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CHAPTER I

INTRODUCTION

1-1. Historical notes :

By the end of the 19 th century, two sets of orthogonal functions
were already well known by electrical engineers: the block pulses
simply generated by switches and the Sine-Cosine functions generated
by resonant circuits made of linear, time invariant components. The
appearance of semi-conductors in the middle of this century made
possible the generation of other sets of orthogonal functions such
as the Walsh-Hadamard functions. Recently, digital circuits are being
prefered to analog circuits, enlarging the need for theoretical
toéls and methods adapted to digital techniques. The advent, at last,
of the sophisticated digital computers finally forced the electrical
engineers to "think digital" even when he is studying continuous
phenomena and simulating them on a digital computer. This transition
has been first directed to the use of digital metnods as approximations
to continuous problems and this explains the success of the Fast Fourier
Transform (FFT) algorithm known as the Cooley-Tukey algorithm [1].

Only very recently, we have seen the "explosion'" of the field for
theoretical as well as practical studies of intrinsically digital
methods. Every year since 1970, the Symposium on the Applications of the
Walsh functions [2] draws a considerable interest. Several books [3]
[4] [5] [6] try to present unified views of the field. It seems clear

however that the field is only in its infancy ard that important



further developments can be expected in the future.

1-2. The set of Walsh-Hadamard functions:

Known for centuries by artistsl, since the beginning of this
century by mathematicians [7] [8] [9], they are now a fashion for elec-
trical engineers. Their rapid success comes certainly from both their
simplicity, their fast algorithm [10] and their analogies with the
Fourier functions. The time shift of the Fourier analysis is replaced
by the dyadic shift of the Walsh analysis. The freguency ordering
is replaced by the sequency ordering. But it became rapidly apparent
that differences, practical as well as theoratical, existed in the
use of these functions for signal analysis. Applications which
bear no analogy to the known usage of Fourier functions, are currently
sought and some surprising applications have been discovered :
Harmuth's book [4] points many challenging areas for basic research
in most of the fields traditionally studied with Fourier analysis,
and also other intrinsically digital fields such as coding theory where

some early results seem promising.

1-3 Fast unitary transforms and their applications to signal

processing :

Fast unitary transforms have been used mostly for signal
encoding and , to a lesser extent, for signal representation,
dimensionality reduction and signal filtering. For these applicatioms,
the expression of the signal in a transform domain leads to simpler

processing at the cost of slightly lower performance, compared to

lMexican drawings at Mitla (near Oaxaca).
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optimal processing. In chapter 7, we comment on the application of these
transform techniques and review the main published works. Here, we wish
to point out that only a few transforms have been considered (Fourier,
Walsh-Hadamard, Haar, Slant transforms) and that these transforms

are considered as given and used mostly on a''try and look" basis. One
may wonder if these transforms have common properties and structure,
and if other transforms of interest exist. Developing a structure
common to all known transforms and studying their common properties

is a goal of this thesis. In each specific application of unitary
transforms, a major question of interest is the comparison of the
transforms. We shall see that, in fact, we are faced with a ternary
trade-off in which computational complexity has to be included and

we shall discuss some practical cases of interest.

1-4. Organization of this thesis

This research was motivated by some previousswork on the appli-
cation of transform techniques in image processing [11]. It appeared
rapidly that various transforms were used "at random'!" and that
some thoughts about their relations, about other transforms with a
similar fast algorithm were necessary.

In chapter 2, we first relate the Haar transform with the well
known Walsh-Hadamard (W-H) transform and present some theoratical
consequences of practical importance.

In chapter 3, we present a unified treatment of unitary trans-
forms having a fast algorithm. The use of recursive rules to describe
unitary transforms allows a systematic way to view known transforms,

to generate new transforms and provides a general approach to the
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evaluation of the computational complexity.

In chapter 4 and 5, we use the framework of chapter 3 to analyse
the round-off crrors in the algorithms of the fast unitary transforms,
with fixed-point representation of numbers (chapter 4), or floating-
point representation (chapter 5). Our treatment is valid for most fast
unitary transforms and considers all the cases of practical interest.
In particular, the previous works concerned mainly with the analysis
of the FFT are included with more accuracy and new results are deve-
loped.

In chapter 6, we consider fast unitary transforms with a given
set of basis vectors and we study in detail a family of generalized
Slant transforms, most of which are new.

In chapter 7, we describe the main applications of fast unitary
transforms and present, with an example, a comparisoa of their
performances.

The relations between these chapters follows the diagram of Fig.1l-1.

J

Fig. 1-1. : Relations between chapters




1-5. Review of generalized transforms :

In this section, we review and comment upon the previous contribu-
tions to the generalized fast unitary transforms.

