the only non-variable object on the screen)
is touched with the light pen, the function is aborted Vith a bleep.

This also provides a way of retracting an erroneous function selection.

2.2.6. The Delete Basic Variable Function

The user may delete any basic variable appearing in the definition
of a created variable which is currently displayed on the screen by
selecting the DELETE BASIC VARIABLE FUNCTION (number 24 in Fig. 2a).
This causes tﬁe message DELETE BASIC VARIABLE WITH LIGHT PEN to appear
on the screen. The user then touches the basic variable to be».)

deleted with the light pen and the selected basic variable is

-

brightened. This selection is then accepted or rejected using the
ACCEPT or REJECT byttons of the PFKB respectively. The former

deletes the basic variable from the variable and removes the message.

-32-

R}

T 4

The latter unbrightens the basic variable and the user must select
another basic variable. However selection of an object other than
a basic variable such as the message or part of a header causes the
function to be aborted with a bleep removing the'megsage in the
process. This also provides an escape mechanism from a erroneous

function selection.

2.2.7. The CHANGE VARIABLE POSITION on Display Queue Function

The user can reorder the variables on the display queue in
any way he sees fit by selecting the CHANGE VARIABLE POSITION on
the display queue function (number 20). This causes the message
MOVE VARIABLE {0} to { } to appear in the lower right corner of the
screen. The user then must input two numbers. The first number

is the queue number of the variable he wishes to move while the

second in the new poéition or new queue number he wishes that

variable to have. These numbers replace the 0 and blank in the

above message so the user can verify and change the numbers he is
inputting. If either of these hqmbers is 0 or greater than the
number of variables on the display queue the function is aborted
with a bleep and the messaée is removed from the screen. Otherwise
the méssage is removed and appropriate action is taken.

Automatic checking occurs to change a same normalizatioﬁ‘
constant variable to a new normalization constant varisble whenever
it is necessitated by the movement of variables on the display queue.

This function is important for at least two reasons. It allows
the user to order the variables chronologically or to some other
specification. Secondly the user may wish to make comparisons using

the same normalization constant and the computer cannot predict in

-33-

advance the values variables will take. Situations arise where
a same normalization constant variable using the normalization
constant as its predecessor will have too much shading and violate
one of the constraints discussed in the section 2.2.4 necessitating

reordering.

2.2.8. The DISPLAY VARIABLE # in SCREEN LOCATION # Function

If the user wishes to display.the definition of a variable
which is not currently on the screen to review its definition or
modify it in some way he selects ;his function (number 25 in Fig. 2a)
which causes the message DISPLAY VARIABLE {0} IN SCREEN POSITION { }.
The user then inputs two numbers a queue number and a screen location
which replace the zero and blank respectively. ' If the ﬁariable is
already on the screen or if either number is inconsistent the
function is aborted with a bleep. If 5 variable is curreﬁtly on
display in the desired screen location that va?iable is either deleted
from the display queue or stored in secondary memory as described in

section 2.2.4.

2.2.9. The COPY VARIABLE # to SCREEN LOCATION # Function

This function (number 25 in Fig. 2a) allows the user to make
an exact duplicate of a variable residing on the display queue

resulting in duplicate variables residing on the display queue.

L

It allows the user to define a variable which differs in a small
way from another variable without having to define that variable step -
by step.

Selection of this function causes the message COPY VARIABLE

(42

{0} TO SCREEN LOCATION { } to appear in the lower left cormer of the

screen unless ten variables already reside on the display queue.

-34-

o1V

In this case the function is aborted with bleep. The user‘then
must input, using the alphanumeric keyboard, the queue number
of the variable to be copied and the screen location in which
he wishes the copies variable to appear. These numbers replace
the zero and blank in the message respectively. The message is
removed from the screen and the numbers are checked for incon-
inconsistency. If either number is inconsistent the function
is aborted with a bleep. If a variable is currently displayed
at the desired screen location it is either deleted from the
display queue or stored in secondary storage as discussed in

section 2.2.4.

2.2.10. The Variable Evpression and its Editing

The variable expression of a created variable is used to
combine the basic variables in an arithmetic expression (Fig. 8a).

This expression is then evaluated and the shading (Fig. 8b) is

A computed using the results of this expression. When basic variables

are rearranged in a created variable either through appending or
deletion letters are assigned to basic variables. The first variable
below the variable header corresponds to the letter A and so on.

This correspondence is used in the variable expression.

The grammar of the variable expression follows the convention
used in Fortra'n.l8 It is however limited to 68 characters. Unlimited
nesting of parentheses is permitted subject to the length constraint.
A set of seven unary functions as well as the standard set of

arithmetic operators (** % / + -) has been implemented. The functions

18See section A.3 for grammar.

-35-

and their expression codes are sine (SN), natural 1ogarithﬁ (LN),
exponential (XP), square root (RT), hyperbolic tangent (HT),
absolute value (AS) and cosine (CS).

The variable expressionl9 of any created variable may be
edited by touching any part of it with the light peﬁ. The light
pen is deactivated throughout expression editing. Touching an
expression character causes a cursor (an arrow) to be placed under
that character.and a message to appear on the screen. The cursor
always points to the position in the variable expression at which
editing takes place.

There are two expression editing modes: the append mode and
the overwrite mode. In the append mode the message EDIT EXPRESSION-
APPEND appearé'in the lower left corner of the screen; If there
are no characters in the variable expression (EXP = being the only
entity below the basic variables) the append mode is automatically
- engaged and the cursor placed at character position O. Any character
(except space) may be entered into the variable expression via the
alphanumeric keyboard. Each character so entered is inserted just
after the character pointed to by the cursor (hence the append
mode) and the cursor moved one position to the right. END is selected
to exit from the append mode and the overwrite mode is automatically
engagved. However, the append mode cannot be disengaged unless there
is at least one character in the variable expression. In the append

mode the cursor may point to character positions O through N, where

19The phrase'EXP = appears as soon as basic variables are appended
onto the header of a variable.

'

-36-

N ié the last character in the variable expression. The append
mode is automatically disengaged if the expression reaches its
full cbmplement of characters and the overwrite mode engaged.'

In the overwrite mode the message EDIT EXPRESSION appears in
the lower left corner of the screen. This mode is automatically
entered by touching an expression character with the light pen
when the variable expression needs editing. In the overwrite mode
the cursor points to the character which may be replaced by another
character through thé.alphanumeric keyboard. Hence the name overwrite
Entering a character also moves the cursor one position to the
right. in fhe overwrite mode the cursor can point to character
positions 1 through N+l whereN is the number of characters in the
variable expression. When the cursor points to position N+l, the
overwrite mode wili allow characters to be appended onto the end
of the variable expression. The cursor is not permitted under any
circumstances to point beyond éharacter position 68. Selecting END
in the overwrite mode terminates expression editing while selecting
the APPEND function on the PFKB causes expression editing to enter
the append mode.

.Selecting the cancel key of the alphanumeric keyboard in either
mode deletes the character pointed to by the cursor. The cursor is
not moved unless it is pointing to the last character and in the
append mode. In this case it is moved one position to the left.

The backspace key and space bar of the ;lpﬁanumeric keyboard
moves the cursor one position to the left and one position to the
right respectively subject to the pdsition constraints of the
éarticular editing mode. Any.accempt to violate these constraints

‘is ignored.

2.2.11. The RESET DISPLAY QUEUE Function

This function (function 26 in Fig. 2a) allows the user to

delete all .variables from the display queue.)

2.2.12. The DISPLAY VARIABLE Function >

Selection’of this function (number 12 in Fig. 2a) while in
the variable definition and editing mode signals the end of variable -
definition and editing and indicates to the computer thét the user |
wishes to calculate and dispiay thé variables he has created. The
variables currently on display are stored on the disc and each
variable on the display queue is checked in the following manner.

Any variable on the display queue without basic variables is
automatically selected from the display queue and treated as though
the DELETE VARIABLE function (section 2.2.5) was applied to it.
Each variable is also subjected to a map consistencycheck and a legal
expression check. If there are no errors transfer to the VARDP
programs is automatically accomplished. Otherwise messages indicating
which variable has which error is displayed on the screen. These
-error message are acknowledged by selecting the CONTINUE function on
the PFKB and must be eliminated before the system will allow transfer
to the VARDP programs to be accomplished.

Illegal éxpressions have syntactical errors while map inconsistency

errors are one of two types. Either the map for a basic variable

3.4

is inconsistent with the display map (section 1.3) or the display

map is a pseudo map (discussed in the next two paragraphs). -
The display map for a created variable is the lowest map level

in a created variable. For example the created variable in Fig. 8a ..

has two maps represented in its definition, MTC zones and City.

-38-

Since MTC zones can be aggregated to city level in San Francisco
the MTC zones map is at a lower level than the City map (section 1.3).
Therefore the display map will be MTC zone (Fig. 8b).

A pseudo map is a map which is defined rel#tive to another
map which has its two dimensional definition stored-in secondary
memory. This is not true for a pseudo map hence a picture such
as the one in Fig. 8b cannot be made for a pseudo map. However
pseudo maps are extremely useful because they allow the user to
define his own map. For example, city in Fig. 8# is a pseudo map.
In this instance it was necessary to use a pseudo map in order to

form a per unit (percent) variable.

2.2.13. -The STOP Function

This function (number 27 in Fig. 2a) indicates to the computer
that the user wishes to terminate use of BUDS. The state of BUDS
and the picture on the screen is stored in secondary memory so that

the user may return at anytime and continue at the point of termination. '

2.3. Map Manipulation and Variable Display Functions

The set of functions 0 through 14 constitute the map manipulation
and variable display functions.20 Figure 2b illustrates the
accessibility order of these functions. These functions provide a
flexible, easy to use yet sophisticated set of tools for map
manipulation. We begin by giving some motivation for the strategies
taken and data structures adopted.

Consider two map levels, a county level map and a census traét

level map. At our disposal is a CRT whose effective area is 12" x 12".

20The Stop function is also part of this set. It has the same function
- as described in section 2,2.13 and is not discussed here.

-39-

Also, remember that one of the system objectives is to display the
data in an intelligible fashion.

The screen is large enough to adequately display the nine
county San Francisco Bay Area at the county level. _However, this
is not true of the census level map. There are 1058 census and

pseudo census tract521 in this area for 1970 and the relative

"

sizes in some cases are vastly different. At leasf two reasons
exist for not displaying the entire map of this detail on the screen.
1. When one is interested in this level of detail, he is generally
interested only in a small portion of the map. In fact, one would
be hard pressed to simultaneously keep track of such a large nqmber
of areas.

2. Because of the finite screen size most of the locational data’
would be lost. Indeed, whole portions of the map would be reduced

to a series of adjacent points indistinguishable from one another.

The best that one can do with ; map larger than 12" x 12" is
to use a "window" (i.e., display any 12" x 12" portion of the map.)
That leaves the problem of selecging which portion of the map to
window. In compliance with the system objectives of speed,

* intelligibility and ease of use the following scheme was adopted.

The entire area22 is partitioned into 12 inch squares called
subareas. The lines (boundaries) on the map within these subareas
are stored in éecondary storage and are referenced (pointed to) by

the corresponding subarea. Thus by choosing a subarea the user can 1

211970 U.S. Census of Population and Housing.

22See section 3.3.2 for implementation details.)

~40-

directly display the portion of the map associated with that subarea
without having to sort through the entire map. This still leaves
the problem of selecting the proper subarea and also of displaying
any 12 inch square of the map, not just those corresponding to a
subarea. Because subareas‘are 12 inches square it is clear that
at normal magnification only four subareas need to be referenced
in order to display any 12" square (window) of the map. At a
magnification of .5 a maximum of 9 subareas must be referenced.
Since the map data must be stored in secondary memory this data
structure greatly reduces retrieval time as compared to retrieving
th'e entire map. It also, reduces the amount of data which must be
processed by the computer thus reducing computation time by the
same factor. |

To enable the user to easily choose the area of his interest
some sort of global map of the metropolitan area in question must
be presented to him: This map is called a Global Map. The Global
Map consists of .the outline of the metropolitan area together with
locational features (transportation, rivers, etc.) and a set of
-pointa. Each point corresponds to the center of a subarea
partition. The maximum size of the global map is 12" x 12"
and therefore fits entirely on the CRT. The mechanism by which the
user uses the global map to zoom in on the area of interest is .
described in the following sections.

It is convenient to divide the map manipulation and display
phase into a global map phase and a map éhase. The former is
concerned with selécting a window while the latter deals with

displaying the window and shading it.

-b1- :

Having transfered to the map manipulation and display phase
from the variable definition and editing phase the computer first
determines if any variables reside on the display queue. If there
are no variables on the display queue a message to that effect is
displayed on the screen. The user's only possible course of action
is to ackﬁowledge the message by selecting the DEFINE VARIABLES
function (number 4 on the PFKB) and transfer back to the variable
definition and editing phase. However if the display queue is not
empty program control enters the DISPLAY VARIABLE # function23
(number 14 in Fig. 2a).

For the sake of continuity it is assumed that the global map
for the requested variable is on the screen leaving the discussion
of this function for section 2.3.5.1. It is noted here that if
the global map is trivial (i.e. the entire area is contained in oﬁe
‘subarea) no global map is displayed. 'The global map phase in this
" case merely serves to reset certain parameters as described in the
.text. While the global map is on the CRT program coﬁtrol is said
to be in this global map phase. ‘Functions 0 through 4 of the PFKB
are allowable in this phasé. Some of the functions aliowable in
both the globai map phase and map phase have different meanings.

