

Copyright © 1973, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

TESTING GRAPH CONNECTIVITY

by

R. Endre Tarjan

Memorandum No. ERL-M422

November 1973

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Testing Graph Connectivity

by

R. Endre Tarjan

Computer Science Division
U.C. Berkeley

Berkeley, California.

November, 1973.

ABSTRACT:

An algorithm proposed by Dinic for finding maximum flows in net

works and by Hopcroft and Karp for finding maximum bipartite matchings

is applied to graph connectivity problems. It is shown that the

algorithm requires 0(V E) time to find a maximum set of node-disjoint

paths in a graph, and 0(V ' E) time to find a maximum set of edge-

disjoint paths. These bounds are tight. Thus the node connectivity of

a graph may be tested in 0(V ' E) time, and the edge connectivity of a

5/3graph may be tested in 0(V E) time.

Keywords and Phrases: Graph, Connectivity, Network, Flow, Matching,

Maximum Flow.

This research was partially supported by the National Science Foundation
under Grant Number NSF-GJ-35 604X.

Testing Graph Connectivity

by

R. Endre Tarjan

Introduction: There is a class of problems in graph theory and net

work analysis which call for the maximization of a certain function

defined on a problem graph. Examples include finding a maximum flow

in a transportation network and finding a maximum matching in a graph.

Many of these problems have efficient algorithms based on choosing an

initial solution and incrementally improving it until a maximum is

reached. Here we study an efficient algorithm of this type. The

algorithm was developed for finding maximum network flows by Dinic [1]

and independently developed for finding maximum bipartite matchings by

Hopcroft and Karp [2]. We use the algorithm to find the connectivity

of a graph, and give bounds on its running time. The results generalize

the bounds given by Hopcroft and Karp [2]. We also show that the bounds are tight

Definitions: A graph G = (l/,E) is a collection of vertices 1/ and edges

E. V denotes the number of vertices and E denotes the number of edges.

The edges may be either unordered pairs of distinct vertices (the graph

is undirected) or ordered pairs of distinct vertices .(the graph is

directed). An edge is denoted by e - (v,w); v and w are adjacent; v and

(v,w) are incident. The degree of a vertex v is the number of edges

incident to v. The out-degree of a vertex v is the number of edges (v,w);

the in-degree of v is the number of edges (u,v). A sequence of edges

p= (v1»v2)(v2,V3),"*,(Vn-l,Vn) in G ±S called a**& from Vl C° V

The length of p is n - 1. The distance from v to w is the length of the

shortest path from v to w. A matching in G is a set of edges no two

of which have a common vertex. A bipartite graph is a graph whose

vertices may be partitioned into two sets A and B such that every edge

of the graph has one vertex in A and one vertex in B.

A network V = (G,s,t,c) is a directed graph G with two distinct

distinguished vertices s and t, called the source and the sink, and with

a non-negative real-valued capacity c(v,w) associated with each edge of

the graph. We assume that if (v,w) is an edge of the network then so is

(w,v). A flow f in the network is a real-valued function on the edges

of the graph such that 0 _< f(v,w) <_ c(v,w) and

F(v) = I f(v,w) - I f(u,v) = 0
(v,w)eE (u,v)eE

unless v = s or v = t. The value of the flow is v(f) = F(s).

A cut of a network is a set of vertices S C V such that s e S and t t S.

The capacity of the cut is c(S) = £ c(v,w).
ves

W0S
The Dinic-Hopcroft-Karp Algorithm: A famous theorem due to Ford and

Fulkerson [3] states that the maximum value of a flow in a network is

equal to the minimum capacity of a cut. The proof of this theorem gives

rise to an algorithm for finding maximum flows. This algorithm sometimes

runsslowly, however; and it may not terminate or even give a flow

converging to a maximum value if the capacities are not integral [3].

Edmonds and Karp [4] have described a variation of the algorithm which

2
runs in 0(VE) time and always gives a maximum flow whatever the values

of the capacities. Independently, Dinic [1] has found an improved

-2-

2
version of the Edmonds-Karp algorithm which runs in 0(V E) time

independent of capacities.