1-5-1. Basic transforms : Fourier, Walsh-Hadamard, Haar, Slant

Fourier: The continuous Sine-Cosine functions and Fourier analy-
sis have been known for a long time, but their extensive use had to
wait for the factorisation property developed by Good [12] leading
to the Cooley-Tukey algorithm [1]. This algorithm has been improved
through the years. Gentleman & Sande [13] have developed a different
organization of the algorithm. The interest of mixed radix algorithms
was pointed by Gentleman & Sande [13](radix 4), Bergland [14] (radix
8) ; Singleton [15] reviewed and extended these results. The matrix
notations for the FFT has been presented by Theiheimer [16] and
Kahaner [17]. Glassman [18] studied the FFT algorithm for composite
orders. Many publications [19] [20] [21] discuss other aspects of the

FFT.

Walsh-Hadamard ( also called BIFORE - BInary FOurier REpresentation)
The Walsh functions were introduced by Walsh [ 8], some of their basic
properties, leading in particular to the fast W-H algorithm [10], were
presented by Paley [9 ], Fine [22], Pichler [23]. The interested
reader can find in Harmuth' book [4] and in [24] excellent presentations
of their properties. However to date not all their properties are
yet clear, as indicated by the proliferation of notes aﬁd papers
( see [25] for references of the most recent publications and the 1970-
1971-1972-1973 Proc. of the Symp. on Applications of the Walsh functions).
However their relation with the Fourier transform has been thoroughtly

considered [26] [ 41].



Haar : The set of orthonormal Haar functions were found by Haar
[27] and some convergence properties investigated by Kaczmarz ([28]
and Alexits [29]. Strangely enough, the Haar transform was considered
in applications only by Andrews [5] for image encuding and rapidity
rejected for unclear reasons. However, we have found [11] that the Haar
transform behaves in image processing subjectively as well (if not
better) as the W-H transform and we strongly believe that it deserves
further consideration. In chapter 2 we prove formal relations between
the Haar and W-H transforms and present some interesting theoretical
consequences.

Slant transform : A slant transform has been introduced by Shibata

and Hatori [30] [31] for TV signals. Pratt & Chen [32] have defined
a slant transform of order 2". The results obtained with this transform
are promising. Chapter 6 considers fast transforms including a set

of slant vectors. Among them we find the slant transform.

1-5-2. Generalizations of the basic transforms:

Different independent generalizations have been proposed.

Extension to other roots of unity than %1 for ilaar and W-H :

The Haar and W-H transforms have only the roots of unity #1 as
coefficients ( and 0 for Haar). Chrestenson [33] for the W~H transform
and Watari [34] for the Haar transform, have described extensions

using other roots of unity.

Different original matrices for W-H :

1 1

The W-H transform is built from the '"original" matrix [fi]= 1/V2
1 -1

Andrews and Caspari [35] [36] proposed a family of transforms built



on other matrices. Harmuth [4] defined the " generalized two-valued"
transforms by considering other matrices still with entries 1 as the
original matrix. Similarly, he defined the " generalized three-valued
transforms" by a "squeeze and shift" process.

Extension to complex transforms:

The FFT is naturally defined as a complex transform in order to

make use of the shift property of the N th roots of unity which
leads to the fast algorithm. The W-H transform is defined with real
entries and an extension called complex W-H or complex BIFORE
transform has been proposed by Gibbs [37] and Ohunsorg [38] and
studied by Ahmed & al. [39] [40] . Ahmed & al. [41] found a modified
complex W-H transform which, in fact is closely related to a complex
Haar transform as it will appear later.

In the case of the FFT, the inverse process of reduction to a real
transform leads also to the Discrete Cosine transform [42] recently
introduced by Ahmed and al.

Families between Fourier and W-H :

Ahmed & al. [42] have defined a finite family of transforms including
the W-H, complex W-H, and Fourier transforms. Their study of invariant
quantities in the spectrum of these transforms has lead them to define
the Modified Generalized transforms [44], which, as it will appear
later are a finite family between the Haar and Fourier transforms.

The definitions of these families as they appear in the original
papers are very complex and will be omitted here. In chapter 3, we
shall give simple definitions for these families.

Andrews & al [45] [35] [3§] have seen the importance of the Kronecker
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product of matrices to factorize the matrices of some fast unitary

transforms and obtain a fast algorithm. We shall generalize this

approach and introduce a generalized Kronecker product.

To conclude this introductory chapter we sum up in Fig. 1-2

the fast unitary transforms which appeared in the literature with

their connections. This diagram clearly shows the need for a better

structure : such

chapters.

Discrete Cosine

Fourier

a structure will be presented in the following

W-H transform with

] other roots of unity

than + 1
Generalized spectral Generalized 2-valued
analyser (Andrews) \\ / transforms

|Walsh-Hadamarc}J {Slant’

\

Generalized //////

Discrete transforms

Modified generalized

transforms

Generalized 3-valued

Complex Haar

transforms

I
Haar

Haar with other roots

of unity than 1

Fig. 1-2. Generalized transforms.
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CHAPTER 1II

RELATIONS BETWEEN HAAR AND WALSH-HADAMARD TRANSFORMS1

2-1. Introduction:

The basic results of this chapter are the formal matrix relations
between the Haar and W-H transforms. First, we partition the Haar
and "zequency"2 ordered W-H matrices into submatrices and define the
matrix operators 1%2 and 1L7 which express simply the recursive genera-
tioné of the Haar and W-H matrices through their sutmatrices. Then,
using the propefties of the operators %‘@ and ‘Uj , we prove by induction
the basic relations between the Haar and W-H submatrices.