These will be indicated in the following sectioms.

2.3.1. Selecting a Window Using the Global Map

As indicated above the global map is used to make a window
selection whereas fine tuning is available during the map phase.
Preliminary window selection is made by selecting a subarea.

This is accomplished by touching one of the dots corresponding to

23See section 3.3.1 for details.

4o

‘e

vy

a subarea with the light pen. This causes the previously selected
(or default subarea) to be unbrightened and the dot of the selected
subarea to‘be brightened. The bright dot indicates the subarea
containing the center of the window. This subarea is called the
master subarea (MSA). Selection of any object which is not a subarea
such as the transportation network, etc. is ignored. Further

refinements can be made by using the MOVEX and MOVEY functions.

2.3.2. The MOVEX and MOVEY Functions in the Glocbal Map Phase

Positioning the window so that it overlaps two or more subareas
is accomplished through the use of the MOVEX and MOVEY functions
(numbers 2 and 3 in Fig. 2a). Selecting the MOVEX function causes
the message MOVEX {0} to appear on the lower left side of the screen.
The user then inputs the number of raster units24 by which he wishes
the window to be moved via the alphanumeric keyboard which replaces
the zero in the message. A positive entry moves the window to the
right whereas a negative entry moves the window to the left. The
user may input any integer from -32768 to 32767. Using this integer
the computer then determines which éubarea (or new master subarea) con-
tains the center of the window (the window may straddle more than one
subarea). If the desired move attempts to locate the center of the
window in a nonexistent subarea (i.e. takes the center of the window
off the map) the function is aborted with a bleep. If the move.is
legitimate the previous master subarea dot is unbrightened and the dot

corresponding to the new master subarea is brightened. In addition

24'I.‘he IBM 2250 uses raster units to position the beam. 1023 raster
units equals 12 inches and a subarea is 1023 raster units square.

This number which the user inputs does not correspond to the physical
distance across the global map but to the physical distance on the
map itself. Therefore on the global map 1023 raster units corresponds
to the distance between two horizontally adjacent dots or the distance
between representations of the centers of two adjacent subareas.

the ccordinates in raster units of the center of the window relative

to the center of the raster subarea are displayed in the lower right

corner of the screen. The MOVEY function is similar to the

MOVEX function with up corresponding to right and down corresponding

to left. Therefore it shall not be discussed further.

2.3.3. The DISPLAY TRANSPORTATION Function

If transportation facilities are being displayed on the screen,
selection of this function (number 2 in Fig. 2) will remove them from the
screen and vice versa (Fig. 7c). Removing them reduces clutter

while displaying them may aid in proper location of the window.

2.3.4. The DEFINE VARIABLES Function

Selection of this functicn (number 4 in Fig. 2a) indicates that
the user wishes to return to the variable definition and editing
phase. This transfer is made after storing the state of the map

manipulation and variable display phase in secondary memory.

2.3.5. The Mab Phase

During this phase the window is displayed on the screen. It is
in this phase ghaﬁ the form of the map may be manipulgted and variable
expression and shading computgd. Consequently, all results afe derived
in this phase. Functions O through 14 (in Fig. 2) are allowable in
this phase. The display transportation and define variables function

operate ezactly as described in sections 2.3.3 and 2.3.4 during the

global map phase. Therefore their description will not be repeated here.

2.3.5.1. The DISPLAY VARIABLE # Function

Having c¢ntered this function (number 14 in Fig. 2a) either through

Ul

user selection or transfer from the variable definition and editing
functicns the message NVDQ = 7, DISPLAY VARIABLE {0} is displayed
on the screen. In this case the number of variables on the display
queue (NVDQ) is 7. If NVDQ had Qome other value that number would
appear instead of 7. The user then enters the queue number of the
desired variable which replaces zero in the message. If this number
is inconsistent (zero or greater than NVDQ) a bleep is sounded and
' the user must input another queue number (QN).

Once a proper queue number has been entered the computer
de;ermines whether or not that variable is curreﬁtly on display.
If it is the function is aborted.2> The computer then determines the
state of the variable with this queue number. If the shading has been
computed the picture (map and shading) is retrieved from secondary
memory and displayed. Program control then enters the map phase. If
the shading has not been computed the computer ascertains whether
the variable is a '"same normalization constant" and also if a map for
this variable has been constructed. If it is a "same normalization
constant" v;riable and 1if the shading for the previous variable has
not been constructed an error message to that effect is put on the
screen. In this case the user must input another queue number repeating
the above process.

If the shading of the previous variable (the variable with queue
number QN-l) has been computed a message indicating that this is a

"same normalizaticn constant" variable and whether or not the map for

sthis siutation caanot occur if transfer from the variable definition
and editing had just been accomplished.

-45-

this variable had been constructed is displayed. The message also
asks the user if he wishes to use the same window as the previous
variable. He respones by selecting YES or NO with the light pen and
selecting the CONTINUE/ACCEPT function. This option is useful if
one wishes to compare different variables over the same sectors. At
this point three actions are possible.

1. If the user wishes to use the window of the previous variable

it is retrieved from secondary memory and disﬁlayed. Program
control then enters the map phase.

2. If the user'does not wish to use the window of the previous
variable then either one of two cases are possible.

a. If the window for this variable was previously constructed, it
is retrieved from secondzry storage and displayed. Program control
then enters the map phase.
or b. If the window for this variable is not constructed the program
control enters the global map phase.

I1f the variable is not a "same normalization constant" variablé
and the window has been constructed it is retrieved from secondary
memory and displayed. Program control then enters the map phase.

Otherwise program control enters the global map phase.

2.3.5.2. The DISPLAY NEXT VARIABLE Function

The user selects this function (number 13 in Fig. 2a) if he
wishes to display the next variable (i.e. thg variable with queue
number QN+1). Having selected this function.the queue number of the
variable currently on display is incremented by one and compared to

NVDQ. 1If it is greater than NVDQ, the message YOU HAVE EXCEEDED nvdq,

46-

1]

THE NUMBER OF DEFINED VARIABLES is displayed on the screen. In the
‘message the actual integer value of NVDQ is displayed in place of
nvdq. After acknowledging the message with the continue button the
message 1s removed from the screen and Program control is returned
to the point‘prior to entering this function with the original QN.

If the new queue number is proper the actions described in

section 2.3.5.1 are taken.

2.3.5.3. The COMBINE AREAS Function

This function (number 11 in Fig. 2a) allows the user to combine
individual sectors into larger units called blocks. Blocks themselves
may be combined with other blocks or individual sectors forming still
larger blocks. Common boundaries of sectors within a block are removed
and from the user's point of view the computér treats a block as
though it were an independent unit (i.e. aﬁ individual sector).
Figure 11 shows the results of combining severallsectors into two
distinct blocks.

Having selected this function a list of areas to be combined is
initialized. The following sequence of actions is possible:
I. The user then has one of three options: add an area26 to the list
of aréas to be combined or either select the reject or return buttons
of the PFKB.

A. Adding an area to the list of areas to.be combined

All areas on the list which were computed havetheiridentifier927

and shading brightened to distinguish them from areas not on the list,

26An area may be an individual sector or a block.

27A sector identifier is an asterisk within the boundaries of the
sector. Each sector has at least one identifier.

7=

To add an area to the list the user touches either an identifier

or shading dot of the desired area with the light pen.. If the area -
is already on the list or if the entity selected was a boundary the
selection is ignored. Otherwise the area is aqded to the list and

its identifier and shading is brightened. The user then must verify

"

his selection using the ACCEPT or REJECT buttons.

The REJECT button removes the selected area from the list and
unbrightens its identifiers and shading. Program control then goes
back to I.

. The ACCEPT button transfers program control back to I.

B. Selecting the REJECT button causes the selected areas to
be unbrightened nnd the function to be aborted. Program control
returns to the map piiase.

C. Selecting the RETURN button

Selecting the RETURN button causes the areas on the list to be
" combined (unless the list is empty). That is the areas on the list
.are combined into a block and all common boundaries are removed.
The window is-frozen28 and program control is returned to the map
phase. It is noted here that the shading must be recomputed since

the map has been altered.

2.3.5.4., The REMOVE AREAS Function

This functioh (number 6 in Fig. 2a) allqws the user to remove 1
areas from the window. Having entered this function a list of areas

to be removed is initialized. '

28When a window is frozen only the areas (partially or entirely)

appearing on the screen at the time of freezing can be displayed until
. the window is unfrozen. The functions MOVEX, MOVEY as well as all
other functions will operate, however no new sectors can be displayed.

-48-

I. fhe user then has the option of either selecting a area with
the light pen or selecting the RETURN button of the PFKB.

A. Selecting an area with the light pen.

An area is selected by touching either ome of its identifiers
or its shading with the light pen. The selection of some other object
is ignored. 1If the area is not already on the list it is added to
the list and its identifiers and shading are brightened. If it is
already on the list it is removed from the list and its identifiers
and shading are unbrigﬁtened.

In either case the user must then select either the CONTINUE
or the RETUPN button of the PFKB. Selecting the CONTINUE button
returns program control back to I. Selecting the RETURN button
transfers control to B.

B. Selecting the RETURN button

If the remove areas list is empty the function is aborted.
Otherwise all of the areas on the list are removed from the window
and the window is frozen. It is noted here that the shading must
be recomputed since the map is modified. In either event program

control is transfered to the map phase.

This function has two important uses. First by removing areas
from the screen it removes clutter thus enabling the user to con-
centrate on fewer areas. In the process it also speeds up computation
of shading since less shading must be computgg. Secondly it allows
the user to remove the wmcstc denéely shaded areas so that secondary
effects cun be observed which are not visable because of normaliza-
tion (Fig. 10 and see section 2.2.4). Recall that shading is computed

on a relative basis. If an area on the screen has a value which is

-hog-

orders of magnitude greater than that of other areas, these other

areas will have no shading.

2.3.5.5. The MOVEX and MOVEY Functions

These functions (number 2 and 3 in Fig. 2a respectively) allow

the user to move the window horizontally and vertically over the

[

map enabling him to fine tune his area of interest. Having selected
the MOVEX function éhe message MOVEX {0} appears in the lower left
corner of the CRT. The user then inputs an integer which replaces
the zero in the message. The integer represents the number of raster
units the user wishes to move the window. A positive integer moves
the window tc the right whereas a negative integer moves the window
to the left. A distance of twelve inches corresponds to 1023 raster
units. The user may input any integer between the values of -32768
gnd 32767. If the usef inputs an integer which attempts to move the
center of the window into a nonexistent subarea (off of the map) the

function is aborted with a bleep.

The MOVEY function is similar to the MOVEX'functidn with up
corresponding tp»right and therefore is not discussed here.

If the window is frozeﬁ, sectors which were not on the CRT at

the time the window was frozen will not be displayed._

2.3.5.6. The MAGNIFY Function

This function (number 5 in Fig. 2a) allows the user to mggnify
the window using a magnification factor between .500 and 9.999.
Having entered this function the message MAGNIFICATION FACTOR 1.000
with the previously selected magnification factor (1.000 in this

instance) appearing in the lower left corner of the CRT and a tracking

-50-

box appears at the previously selected point of magnification. The
magnification factor is changed by using the alphanumeric keyboard.
However the user must select the point about which he wishes
magnification to take place before terminating the qagnification
factor definition. He does this by moving the tracking box with the
light pen. If the magnification factor is out of the range defined
above the function is aborted with a bleep. If the point of
magnification and the magnification factor have not been changed the
function is aborted without a bleep. Otherwise the map is magnified
with the new magnification factor about the new point of magnification.
The magnification factor is relative to the standard size map and not
to what is on the screen.

It is noted here that this function does not alter a frozen
picture except by magnification. That is sectors which were not in
the frozen picture will not be displayedt Also note that a magnification
- factor of 1.000 displays the window as it is in secondary memory (no
hagnification).

This function ;s useful for several reasons. Magnification can
improve perception or clarity. By using a magnification factor of
.500 it can be used to bring more sectors on the screen. This is
especially useful for rural areas where census tracts tend to be
rather largé. The increased area of coverage may also aid in proper
window positioning by giving the user a larger detailed view of the
map.

Note that magnification factors outside the range (.500, 9.999)

cannot be obtained by repeated use of this function.

-51-

2,3.5.7. The RECONSTRUCT MAP Function

This functien (number 8 in Fig. 2a) unfreezes the windows.
That is all removed sectors are displayed and all coﬁbined sectors
are uncombined. If the picture was already unfrozen this function

is ignored.

2.3.5.8. The GLOBAL MAP Function

This function (number 7 in Fig. 2a) transfers program control
to the global map phase. Selectioﬂ of this function also unfreezes
the window and resets the magnification factor to 1.000 and the
magnification point to the center of the window.

This function is useful in that it allows fhe user to reposition
the window in a gross sense. For example, the user while making
queries over the nine county bay area may wish to move the window
from the San Francisco area to the San Jose area. It may also help
him to determine where the window is currently located relative to

the global map.

2.3.5.9. The DISPLAY VARIABLE Function

After being satisfied with the window this function (number 12 of
the PFKB) is selected to compute and display the shading. If the
variable expression is not computed it is calculated otherwise the
appropriate data is retrieved from these computation and.shading.
computation and display are commenced. |

If the shading has already been computed and is.currently on
display selection of this function will reﬁqve only the shading
from the screen. A subsequent selection of this function will restore

the shading. This latter feature aids in comprehension especially

-52-

(/3

[V

-]

Y

when used in conjunction with the DISPLAY MAP and DISPLAY

TRANVSPOKTATION functions.,

2.3.5.10. The DISPLAY MAP Function

In the map phase this function (numbers 10 in Fig. 2a) simply
removes the boundaries of the areas in the window from the CRT when
it is on display. Subsequent selection restores.the map. This
function is useful for comprehension especially when used in con-
junction with the DISPLAY VARIABLE and the ﬂISPLAY TRANSPORTATION

functions.

