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UNDER A CHANGE OF LAW^
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Girsanov showed that under an absolutelycontinuous change in prob
ability measure a Wiener process is transformed into the sum of a Wiener
processand a second process with sample functions which are absolutely
continuous. This result has a natural generalization in the context of local
martingales. This generalization is derived in this paper, and some of its
ramifications are examined. As a simple application, the likelihood ratio
for a single-server queueing process with very general arrival and service
characteristics is derived.

1. Introduction. Let [IVi, 0 ^ ^ 1} be a Wiener process defined on a
fixed probabilityspace (Q, Let A(0) be defined by

(1.1) = exp {S> <f>,dW, <^,'ds}

where 0 ^ ^ 1} is a measurable process adapted to {^t] and satisfies the
condition

(1.2) < oo , almost surely.

If = 1 then

(1-3) % =m
defines a probability measure Girsanov [6] showed that the process

(1.4) w: =W,-\l,l,,ds

is a Wiener process with respect to measure. It should be noted that if
is any probability measure equivalent to then it is necessarily of the form
(1.3) [5].

Recent results on continuous parameter martingales and local martingales
have made it clear that Girsanov's result has a natural generalization in the
context of local martingales, and the statement of the resulting generalization
may even be simpler. The objectiveof this paper is to obtain this generalization
and to investigate some of its ramifications. The special case of continuous
local martingales was discussed in [10].
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2. Local martingales and stochastic integrals. Let (Q, be a prob
ability space, and consider an increasingfamilyof a-subhelds 0 ^ < oo}.
We shall assume to be right-continuous, i.e.,

n,>t , 0 ^ f < oo.

A positiverandom variable z is said to be a stopping time of {-^t} if ^
/} e for every t. For a stopping time r, will denote the a-field of all
events A for which

A n [cd: r(a>) ^ /} e >^1 •

We shall say has no time of discontinuity if for every increasing sequence
of stopping times {r„}

A process {X,, 0 ^ r < oo} is said to be adapted to if for each tX^ is .^j-
measurable. Now let denote the a-field of subsets of [0, oo) x generated
by the family of all left-continuous processes adapted to [^t]. ^^^measurable
(r, (o) functions will be calledpredictable processes.

We shall adopt the following notations and definitions:

(2.1) {the set of all real-valued right continuous processes
with left-limits and adapted to [^t] such that

Mo = 0 and — M^, a.s., V j > 0};

(2.2) —{A/g ^ and M sample continuous} j

(2.3) = {Me^ and supost<„^Mt* < oo};

(2.4) -^oc = there existsa sequenceof stoppingtimes r„ | oo
such that Mj'*' = A^tAr„ e for each «};

(2.5) = {A/G ^ sample continuously

(2.6) = (Mg ^oc, e for each n}.

Elements in .^oc» ®tc. will be referred to as martingales and local mar
tingales respectively, with adjectives continuous and squareintegrable added as
appropriate. Note that c ^lc, since one can always take = inf {/:
1-^,1 ^ n, V5 ^ /} for Me^iU-

If Xe then there exists a unique predictable increasing process <Af, X}
such that X* — (^X, X} g ^loc- If X F g then <Ar, Y} is defined by

<Ar, y> = Y, x-{-Y}-ix-Y,x-y>].

Kunita and Watanabe [7] introduced the process <Ar, y> and illuminated its
role in the stochastic calculus associated with

Two local martingales X and Yare said to be orthogonal if their product XY
is again a local martingale. Now, denote

(2.7) = {Xe : X orthogonal to every element of
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Then, every Xe .^oc has a unique decomposition

(2.8) +

We can now define the increasing process {X, X'\ for every X e hy

(2.9) [X, XI = <Ar% ^0, + {Lx,y

where the summation is taken over all points of discontinuity of X and AA', =
X, — X,_ [9]. For X, Y e we set

y] = i{[^ +Y,X+Y]-[X-Y,X-Y]},

If AT, y 6 then both XY — <Af, y> and XY —[X, Y] are local martin
gales. Hence [X, y] — <Af, Y} is also a local martingale. The main difference
between y> and [X, y], when they both exist, is that (^X, Y} is predictable
while in general [X, y] is not. We note that given [Af, y], <Af, Y}is characterized
by the properties:

(a) <Af, y> is predictable,
(b) [X, y] — <Ar, y> is a local martingale and
(c) <Af, y> is of bounded variation.