Consequently, we derive the relations between the transform
coefficients of an input vector by the two transforme: we define the
"zones'" in these transform coefficients and show that they are related
through W-H transforms of lower orders. So, if we approximate a vector
with the same zones of its transform coefficients by the two transforms,
the Haar transform performs the same approximation with fewer elemen-
tary operations: this result is important in signal representation.

Then we show that the basic relations allow the recursive
decomposition of the W-H transform algorithm intc Haar transforms.

Conversely, we propose a slightly modified W-H transform which

1Most: of the results of this chapter appear in:
B.J. Fino, "Relations between Haar and Walsh-Hadamard transforms", Proc.
of the IEEE (Letter), vol. 60, No. 5, pp. 647-648, May 1972.

This terminology has been proposed by Yuen [1] becauce 'sequency"
received different definitions. Here, 'zequency' is the number of
zero crossings.
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performs an efficient "pipe-line" Haar transform.
Finally, the decomposition of the algorithms of the two transforms

suggests a family of unitary transforms between the Haar and W-H trans-

forms.

2-2. Basic relations:

a) partition and recursive definition of the Haar matrices:

The original definition of the Haar functions {2] gives the

-

following definition of the Haar matrix of order N = Zn, denoted

HO j = 2 for all j
’
\JZI"“'1 for 12" F_ gy 2K (214 1)
ST - el ko o 3 < 27 G
’
0 otherwise 1)
where k=1,00000e, y i= o,.....,Zk—l-l sy J-= o,.....,2n

The Haar matrix of order 8 [HB] is given in Figure 2-1.
Let us partition this square unitary matrix [H n] into
2
" (n+l) rectangular submatrices denoted [:MH ﬁ,} of dimensions
2

( Zk—l X Zn) and such that:

entry(i,j) of [:MH EJ = H k-1 for 1= 0,...,2k—1—1
2 2 +i’J k= 1,00.’n
and entry(0,3) of [MH g‘} = Jz'“
2

The submatrices of order 8 are shown in Figure 2-1.
We define now the matrix operator ‘95 which applied to an

(m x p) matrix [M] gives the following (2m x 2p; matrix[ﬂe( [M] J
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0 0 0 0 2 2 -2 -2
2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 c 0

Fig.2-1: Haar matrix and submatrices of order 8

1 1 1 1 1 1 1 1| [wg]
1 1 1 1 -1 -1 -1 -1 [Mw;]
1 1 -1 -1 -1 -1 1 1
[1975]
8
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 -1 1 1 -1
' A
1 -1 1 -1 -1 1 -1 1
1 -1 1 -1 1 -1 1 -1
Fig. 2-2. : Walsh-Hadamard matrix and submatrices of

order 8
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{%([M])] = . ° e [M] = .[.}_4]__:__?__

0 1 |
o [v]
where @ denotes the Kromecker product of matrices [3] . If we

apply 3@ to the submatrices (MH ::) , it is easy to show that:
2
k _ k-1
[MHn] - [2’8 ¢ [ k7] )] @
2 2
k=2,.o...,n

b) partition and recursive definition of the W-H matrices:

There are different definitions for the W-H matrices giving
different orderings of the rows ( see discussion in chapter 3). The

natural ordering appears when we define recursively the W-H matrices,

denoted [w ] , by Kronecker products :
n
2 1 1
[wz] = 1/{2
1 -1
(3)
ERE [w] e [w _}
[ 2%] 2 [ M 1
However, the zequency ordering, which appears in the original paper
by Walsh [4] , is more appropriate to signal representation and

we use it in the following. In order to express simply the recursive

generation of W-H matrices in zequency order, we define the matrix

operators 1&9 and Tl?'. These operators, applied to a (m x p)

matrix [MJ give respectively the matrices [Qi)( [M] ?] and
[1&3'( [M] )] such that each row ( al,az,.....,am) of [M]

o[l for W and :((I for W

is replaced by the two rows

in which

0( = _(al,az,.....,am,—Sign(al am) X (al,az,.....,am) )
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!
and ﬂl = (al,az,.....,am,"Sign(al am) X (81,82,,...--,am) ) (4b)

1f we apply 1L7 to a matrix [Pﬂ of p consecutive rows of the
W-H matrix of order 2n and in zequency order, it is easy to show
that [le( [M] )] is a matrix of 2p consecutive rows of the W-H

matrix of order 2n+1 . In particular, if we partition the zequency

-
ordered W-H matrices into submatrices [MW ﬁ,} similar to the
2

Haar submatrices, we have:
[ ]

2
k=1,.0000,n

and also [wuzn] ;/J’z’ [ W ([W“zn—l]) ] (6)

The W-H matrix and the W~H submatrices of order 8 are presented in

12 {’LU( {Mw kj] )] (5)

.211

Figure 2-2.