2.3.5.11. The IDENTIFY Function

This function (number 9 in Fig. 2a) enables the user to
identify by name each area on the screen using the light pen to
indicate the area of interest. Having selected this function the
user has the option of selecting the RETURN button on the PFKB or
selecting another area to be identifiedei;hvthe light pen.

Selecting the RETURN button transfers control out of this
function whereas selecting an area on the screeﬁ causes its identifiers
and shading (1f computed) to be brightened and the full name of the
area is typed on the typerwriter. The user then must select either
the RETURN or the CONTINUE button on the PFKB. Selection of either
button unbiightens the selected area. The CONTINUE button allows
the user to repeat the above process whereas the RETURN button transfers

control out of this function.

2.3.5.12. The PRINT Function

Selection of this function (number 10 on the PFKB) will be

-53-

acknowledged only if the shading has been computed. ﬁardcopy
quantitative results are obtainable in the following way. Having
selected this function a message appears asking if the variable
definition is to be typed on the typewriter. The user then responds
by selecting either the ACCEPT or REJECT buttons on thé PFKB.
Selecting ACCEPT button causes the variable definitian to be printed
on the typewriter exactly as it appeared on the CRT when it was
defined.
| Having completed printing or if the REJECT button was selected
a message is printed on the typewriter asking if variable values
for individual or all areas on the CRT are desired. The user must
select either the ACCEPT or REJECT buttons on the PFKB. Selecting
ACCEPT causes the computer to go into the individual area mode. In
this mode the actions of computer and user are identical to those of
Ehe IDENTIFY function (section 2.3.5.11) with the exception that the
value of the variable for each selected area is printed along with
its name. This procedure is repeated until the RETURN button is
selected. .

If the REJECT button is selected then the full name and variable
value of every area on the CRT is typed on the typewriter. Program

control then leéves this function.

v

CHAPTER 3

DATA SIRLCTURES AND IMPLEMENTATION

3.1. Introduction

There are five types of files in BUDS: a master file, basic
variable data files, map files, transportation.files and a picture
data file. There is only one master file and only one picture data
file whereas there may be several files for each of the other files
types. The master file contains the inform;tion necessary to
integrate and access all of the files. The picture data file contains
the state of EUDS and all of the data‘associated with each created
variable. he neres of the other files describe their content.

This chapter described the files in terms of fheir function, content
and implementation with the following exceptions

The structure of basic variable data files was discussed in
section 1.2.6 and throughout the text. Therefore further discussion
. would not be worthwhile. The picturé @ata‘file 1s discussed in
gection A.5."

In what follows -10000 sexrves as an end of logical record and
—iOOOO-NREC serves to indicate that the logical record continues at
record NREC. This convention made it possible for variable length
logical records.1 The symbol EV is the acronfm f§r ent;ty value.
Every entity put onto the CRT has an entity value, an integer number,
associated with it. The entity selected with the light pen is

communicated to the program via its entity value. X and Y are the

lThis is not really true since the records are already logical records
and hence these record markers may be considered as another level of
logical records.

-55-

acronyms f§r the x and y coordinates of the object to be con-
structed on the CRT. DP and LP are the acronyms for disk record
pbinter and line pointer. Disk record pointers are pointers to
records within the file while line pointers point to a particular
cell in the record. This cell is the first cell ofiinformation
pointed to by the pair DP and LP. If DP appears by itself LP is

implicitly assumed to be one, the first cell in the record.

3.2. The Master File

| The master éile contains all the information necessary to
access data from the computer data bank. In particular it contains
the necessary information to create variables and compute the

variable expression.

3.2.1. The Directory Paging Structure

Section 2.2.3 discussed the selection of basic vériables from

. the directory. This section discusses the structure enabling the
selection of basic variables in that manner. Consider Fig. 12.

As mentioned in section 2.2.3 sélecting a year list page produces a
1list of years. Selécting a year from this year produces a list of
ten pointers. Each pointer in this list points to a record in the
master file. Each of these pointers has a role in selecting a basic

variable from the directory. The names of these pointers are

G

UVNDP - urban variable name disk pointer

UVPDP - urban variable primary attribute disk pointer

UVSDP - urban variable secondary attribute disk pointer

UVMDP - urban variable map list disk pointer :

VPNTP - variable pointer array disk pointer

VCDNP - variable control array disk pointer

SDCOD - secondary attribute decoder disk pointer

LDCOD - map level decoder disk pointer

PXUND - primary attribute entity value to urban name disk pointer

PXPAD - primary attribute entity value to primary attribute disk
pointer

-56-

and the function2 of each is described in the following sections.
Figure 13 is a detailed version of Fig. 12. The first record of
MASFL contains as its first word, N, the number of year list pages
followed by N disk pointers. Each of these pointers points to a
record used to construct a year list page. If there is not
enough room in the first record for N integers, the list would be
continued in disk record NREC.

Currently there are only two yeafs 1960 and 1970 are the only

year list page in BUDS.

3.2.1.1. The Basic Variable Page Construction

The words in a page of basic variables suéh as those in
Fig. 6 are constructed using the disk pointer UVNDP, UVPDP, UVSDP
and UVMDP. 1In section 2.2.3 it was pointed out that an urban
variable consists of a name, a 1list of primary attributes, a list
of secondary attributes and a list of maps. A basic variable
consists of a name and one element from each of the three lists.
In the example shown in Fig. 6, population age is the urban variable
name. 0-19, 20-24, 25-34, 35-44, 45-65 and 65+ are its primary
attributes. Total, nonwhite, spanish surname and white are its
secondary attributes and county, city and MTC zone comprise the
1ist of maps over which this urban variable can be computed. The
structures given in Fig. 14 are used to construct urban variable
definitions on the CRT. UVNDP is the acronym for urban variable
name disk pointer. UVPDP is the acrqnym.for urban variable primary
‘attribute disk pointer. UVSDP is the acronym for urban variable
secondary attribute disk pointer. UVMDP is the acronym for urban

variable map disk pointer.

2PXUND and PXPAD are described in section A.4.

-57..

The structures differ oniy in one detail. There are no entity
values for urban variable names. Implementation demands that every
object put on the CRT must belong to an entity and each entit&
must have an entity value. Variable names all belong to the same
entity which has zero as an entity value. However each primary
and secondary attribute and each map are separate entities with
distinct entity values. There are at least two reasons for doing
this. First the physical layout in Fig. 6 indicates that the
selection of a primar& attribute specifies the urban variable names.
Hence the selection of an urban variable name is redundant. Secondly
section 2.2.3 indicated that a basic variable consists of an ﬁrban
variable name, a primary attribute, a secondary attribute and a
map. The primary and secondary attributes dre used to calculate the
data address of the basic variable whereas the map indicates whether
or not and how the data must be transformed (section 1.3.1). The
next sections discuss how this is done.

This particular structure was selected because of the following
reasons. First the character definitions of the words can be shared
by any portion of the system that needs to access character definitions
miniﬁizing redunancy. However there is a much more important reason.
This structure facilitates the addition or deletion of data. To
delete data pointers to the character data to be deleted are found
and eliminated by compacting that array (disk record); Since the
disc records which are used as pointers are ;ither 80 or 160 words
long this task is trivial. This action would leave unused cells
at the end of the record which could be used for thé addition of

data later. Also it is not necessary to remove character definitions,

-58- «

bﬁt'only their pointers. Addition of data may also be accomplished
by appeinding character definition pointers onto the end of the

.last disk record. Of course this process for deletion or addition
only accomplishes deletion or addition of basic variable definitions.
Other pointers and data must be entered for addition of data (refer
to the next sections). But nothing else is necessary for the
deletion of data since if basic variables cannot be displayed on

the CRT for light pen selection they are unavailable for selection.

3.2.2. Calculating the Basic Variable Data Disk Record Address

The structure in Fig. 15 is used to compute the selecéed basic
variable disk record address and to display the proper secondary
attribute and map lists for selection. This is accomplished in
the followirg manner. The object selected By the light pen is
identified via its entity value. When a érimary'attribute is selected

its b1383

is removed from its entity value yielding SPATT the acronym
for selected primary attribute. SPATT is used as a pointer into

VPNT the acronym for variable pointer.array which in turn contains
pointers into VCON the acronym for variable control array. The third
column of VCON indicates which secondary attributes are associated
with fhis urban variable. The fourth column of VCON indicates which
maps are associated with this urban variable and if the urban variable

data is stored in floating point or integer format. The next section

indicates how these are used to produce lists which are displayed on

3Entity values are integers. Therefore to distinguish primary
attributes from secondary attributes. from maps in the map list each
category is given a bias. Subtracting the bias from an entity value
gives a parameter a unique identifier within that category.

-59-

the CRT.

The method of basic variable disk record address calculation
is given via an example. Suppose that an urban variable has three
primary attributes and five secondary attributes. Suppose that
the data for all of the primary attributes are stored éequentially
and in order for the first seéondary attribute, then for the second,
third, fourth and fifth secondary attributes. That is the data
records are stored by varying the index over the primary attributes
more frequently than the index over secondary attributes in a two
index scheme.

Let - DREC be the record in the basic variable data file con-
taining the déta corresponding to the first primary attribute and
the first secondary attribute (i.e. the double index 1,1). Let the
entity value with bias removed of this primary attribute be SPATTI.
Then there will be 3 sequential entries in VPNT corresponding to
each primary attribute all pointing to the same line in VCON which
implies the entity values of primary attributes associated with the
same urban variable must be sequential and in the order corresponding
to the order of storage.

The disk record address of the selected basic variable is

given as

RECORD = SPATT + Base Address + (SSATT-1) * OFFSET
Refer to Fig. 16 for pictorial details.
SSATT is the acronym for selected secondaryzéttribute and has the .
value corresponding to the position of the selected secondary
attribute in the list of secondary éttributes for this urban variable. 3

The order of secondary attributes in the secondary attribute list

-60-

corresponds to the sequence of storage in the basic variable data
-file. Refer to section 3.2.3.

This structure is both simple and efficient. Because urb;n
variables usually have manymodifiers this scheme usually requires
less memory storage for list control and address calculation than
more direct methods of addressing. Secondly Fig. 6 indicates that
the directory is highly intelligible considering the quantity of
information it represents. Current implementation restricts the
total number of primary attributes on a page of basic variables at
80 and the number of urban variable names to 40. Considering screen
size experience with the curreﬁt system indicates that these numbers
are adequate. Simple programming modifications can change these
numbers but since the number of year list paées is limited only by
the amount of secondary memory, it seems ﬁnlikely that a change
will be necessary. Deletion of data is accomplished by placing
minus one4 in the appropriate locations in VPNT. Unless other
primary attributes point to the same lﬁcation in VCON these should
alsP be set to minus one. Although these actions are not really
necessary (refer to section 3.2.1.1), they are recommended for the
conveﬁience of data base management.

The addition of data involves the opposite of deletion and

therefore is not discussed here.

3.2.3. Secondary Attribute Lists and Decoding Selected Secondary

Attributes
SLIST is the acronym for secondary attribute list number. Each

urban variable has a list of secondary attributes (sections 2.2.3

4Although any negative number will do minus one 1is currently being
used and for the sake of clarity in data base manangement this con-
vention should be continued.

and 3.2.1.1). This list number is obtained from column 3 of VCON
~as described in ;ection 3.2.2. To retrieve the actual members of
this list SLIST is used as a line pointer into a two dimensional
array pointed to by thg secondary attribute decoder disk pointer,
SDCOD, as shown in Fig. 17. This two dimensional array then provides
a disc record and line pointer to a one dimensional array. The

wbrd pointed to by the line pointer is the number of attributes -

in the secondary attribute list followed by. indexes to these
attributes. These indexes are the entity values of the secondary
attributes minus their bias and are used to determine which
attributes belong to the list corresponding to SPATT or SLIST.

When a secondary attribute is selected using the light pen its index's

position in this list is SSATT which was discussed in section 3.2.2.

3.2.4. The Map Lists and Map Level Decoding

As indicated in Fig. 15 the fourth column of VCON contains the
map level list, MLIST, corresponding to the urban variable from
which SPATT was derived. A bias of 20 is attached if the data for
this urban variable is in floating point format. 1In wﬁat follows
it is #ssumed that MLIST is unbaised. Figure 18 indicates the
structure for determining the members of this list and decoding
the light pen selected map level into a map file number, MFN.

MLIST is used as a line pointer into a two dimensional array
pointed to by LDCOD. This in turn provides a disk and line pointer
into another two dimensional array. Referring to Fig. 18 these two
pointers yield in the first column the nuﬁber of maps in this list

followed by indexes. These indexes are tﬁe unbiased entity values

-62-

7]

of the map descriptors presented for light pén selection (refer
to section 2.2.3). The maps in this list indicate the map levels
to which the basic variable data can be transformed (refer to
section 1.3.1).