Dinic's algorithm works by finding paths from s to t along which

the flow can be increased and then increasing the flow. This process

is continued until the flow cannot be increased further. To find an

augmenting flow Dinic's method uses breadth-first search. It is by using
2

this particular kind of search that the algorithm achieves an 0(V E)

time bound.

Specifically, let f be a flow in a network r = (G,s,t,c). For any

edge (v,w), let 6(v,w) = c(v,w) - f(v,w) + f(w,v). This value is the

residual capacity of the ,pair of arcs (v,w), (w,v) in the presence of
J

the flow f. An augmenting path p from s to t is a path such that

A = min 6(v,w) > 0. We can increase the value of the flow from
(v,w) on p

v(f) to v(f) + A by changing the flow in the arcs of p and in the arcs

opposite to them so that ff(v,w) - f(v,w) + f(w,v) - f*(w,v) = A for all

(v,w) on p. The residual capacities change as follows: S'(v,w) = 6(v,w) -A

and 6'(w,v) = 5(w,v) + A for (v,w) on p and 6f(v,w) = 6(v,w) for other arcs.

Let G be the arcs (v,w) of G which satisfy S(v,w) > 0. To find

augmenting paths, we carry out a breadth-first search of G. Let V± the the

set of vertices whose shortest path from s has length i in G. (V = {s},

V- is the set of all vertices adjacent to s, and so on.) If t e V^ let

k=m; if t is not reachable from s in & let k=V+ 1. Let Gfc be the
k

graph with vertices U V. and having for arcs all (v,w) such that (v,w)
i=0 *

is an arc of S and veV±, weV ±for some 0 <_ i<k. Clearly if tis

reachable from s in 2(, G contains all shortest-length paths from s to t

0/
in G.

-3-

We start at t in G. and follow arcs backward to s to find an
k

augmenting path from s to t. After augmenting the flow along this path,

we delete all arcs on the path whose residual capacity is now zero. We

must also delete vertices and their incident edges which are no longer

reachable from s or t. This may be accomplished by deleting all vertices

with no incoming or with no outgoing arcs, and continuing to delete such

vertices until every vertex left has at least one incoming and one out

going arc. After all necessary deletions are carried out, we search for

another augmenting path. We continue finding augmenting paths and

deleting edges until no more paths from s to t exist. We then construct

a new G, . We continue constructing G 's and finding augmenting paths

until t is not reachable from s in the current fi (k - V + 1).

-4-

The complete algorithm is:

procedure MAXFLOW; begin

initialize flow to 0;

construct initial G, ;

while t is a vertex of G, do begin

for each vertex v of G, do_ begin

calculate indegree (v);

calculate outdegree (v);

if (indegree (v) = 0) or (outdegree (v) - 0) do add v to nullist;

end;

while t has an incoming edge do_ begin

trace back from t to s to find an augmenting path;

augment flow along path;

delete edges along path which now have zero residual capacity,

updating indegrees, outdegrees, and nullist;

while some vertex v is on nullist d£

delete v and incident edges from nullist, updating indegrees,

outdegrees, and nullist;

end;

construct new G. ;
k

end;

end;

-5-

It is an immediate consequence of the max-flow min-cut theorem

that this algorithm does not terminate unless the flow is actually

maximum. Let us call the processing of one Gfc a stage. Dinic proved

that after a stage, the length of the shortest augmenting path from s

to t must increase. Thus there are at most V + 1 stages before the

algorithm terminates. If the graph is represented as a set of adjacency

lists, one for each vertex, the various parts of the algorithm have the

following time bounds:

initialization of flow: 0(E)

construction of one G, : 0(E) using breadth-first search [5]

initialization of i,ndegrees, outdegrees and nullist: 0(E)

finding of one augmenting path: 0(V)

deletion of edges and updating of indegrees, outdegrees and nullist

during one stage: 0(E) since any edge is deleted only once and

the amount of work per edge is 0(1).