The relations (5) and (6) are matrix expressions of the difference
equations taken as the definition for the W-H functions by Harmuth [53.
Note that the set of W-H functions defined by Harmuth has some

sign differences with ours.

c) properties of the operators 2R2,1}7 and'Ug7' :

1) We denote [Sm] the permutation matrix of order m which

reverses the ordering of rows or columns:

It is easy to see that:
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) [Wemd)] - [00 ¢ [s) 0] o
anasyy ) (W' (0] )] [“j< (s [v] >] ®

2) Let [M] = Slmijg be a (m x p) matrix, [N] a (px4q)

matrix so that their matix product [P] = [M] [NJ = gpij} exists.

We say that the product matrix [P] is sign invariant /contravariant

if, for all i , (pil x piq) has same/ opposite sign as (mil X mip).

Then, if P is sign invariant,

[ W) IREIIL )| [‘LU( [?] )} )
if P is sign contravariant,

[u7< [x] y [ % ([N] )] [w' ¢ [7] )} (10)

To prove (9), we consider the product of the (2i) th row (type a( Yor

of the (2i+l) th row (type L") of {W( [M] )] by [gg( [NJ)] :

CISTLIPYRREY LI £ sign(mil mip) X (myqsmypseeees ’mip) ) I el N

where & = +1 foro[ and -1 for o('.

By matrix multiplication, the product is :

(pil,.....,piq,f: sign(mil mip) x (pil""""piq) )

So W applied to [:P] will give the same result as the matrix

product [w ( [M] )] [JJ@ ( LN] ):{ y if [P] is sign invariant.
A similar proof holds for (10).

d) basic relations between Haar and Walsh-Hadamard transforms:

Alexits [6] has suggested that a matrix relation exists

between the submatrices [MH E ] and [Mw E] . We now prove
2 2

by induction on n that this relation is :
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L) N [:Sf“'l] [ [MH;] an

,.....,n

Assume that (11) is true at the order (n-1), we have:

k B k
MW = S WH MH k =1,.....,n-1 (12)
[ z“’l] { zk'l] [ 24 [ 2“'1J

Applying QA7 to both sides of (12) and using (5) for the left hand side,

(8) for the right hand side, we obtain:

Alw] 1] [ imed (o))

It is easy to see that the product of a matrix by a Haar submatrix is
sign contravariant ; thus, using (10), (2) and (6) , we obtain (11) for
k=2,.....,0n. As (11) is obvious for k = 1, thic completes the proof
of (11).

As iWH k-l] and [Szk—l] are real, symmetric and unitary,

2
they are self-inverse and we have the converse relation:

) o] [ B @

2-3 Zonal relations between Haar and W-H transform vectors:

> -
v (VO,.....,V n ) is an input vector ; VH (VHO,....,VH 0 )
2 -1 2 -1
> -
and VW (Vwo,.....,VW n ) are the vectors obtained from V by the
2 -1

Haar and W~H transforms :

=R

[Hz“] i
[Wﬂzn] !

Then the matrix relations (11) and (13) imply some relations between

=t

— — —
VH and VW . If we right multiply (11) by V , we obtain :
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k-1 VH
2 25t
: = S . _ WH , _ ' (14)
| ) ] |
VW VH
zk_l Zk-l

k=1,.0..9n
The converse relation is similarly obtained from (13)

Let a "zone" be the set of coefficients of the transform vectors
which appear in the relations (14) for k= 1,....,n. We see that
corresponding zones of the two transforms are related by a W-H matrix
and a permutation matrix, therefore by a unitary matrix. Consequently,
a zone in a transform vector determines the corresponding zone of the
other transform vector. This property shows that, if we approximate?7
by the same subset of zones of the vectors -Vﬁ- and Garor in
éarticular if we truncate these vectors at the ernd of a zone, we obtain
the same approximation vectors after inverse transformation.

As the zones are related through a unitary transform, it follows
by Parseval's theorem (valid for any unitary transform) that the
energies in corresponding zones are identical. These results show that
the performances of the two transforms for signal representation are
identical if the zones are maintained and‘should be close if they are
not. This result has been verified for image/encoding with transform
techniques [7] . The computational complexity of these transforms has
been studied by Andrews [8] (see also chapter 3) . the W-H transform
of order 2" requires n 2" additions and the Haar transform of

same order requires 2(2“-1) additions and 2n—1 multiplications3 S0

31n some applications such as threshold encoding [7] the multiplications
required by the normalizations may not be necessary.
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5 2n—1_2 elementary operations. The ratio of the total number of

elementary operations for both transform appear in Table I.

Table I
a 1 2 3 ; 5 6 7 8 9
=2" 2 4 8 16 32 64- | 128 | 256 | 512
N 2 8 26 | 64 | 160 | 384 | 896 | 2048| 4608
5277 12| 2 8 18 | 38| 78 | 158 | 318 | 638 | 1278
Ratio | 1 1 | 1.33] 1.71]2.05 | 2.42| 2.83 | 3.21| 3.60

We may expect the Haar transform to be faster than the W-H transform
for most implementations.

Therefore, for computations.in which the zones are maintained,

the Haar transform performs as well and is faster than the W-H

transform.