This allows us to generalize the definition of the process <Af, y> to those cases
where AT, Y are not in Let X, Y e Then, there exists at most one

predictable adapted process of bounded variation <Af, y> such that [Af, Y] —
<Af, y> is a local martingale [2]. This serves to define <Af, y) whenever it ex
ists. Later, we shall give some examples of cases where <Ar, y> is well defined,
but AT, y«5.^„v

Let denote the set of right-continuous, finite, increasing processes adapted
to {-^t} set {B: B = A* — /4~, A'*', A~ € Semi-martingales are
processes of the form

(2.10) AT, = AT,-1-Me+ 5,,

If Me .^oc instead of we shall call AT a local semi-martingale. The repre
sentation (2.10) is by no means unique. However, the continuous component
M' of M is independent of the decomposition. Because of this we can define
for local semi-martingales

(2.11) [AT, XI = <M% -f {^X,y .

The definition for [X, y] follows in the usual way.
For a local martingale M a salient feature of the definition of a stochastic

integral

is that H ' M is again a local martingale. For this to be possible H must be a
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predictable process. Define the following classes of integrands:

(2.12) Lb = {all predictable H: there exists a sequence of stopping

times r„| C50 such thai sup,,„< 0°
for each «}. Processes in Lg are said to be locally

bounded.

(2.13) L\M) = (all predictable H: Af>, < 00, almost surely}.

Theorem 2.1 [4]. If Me.-^oc H eLg, there is one and only oneprocess
H - Me ..^oc that

(2.14) [H . M, Nl = 55 H, d[M, N],, VJVe.^oc •

If Me^y^xlc tind HeL\M)y there is one and only one H • A/e.-^oc satisfying
(2.14). Furthery the existence of <A/, N} implies the existence of <// • My N} and

(2.15) <// . My N}, = SS //, d^My N},.

We note that if Mg -^oc ^ .^and H eLg then H - M \s again in .^oc ^ ^
and the stochastic integral coincides with the Stieltjes integral. If Me^ioa
^ the Stieltjes integral 5$ H, dM, may well exist even if H is not predictable,
but the Stieltjes integral is no longer a local martingale and the stochastic
integral is not well defined.

If is a local semi-martingale

(2.16) A't = Xq -f- M^ y Me ^€ .^loc

and HeLg then we define the stochastic integral H >Xhy setting

(2.17) {H . X), = {H . M), H, dB, -|- H,X,

and H • X '\% again a local semi-martingale. For local semi-martingales X and
Yy we have

(2.18) [H . XyYl = \iH,d[XyYl.

If Xis a local semi-martingale (by assumption right continuous) then X^_ is
a locally bounded predictable process. U y: R is ^ twice continuously
differentiable function then Y{Xt) is.a local semi-martingale and we have the
differentiation formula

(2.19) rm = r(x,) + ssr'{X..) dx, + j 55 f^x..) d^X', X'y,

+ Irix.) - r(x.-) - r\x..)^x,-[.

An interesting special case is

(2.20) X,' = Jf." + 2 ssx,_ dx, + <jr% x-y, + (Ajt,)'
= X^ + 2\iX._dX. + [X,Xl

which shows that if JTe then X' — [Jf, X] e
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Equation (3.14) can be extended to a function of a vector valued X^. How
ever, the only special case that we will need is

(2.21) X,Y, = Jfo n + Vo dY, + SS Y,_ dX, + [X, Y],.

3. Transformation of localmartingales. If [Wt, 0 ^ f < cxj} isa Wiener
process and ^ e L\ W) then a simple application of the differentiation formulas
(the original ltd version will suffice) shows that

(3.1) A. = exp(SS dW. - i SS ds)
must satisfy

(3-2) A, = 1 + YoK,<f>,dW,.
McKean [8] showed that (3.2) characterized A, and Doleans-Dade [3] has
extended the result to local martingales.

Theorem 3.1 (Doleans-Dade). Let X be a local semi-martingale such that
Xq = 0. Then there is one andonly one local semi-martingale A which satisfies

(3.3) A, = 1 + SlX,_dX,
and it is given by

(3.4) A, = exp{X, - ^'>e),nasf (1 + AA.)e-^^..