The second column contains the data file number, DFN, containing
the selected basic variable data and the map file numbers, MFN,
corresponding to the map list. Accepting a basic variable causes
DFN and the selected MFN to be recorded and stored along with the
basic variable disk record address (section 3.2.2) and other
information necessary to construct the basic variable word definition.
DFN and MFN are used for data consistency checks and data trans-
formation (refer to sections 3.2.5 and 3.2.5.1). This structure
allows a gfeat deal of flexibility. .First of all more than one
data file can be associated with a page of basic variables. In
fact more than one data file can be associated with an urban variable.
That is the data for primary attributes of an urban variable can be
stored in different basic variable data files. Therefore if a basic
variable data file is full and it is desired to add data to the
system the data may be entered into another basic variable data file.

Different lists of maps may be associated with a page of basic
variables. As in the preceding remarks different map lists may be
associated with the primary attributes of an urban variable. Thﬁs
the raw data associated with an urban variable may be stored in the
computer with respect to different maps. For example data for one
primary attribute may be stored at the céﬁsus tract level while the
data for another primary attribute in the same urban variable may

.be stored at the county level.

-63-

3.2.5. The Map - Basic Variable Hierarchy

The map - basic variable hierarchy as its name implies is the
structure which links together map data (locational data) with basié
variable data (urban data). This hierarchy can be represented.as a
directed graph as shown in Fig. 19.

Each node of the graph represents a map file number (or map) and
at least one basic variable data file (BVDF). There is a one-to-one
correspondence between each data element of a data record in the BVDF
and each sector of the associated map. This correspondénce is discussed
in Chapter I especiallf section 1.2.6. The map file or for'that matter
the BVDF may not exist. 1In which case they are referred to as a pseudo
map file or psuedo BVDF. Pseudo map files are maps‘whose'correspondence
0 a BVDF exists in BUDS but whose two dimensionai coordinates do not
exist in secondéry=memory. Hence a pseudo map is unavailable for display
as in Fig. 7b. However, using this correspondence transformation of data
records from one BVDF to another is possible. Refer to section 1.3.1.

Because it is a gimple matter to creaté a pseudo map the user can
define his own map relative to another map. Future goftware expansion
should exploit this possibility even further. For example, the process
of defining a pseudo map may be considered as just another method of
executing the COMBINE AREAS function (section 2.3.5.3) in which case the
pseudo map would be available for display purposes.

Psuedo BYDF's do not exist in secondary memory and play no role
in the current implementation except possibly for completeness. However
they cost nothing to implement and will probably have a role in future
software expansion. Internally pseudo files a?e distinguished from

existing files in that the former have negative file numbers while the

-6l -

latter have positive file numbers.

Two nodes of the map - basic variable hierarchy graph are
connected if the map of one node is a refinement or cover of the
map of the other as described in section 1.3. The direction of
the arc indicates the direction of the transformation. The arc
leaves the node corresponding to the map which is the domain of
the transformation and enters the node corresponding to the
resultant map or range of the transformation. Since these trans-
formations are linear, transitivity implies that if there is a
directed péth between any two nodes ;here must also be an arc
between these two nodes. Also as indicated in Fig. 19 the graph
‘need not be connected. At present the depth of the graph (the
longest directed path) is contrained to be 26 arcs. Simple software
modifications can remove this restriction. However, as a practical
‘matter it is difficult to see the need for depth beyond the current
" implementation which is discussed in section 3.2.5.1.
| This section is concluded with an example using Fig. 19. The
1960 and 1970 Census tract level'maps of the 9 County Bay Area are
incompatible. Therefore there is no arc connecting these two nodes.
However, the sectors of both maps can be aggregated using the
transformation discussed in section 1.3 to form an MIC zone map.
The MTC zone map can be transformed in a like manner into either
a city map or county level map. Therefore by transitivity there
is an arc from each of the census tract maps to the city and county
maps. The city level map cannot be transformed into the county
level map because some sectors of the city level map straddle

county boundaries. Hence ther is no arc connecting these nodes.

-65-

The next section discusses the implementation which is somewhat

more general than the one described here.

3.2.5.1. Implementation of the Map - Basic Variable Hierarchy

Figure 20 illustrates the details of the map basic Qariable
hierarchy implementation. The map list disk record pointer, MLPT,
and the data file list disk record pointer, DLPT, are kept in
first record of the master file as shown in Fig. 13. As previously
mentioned all maps and BVDF are referenced by their file numbers.
This establishes a correspondence between the nodes of Fig. 19
and the cells labeled MFN and BVDFN in Fig. 20. That is MFN, map
file number, corresponds to a map and BVDFN, basic variable data
file number, corresponds to a basic variable data file.

NM, in Fig. 20 is the acronym for the number of maps in BUDS
for which a transformation as described in section 1.3.1 is applicable
on the map MFNk.5 Equivalently NMk is the number of arcs leaving
the node corresponding to MFNk in Fig. 19 plus one. MLPT points
to the map list array. The map list array contains all map file
numbers corresponding to all maps (including pseudo maps) stored in
BUDS. Associated with each MFN in the map list array is a pair
of pointers (DP and LP) and NM. These pointers point to a list of
NM maps in the map relation array. The list of NM maps in the map
relation array is headed by the map file number associated wicﬁ the

identity transfdrmation followed by map file numbers corresponding

5This includes the identity transformation i.e. when no transformation
is necessary. The minimum value of NMk is one.

-66-

L7

to the maps obtained via transformation. In graph theory if the
subtree gunerated by the maps in this list is considered, the first
map file number in this list corresponds to the parent node while
the remaining map file numbers in the list correspond to son nodes
or filial set of the aforementioned parent nodes (Fig. 19). Hence
the name map relation array.

Associated with the parent node map file number in the map
relation arrays is NS, the number of sectors in this map, and
DFRL, the number of words in a logical record corresponding to
basic variable data file associated with the pafent node. Their
use is discussed below. Associated with each son node map file
number is a pair of pointers, DP and LP. These pointers point to
the transformation definition which is discussea below.

This data structure is well suited for a map consistency
check and for the determination of the display map. These concepts
are introduced via an example. Consider Fig. 8. Figure 8a shows
two basic yariables each with a different map. ‘Two questions arise:
"Will the ;ixing of the data for these two basic variables make
sense?" or equivalently "Is there a transformation relating the
two maps (refer to section 1.3)?" And "If the maps are conéisteut
which map should be used as the display map (Fig, 8b)?" From the
preceding comments it is easy to see that the display map must not
be a psuedo map and it must correspond to a parent node. For.the
maps to be consistent all other maps in ghe created variable must
_correqund éo son nodes of the display map or to the parent node

itself.

Attention is now focused on the transformation implementation.

-67-

In section 1.2.1 the polygonal subsets of a map were defined as
'sectors. In the implementation each sector of a map is assigned

an integer called a sector number, SN. Sector numbers are used

as indexes for a variety of activities. In section 1.2.5 a one
to one correspondence between sectors and components of data records
was established. Sector numbers serve as indexes into data records
ghus defining the correspondence. It is also natural to assign
sector numbers in an orderly sequential fashion. For example
consider the 290 sectors comprising the MTC ZONE maﬁ for the 9
county bay area Whenever possible sector numbers were assigned
so that the séctors comprising an area were sequential. For example,
sectors 1 through 40 comprise both the city and county of San
Francisco while sectors 222 through 290 comﬁrise Alameda county.

As mentioned above each map file number corresponds to a
son node has a pﬁir of pointers (DP and LP) which point to its
definition relative to the map corresponding to its parent node.

In the map relation array of Fig. 20 MFN 0 is defined relative to

1
MFN2 via the transformation pointed to by DP and LP. These two
pointgrs point to a table which has four entries for each sector6
ia MFNlO. Referring to Fig. 20 SN is a sector numbef for a sector
in MFN,,. DP and LP are pointers into a table of pairs of sector

numbers. NP is the number of pairs of sector numbers in the map

of MFNZ necessary to form the sector SN in the map of MFNlO‘ Using
4 .

6In the implementation if sector A of MFNlo is the same as sector
A of MFN2 then entries for sector A are unnecessary.

-

-8

the notation of section 1.2.1 this is expressed as

NP SNZi
S = U U S
SN s 3
: i=1 j—SNli

where

Sy € the map of MFN

SN 10

S

€ the map of MFN, .

3

Attention is now focused on transformation of basic variable
data. In section 3.2.4 it was pointed out thét when a basic
variable is selected its disk record address, data file number

(BVDFN) and map (MfN) are recorded. If the BVDFN and MFN of a
basic variable are associated with different nodes of Fig. 19
then transformation ofAthe data is necessary. Determination of
whether or not transformation is necessary and how it is performed
is carried out in the following way. The basic variable data file
list array of Fig. 20 contains the data file numbers of all basic
variable data files stored in BUDS. This table is searched for
the BVDFN of the basic variable. Then the list of maps in the map
relation array pointed to by DP and LP associated with this BVDFN
is searched for the MFNof the basic variable. If it is the first
in the list no transformation is necessary otherwise transférmation
is necessary. Continuing the above example the preceding equation

indicates this transformation can be expreséed as
SN

N SNy
DEgy = 2 2. DE;
1=1 j=SN,,

where DEj is the jth component of the data record in the BVDIN
for this basic variable over the map corresponding to MFN2
and DEgy is the SNth component of the data record for this
basic variable over the map corresponding to MFNlo
This section is concluded with remarks concerning the cells
and DFRL of Fig. 20. NS, is the number of sectors in

or equivalently the number of data elements in each

labeled NS2

the map MFN2
data record §f BVDFN, . DFRL is the logical. data file record
length of thg file BVbFNZ. The operating system of the computer
has physical records of 320 words. Furthermore logical records
cannot cross physical record boundaries. Therefore the proper
choice of DFRL can avoid the waste of space on the disk sometimes
at the expense of longer retrieval time.

One final comment, since pseudo files are distinguished from
existent files by negative numbers-10000 could not be used as an
end of record indicator. Instead O was used as an end of record

marker in the map list array and the basic variable data file list

array (refer to Fig. 20). NREC serves its usual function.

3.2.6. The Transportation Map - Map Hierarchy

Transportation maps are not as static as maps (with sectors).
For examﬁle the fransportation map for the nine county bay area in
1960 is radically different from that of 1970 yet the county map
was unchanged over this period. Therefore a mechanism is necessary
to link the proper transportation map to the proper map with
respect to both time and location. The data structure to accomplish

this is shown in Fig. 21.

-T0-

TLPT the transportation list disc record pointer is kept
in the first record of the master file as shown in Fig. 13.
Transportation maps are referenced by their file numbers. The
map file number of every map stored in BUDS which has one or
more transportation maps (also stored in BUDS) associated with it
is contained in the map with transportation list pointed to by
TLPT. If the map with transportatioﬁ list does not contain the
display map file number no transportation map exists for that map.
If the display map file number is contained in this list the two
pointers (DP and LP) are used to access a table‘of transportation
file numbers called the year transportation map list.

The first cell of this list contains NTF, the number of
transpo;tation file numbers in this list. An aftempt to match
the year contained in the basic wvariable which determined the
display map is made in the year transportation map list. If
unsuccessful there is no transportation map for‘the display map.
If successful the transportation file number, TFILN associated with

that year corresponds to the proper transportation map.

3.3. Map Files

As indicated in section 3.2.5 each map is contained in a
separate map file with the exception of pseudo maps. Pseudo maps
exist only through definition relative to another map and this
definition resides in the master file. The first record of a map
file contains six disk record pointers. They are

SADPT Subarea map disc record pointer

SCDPT Subarea sector center disc record pointer

SHDPT Subarea sector shading disc record pointer

GMDPT Global map disc record pointer

ALDPT Subarea alignment disc record pointer
SNNPT Sector name disc record pointer

-‘_L-

Section 2.3. contains a general discussion concerning the use of
maps. Therefore the following sections will be primarily concerned

with implementation

3.3.1. The Global Map

As indicated in section 2.3 the CRT is only twelve inches
square. Therefore it is impossible to display large maps with an
acceptable degree df intelligibility. For example the 1970 census
tract map of the 9 county bay area has 1058 census tracts and the
area of the largest census tract relative to the smallest is well
over 103. The best that can be done is to display a twelve inch
window of the map.

The problem now is provide a mechanism enabling selection of
this window which is simple to use and highly intelligible.

The global map prbvides this mechanism.

.Because the Meta IV is a small machine with little primary
.memory and limited hardware capabilities the partitioning scheme
described below was adopted in order to great1§ reduce both the
amount of data which must be retrieved from disc and the amount
of computation necessary té display the choosen window. With this
scheme the entire map need not be searched in order to display the
window. The partitioning scheme is as follows: the éntire map is
partitioned into 12 inch squares like a checkerboard. Line segments
(sides of map sectors) which cross partition boundaries are decomposed
into two line segments with the separation point at the boundary.
These partitions are called subarecas. Subareas are stored in
secondary memory and accessed via their subarea numbers. Refer to

section 2.3 for other details.

-T2-

The global map consists of the outline of the metropolitan area
together with locational features (rivers, large bodies of water,
etc.) and a set of points. Each point corresfonds to a subarea.
Using the global map the user is able to select any twelve inch
ﬁindow by selecting a subarea with the light penana using the MOVEX
and MOVEY functions as detailed in sections 2.3.1 and 2.3.2.

Figure 22 indicates the data structure with which the global
map is stored in secondary memory. Logical data records are 320
words long. The first record is pointed to by GMDPT, the global
map disk record pointer. The first word of this record is NL the
number of lines, end of information or disk record chain address.
If NL is the number of lines it is fqllowed By<a list of NL x
coordinates, a list of NL y corrdinates and a list of NL modes.
Mode i indicates the type of CRT beam instruction associated with
‘the coordinates (xi,yi). For example if mode 1 = 3 the beam with
- the electron gun turned on will be displaced (xi,yi) raster units
from the current beam position. Thus a line will be drawn from the
current beam position a distance'éf /&i+yi raster units. The end
of outline definition is signaled by NL =-10000. The outline
definition is followed by the subarea markers. The first word
commencing the subarea markers is SAN which is a subarea number,
end of information or disk record chain address. If SAN is a
subarea number it is followed by absolute x and y coordinates

indicating where the point should be placed.