2-4. Application of the basic relatioms to fast algorithms:

The flowgraph of a fast algorithm for the Haar transform is given
in Figure 2-3 for vectors of order 8. Several fast algorithms for the W-H
transform have been proposed [Q}[Id}[lil. Using recursively the relation
(11), we can decompose the W-H algorithm into a Haar transform of
same order followed by W-H transforms of lower orders which can

also be decomposed. This procedure gives, for the W-i transform of

order 8, the fast algorithm of Figure 2-4, where the Haar transforms
appear inside dotted lines. We call the reordering shown on Figure~2—4
a " bit-inversion" ; we shall discuss it in more detail in chapter 3.
The algorithms for the two transforms, as they appear in Figures 2-3 and

2-4, require the same number of stages of computation, but not the



~18~

g 19pao Jo wiojsueil IeeH 3Isej : ‘g€-Z7 ‘314

401J3A
WHOJSNVYL YHVVH

gy +0 uonniado
Aipjuswaja ay} 10} SpuDys

\ n
X D.

4OL1J3A
TVNI9IHO



-19-

g 19pio jJO wWiojsuei] paewepeg-UsTeM 3sed : °H-¢ 313

" T
wm LD ETES n o,
|
w3> __ o>
I
m?> | m,>
|
v.$> “. ¢>
m232 m«z
N.$> N>
cs\/ _\/
M OA
40L123A m@:tmmhomm : 40193A

WHOASNVYHYL H/M . TYNIOINO



B

-20-

same number of elementary operations. If we can implement these algorithms
with all elementary operations of a stage of computation performed in
parallel, the Haar transform will not be faster than the W-H transform.
However, if we have a sequence of vectors to transform by the Haar
transform, we can make use of the relations between the two transforms
to design a "pipe-line" algorithm for the Haar transform : at each
stage of computation, a W-H stage of computation is constructed from
Haar intermediate results of successive vectors each in a different
stage of computation with respect to the Haar transform . We present
in Fig. 2-5 a possible organization of this algorithm for Haar
transforms of order 8. All stages of computation are identical for

this organization and only one appears on the figure. On the first

14 cells , 14 adders operate to give the intermediate or final
coefficients of the Haar transforms at a successive stage. The 10 last
cells are storage cells and the stored data is properly shifted to
gives the Hzar transform coefficients of each successive vector in

the 8 first cells after 3 cycles of computation. On the average

three Haar transforms are performed with less than the hardware and
time needed for two W-H transforms. More generally, n Haar transforms
of order 2" are produced with the equivalent hardware of two W-H
transforms of the same order. This"pipe-line''algorithm is very
efficient with parallel circﬁitry which'is available at more and

more competitive prices.

2-5. Family of unitary transforms inbetween the W-H and Haar

transforms and with a common fast algorithm:

The |decomposition of the fast W-H transform into a fast Haar

transform of same order and (n-1) W-H transforms of lower orders,
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Fig. 2-5. : Pipe-line Haar transform of order 8
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suggests that we can replace any of these W-H transforms by a Haar trans-
form of the same order and still have a>unitary transform. We can

use again this rule in further decompositions. This procedure yields

a family of unitary transforms with a common algorithm given in Fig. 2-4.
The non-normalized transform coefficients appear at appropriate nodes

of the algorithm. The number of members of this family, denoted Pn

for the transforms of order Zn, is given recursively by:

P =1+P P _,ecooeBy =14P (P, -1)
The first values of Pn are (with Pl =2 > fFé} and identity matrix)
n l 1 2 3 4 5 6
Pn ‘ 2 3 7 43 1807 3 263 443 ....

In chapter 3, we present an even larger family of unitary transforms
between the Haar and W-H transforms. This family includes the present

family but has not the property of a common algorithm.

2-6. Conclusions :

In this chapter, we have developed some ties between the Haar and
W-H transforms : formal relatioms befween submatrices,corresponding
relations between zones of transform vectors, relations between the
fast algorithms and finally a family of transforms including both Haar
and W-H transforms.

We have also found that the Haar transfofm, with a faster algorithm
can perform as well as the W-H transform : we conclude that the Haar
transform, for long forgotten and too hastly rejected, should recieve

more attention.
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CHAPTER III

A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS

WITH A FAST ALGORITHM

3-1. Introduction :

The dissemination of the Fast Fourier Transform algorithms,
originally introduced by Good [1], and known as Cooley-Tukey [2] and
Sande-Tukey [3] algorithms, has resulted in a large extension in the

range of applications of the well known Fourier transform. Recently the

Walsh~-Hadamard Fransform, also with a fast algorithm [4] has drawn
considerable interest [5]. The Haar transform although closely related
to the Walsh-Hadamard transform and potentially of interest [6] [7), has
received much less attention. These transforms have been used successfully
for error free signal representation [8], pattern classification [4], [9],
speech signal encoding [10] and above all for picture encoding [11), [12],
[13]. Only a few transforms have been considered in thesé applications
while méhy other transforms could be of interest. Some workers have
considered the definition of genéralized transforms and we mention the
works by Andrews, et al [14], [15], [16], Rao, et al [17], [18] and
Harmuth [19].