Comments, (i) It is clear from (3.3) that X^^^^ implies A - 1
However, stronger conditions do not always lead to stronger conditions on A.
For example, X^^ does not imply A - 1gIfZeit is not even
known if A — 1 e

(ii) It is clear from (3.4) that for A to be strictly positive almost surely, it is
necessary and sufficient to require

(3.5) AXj > —1 with probability 1 for all t.
If A is a uniformly integrable positive martingale (not merely a local martin

gale) then

(3.6) A„ = lim,^Ae

exist and E{K„\^^) = a.s. It follows that EA« = Eh^= 1. Given such
a positive martingale (A,, we can define a transformation of the prob
ability measure ^ by the formula

(3.7) ^ = A„ .

We note that is equivalent to if A„ > 0 for almost all tt>(.^-measure).
Our primary interest in this paper is to investigate the transformation of local
martingales when the underlying probability measure undergoes a change of
the form given by (3.7).

Theorem 3.2. Let Me w^oc(.^» (-^J) ^>*<^1^ 'Aar the solution A, of

A, = 1 + MK-dM,
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is a uniformly integrable positive martingale with respect to (^,
defined by (3.7). Let ^6 Suppose the process {X, M> exists,
then

Z, = X^- iX, M>,

belongs to Furthermore, if (^X, M>j is sample continuous then
[Z, Z] —[X, X] under either probability measure.

Proof. Because

I I•^«)

to prove sufficient to prove ZA€.^oe(^.
Since Z and A are both local semi-martingales with respect to {^, we
can write

Z,A, = Z._ dA, + Yo A._dZ, + [Z, A]e
= YZ._ dA, + Yo K- dX, - YA.- d^X, M>. + [Z. A],.

We can now use (3.3) to find [Z, A], and get

A, = YZ,- dA, + YA.- dX, + YA.- d{{X, M], - <Z. M>.}
+ YK-d{iX,My, M\.

It remains only to prove that the last termis a local martingale.
Since the continuous local martingale component of <Z, M> iszero, wehave

[<Z, M>, Ml = i;.s, (A<Z, M>.AM.).

We note that <Z, M> is of bounded variation so that A<Z, M> is certainly
locally bounded. Further, since {X, M> ispredictable its jumps occur at pre
dictable times. Hence, SS A<Z, My,dMf is a compensated sum oi predictable
jumps and is equal to 2j»st M^,AM,). Therefore, \fX, My, M] is a local
martingale with respect to {^t}) So A,_ dl(X, M), M], is also a local
martingale. The proof that Z is a local martingale with respect to {^J)
is now complete.

To prove [Z, Z] = [X, X] when <Z, M> is sample-continuous, we first assume
to be the underlying measure, and write

Zj = Zj® -{• xf' —(X, Myi

where X' e X'̂ e and <Z, M> e
Bydefinition (cf. (2.15))

[Z. Zl = <A®, Z®>, + - A<Z, .

If <Z, M> is continuous, then

[Z, Z], = <Z®, Z®>, + 2].st (A^/)' = [Z, XI.

Under the same conclusion follows from writing

Z, = Z,® + Z," -I- <Z, M>,.
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Since [Z, Z], is the Li-limit of quadratic variations 2^ for some sequence
of partitions of [0, /] and since it is easy to show that on the set A >
0, [Z, Z] and [Z, Z] are independent of which probability measure is chosen.

A special case of Theorem 3.2 which is worth isolating is the following.
Suppose <Ar, Xy exists and M —^ • X. Then we have the result that

z, = x,-Yo<^,dix,x\

is a local martingale with respect to Specializing still more, we
can take Z to be a Wiener process with respect [^t]) ^)t = ^®od

is a continuous local martingale with respect to Since [Z, Z], =
[AT, X^i = r, Z is in fact a Wiener process under .^'-measure. This is the
theorem of Girsanov [6].

4. Some applications. Let {iVj, 0 ^ r < oo} be a Poisson process with rate 1
under the probability measure Let denote the a-field generated by
s ^ I}. The process — f is a {^t}) locally square-integrable mar
tingale with (XyX)t = / and [Z, Z], = Nf. Let be a probability measure
equivalent to ^ and set

(4-') =

Then A is a {^t}) martingale and has a representation

(4.2) A. = 1 + SS0.^^.

for a predictable and integrable Since A^ > 0 with .^-measure 1, we can
define

(4.3) = A.-J(S.

and

(4.4) M,= \l<f>,dX,.

Equation (4.2) now reads

(4.5) A, = 1 + SiK.dM,.

Since from (4.4) we have

(4.6) SS^.t/<Z,Z>.