Each augmenting path found causes the deletion of at least one edge

in g, ; thus there are at most E augmenting paths found per stage. The
K.

overall time bound is

^initialization no of ltime per no of augmenting initialization
stages path paths and updating

per stage

= 0(V2E)

The Edmonds-Karp algorithm differs from Dinic's in that a new Gk

is constructed after every augmentation; the total number of augmentations

is 0(VE) as in Dinic's algorithm but finding one augmenting path requires

2
0(E) time and an 0(VE) time bound results. Certain graphs actually

-6-

achieve this worst-case time bound [6].

Dinic's algorithm works with the same time bound if the network

has undirected edges or if the network has vertex capacities in

addition to edge capacities. To handle an undirected edge, we convert

it into two directed edges, one in each direction, each with the

capacity of the initial edge. If the maximum flow has flow in both of

these edges it may be modified so that there is only flow in one of the

edges, and then it corresponds to a flow in the original graph.

If a vertex v £ {s , t} in a network has non-negative capacity c(v)

the flow f is required to satisfy

I f(u,v) < c(v).
(u,v)

We can change a vertex capacity into an edge capacity by deleting vertex

v and replacing it with two vertices v',v", and adding an edge (v',vn) with

capacity c, edges (u,v') for every (u,v) in the original network, and edges (v",w)

for every (v,w)!in the original network. Any maximum flow in the new

network corresponds to a maximum flow in the old network, and vice-versa.

Ford and Fulkerson [3] discovered these constructions.

Dinic's algorithm has many applications, including finding a maximum

matching in a bipartite graph. Suppose G = ((/,E) is a bipartite graph

with edges between vertex sets A and B. Let r = (G',s,t,c) where

G' = (A U b U {s,t}, {(v,w)|v e A, w e B, and (v,w) 6 E} U {(s,v)|v e A} U

{(w,t)|w e B}) and c(v) =1 for all vertices in A and B. A maximum

matching on G corresponds exactly to a maximum flow in T. The network

T is very special%and Dinic's algorithm has a worst-case time bound of

1/2
0(V E) for finding maximum bipartite matchings as proved by Hopcroft

-7-

and Karp [2]. The only important fact used to derive this bound is

that all capacities are one. In the next section we generalize

Hopcroft and Karp's bipartite matching results to derive better bounds

on Dinic's algorithm when all capacities are one. Then we apply these

results to graph connectivity problems.

Upper Bounds When All Capacities Are One

We are interested in two special cases of the network flow problem:

(1) all edge capacities are one and the vertex capacities are integers;

(2) all vertex capacities are one and theedge capacities are integers.

In case 2 we may clearly assume without loss of generality that all

edge capacities are one; thus problem 2 is a special case of problem 1. In
li

graphs with integer capacities there are integer maximum flows [3], and all

flows constructed during execution of Dinic's algorithm are integral. It is

possible to immediately tighten the bound on the algorithm as follows: every

edge on an augmenting path must be deleted from G, since its residual

capacity must change from one to zero. Thus only 0(E) time per stage

can be spent finding augmenting paths, the total time per stage is 0(E),

and the overall time is 0(VE). We can reduce the time bound further by

showing that only a small number of stages can occur. Crucial is the

next theorem:

Theorem 1: Let T = (G,s,t,c) be a network, and let f be a flow on r.

Let M be the maximum possible flow on T. Then in G there is a flow of

value M - v(f) from s to t.

Proof: This theorem is a quantitative version of the max-flow min-cut

theorem. If G does not have a flow of value M - v(f), then G has a cut

S with capacity c*(S) < M - v(f). But then the capacity of S in G is

-8-

c(S) = I c(v,w) = c'(S) + I f(v,w) - f(w,v) <M - v(f) + v(f) <M.
(v,w) (v,w)
v e s v e s

w i s w i s

By the max-flow min-cut theorem this is impossible, so every cut in G has

capacity at least M - v(f) and again by the max-flow min-cut theorem G has

a flow of value M - v(f).

Corollary 2: Let r = (G,s,t,c) be a network with unit edge capacities

and integer vertex capacities, let I" be the corresponding network with

vertex capacities converted into edge capacities, let f be an integral flow

on r', and let M be the value of a maximum flow on T. Then in G*there is

2E
an augmenting path of length _< M _ y/£v •

Proof: By Theorem 1, 2f'has a flow of value M - v(f), which we may assume

is integral [3]. This flow consists of a set of paths from s to t. Since

any edge in I" corresponding to an edge in V can be iu at most one of these

paths, and since T has at most E edges, there must be a path of length

< 2E x . (At least half the edges of a path in I" correspond to edges in
— M - v(f)

r.) This path is augmenting with respect to f.