In this chapter, we present a unified view of discrete unitary trans-

forms with a fast algorithm. A discrete unitary transform is characterized

by a unitary matrix [T] such that [T][T*t] = [I] where * denotes conjugate

"t" transpose and [I] is the identity matrix of same order as [T], say N.

For mathematicians a unitary matrix expresses a rotation of the orthonormal

>

basis and preserves the Euclidian norm vl = §.9"

>
, of any vector V and

all inner products of vectors. In signal representationm, this propert
P & perty
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means energy conservation and an easy expression of the mean square error
when some components of the signal are ignored in the new base. The
computation of the transformed vector W of v by the transform [T] such
that W = [T]V usually requires Nz multiplications and N(N-1) additionms.
For some specific transforms of interest such as the Fourier, Walsh-

Hadamard transforms a fast algorithm has been found which requires fewer

elementary operations. The analysis of these fast algorithms has been
done by factorization of the matrix [T] into a set of largely sparsev
matrices, each expressing a stage of computation. This is the agproach
followed by Good [1] in his original paper which lead to the Fast Fourier
Transform [2], [3] the Fast Walsh Transform [4] and other known fast
transforms.

Here we consider recursive rules1 for the generation of unitary
transforms having a fast algorithm. These rules allow us to generate
large classes of such transforms, many of which are new and possibly of
interest, and to give general formulas for the number of elementary

operations required by the corresponding fast algorithm.

3-2 . Recursive Generative Rules:

We shall present three rules which generate a new unitary matrix
from some original unitary matrices. For each rule we relate the number
of elementary operations for the new transform to the number of elementary
operations of the same type required by the original transforms. For rule 1
there is only ore original matrix, for rule 2 two, and for rule 3 a set »of

original matrices.

1We denote by "rule" a set of operations performed in a prescribed order.
We reserve the term "operation" for the elementary operations such as
additions, multiplications, etc. which determine the computational

. complexity of a transform.
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Rule 1: Operations on the columns of a unitary matrix:

Given a unitary matrix [T], two obvious operations on the columnms
yield another unitary matrix of some order:

a) permutation of the columns: This operatioa does not require
any computation. In the computational process, this operation can be
performed by applying the permutation to the coefficients of the input
vector instead of the columns themselves.

b) multiplication of a column by a root of unity: This operation
requires a complex multiplication if the root of unity is not +1lor
+ 3 (3 = ¥=1) (see footnote 2).

These operations on the columns may be expressed by a matrix
product [T] [D]} with [D] such that Dki = ejoi if column k is to be replaced
by column i multiplied by the root of unity, e jei, and all other entries
of [D] are null.

Rule 2: Rotation of rows by a unitary matrix

Consider a unitary matrix [T] of order N. The N row vectors form
an orthonormal basis for SN’ the N dimensional space they span. m row
vectors of [T] form an orthonormal basis for a subspace Sm. If these m
vectors are rotated by a unitary matrix [U] of order m, we obtain a new
orthonormal basisCI?for Sm. The remaining unchanged M-m rows of [T] are
an orthonormal bagis of the subspace SN_m orthogoral to Sm and form with
B a new orthonormal basis for SN' Thus, the matrix [T'] obtained after

rotation of the m rows by the unitary matrix [U] is unitary.

thﬂxiplications by +1 and +j may be counted as operations if the hardware
realization of the algorithm is not able to keep track of them. However,
for the error analysis of the algorithm these multiplications, even if
they are performed, do not introduce any error.
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Some particular cases of interest are:
a) multiplication of the whole matrix by a unitary matrix of
the same order
b) permutation of the rows (multiplication by a permutation
matrix)
¢) multiplication of a row by any root of unity.
The operations b and ¢ can be represented by the matrix product
[D] [T] where [D] is, as before, such that Dik = ejei if row 1 of T is
replaced by row k multiplied by the root of unity,'ejei, and all other

entries of [D] are null.

Number of Elementary Operations:

If transforms T and U require respectively t and u elementary
operations of a specific kind, it is obvious that the transform T' will

require at most t' of these operations with
t'=t+u (1)

(1t may happen that [T'] so generated has a simpler algorithm).
Equation (1) applies independently to any type cf elementary
operation, additions, real and complex multiplications as well as any

other specific operation (e.g. shift, multiplication by Y2 . . . etc.)