3.3.2. The Subarea Data Structure

This section deals with the data structure in map files necessary

to manipulate subareas. There are four interrelated structures:

-T3-

(1) The subarca sector boundary data structure as its name implies
contains the data necessarvy to construct sector boundaries (2) The
subarea sector center data structure contains the data necessary
to put an asterisk inside the boundaries of all sectors in the
subarea. (3) The subarea sector shading data structure as its
name implies contains the data necessary to calculate shading dot
or character location. (4) The subarea alignment data structure
contains the data indicating the subarea connectivity.

Each of these structures and their interrelationships is

discussed in the next four sectionms.

3.3.2.1. The Subarea Sector Boundary Data Structure

Figure 23 illustrates the subarea sector boundary data structure.

SADPT, the subarea map disc record pointer, points to the subarea
disk record pointer arfay. The number of subareas, NSA, currently

~allowed in any map is 79. This corresponds to a 79 square foot

map which seems adequate. However minor softwave and file modifications

will remove this restriction.

The subarea numbers of the desired subarea is used as an index
into the subarea disc record pointer array which contains the disc
record pointer and, NLIN, the number of lines in the subarea or
equivaiently the number of entries in sector boundary array. In the
sector boundary array x and y are absolute coordinates meaning move
the CRT beam to position (x,y). Hence the range of x and y are
integer values between 0 and 1023. Associated with each coordinate
pair are two number SNi,l and SNi,Z‘ SNi,l = 0 signals the software

to move the CRT beam with the electron gas turned off to coordinates

-Th-

7]

/e

(xi,yi). T:at is draw a blank line from the current beam position
to (xi,yi). SNi,l > 0 indicates that the line from (xi-l'yi-l)

to (x) is a boundary between sector SN and sector SN, ,.
i1 i,2

i1

S = =1 indicates that the aforementioned line is an exterior

Nyg,2
map boundary. That is it is a boundary only for sector SNi,l'

The sector boundary array data structures has two main
advantages. It requires less secondary storage and consequently
less retrieval time and more flicker free objects can be put onto
the CRT. Normally it requires six words to specify the endpoints
of a line and the sectors for which it is a boundary. This data
structure contains the same information with only four words (plus
a little). This is accomplished in the following way. Before the
subarea béundary data is entered into secondary storage it is processed
by a simple program. This program starts at a line endpoint and
‘tries to draw the longest line, along sector boundaries possible
" without picking up the pencil. This data is entered into the sector
.boundary array and the process repeated until all of the subarea
data is accounted for. Although'crude this procedure saves con-
siderable amounts of storage space, retrieval time and display items.
The saving of display items is especially important since it takes
as much time to draw a blank line as it does a line.

The sector boundary array data structure also provides a con-

venient mechanism for the suppression of selected sector boundaries.

3.3.2.2. The Subarea Sector Center Data Structure

The subarea sector center data structure is illustrated in

Fig. 24. SCDPT the subarea sector center disc record pointer points

-T5-

to the subarea center disc record pointer array. The subarea number
of the desired subares is used as an index into this.array to access
a disc record and a line pointer pointing to the sector center data.
Each entry consists of a triplet SN the sector number and CRT
coordinates (x,y) for this sector. The coordinates are used to
place an asterisk which is placed within the boundaries of the
sector and used as a unique sector identifier. Sector boundaries
cannot provide a convenient way to select a sector since in most
cases at least two boundaries must be selected to specify a

sector. This would be cumbersome for the user. Secondly imple-
mentation would be much more difficult and greatly degrade system

performance. -

3.3.2.3. The Subarea Sector Shading Data Structure

Figure 25 illustrates the subarea sector shading data structure.
SHDPT, the subarea sector shading disc record pointer points to the
subarea pointer array. The sector number of the desired subarea is
used as an index into this array yiel&ing a set of pointers (DP
and LP). These point to the sector pointer array which inturn con-
tains pointers fo the shading data array.

Since with a very high probability all of the sectors in a
subarea may not be on the screen, this data structure provides a
convenient mechanism to skip over sectors which are not to be shaded
either becauée the variable value is zero or the sector is not on
the screen.

In order to maximize system performance the following form for

the shading data was adopted. The shading data array contains the

coordinates of the sector boundary line segments in counterclockwise

-76-

§

g

fe

2

13

't

jo

direction beginning with the endpoint with a minimum y (ordinate)
coordinate. Furthermore this data is assumed to describe a
polygonal body with no other sectors within its boundaries. If
this is not the case and there is another sector within the
polygonal boundaries, the containing sector must be‘partitioned
into as many polygonal components as necessary so that the partitions
contain no sectors yithin their boundaries. An entry for each of
these polygons must be made in the sector pointer array using the
same sector number. Since this is a rather rare phenomena this is
not a severe restriction. For example the 290 éector MIC ZONE map
contains only two sectors which are within the polygonal boundaries
of another sector.

The qurreﬁt implementation restricts the number of sides for

these polygonal shading definitions to be no more than 40. This

‘has been found to be more than adequate in practical experience.
_ If however a case arises where the number of sides exceeds 40 then

‘either one of two courses of action is open. Either the sector can

be partitioned into set of polygonal areas asvdescribed above or
a simple programming modification can be made to increase the
maximum number of sides permissible.

From the above it is easy to see that a sector may consist of
two non-adjacent or contiguous poiygonal areas. The definition of
a map in section 1.2.1 is quite general in that it allows a sector

to be thé union of any finite set of polygonal areas.

3.3.2.4. The Subarea Alignment Data Structure

Figure 26 illustrates the subarea alignment data structure.

The data in this structure gives the position of all subareas in a

-TT-

map relative to contiguous subareas. Subareas ars not to be confused
with sectours. Refer to sections 2.3, 2.3.1, 2.3.2 and 3.3.1.

Subareas are 12 inch squares which cover the map like a
checkerboard. Each subarea is given a positive intgger value
starting with one called the subarea number (SAN). Subareas are
referenced by their subarea numbers. In order to display a window
which straddles more than one subarea the connectivity of the
subareas involved must be known. This information is contained in
the subarea alignment data structure which permits the alignment
of subareas. This data is also used by the MOVEX and MOVEY functionms
to move the window across the map.

ALDPT points to the subarea alignment data array. There are
four cells in this array for every subarea of the map. The SAN of
the subarea for which alignment data is desired is used as an index
‘into this array. The first cell contains the SAN of the subarea
" directly above the indexing subarea and so forth as indicated in
Figs. 26a and 26b. The absence of a subarea is denoted by the
insertion of a negative number in the appropriate celi.

As previously noted at minimum magnification (.5) a maximum of
nine subareas (corresponding to an area three subareas §quare)
mustAbe accessed to display a window. 1In the programming the subarea
connectivity matrix (SACM(3,3)). This data structure allows for a

single and efficient algorithm to set SACM and thus move the window

across the map.

3.3.3. The Sector Name Data Structure

Figure 27 illustrates the sector name data structure. This

structure contains the data necessary to output sector names on

-78-

q0

[

{: 24

n

ie

the typewriter.

SNNPT the sector name disc record pointer points to the
sector name array. The sector number is used as an index into
this array to fetch a pair of pointers to the sector names pointer
array. The first cell pointed to contains the number of names
needed to completely identify the sector. This is followe@ by
pointers to these names which are stored in the names array. The
structure saves considerable space and redundancy. For example
the full name for an MTC zone is MIC ZONE 5, SAN FRANCISCO
COUNTY, CALIFORNIA. The number of names is thrée and only the
number 5 need be changed for every MTC Zone in San Francisco

county.

3.4. Transportation Files

As indicated in section 3.2.6, trénsportation maps are accessed
using two indices: a map file number and a year. These two indices
produce a transportation map file number, TFILN, which in turn is
used by the program to access the appropriate data structure. If
no transportation map exists TFILN is set = -1. Because at the
momen; there is no concerted interest in transportation studies
by the people in the Urban Systems Group and because there is a
strong desire'to exploit the egisting system before préceeding
to other activities this phase of BUDS has not been emphasized.
Careful consideration of transportation study objectives will have
a strong influence on further software implementation in the

transportation realm. This in turn may necessitate a revision of

the transportation file structure. Since one of the design objectives

-19- g

of BUDS was to facilitate any implementation changes the current

implementation itself will impose few, if any, restrictions.

3.4.1. The Transportation File Structure

The transportation file structure is illustrafed in Fig. 28.
TFILN the transpoftation file number points to an array containing
three disc record pointers TGMPT, the transportation global map
disc record pointer, TSAPT, the transportation subarea disc record
pointer and TRNPT, the transportation name disc record pointer.

TGMPT points to the transportation global map data array
which contaihs the data necessary to overlay a transportation grid
on the global map described in sections 2.3, 2.3.3 and 3.3.1. This
array contains entries in groups of three cells. The first cell
contains the type of graphic instruction, T, to carry out on the
.coordinates éontained in the next two cells. For example Ti = 2
. 1s a command to draw a line from he curfent beam position to the
coordinate (xi,yi). See Fig. 28 for the other allowable graphic
instruction types. Since there is only one entity, T = 4 is a
forbidden type for the global map.

TSAPT poihts to the subarea disc record pointer array. The
subarea number of the desired subarea is used as an index into this

array to access a pair of pointers. These pointers are used to

fe

access the subarea transportation data array which is indexed by a
subarea number. The latter structure contains the necessary data
to construct‘the transportation facilities map subarea by subarea.
A mechanism similiar to that described in section 3.3.2.4 allows

transportation facilities to be displayed over the map.7

7The subarea connectivity matrix SACM is used to select the proper
subareas.

d

The first word pointed to in the subarea transportation data
array is the transportation number of the facility to be con-
structed;~ Transportation facilities are referenced by their
transportation facility number, TRN. For identification purposes
transportation facilities are treated like sectors in the map
however their entity values are negative to distinguish them from
sectors. Thus a transportation facility with number TRN will have
an entity value - TRN when displayed on the screen. The data
following TRN in this structure is exactly like that in the global
transportation map data array except for the foilowing. T =4
signals the beginning of a new transporation facility definitionm.

The transportation name identification structure is exactly
the same as one described in section 3.3.3 for sectors. Therefore

it is not discussed here.

-81-

CHAPTER 4

CONCLUDING REMARKS

4.1. Concluding Remarks

Empirical studies of urban systems are impeded by the
complexity of urban systems and the nature of urban data. In
particular the large number of variables implies large data bases.
Secondly three attributes characterize urban variables, quantity
or quality, location and time. This thesis has attempted to
describe an interactive computer graphics urban information system
which presents urban data in a highly intelligible or comprehensible
form which takes these attributes into account.

The capabilities of man-machine interactive systems such as
BUDS are difficult to describe with words. They are more fully
conveyed through system operation. Interest both within and outside
the university has been generated through word-of-month which lead
to several system demonstrations. During these Qemonstrations it
was noted that the system response to each query usually evoked a
series of "follow-up" queries which were answered immediately. It
was also noted that in one instance misconceptions concerping the
population distribution within San Francisco were dispelled.

BUDS is an evolving system and software development is now at

o

the point where many empirical studies can be performed easily. The

first studies will probably involve statistical testing of hypotheses

23

of urban development in which certain characteristics of old
communities will be compared to those of new communities in the

San Francisco Bay Area.

e

As far as future developments are concerned, certain graph
drawing capabilities such as histograms, Engel's Curve, etc. are
in the final stages of development. The next step should be the
development of an automatic facility to add and delete data.
Incorporated in this capability should be the abilify to add user
generated data (from created variables) to the data bank. Although
there are many other possibilities experience with the system is

needed to determine which of these should be implemented and with

what priority.

-83-

META IV
(CPU and
16 K- 16 Bit

Cardreader ——»
Memory)

[~ Typewriter

512,000 word

, Disc Unit

Tl

Fig., 1 The Computer Equipment

IBM 2250 Graphilcs

Console with Light

D
Pen and Program

Function Keyboard

N A
e, e #4 b e

. M e, .
.

Ry

.
o i tn,

.
-~ -
P e o g e Gk e re i el eceme e, ¢ ML e ile sl g Ml ege mmm ne m ov e
F.' haol " s ————) p
.o L . ,
PUCE WV, VU R —g el ot ' oy s b POy

\./ \/ N, _/ \/ \,/ 2/
18 PART NO. 5704436

BERKELEY URBAN DATA SYSTEM
— PHILIP MACRI

PRI STt 4 T VT TP ERgTe . P T S WP - N T S TR - T YR T T

" _DEFINE__
4

-y
e —

. NEW_VEAR
LIST PAGE

"6.

Ada

—MAR
o

_NMAGNIFY

—TRANS__
1

—_REMQVE _
AREAS

_COBINE
__AREAS
1

_

—_BASIC__
_VAR_LIST
17

START._NEW

(DISILAY .
VARIAZLE
12

VARIABLE = __

18

_DELETE .