Corollary 3: Let T = (G,s,t,c) be a network with unit vertex capacities,

let I" = (G',s,t,c') be the corresponding network with vertex capacities

replaced by edge capacities, let f be an integral flow on I", and let M be

the value of a maximum flow on I". Then in G1 there is an augmenting path

2Vof length < M _ v(f) •

Proof: By theorem 1, S'has a flow of value M - v(f), which we may assume

is integral. This flow consists of a set of edge-disjoint paths from s to

t, and every other edge on such a path corresponds to a vertex (other than

s or t) of G. Since any edge in f can be in at most one of these paths,

-9-

and since G has only V - 2 vertices other than s or t, there must be a

2Vpath of length <_ _ (f. . This path is augmenting with respect to f.

Corollaries 2 and 3 are generalizations of Hopcroft and Karp's

Corollary 2 [2]. These corollaries lead to improvements in the time

bound on Dinic's algorithm for problems (1) and (2). Specifically,

3/2
suppose Dinic's algorithm has completed the first E stages on a

% -, 1,1/2problem of type 1. Then all augmenting paths in G have length >_ E

By Corollary 2, E1/2 <MjEv(f) ;or, M-v(f) <2E1/2. Since every
stage except the last leads to at least one augmentation, at most

2E1^2 + 1 more stages will occur. Thus Dinic's algorithm has a time

bound of 0(E3^2) for problems of type 1 (0(E ')stages; 0(E) time per

stage). Similarly, using Corollary 3 we may show that Dinic's algorithm

has a time bound of 0(V1/2E) for problems of type 2 (0(V) stages;

0(E) time per stage). This result is a generalization of Hopcroft and

Karp's bipartite matching bound.

We may improve the bound for problem 1 even further by using the

fact that the problem graph has no multiple edges.

Theorem 4: Let G be a directed graph with distinct vertices s and t.

Suppose there are at least A edge-disjoint paths between s and t.

Then the distance between s and t in G is at most 2V/Al/2 .

Proof: Let V. = {v | v is at distance i from s}. Suppose t e V^.

Every path from s to t must contain at least one edge from V± to V±+1

of all 0 < i < k. If there are A edge-disjoint paths, it must be the

case that IvJ Iv^-I > A, since G contains no multiple edges. Thus
1 i i+1

for all 0<i<k, either |v±| >Al/2 or |Vi+1| >A . Since

-10-

k 2V
I lVil IV, k< —^ .
i=0 A

2/3
Now suppose Dinic's algorithm has completed the first V stages

of a problem of type 1, where r is the original network and I" is the

network with edge capacities in place of vertex capacities. Let the

maximum flow in £* equal A. Then in & there are A edge-disjoint paths

from s to t. Since G is a graph, theorem 4 applies, and the distance from

sto tin 2 is £ ^777 . Then the distance between sand tin G' is

< 4Y_ 9which implies that A<16V2/3. Thus only 16V2/3 +1more stages
A 2/3

can occur, and Dinic's algorithm has a time bound of 0(V E) for problems

of type 1.

Summarizing the results of this section, Dinic's algorithm has worst

case time bounds of

0(min(V2y'3,E1^2)E) for finding maximum flows in networks with
unit edge capacities;

OOT^E) for finding maximum flows in networks with
unit vertex capacities.

Lower Bounds and Possible Algorithmic Improvements:

The bounds given in the last section are tight. That is, there exist

networks with unit vertex capacities on which Dinic's algorithm requires

k V1/2E time for some k^and networks with unit edge capacities on which

Dinic's algorithm requires k2V E time for SOme k2* °ne bad ^^P1*2
is based on a graph which consists of disjoint paths of lengths one, three,

five, ..., 2n+ 1. Suppose we try to find a matching on such a graph using

Dinic's algorithm. If we are unlucky enough to choose the even edges

on these paths as the first stage matching (Figure 1), then we will have to

-11-

carry out n more stages, one for each disjoint path. This example is

not really sufficient as a worst-case example, but it can be modified so

that it works, as described in the following theorems.