Rule 3: Generalized Kronecker Product:

Given two sets of unitary matrices, set{}f{}of m matrices [Ai
(i=0,...,m-1) all of order n and set{qg}of n matrices [Bi] (i=0,...,n-1),
all of order m, we define the generalized Kronecker producé of the sets

{Jk} and {:R},denoted {JJ(}@{:P»}to be the square matrix [C] of order

(mn) such that



= = w . u 2
ci,j Cunﬁ—w,, u'mw' Auu' B! )
With i = um U, u'BO’ es oy n-l
j = u‘m'*‘w‘ W, W'=0, es ey m—l
a) [C] is a unitary matrix:
Proof:
mn-1 n-1 m-1l *
Z Cix C Z E Cunﬁv, virkz Cu'm+w', virtz
k=0 z=0
With k = VUI‘"Z Wo, ev ey n-l

Z=0, ooy m"l

Using (2)
mn-1 n-1 m-1 w o *w' v kv
Z Cyix Cgk Z Z A Butv Bz Bure
k=0 v=0 2z=0
n-1 m-1
A Y *w' v v
= Aav Auty Z wz Bu'z
v=0 z=0
\ J
v v
"8 + by orthonormality of [B ]
ww
n-1

S by orthonormality of [Aw]

where ﬁij is the‘Kronecker delta 6ij =1 1f i1=j
= 0 otherwise.
This proves that [C] is a unitary matrix. QED
In the particular case in which tﬂe matrices [Ai] = [A] are all

identical, and also the matrices [Bi] = [B], then the generalized Kronecker
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product{;4} ® FJ;} reduces to the usual Kronecker product of matrices

[14): [A] & [B].

b) Factorization of [C]: We now prove that

[c] = [%] [Diag{A}] [P] [Piag{B}] (3)

, where [Diag{)4}] and [Diagﬁqg}] are block diagonal matrices formed with
the matrices of the sets (ji} and'Fqg} (see Fig.3-1) and [P] is the

permutation matrix of order mn such that Pkn = sz' sz, when k = vntz,

2 =v'mtz' and 2z', v=0, ...., m-1; z, v'=0, ...., n-1. Equation (3) is
a generalization of the factorization of a simple Kronecker product into

Good matrices [14].

Proof:
(piag{ A} 1y =6 0 Aw with k' = v'gkz"
{Diagﬁqg}]zj =8 1y Bgzw' j=u'm+ w'
[Pt]ik, = 8 8 i=um+w

We evaluate an element of the matrix on the right hand side of (3)

mn-1 mn-1 mn-1

U'
E 2 6112" 6 n $ " 2"z SVZ' GZV' 611'\" BZ'W' =

V"""‘O Z"= V'—"O Z=0 V' zl
A, BY ., =¢
uu' Cww' 0 Tij QED.



[Diag {a}]

Fig. 3-1.

Block diagonal Matrix
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c) Number of elementary operations:

With the computational blocks corresponding to the transforms
Ao, seeey Am-l and BO, ceens Bn-l, the factorization of equation (3)
leads directly to the computational block of the transform C given in

Figure 3-2.
From the structure of the algorithm of Fig, 3-2 it is easy to see
that if the matrices [Ai] (i=0, ..., m-1) and [Bu] (j=0,...,n-1)
have algorithms requiring respectively pi and qi elementary
operations of a specific type, their generalized Kronecker product [C]

will require P~ of these operations with

m-1 n-1
- i 3 :
Pn = D Pat D @
i=0 j=0

In the particular case of a simple Kronecker product p; =P, and
qi=qmso

Pmn - Pn tnq, (5)

Note that the use of rule 1 and 2 only increases the number of elementary
operations while the order of the generated transiorm does not change.
For rule 3, even if [Ai] and [Bj] do not have fast algorithms and thus
require n2 and m2 elementary operations, [C] requires a maximum of
(mtn)mn i(mn)2 (for my, n > 1) elementary operations.

The results of equations (1), (4) and (5) are important: for every
transform generated with the recursive rules preseanted, they give a

simple and systematic way to estimate its computational complexity.
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- 3-3. Identical Computation (IC) Family:

The generative rules defined above create a unified framework
for the known fast unitary transforms, introduce new transforms, and
allow assessment of the computational complexity of such transforms.
In this paper, one large family of transforms is considered: the
"identical computation transforms" that we discuss now.

We denote by {J4}(3 [Bq] the generalized Kronecker product of
a set {J4} of q matrices [A§] (k=0, ..., q-1) of order p and a set 613}
of p identical matrices [Bq] of order q. [Bq] will be called a core
matrix and [Ag] a parent matrix. The IC transforms are recursively
generated from a unique class, (}, of parent matrices of some order £
and an original core matrix [C)] of order q. An IC transform of order
(af™) is then obtained from the original core matrix (0] by the recursive

formulas:

[1c (1 = I 01 1A @ION (D))
(6)

—
-
(@]

—

]

[D ] 1 1®I1C 1] [p' ]
qof" qf” (A, qe™ ! qf"

where the matrices [D] and [D'] express respectively a reordering
followed by multiplications by roots of unity of the rows and the columns.
All parent matrices of [;&i} ....’{;An} belong to (3. '

The common characteristic of all the transforms of the IC family is
that their algorithms only use in any computation intermediate results
obtained from the input vector through identical ccmputations (so the name
of the family). This property provides a uniform treatment of successive

components of the input vector if we consider that any parent matrix
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treats uniformly its input vector. For this family, all the normalizations
can be delayed to the last stage of computation.

We shall consider different choices for the original matrix [CD],
the class (} of parent matrices, the matrices [D] and ID'] and the sets
{]*k}- We first show that the basic transforms, Fourier, Walsh-Hadamard

and Haar, are IC transforms.