= M<l>.ds'y
Theorem 3.2 implies that

(4.7) Z, = X,-\icf>,ds

-Nt - t- \i(}>,ds

*For A.eAP this representation is due to Kunita and Watanabe [7]. The generalization to
non-square integrable A is due to P. P. Varaiya, unpublished.
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is a local martingale. Because > 0 for all t requires AM^ > —1
for all ty we have

> —1 for all t.

Hence, we can define a positive predictable process + 1 and rewrite
(4.7) as

(4.8) Z, = N,-\iX,ds

which is a local martingale with respect to {^'y {^J).
Since (^Xy Xy^ = / is continuous, the second half of Theorem 3.2 yields

(4.9) [Z, Z], = [Xy X], = N,.

Because A, — X, ds e {-^J) and <Z, Z> is unique, we have

(4.10) <Z,ZX = \iX,ds.

These results can be summarized as follows: [1]

Theorem 4.1. Let f^Oy be a standard Poissonprocess with respect to {^y

= <'(A„ s ^ t). Let be a probability measure equivalent to
Then with respect to {^'y {-^t})» A, has a unique decomposition

(4.11) N, = Z,-\-\lX,ds

where Z e y{-^t})> ^ ^ positive predictable processy and <Z, Z), =
X, ds. Furthermorey the likelihood ratio is given by

(4.12) A, = = (n,s.^.)e''P(-SSa-

where the product is taken over all jumps of N.
A straightforward generalization of the above yields the followingresult. Let

N( be a vector process with components which are independent Poissonprocesses
with respect to {^y let = <t(N,, s ^ t). Let be a probability
measure equivalent to Then

N( = Zj + 5o

where the components of Z belong to {^t}) f^e components of
jit are almost surely positive for all t. The likelihood ratio is given by

(4.13) A, = n?=i 'ij,)(exp (-Vo W - 1)

where taken over all jumps of
As a second example, consider a queueing process with a single server.

Suppose that under probability measure the arrivals are Poisson (rate 1) and
the service times are independent and exponentially distributed with rate 1.
We also assume that under the service and arrivals are independent. If we
denote the length of the queue at t by Ct then we can write

(4.14) dC^^dit- l(C,-)dqt
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where $and 37 area pair ofindependent standard Poisson processes, and I(r) = 1
or0 according asz > 0 or z ^ 0. Now, let bea probability measure equiva
lent to Our interest is to find an expression for the likelihood ratio

where denotes the <T-field generated by s ^ r}.
Observe that is ^f^-measurable, since counts the positive jumps ofCup

to t. Similarly, 55 l(Ca_) dy), is o^^j-measurable, but not 37^. Now, define

(4.16) = Xr = SS l(C,_)[t/37. - ds].

Then, are martingales with

(4.17) [X\ X^l = , [X-, X-l = SS 1(C._) drj,

and

(4.18) <z+, = t, i(c._)ds.

We can also write

(4.19) C, = - [Xr + JS 1(C._) ds]
= x + - Xr + yoO{C,-)ds

where 0(C) = 1 if C ^ 0 and is zero otherwise.
Because £ is a positive (.^, {-^51}) martingale it has a representation (see

footnote after (4.2))

(4.20) £, = 1 + SS dX,^ + <j>r dXr]

where are predictable processes with <j>r > —1 for all t.
Theorem 3.2 now yields the result that

(4.21) = X,^ - ds

Zr = Xr - Sii>r\{^,.)ds

are martingale.
From the vector version of Theorem 4.1, we know that under there exist

positive predictable processes and (it such that and 37, —\itt,ds
are (^', {^t}) local martingales where denotes the tr-field generated by

^ /}. If we define

I ^t)

Pt = ^(/^t I :t)

and if we can choose measurable versions for these processes, then ds
Jo l(C,-)[<fj?. —are >[-^nt]) local martingales. If measurable

versions cannot be found, the definitions for Xand ft need to be modified by
considering the families of measures on [0, /] (g) defined by 2 and // andby
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finding the Radon-Nikodym derivatives. It follows from (4.16) that

(4.22) X,* - SS (i, -l)ds, X,- - SS - I) ds

are martingale. A comparison of (4.21) and (4.22) yields

(4.23) = 4,,- =

The likelihood ratio can now be found by using (3.4). We find

(4.24) L, = exp (- [(1, - 1) + 1(C,.)(A - I)] ds) n„,s. ij,
where s and r in the product denote the positive and negative jumps of C
respectively.
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