Theorem 5: There is a constant ^ such that for any n there is a

bipartite graph with 3n(n - 1) vertices on which Dinic's algorithm

requires k-n time to find a maximum matching.

Proof: Let G be the bipartite graph with vertex set

V=U±|l <i<^^f11}u<b±|l £i1 ^f11}
and edge set

E={(a4,b.)|l <i<n(n-l) and 1<j< n<^"1>}
i j *•

hi/ k\l / i\ * * * 3n(n-l) a„A n(n~1) < a < 3n(n-l) yU {(a±,b.)|n(n-l) < i _< — and — < j <_ j i

u{(a.,bi)|^|=^-< i<n(n-l)}

u i(«^,»V l^P1 <i<»<*-« and ±*^T11 +^^ for any1+1 i 2 - 2 z k > 1}

Suppose Dinic's algorithm is applied to G and that it finds the

following edges in a first-stage matching:

{(ai,b±) |l <i<̂ f^ and i*M^2l +1for any k>1}

UUa , ,N,b4)|l <i <^S=ii- and i =Mkll + x for some k> 1}
. n(h-l) i — — l *

2

u <<a,+i >b<> l*^ <*• <»(«-» and ±*^r^ +1Lif11 for any1+11 2 "" 2 2 k > 1)

U {(a , ,. , b .)}n(n-l) +1 n(n-l) + x
2 2

-12-

i.r, u Nin(n-1) , . , , n , . k(k-l) ^ n(n-l)
U {(a. n(n-l)' V' 2 X£ n(n"1) 2 2

^ 2 f°r some k >^ 1}

U{(ai,b1)|n(n-l) <i<3n(^"1) and i,6 M|lli +n(n-l) for some

(see Figure 2.) Now n-2 more stages must be carried out, to find augmenting

paths of lengths 7, 9, 11, ..., 2n+l. Constructing G^ for each of these

stages requires exploration of at least (—-)2 edges, so the total

time spent by Dinic's algorithm is k..n for some suitable k independent

of n.

Theorem 6: There is a constant k? such that for any n there is a graph

12 8with 3n + n +2 vertices on which Dinic's algorithm requires k2n time

to find a maximum set of edge-disjoint paths between vertices s and t.

Proof: Let G be the graph with vertex set

1/ = {s,t} U {a.ll <i<n3} U {b,|l <i<n3} U {c,|l <i<n2}
i' — — i — — 1' — —

U {d..|l <i<n2 and 1<j<n} U {e.|l <i<n2}
lj ' — — - — l' — —

and edge set

E={(S,a)|l <i<n3}U {(e±,t)|l <i<n2}

U{(a ,hj)|l <i,j <n3} U{(b.,c.)|l <_ i<n3 and 1<j<n2}

U {(c^d.jll <i<n2} U{(d 2., e.)|l <i<nand 1<j<n}
i il ' — — n^i j

U {d.., d.,,.|l < i < n2 and 1 < j < n}
ij l+lj ' - - J -

(Figure 3)

When Dinic;s algorithm is applied to this graph, it will find augmenting

2
paths of lengths 6, 7, ..., n +5. Each stage will require examination of at

least n edges. Thus the total time taken by Dinic's algorithm on this graph

-13-

o

is k_n for some suitable constant k? independent of n.

It is possible to modify Dinic's algorithm somewhat so that the

examples in Theorems 5 and 6 are no longer bad, but similar worst-case

examples work for all variations of the algorithm tried. However, evidence

does exist to support the conjecture that there is a better algorithm.

Theorem 7: Let G be a graph to which Dinic's algorithm is applied to

find a set of vertex disjoint paths between distinct vertices s and t.

Then the total length of all augmenting paths found is 0(V log V).

Proof: Applying Corollary 3, the total length of all augmenting paths
V

2Vis < J ~«0(V log V).
k=l k

Theorem 8: Let G be a graph to which Dinic's algorithm is applied to

find a set of edge disjoint paths between distinct vertices s and t.