2

—_GLOBAL RECONSTRUCT _IDENTTFY

___MAP

___MAP.

000

_DL.PLAY
NEXT VAR

O

D"'C‘D’

e bt e
" '."-:

O

AXEEND CHANIE VAR

LOPY VAR

— POS ON. PQ

20

smcm_
‘T4 YEAR
15 =

DISFL VAR

#INSL &
21

. L iy R
[T e aatan d

! T
o &) e amt denb ottt oo

[P

~iea

———e

cie

_ VARIABIE pASIC VAR ¥TO SL# _ IR

22 & 23 24 25 26 27 4 F.
O O i i
. # i

— . _®BETECT_ _RETIRN__ _CONTINUE -

l _ACCEPT__]
28 N 25,7 30 3 i
|
b e s e o 3

Fig. 2a The Program Function Keyboard

'85' - — - —— -

[

DQEP Pragram
r— - - __.=— = — "“—'""“l
r— Delete Variable
—» Append

|
!
I Change Variable Position on
|

the Display Quoue.

L @
Variable # in Soreon
Program | A Digg:strm:r#a # .

|——» Start New Variable
——a Dolete Basic Variable .

’ Loeation #

E— Besot D;.splay Queue

——p= Stop

|

|

i Copy Variablo # to Screen
|

! ——=- Display Variable
|

e e e e e = | —— = =

i : ’ ' VABDP Program

S

— Dls'p;lay M¥ap
'_," Display Transportation Facilitiles

. | Move X

RS o T

I — Move Y

e

- -

o an e S

NPT

.~ —— L

— g e—— tw—

: . - j——-Define Variable
; ’ - . —— Magnify .
I .) o v . . = Bemove Areas

}—Global Map

AL el L Zata

¢ T —

— Beconétﬁct Map
——> Identify -

[—* Print

|——»- Combine Areas

- ——-Display Variable
[——=* Display Next Variable
» |—— Display Variable #
b—2u Stop

"

© A

Fig. 2b-1 Function Accessibility

DISPLAY
VARIABLE

Fig, 2b=2

Are there - | Enter Is it a
ten varilables no screen valid yes
on the display | > position [™ |screen | —
queue? position
(:}‘—_____—_yes no
Store all . Are there any 1 Go to
variables created no VARDP
—
on the CRT > variable . Programs
syntactical
errors or map
inconsistencies?

J yes
<i7CONTINUE :>

If a
created
variable
is in
this
position
store it
then put
up header

——>@

ce

| P

se8usyo
o3utxdoadde aywy

pe3aTep °q

3% 8391ap 03 31quiasa
P9309T5S SBM|@————— JO UOT309[3S
e1qutaIva v JI uad 3yst]
ou _ snanb
m Lv1dstp uo
- S— LPTI®A | . . uot3ysod mau
1:1-7.9 £Lay3 aay | puw eTquUTIBA
Jo asqunu

snanb zejzumg

€-qz2 °314

-88-

TIGVIUVA
a1I14d

anEnd
AVidSsia no
NOT.LISOd
TIEVIHVA
JONVHO

) . - :ru.'lw‘l!lnig -

-69 -

Delete
B
| variable

Light pen Was a basic
selection of ———p|variable
basic selected?
variable
no
If a variable
DISPLAY Enter a ' is in this screen

VARIABLE #.
IN SCREEN

queue Are these position store it _.,@
nunber and ——d-|valid then display

LOCATION # a screen numbers? | yes |variable
o T position definition
no

CoPY Enter two - |ATe they Store any
VARIABLE # nunbers valid yes ivariable in
TO SCREEN QN and SCPOS ; : 'SCPOS and —@)
LOCATION #) no ’ create a copy

. . of QN in SCPOS

Fig. 2b=-4

-06_

(/F;ESET

\
)

\

Reset the
display queue
to indicate
no created
varlables

Store the

state of
BUDS

Fig., 2b-§

A & x4

Exit

942 °4

sel 3_
zoqena IS
VAR s o2ed 31020331D
oFTEs ‘l_ we Sutisize
) o sI¥y 81
ek o
Iequna . —J[
. o0d puw Jeelk
.sﬁul»!.uﬂuﬁuﬂu - Teqwon aova 3511\ S 143 303 peserd 5
pli el oSwd qvax ran ~otD 8% 39TT 5
Jojuz SIqviIvA OIseg o
ou| . ou . [}
1p0300(es uog3teod useIos ey}
uot3gsod Saypuedde Jo uo eiqeilva auaddv
fugpuedde ©OFI00Te8 P93CILD
PITeA © ewp uod yIt7 ® a3eyy o1

Lorqegxea]
otewg yues|
%43 8743 o1

zl 2I—

E

@—

NO
e1IqQuIIvA JO
93838 9X039

4=q2Z °3t4

aaysy |
Letdstp estmIsyjzo
Wayy 9A0WSIX
uo aI®v SaT3T1Io8J
uogjyejzxodsueay Jr

LHD 8u3

(@

dvua
39NI35U0)

9AO}
Jo3jug

VSH 20
uot30910e8

ou

dum {8qOoTS
8 aI9Y3 8]

sI9j3ausaed
3989y

.« ued qysyy |™*

dVi
1ve019

DISPLAY
TRANS

DISPLAY
KAP

Fig., 2b-8

If transportation
facilities are on

the CRT remove
then otherwise | .

display them

If map is on

it otherwise
display it .

the CRT remove

Enter the
nove in
raster units

valid yes

Clear shading
and reconstruct
map

-f!.(.‘-

Flg. 2b-9

Light pen
selection of
magnification
center

Enter
magnification
factor (MAG)

1s

no

.S£MAGL10,0? | yes

Is MAG
different or
magnification
center different?

yes

!é;or

Clear shading
and reconstruct
map ‘

coMBINE)Y

Fig. 2b-10

Have any

Light pen Brighten
selection area
of an area

Unbrighten

area ; 't

Put area on
the combined >
seoctors table

selected for |
combining?

[Unbrighten
areas and
remove from —-—.’
combined
sectors table

—» | Clear shading and map. _..
Construot modified map: @

* » v

@‘I 30NI35U009I pue|“*FSX | petJrpom

den

200I38U009I pumv
(C) e Sutpeys
I891D

(9299x3un) dem

suipvys IBVLTO
‘gxejomvred 3980y

ou

¢TBAOTAX
804 I0J PI309Tes
uesq 5BAIY

Auv 9AvH

TT-qz °3tv4

ou|’

¢ (uazoxy) v

HLSNOOTH
uesq dem

oy3 swg

NUNLAY

% JAONTH

dem 8yq

uo ®¥IIB us JO
UOoT309198
usd 3y8y71

-96-

Fig.

2b-12

fee

'Light pen Was a valid Brighten
selectionp—————|object yes object and
e selected? * |print 1id-
entity of
object
selected
|
Unbrighten
object

Has the shading Print

Print .
been computed yes “"Should the

created

PRINT for varinble QN? variable variable
\ definition be
no. . |printed?"®

Print identity and

variable value for -__..‘
Print "Should each area on the CRT ®)
values for i
every area on
"|the CRT be Brighten
printed?* area and
Light pen selection print
' of area — identity and
) variable
P value for the
selected area
Unbrighten
area
Filg. 2b-13

~66=

~ -
-
Store the
DISPLAY picture and Y ‘|Enter a Is QN yes
VARIABLE state of the [———p=-|queune —®|valid?
NUMBER variable A number QN
being display
Entry point i | | . - .
Jrom DQEP " I :
L | I8 shading | no 8 the Go to
A computed * | map | global
. construoted? map
yes T
-~

Restors state
and display

picture for

this QN
Is QN the : Store state
DISPLAY last variable no _ |and pictures
NEXT VARIABLE on the display for this QN
queue? and set
QN=QN+1

yes

Fig. 2b-14

-00T~

DISPLAY
VARIABLE

DEF INE
VARIABLES

Fig. 2b-15

on the CRT display
it otherwise remove
it from the CRT

[Store state

and picture
for variable QN

Store state

QN

IT

e {from

rog

and picture |
for variable " @

display it

. Is variable Compute ' Iaoag b1
Is shading no . |expression no variable »-|variable
computed? . computed? expression expression
. data neces-
‘lyes yes sary for
' shading
If shading is not Compute)
L— {ghading and

QN= 1 NEW NCHALTIZATION CCYCTANT

A- POPULATION, TOTAL, MIC ZN, 1970
B- RES POP (1INCL RURAL), TOTAL, MTC ZN, 1960

Fig. 3 A Created Variable.

QN= 1 NEW NORMALIZATION CONSTANT
Fig. 4ba Header created by selecting the START NEW VARIABLE function.
QN= 1 SAME NORMALIZATION CONSTANT

Fig. ll-b Header as & result of touching NEW of Fig. ka with the light
ren and accepting with the ACCEPT function.

1 LOW-HIGH SHADING
X +0.000QE+00 X +0.0000E+00 X

Fig. 4bc Header as a result of touching NORMALIZATION CONSTANT of
Fig. ba or Fig. Ub with the light pen and accepting with
the ACCEPT function.

Fig. 4 Changing the Variable Header.

-101-

LON-HIGH SHAD ING
Nz 03 L $9.4T99E+66 M +7, 1999E481 N

A- POPULATION, TOTAL, NTC ZN, 1976
8- TOTAL ACRES: MTC 2N, 1976

ExP= A/S

Fig. 5 A LOW-HIGH Query: definition an. answer.

-102-

2181, SCM EMROLL ELNi0-8) NIEnie-12) COLL

$cH COMPLTLAGE 23¢) ELNLO-3) NIGHIN-12) COLLL1-3) COLLias)
107aL FANILY INCORE 6-2.48 3-6,9C 7-9.4C 10-14.9¢ 13-26,9x 2%
CANILY INCONE $-2.9C 3-5,9C T-4.9T 16Ke "&"“
SEOPLE OER UNIT V2 3-8 4¢
WOUSTING UNITS er t‘l%nnﬁ
AuTOS PER nn ¢ 1 2 -ire
RES POP LINCL RURAL)D
POPULATION AGE 0-19 2624 25-38 35-44 43-03 oS¢
UNITS PER DWELLING 12 3¢
PEOPLE PER ROOW -.%¢ L90-.75 600 1.6

RESIOENT MOUSING UNIT WEIGHT(STORIES) -3 4
WOUSING CONOITION SOUNO OETERIORAT ING OILAPIOATED
STRUCTURE AGE SEFORE 1146 1948-40 1938-3/4¢
GWMER OCC WOUSING VALUE -16X 19-19.9 20-34.9 35
GROSS RENT . -68 60-39 W-110 120-144 150+
NOUSING UNIT URS AN RURAL
YACANT nOUS1 SALE RENT OTHER

- OCCUPLED HOUSING QuwER REWTER

CIVILLIAM LABOR FORCE
PROFESS, TECH

FARMERS, FARN MANAGERS

MANAGERS. OFFICIALS, PROPRIETORS CLERICAL
SALES CRAFTSHEN, FORENEN
OPERATIVES PRIVATE W

SERVICELER W)

LABORERS (EX FARN, HiNg)
EMLOT STATUS (MALES 1eYRSe)

EnoLOVED

niLITARY

026E NURSER20001. YEARS 168

Fig. 6 A Page of Basic Variables.

FARN LABORS: FOREN
GCC HOT REPORTED

UNENPLOYED
HOT 1N LASOR FORCE

The map list (COUNTY, etc.), list

of secondary attributes (TOTAL, etc.) and list of primary
attributes (0-19, etc.) modify the urban name POPULATION AGE.

-103- .

anNz 94 KEW NOCRHUALIZATION CONSTANT

A- FANILY INCOME, 25K+, TOTAL, COUNTY. 1478
8- POPULATION, TOTAL: COUNTY, 1476

EXP= A/8

Tiz. Ta A Created Variable

Fig. To The Map of Fig. Ta: The Nine County Bay Area.

-

-10k-

it

Fig. Tc The Map of Fig. Ta with Transportation Facilities.

F:g. 7. Regrore to the Ouerv of Fig. Ta.

-105-

anN= 61 NEW NORMALIZATION CONSTANT

A- FAMILY INCOME, 6-2.9K, TOTAL, MTC ZN, 147¢
8- FAMILY INCOME, 6-2.9K, TOTAL, CITY, 197¢

EXP= 166, 6%(A/8)

Fig. 8a A Created Varisble with Two Different Maps

Fig. 8b Response to Query cf Fig. 8a. MIC zone is the Display Map.
Fig., 8 Mixing Maps in a Created Variable

~106~

aws 02 NEW NORMALIZATION CONSTANT
aA- FANILY INCOME, €-2.9%, NONWMITE, NTC 2N, 1948
€xPz A

QNz 03 SAME NORMALIZATION CONSTANT

A- FARILY INCOME, 6-2.9%, TOTAL, NTC 2N, 1976
8- FAMILY INCOME., 0-2.9K, WHITE, NTC ZN, 197¢

EXP= A-$

Fig. Ga Tw§ created variables. Each representé the distribution of poor
nonvhite families. '

Fig. 9b The response to the variable with QN= 2 in Fig. Qa.

-107-

* 8. g *
. . o X s
. A . .y s s
e
.......
§°
. g
I D
sl *
. s
s . . .
d
. LY
. .
. .o
oo e
.
K .
. . . AR
o 8.

........

......

Fig. 9c The response to the varieble with QN= 3 in Fig. 9a.’

Fig. 9 An.Intertemporal Comparison. Fig. 9c shows a spreading out
of poor nonwhite families as compa.red to Fig. 9b.

-108-

aN= 68 NEW NORMALIZATION CONSTANT

a- RES POP (INCL RURAL), NONWHITE, MTC ZN, 1966
8- RES POP (INCL RURAL), BLACR, MTC ZN, 1966
C- TOTAL ACRES, MTC ZN, 1976

ERP= (A-B)/C

Fig. 10a A created variable asking for the oriental population density
in San Francisco in 1960.

Fig. 10b The reponse to the query of Fig. 10a.
-109-

Fig. 10c The response to the query of Fig. 10a after the removal

>f the two most densely populated areas.

Fig. 10 Kemoving Sectors

-110-

L7

Fig. 11 Comoining Sectors. Combining sectors removes common boundaries
and produces uniform chading in the unit of ccnbined sectors.

-111~

%

Year List Page

Fig. 12

D

-

Year 1°

Year M

I
v

List of
Pointers
for Page 1

v

rectory Puging Structure

4 °
.__-_——l .
) NPGS EV, UVNDP
Page 1 *— Xy UVPDP
. Y, UVSDP
. 19 UVMDP
° 60 VPNTP
-10000-NREC DP1 VCONP
LPy SDCOD
<¢+—MLPT . 1DCOD
«a¢—+ DLPT . PXUND
1 TLPT . PXPAD .
Record 1 -1000-NREC .
of Master
File .
Year Liét .
Page

AR TN I IO P A B

NPGS=number of yearilist pages

Fig. 13 Detalled Directory Puzing Structure

-113-

.....

\J

=10000-NREC

NCznumber of characters

ACAERFICAFRLAERE

UVPDP oxr UVSDP ox UVMDP

DPy —

-10000~NREC

Fig. 14 The Data Structure Necessary to Construct a Page of Basic

Variables

-1ik-

-

NConumber of characters

3+

[

889IPPY PIOOOY XST(9TQBTIBA oTseg ejndwo) 03 sanjzonrgg ¢1 *°3t4d
: (IdANA)
Lexxy x23utog

(NODA)
2TqQBTIBA

£8IXYy TOIjuUO0) OTqBIJIBGA

3

— L
° LIVdS

18T
19487 dey

I8TT °INqQTIZIV 388JJ0 SSIIPPY
AI8puocoeg » 9svd _
~dNODA dINdA

«115-

07seq OWOS Uy DFUJ IV POI038 ST DIOOSI BIBP 38I[J 9SOYM

NOOA
—

£
U0OT3BINOTB) PIOOSY 08Tq Jo ordurexy

*9TTJ ©B3IBVP 9IqQBTIBA
seInqix3ae ALrsutad € Y3TM SANd UT POI03s ©TqETIBA UBqIN Uy

TLIVAS
~0TUa

LNJA

188330

SSOIpPPY
eswvg

=1

+——T),1VdS

91 °3Td

-116-

SDCOD *

-[" Number in list
EVi

-It- DP LP —
SLIST EV2

~ -

Fig, 17 Secondary Attribute List Retrieval
Structure

-117-

1LDCOD- ‘ *

MLIST~—»| DP LPer———=| NL DFN
| EV,-930 | MFN,
EV,-930 | MFN,

DFN=data file number
MFil=mep file number
NL =number of map levels

fo

NL

' Entries

This structure is used to determine members of

the map 1ist and to decode the selected level

into a map file number,

Fig. 18 Map Lists and Decoding Structure

-118-

(=

O—0—0

ydexn

LOVHL
SNSKNID
04671

O

L£YoIBISTH OTqBTIB)A °Fsvg-del Syl

6T °3td

e

-119-

ol 071 8l

MFN, . | NS, | | DFRL

MFNyo [DP || LP o]

HLPT'—--—'
MFNy; | DPy LP, | NMy
WFN, | DPpl | LP, (| MM,
L]
0 NREC
Map List Array
DIJHP——————v
BVDFN, | DP, LP; | NMy
BVDFN2 DPZ' LPz NHZ
0 NREC

" PBasic Variable Data File
List Array

BVDFN = basic variable data file number

MFN
DP
Lp
NM
NS
DFRL
NREC

Pig. 20

map file number
disk record pointer
array line pointer
number of maps
nunber of sectors in this map

the basic variable data file record length
the disc record continuing this list

Map Relation Array

v [
SN SN, , }
DP - SN21 o |
[S—— . r .
LpP sulz NP -Pairs
S
NP sz
«10000-NREC SNyN P
s“zNP)
L]
[]
Sector Pairs
&able Ta‘b]&

Transformation Definition

SN = sector number
NP = number of pairs

Implementation of the Map - Basic Variable Data Hierarchy

v

s

-

MFN, | Dpy || LP,

o Year1 . TFILNa
0 NREC I
Yea?NTF2 TFILNb
Maps with Trans-
portation Flles .
in this List Year Transportation
-Map List

NTIF = number of transporta-
tion files in this list

Year = EBCDIC character code
for the year

TFILN = transportation map
file number

Filg., 21 Sirvatory ta itah Transportation Maps
to thn Disployr Yoo

)]

-121-

GMDPT ~—

NL =

Hodez o

<

Foo ol o |-

Hod31

NI=-10000

SAN1

numbexr of lines if positive
~10000-NREC if negative

e 25 4ignore instruction

draw absolute point at Xi,Y1
draw absolute line to (x1.!1) from current beam
position
draw relative point to (X1, !1) from current beam
position
draw bright relative line to (X1,Y1) from current
beam position
draw relative line to (x1 Yi) from current beam
position
ignore instruction
«1,-2,-3 draw relative blank line to (X1,Yi) from
current beam position
<4,=-5 draw absolute blank line to (X1,Yi) from
current beam position

o » N W

k_(-5 ignore instruction

SAN = { gubarea number if positive

=10000~-NREC if negative

Fig. 22 The Global Map Data Structure Implementation

-122-

(]

“’l

XAy

hantS 3 'y

SADPT- ¥ ¥
DP; NLIN, X, Y, SN, [SN,
DF, | | NLIN, .
: XyLvg | e, | Snpiwg .2 SNyL1n, .2
DiNSA NLINysA Sector Boundary Array
NSA

Subarea Disc Record
Pointer Array

- RL1N = number of entries in the array pointed to by DP
NSA = number of subareas in this map
SN = sector number

Fig. 23 The Subarea Sector Boundary Data Structure

SCDPT « |

Subarea Center
Disc Record
Pointer Array

E}Y 8

SN = sector number

. 3

-10000-NREC

Sector Center
Data Array

Fig., 24 The Subarea Szctor Center Data

Structure

-12h-

it

-Get-

SHDPT —

Y ¥
DP, } LP,
. —»>| SN
X DP '
LP —
NPTS
«=10000-NREC
Subarea Sector Pointer
Pointer Array
Array .

J< e

XNPTS

NPTS

Shading Data
Array ’

NPTS = the number of sector boundary line segments

Fig. 25

The Subarea Sector Shading Data Structure

SAN
B - - - - - ———-— i
|
SANi.w | SANioN :
SAN '
1,E SAN SAN=1 SAN
1,8
1 |
* | SANi.S !
L] ‘ e —'
Subarea Location as
Subarea Indicated by the Subarea
Alignment Alignment Data
Data Array
N 1indicetes north position or above
W indicates west position or left
E indicates east position or right
S 1indicates south position or below
SANi.é = the subarea number of the subarea in
’ position p the subarea with subarea
number 1, '
Fig. The Subarea Align.ent Lata Scructure

=126~

o

DP ' | LP~+—»| NN
s DP1 ’ 1
LP, . 1
S IESE——
DPNN .
>
LPNN NWRDS
. qu
Sector .
Name Sector .
Array Names TC J
Pointer NWRDS
Array
Names
Array
NN = number of names associated with this
sector :
NWRDS = the number of words necessary for this
name

TC = two EBCDIC characters in this cell

L.

Fig 27 The Sector Names Data Structure

-127-

dequmu £37T1T99) uogjzwjrodsusiy
1199 81yl Ut 81939VXWYD HIQHET ON3

emwvu 81y}

I0J £I955200U SPIOM JO J9QquMU QY3

£3711093 8TUR

YaTA PIIVIO0SE8 83WYU JO IaqEmu

Taq1um pi20ax {ROYBO] OTUN~0000T~):

I

£373U9 MU 331938
jugod avxQg
QuUIY Mux(q
SUIT Juelq muxq

[
L3

Leaxy wieq
uotjwiIodsussy

vexeqng

OJUN=00001-=L
et e

22,

L] N
N.nx

2ty

eIn3onlig o114 uoyzwyzodsuval Oyy 82 *St4q

Lexay

Iajutog

sgwey uoty
Lexxy gemuy -83jIodsusxy : Lviay
1817 eumy
uotr3vjxodsunay,

—Ya1 |\ Yaq |@—00 Tnug
RN Ln

» d1 || aa
W J
Lexxy ! fexay
do3utod prooey B3eg dey [eqory
981Q wex®vqng uoy3vlIIodsunxy,
OdEN~0000T~
\ ” T pIo%dy
°x
%
(23
T e
: X T IdNHL < T
All_l % > LIVEL
~d1 |y da L IdHOL

-128-

VENTP —l | PXUND ——1

SPAT | DP LP
LP « . .

Variable Character
Pointer Definition

Array Pointers

Fig. 29a Structure to Access Urban Name
Character Definition

-129-

SPATT —

Filg. 29b

PXIMﬂ)h——l

Character
Definition
Pointers

Structure to Access Primary Attribute
Character Definition

=130~

£:]

(o4

(t3

Jequmy @TqBTIBA £q PISSeOOV 8395 07

VaDId Jo eanjonljg

—

o€ °3t4

SPI0O9Y #y

\wm pIoosy)

(o2s€)dsiar

A . 8PI0%9Y g9
\\\\\\\1 . " R
* o0 (€2) HWOD
: (€of)FIVIS
(000%)dsIar AN.OmvaQmB (091)avisd (02€)A3ND
Ioquny 9TQVTIBA £q Passadoy 833§ Of
- N
\\\! 8DI0o9Y € \IIJ
— —_— 2 prooey
NIIJdL
° ¢ ¢ SN HHON
NIWsa
] (€)da
(84T)QAD | (B89)udxa | (6€)dd3 |

1 pIooey

(€2)4nod

(u)da

(0t)sA

ND

2wy

23

e v e

~131-

APPENDIX
A.l. Inputing Numerics for Program Control

This section is concerned with the inputing of integers and
real numbers for program control. Entering numerics in the variable

expression is discussed in section A.3.

A.1.1. Integers

Some portions of program control expect positive integers while
others will accept either positive or negative integers. In
what follows whenevef only positive numbers are expected an
attempt, to input a sign will be ignored.

Numeric definition is accomplished via the alphanumeric keyboard.
If the user wishes to input a negative integer, minus must be
the first character entered followed by appropriate decimal
digits. Aside from the sign only cleared digits are accepted.

Backspace removes the last character that was entered if there

was one entered. While END® terminates the definition.

A.1.2.% Reals

Theré,are two types of reals F-format and E-format. F-format
numerics are entered only when the MAGNIFY function is used (the
format is.FS.B). Only decimal characters are accepted. Backspace
removes the digit last entered and when there are no more digits
the origiﬁal magnification value appears. fCancelc will will
remove all of the entered characters and display the original
magnification factor. END® termingtes the definition.

E-format numerics are entered to change parameters in a Low-High

shading definition. A syntactically correct E-format numeric

-132-

(]

L]

(L)

o~

consists of a sign (+ or -), followed by one to nine decimal
digiés with a decimal point anywhere among the digits, followed
by the character E, followed by a sign‘(+ or ~), followed

by two decimal digits, followed by a blank. END® terminates the
definition only if the numeric is syntactically correct otherwise
a bleep is sounded and definition continues. A cursor is

Placed under the character to be edited in an overwrite mode.

The space bar moves the cursor one characte; to the right while

backspace moves the cursor one character to the left.

A.2. Computing the Normalization Constant.

Once the variable expression has been computed the values for
each sector on the screen is loaded into arn array called VAR.
These values are then searched for the greatest density variable,
GDV, which is the maximum non-negative value and VROFF, the
variable offset, or the least non-positive value. Default values
for either is zero. Using the value GDV-VROFF (so that the
expression value of the sector with the least non-positive value
is normalized to zero) the density of shading dots for the
sector corresponding to this value is set to 10 raster units per
dot. Shading is computed and displayed. If the allocated display
memory‘(4K) is exhausted before all of the shading is displayed,
the density of dots is reduced by 15% and shading is recomputed.
In the implementation this is accomplished 5y increasing GDVFC by
+15. GDVFC is incremented in this manner until the shading for

all sectors on the screen is accomplished without memory overflow.

=133~

When shading 'is computed for a same normalization‘constant
variable GDVFC for the previous variable is used along. with VROFF

thus insuring the same normalization constant.

A.3. The Variable Expression Grammar

The grammar of the variable expression is the same as that for
fortran expfessions with minor exceptions. Before giving the
grammar some of thesg differences are discussed.

The expression is limited to 68 characters and it is impossible
to insert spaces (blanks) into the expression. Only the unary
functions li§ted below were implemented since these were already
in the éystem library and not enough experience has been gained to
determine which new functions should be imblemented. However,
the task of adding new functions is simﬁle. Unary functions are
similar to unary minus, therefore, implementation makes parentheses
unnecessary for simple arguments. Thus LN(A) = LNA and INA + B
= ILN(A) + B. Aiso LNLNA = LN(LN(A)); However, either form is
acceptable.

Since interest is in recognition and not the properties of the
grammgr a recognition procedure as implemented in the expression
check routine is given. |

The procedure is as follows:

Let LP be theleft parenthesis counter that is everytime a left
parenthesis is encountered in the variable expression LP is

incremented by one.