3/2
Then the total length of all augmenting paths is 0(min (V , E log V)).

Proof: Applying Corollary 2 as in the proof above gives an

0(E log V) bound on the total length of augmenting paths. Applying

V 4V 3/2.
Theorem 4, the total length of all augmenting paths is <_ I — = 0(V).

k=l /k

On the basis of Theorems 7 and 8, I conjecture that there is an

0(V log V) algorithm for finding maximum sets of node-disjoint paths,

5/2and an 0(V) algorithm for finding maximum sets of edge-disjoint paths.

Applications and Open Problems

The edge connectivity of a graph is the minimum number of edges in

a set S such that there exist vertices s and t such that every path from

s to t contains an edge of S. (S is called an edge separator of s and t.)

Tne vertex connectivity of a graph is the minimum number of vertices in a set

S such that there exist vertices s, t £ S such that every path from s to

-14-

t contains a vertex of S (S is called a vertex separator of s and t).

(If a graph G with V vertices contains all possible edges then its vertex

connectivity is said to be V - 1.) A special case of the max-flow min-

cut theorem, called Menger's theorem, states that the size of a maximum

set of edge-disjoint (vertex-disjoint) paths from s to t is equal to the

minimum size of an edge separator (vertex separator) of s from t. It

follows that we may compute the edge or vertex connectivity of a graph

2
by solving a 0(V) network flow problems with unit capacities.

Gomory and Hu [7] observed that only V such problems need to be

solved to determine the edge connectivity of an undirected graph. This

result extends to directed graphs: let S be a minimum edge separator of

a directed graph; suppose S separates s and t. Choose any fixed vertex

a. If S does not separate s from a then s must separate a from t. Suppose

we solve the 2V - 2 possible network flow problems having a as either

source or sink. Then one of them must give us a minimum edge separator.

Thus, using Dinic's algorithm we can determine the edge connectivity of

2/3 1/2
a directed or undirected graph in 0(VE min(V , E)) time.

Dinic's algorithm is useful in two more-complicated problems having

to do with edge connectivity on undirected graphs. Gomory and Hu [7] have

defined an object called a cut tree which contains much information about

the edge separators of a graph. They show that a cut tree may be

constructed by solving V - 1 network flow problems. Thus, using Dinic's

2/3 1/2
algorithm we may construct a cut tree in 0(VE min(V , E)) time. A

related concept is that of a narrow slicing, as studied by Matula [8].

2
He shows that a narrow slicing may be found by solving 0(V) network flow

2 2/3 1/2
problems, so use of Dinic's algorithm gives an 0(V E min(V , E)) time

bound for this problem.

-15-

Determining node connectivity seems to be harder than determining

edge connectivity. Hopcroft and Tarjan [9, 10, 11] have given 0(V+E)

algorithms for determing whether the vertex connectivity of an undirected

graph is zero, one, two, or greater than two. Tarjan [10] has given an

0(V+E) algorithm for testing whether the vertex connectivity of a

directed graph is zero (this is the "strong connectivity" problem). Even
3

[12], generalizing on work of Kleitman [13], has given an 0(k E + kVE)

algorithm for testing whether the vertex connectivity of an undirected

or directed graph is at least k. If k £ /v, Even's algorithm has an

0(V3' E) time bound; however, for arbitrary k the time bound can be as

large as 0(V3E). Using Dinic's algorithm to solve V(V - 1) network flow

problems, we can exactly determine the vertex connectivity of a directed

5/2
or undirected graph in 0(V E) time.

A generalization of the bipartite matching problem is the bipartite

b-matching problem: given a bipartite graph and integer capacities on the

nodes we want to find a maximum set of edges such that the number of

edges incident to a vertex does not exceed its capacity. An obvious

construction will enable us to use Dinic's algorithm to solve a b-matching

problem in 0(min(V2/3, E1/2)E) time. This problem is also called the

degree-constrained subgraph problem [14]. A construction due to Ford and

Fulkerson [3] allows us to apply Dinic's algorithm to find a maximum set

1/2
of pairwise incomparable elements in a partial ordering in 0(V E) time,

where V is the total number of elements and E is the number of comparable

pairs.