=13%4-

re

L}

P

Primitives
Let the variable expression consist of the following primitives.
a - Let FN be the unary function indicator (excluding unary
minus). .Therefdre the occurrence of

AS = absolute value

SN = sine
XP = exponential
LN = natural logarithm

RT

1]

square root

HT = hyperbolic tangent

CS = cosine
in the variable expression is denoted by FN.

b - Let BO4 denote the occurence of one of the following
binary operators **, *, X\ + .

¢ - Let OP denote the occurrence of a binary operator, BO4,
or minus (-) both unary and binary.

d - Let Basic Variable denote the o;currence of a basic variable
in the iariable expression. In the variable expression the letters
A, B, ..., J correspond to basic variables. However, the
allowable letters thus the length of this list is governed by
the number of basic variables in the created variable. For
example if the number of basic variables in the created variable
is four only the letters A, B, C and D are allowable in the
variable expression . |

e - Let Constant denote the occurrence of a constant in the

variable expression. Three types of constants are permissible,

-135-

integer, F-format and E-format. Integers may have from one to
five decimal digits. F-format constants may have from one to
nine decimal digits and a decimal point which can appear anywhere.
E-format constanﬁs must consist of an F-format constant followed
by the letter E followed by a sign (+ or -) followed by two
decimal digits.

f - Let (denote a left parenthegis and) denote a right

parenthesis.

Procedure

1 - There must be at least one primitive in the variable
expression elsé go to ERROR.

2 - Assume a right Parenthesis was recognized and set LP = 0.

3 - If there are no more primitives go to END else set pointer

to next primitive.

4 - If the preceding primitive is not (go to 5, else; if this
primitive is BO4 or) go to ERROR else; set LP = LP + 1 and go to 3.
5 - If the‘preceding Primitive was not a Constant or a Basic
Variable go to 6 else; if this primitive is) or OP go to 3

else; go to ERROR.

6 - If the preceding primitive was not FN 80 to 7 else; if this
primitive is BO4 or) go to ERROR else; go to.3.

7 = If the preceding primitivé was not) go‘to 8 else, if LP = 0
or this primitivé is not OP or) go to ERROR_glgg; set LP = LP - 1
and go to 3.

8 - 1f the preceding Primitive was not OP or - g0 to ERROR else;

if this primitive is OP or) go to ERROR else; go to 3.

-136-

(e

@

Ao, i ——— co—

vz o e

e

A

&

@

END - If the preceding primitive was FN or OP or if LP # 0 go to
ERROR else; the variable expression is syntactically correct.

ERROR - The variable expression is snytactically incorrect.

A.4. Converting Primary Attribute Entity Values to Character

Definitions.

When basic variables are selectgd from the directory their
character definitions must be retrieved in order to enter them
in created variable definitions for display on -the CRT and for
printing on the typewriter. Fig. 29 illustra#es the data
structure to accomplish this. The sections in Chapter 2
expecially 2.2.3 and the first six sections of Chapter 3 should
be read before attempting to read this section.

Fig. 29a illustrates the data strucfure used to access urban
aame character definitions. The variable pointer array was
discussed in section 3.2.2 and is illustrated in Fig. 15. SPATIT
the selected primary attribute index is used as a pointer into
this arrﬁy to access a line pointer. This line-pointer is used
as an index into an array pointed to by the ﬁrimary attribute
entity value to urban name disc record pointer. This yields
pointers to fhe character definition of the urban name associa;ed
with SPATIT (refer to Fig. 14).

Fig. 29b illustrates the data structure used to access .urban

name character definitions. The variable pointer array was
discussed in section 3.2.2 and is illustrated in Fig. 15. SPATT

the selected primary attribute index is used as a pointer into

-137-

this array to access a line pointer. This line pointer is used

as an index into an array pointed to by the primary attribute

e

entity value to urban name disc record pointer. This yields

&

pointers to the character definition of the urban name associated

with SPATT (refer to Fig. 14).

(]

Fig. 29b illustrates the data structure necessary to access the
primary attribute character definitions. Contrary to the above
SPATT is used as a line pointer into an array pointed to by
PXPAD, the primary attribute entity value to primary attribute
name disc record pointer. This yields pointers to the character
definition of the primary attribute associated with SPATT (refer

to Fig. 14).

A.5. The Picture Data File

The picture data file, PICDA, contains all of the semi-
permanent computed data; This includes creéted variable definitions,
created variable exﬁression resulﬁs and CRT picture definitions
as well aé othér data. Logical records are 80 words in length and
the description of the file will be in terms of logical records
whenever possible. Figure 30 gives the overall structure of
PICDA.

w

The first record contains QN, VS(10), DQ(11l) and COMR(23). QN,

<

the.acronym for queue number, is an integer constant and is used

as a transfer indicator. It has the value -1 while transfering

Vi

from DDQEP or VARDP or if program operation was terminated in DQEP.
If program operation was terminated in VARDP, QN will equal the 3

queue number of the variable being displayed and hence is used as

-

-138-

an index to access the appropriate data necessary to continue
program operation at the point of termination (i.e. reestablish
the state of BUDS) this is discussed below. While transferiﬁg
from DQEP to VARDP it has the value 1l.

Vs, the acronym for variable status array, is an integer array
accessed by queue number and is ten words in length. The bit
configuration of each word in this array gives the status of the
created variable associated with this quede number. The following
table gives bit configuration meanings. The bit is set to one

if the condition is met.

Bit Condition
15 variable expression calculated
14 map constructed
13 shading constructed
12 variable is a“same normalization contant" type

11 variable is a Low-High type

10 sectors combined

Table 1: Variable status bit configuration.

DQ, the acronym for display queue, is an integer array of length
eleven. DQ(1l) contains the number of created variables on the
display queue (NVDQ). The first ten cells of DQ contain the
integers one through ten not necessarily ih order. Each of these
cells correspeads to a qu uve nusber and a variable number. The

queue numbers, QN, is an index into DQ(1l0) whereas the variable

number, VN, is contained in that cell (i.e. DQ(QN) = VN). There

~139-

is a great deal of data associated with each created variable.
This structu:;,was adopted so that enormous quantities of data
need not be shifted around by a reordering of created variables
on the display queue. For example, if the Qreated variable with
QN = 1 is deleted all that has to be done is to move the
variable numbers in DQ.

COMAR 1is an'iuteger array of 23 cells. It contains vital
graphics communication information.

EQP, the edit queue entity pointer array, is an integer array
with 35 cells. The graphics scitware requires every defined
entity'to have a entity pointer. EQP is used by DQEP so that

% .

three created variables may be displayed at once.. Thirteen

pointers are assigned to each screen location. The first thirteen

to screen location one and so forth. The first two cells are
used for created variable header entities. The third cell is
used as the variable expression entity péinter. The remaining
ten entity'pointers are used as basic variable entity pointers.

EQ, the edit queue, is an integer array of three cells. It
contains the variable numbers of the variables displayed for
‘editing in screen locations one to three. If a variable is ﬁot
in a screen location the corresponding cell of EQ will be zero.

EXPR, the variable expréssion definition, is an integer array
of 68 cells. It contains the variable expfession definition
one character per cell and right justified. NCHR is the number
of characters or cells in the variable expression.

CVD, the created variable definition, is an integer array of

-1ko-

(¢}

<7

JP S —
L]

148 cells. The first cell contains the number of basic variables
in the definition. The next seven cells contain header information.
The remaining 140 cells are used for basic variable definitions;
fourteen cells per basic variable. DSMFN is the display map

file number and NS is the number of sectors in this map. TFILN

is the transportation map file number for the display map.

EXPR and CVD are stored in PICDA by variable number.

;DISP(3520) is an integer array with 3520 cells. This array
contains the master display list and display area for DQEP
which was previously referred to as the display memory. The
display list contains entity pointers of entities which are
currently on display. Note that an entity maykbe defined but not
on display. Also an entity is brightened by placing its entity
pointer in the display list three times. The display area
contains all entity definitions. That is the 2250 graphics
instructions necessary to create an entity on the CRT.

STATE, the VARDP state of a created variable, is an integer
array of 403 cells. It contains most of state information of
the created variables. COMAR is the vital graphics communi-
cations information for this variable in VARDP.

CVEV, the computed variable expression sector values, is a real
array of 640 cells or 320 words. Presently the maximum number
of sectors allowable in any map is 320. When the variable
exprassion s computed it is computed fof every sector in tho
display map and these values are stored in CVEV.

CSTAB, the combined sectors table, is an integer array of 160

-141- .

cells contains the information generated by the COMBINE function

@

to combine sectors.

TRANS, the transportation facility entity pointer and

4

transportation facility number array, is an integer array with

160 cells. Transportation facility numbers are analogous to

‘9

sector nnmberé. ‘They are used to identify transportation
facilities.

IDISP(4000) contains the display list and display information
for the created variable corresponding to the variable number'

associated with IDISP in VARDP.

-142-

10.

41,

i

EIBLIOCRARHY

Forrester, J. W. Urban Dynamics, MIT Press, Cambridge, Mass (1969).

The Bay Area Simulation Model (BASS), the Staff of the Center

for Real Estate and Urban Economics, University of California,

Berkeley (1967).

SICCAPUS Bulletin, Vol. 2, No. 3, July (1968) AcM, p. 23

Digital Scientific Meta 4 Series 16 Computer System Reference

Manual, Digital Scientific Corporation, San Diego, Calif. (1970).
Birch, David, L., "Toward a Theory of Urban Growth," ATP Journal,
March 1971 pp. 78, 87.

Hoover, Edgar M. and Vernon, Raymiond, Anatomy of a Metropolis

Harvard University Press Cambridge, Mass. (1959).

The Data Text System: A Computer Language for Social Sciences

Research, Harvard University, Cambridge, Mass. (1969).

Hie, Norman H. et al. SPSS: Statistical Package for the Social

Sciences, University of Chicago, Chicago, I1l (1968).

Miller, James R, "Datanal: An Interpretive Language for On-
Line Analysis of Empirical Data," Working paper No. 275-267,
Sloan School of Management, MIT (August 1967).

Rogers Andre, "Theories of Intra-Urban Spatial Structure:

A Dissenting View" Land Economics 43 February 1967, p 108.
Groat, M. F., Senior City Planner, City of San Francisco, Calif.
Personal Communication August 1973.

m
Cristiani E. I., Evey R. J., Goldmar, R. E., Mantey P. E., "An

i £
Interactive System for Aiding Evaluation of Local Governmen

tics. Vol. SMC-3,
Policies," IEEE Trans. Systems, Man and Cyberne

No. 2, March 1973, pp. 141-146.

N3

13,

14.

15 .

16.

17.

18.

19.

20.

214

Mantey, P. E., Bennett, J. L. BGarlson; B E.,."Information

for Problem Solving: The Development of an Interactive

Geographic Information System," Forthcoming IBM San Jose Research
Laboratory, San Jose, Calif. 1973.

Parker, James L., "The Natural Information Systéms Project

An Overview," Internal paper, Dept. of Computer Science, Univ.

of British Columbia, Vancouver, British, Columbia, August 8; 1971.
Parker, James L., "Information.Retrieval with Large-scale
Geographic Data Bases,' Dept. of Computer Sciences, Univ. of
British Columbia, Vancouver, B.C., Report No. 1, June 1971.

Parker, James L., "A Graphics and‘Information_Retrieval-

Supervisor for Simulators," Depﬁ. of Computer Scignce, Univ.

of British Columbia, Vancouver, B. C., Report No. 2, Septembér 1971.
Schumacher, Betsy, "Urban Cogo - A geograpﬁics - based land
information system;" FJcC 1971, pp. 619, 630.

Kadanoffs Ly P., Vossy J. Ritand Bouknight, W. J., "Display of
Urban Growth Patterns," IEEE Transactiﬁns on Aerospace and Elec;ronié
Systems, Vol. AES-7, No. 3, May 1971, pp. 448, 458. |

Loomis, R. G. and Lorenzo, J. J.m "Experiments in Mapping with

a Geo Space Plotter," Urban and Regional Information Systems for

Social Problems, Garden City, N. Y., John E. Pickert Editor, 1967,

pi 1219

Dudnik, Elliot E., Synagraphic Mapping System - SYMAP manual,

Department of Archetecture and Art, University of Illinois,

Chicago Circle.

Codas i l
odasyl Systems Committee, Feature Analysis of Generalized Data

Base Management Svstems T
=43¢ 7anagement Systems Technical Report, ACM, NY
y avity Ny NY, Mﬁf 2f72
4/

-1 |

.

2

23,

24,

25.

26.

2

Hearle, Edward F. R., "Information Systems in State and Local
Governments," A. R. of Information Science and Technology, Vol. D
PP. 325, 349, 1970.

Dial, 0. E., Urban Information Systems: A Bibliographic

Essay, Urban Systems Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., 1968.

Licklider, J. C. R., "a Picture is worth a thousand words -
and it costs,..." Spring Joint Computer Conference, AFIPS 1969
pp. 617-621.

Lewin, Morton H., "An Introduction to Computer Graphics
Terminals," Proceedings of IEEE Sept 1967, pp. 1545-1552.
Foley, James D., "Evaluation of Small Computers and Display
Controls for Computer Graphics," Compuer Group News, Jan-Feb

1970, PP- 8: 2L

0
Saltz, Warren L., "Survey of Hardware R&D for Computer Display,'

Computer Design, May 1972, pp. 89, 154.

:Q*“)-

	Copyright notice 1973
	ERL-412 (1 of 2)
	ERL-412 (2 of 2)