Many questions are still unanswered. Here are a few. Is there a

better algorithm than Dinic's? Can the vertex connectivity of a graph be

found by solving less than 0(V) network flow problems? Can the algorithms

-16-

for testing small connectivity be improved or generalized? And,

perhaps most tantalizingly, can the results here be extended to the

problem of finding a maximum matching (or b-matching) in an arbitrary

graph? Edmonds has constructed an algorithm for solving this problem

[14,15], If carefully implemented, the algorithm runs in 0(VE) time [16,17]

It seems likely, however, that this bound is improvable.

-17-

REFERENCES

[I] E.A. Dinic, "Algorithm for solution of a problem of maximum flow
in a network with power estimation", Sov. Math. Dokl. Vol. 11, No.5
(1970), pp. 1277-1280.

5/2[2] J.E. Hopcroft, and R.M. Karp, "A n algorithm for maximum matchings
in bipartite graphs", SIAM J. Comput., Vol. 2, Nc. 4 (December 1973)
pp. 225-231.

[3] L.R. Ford, and D.R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, N.J. (1962).

[4] J. Edmonds, and R.M. Karp, "Theoretical improvements in algorithmic
efficiency for network flow problems", JACM Vol. 19, No. 2, (April
1972), pp. 248-264.

[5] C. Berge, The Theory of Graphs and its Applications Alison. Doig,
tr., John Wiley & Sons, Inc., New York (1962), pp. 65-68.

[6] N. Zadeh, "Theoretical efficiency of the Edmonds-Karp algorithm for
computing maximal flows", JACM Vol. 19, No.l, (January 1972)
pp. 184-192.

[7] R.E. Gomory, and T.C. Hu, "Multi-terminal network flows", J. SIAM,
Vol. 9, No. 4, (December 1961), pp. 551-570.

[8] D.W. Matula, "k-components, clusters, and slicings in graphs", SIAM
J. Appl. Math., Vol. 22, No. 3 (May 1972) pp. 459-480.

[9] J.E. Hopcroft, and R. Tarjan, "Algorithm 447: efficient algorithms
for graph manipulation", CACM, Vol. 16, No. 6, (June 1973), pp. 372-378.

[10] R. Tarjan. "Depth-first search and linear graph algorithms", SIAM
J. Comput., Vol. 1, No. 2 (June 1972), pp. 146-160.

[II] J.E. Hopcroft, and R. Tarjan, "Dividing a graph into triconnected
components", SIAM J. Comput. Vol. 2, No. 3 (September 1973), pp. 135-158,

[12] S. Even, "An algorithm for determining whether the connectivity of a
graph is at least k", T.R. 23-184, Department of Computer Science,
Cornell University (September 1973).

|1.31 D.J. Kleitman, "Methods for investigating connectivity of large
graphs", liCICH Trans, on Clrcuit_Theo_ry_, Vol. CT-16, No. 2, (May 1969),
pp. 232-233.

[14] A.J. Goldman, "Optimal matchings and degree-constrained subgraphs",
J. Res. Nat. Bur. Stand., Vol. 68B (1964), pp. 27-29.

[15] J. Edmonds, "Paths, Trees, and Flowers", Canadian J. of Math,
Vol. 17, (1965), pp. 449-467.

[16] M.L. Balinski, "Labelling to obtain a maximum matching",
Combinatorial Mathematics and its Applications, R.C. Rose and T.A.

Dowling, ed., University of North Carolina Press, Chapel Hill,
North Carolina (1967), pp. 585-602.

[17] H. Gabow, "An efficient implementation of Edmond's maximum matching
algorithm", Technical Report No. 31, Digital Systems Laboratory,
Stanford University (June 1972).

Figure 1: A bad example for bipartite match5.ng,

First-stage matching in wavy lines.

13

13

Figure 2: A worst-case example for bipartite matching (n = 4)

Kigure 3: A worst-case example for edge-disjoint paths (n = 2)

	Copyright notice 1973
	ERL-422