3-4., Basic Transforms: Fourier, Walsh-Hadamard, Haar:

In this section with the help of the generative rules, we examine
the well known Fourier, W-H , and Haar transforms. This approach allows
the derivation of some new results concerning the number of multipli-
cations required by a FFT of composite order, a concise presentation of
the different definitions of the W-H transform, and simple definitions
of the Haar transform., In addition it makes apparent the common
structure of thesé transforms. This will lead in the next section to
the definition of families of transforms between the basic transforms.

In the following we emphasize specific orderings for the basic
transforms: frequencies for the Fourier transform, zequencies3 for the
W-H transform and rank for the Haar transform. These orderings have
proved to be useful in signal encoding because they corcentrate the
signal energy into the first transform coefficilents, for some image

models [21].

3
This terminology has been introduced by Yuen [20]. The zequency is the
number of zero crossings. ‘
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3-4-1. Generalized Fast Fourier Transform of Composite Order

a) decomposition_ theorem:

Given the Fourier matrices [Fp] and [Fq] of orders p and q

respectively, the matrix [qu] such that

" t
[qu] = [{[I‘q]}® [Fp]] (P] (7)

is the Fourier matrix of order pq. The set'{[FZJ}, k=0, ... p-1 is

such that

[FI(;] = [F ] [D] where (8)

1
[Dk] is a diagonal matrix such that (Dk) = exp(~27] %%—

L |
u'u
t .
[P}~ is the permutation matrix such that

=§ & withs=ug+k t=wp+tz

Pst uz kw

u, z < p

k, w <aq

k
Proof: We denote [{[Fq]}@b[F&]] by [F;q].

k

! = 3
(qu) ug + k, u'g + k' (Fp)uu' (Fq)kk'
.ku| 1 1 1
2nsk RTINS T
= (Fp) c e « (F)) = - P Pq 1
uu' T V28
(F. 1=(F 1 [P]"=(F ) = (F') : c 6,6
P4 P4 Pq uq+k, wptz Pq ugtk, u'gt+k' zu' “wk'
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—2n] (‘;E" + ke + !;E') | -2m] (uqtk) (wptz) QED.

e Pq e pq

Note that [qu] is symmetric and orthonormal so that

"

-1 %
([qu] l) = [F__]. Making use of (3) and (7) it is possible to derive a

Pq
new expression for [qu]:
= k
[qu] [[Fp] €] {[Fq 131 [P] 9

with [Fék] = (D] [F]

If [Fp] and [Fq] require respectiVely(J4p andQJAq complex additions,
bAjp andgAAq complex multiplications, [qu] will require by application

of (4).

\J4pq = p,}{q + q:;%p - complex additions (10)
LAA = vaA + qvAA + C complex multiplications (11)

Pq q P P»q

where Cp q is the number of complex multiplications introduced by (8).

Cp q = pq if all the factors including + 1, + j are considered.
’
Cp q = (p-1) (q-1) if the factors + 1 are discarded
>
Cp q = (p-1) (q-1)-1 if the factors + j are also discarded
b ]

(when (pq) is a power of 2).

b) Generalized FFT of composite order

If the order of the Fourier transform is composite, i.e. N = Py e

I the previous decomposition theorem yields the well known FFT
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algorithms [2] [3] detailed by Glassman [22] in the most general case.

The recursive use of the formulae (10) and (11) gives the number of

n .
required operations. In the case of N =1 we can solve these recursive

equations: this is the case of FFT of radix r.

4\}’( = rn-l Q"’(r +r u4n-l or ud(n = m:n-lua(r

r r r
(12)
M o= r“"lublr + r M gyt (x-0) (x"ea)- 8 or
r T
n"l-l n—l—l
dur L =n r““lublr + (r-0) [(@-1) 7= a‘f—;l———)l -8 (————rr-l )y

(a2, B depend on the value of Cp )
b
The radices 2, 4, 8 and 16 have been considered in the literature.

For the radix 2, which gives the most popular FFT, the recursive

relations given by the decomposition theorem are

[F 1= [{[F51} ® (¥ 0l 21° | (14)
nd [F 1= 1F 1@ (R 13 12
[ =2uj k—n ] [ .1
1 e 2 1 1
k 1 'k 2
with [F)] = = and [F,"] = =
2 ~amj X 27 3| - & ~ang £
|1 -e 2 ] e 2 -e 2 J

The algorithm corresponding to the recursive formula (14) and

obtained by recursive use of Fig. 3-2 is shown in Fig. 3-3a ; it can be

(15)

arranged equivalently with all operations "in place" as shown in Fig.3-3b
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Input Outpui Fre-
vector | vector quency
N ANZe——a A
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s AN ] e

IANY=O= TN S
N >0

Fe -2
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V7 'Z 1 > * . F7 'l
= -d2 '03
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(b) Cooley-Tukey algorithm : bit i'e\le."SGI
- olace ordering

Fig. 3-3. Fast Fourier Transform of order 8, radix 2
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which is the classical diagram of the Cooley-Tukey [2] algorithm

with decimation in time.

The algorithm corresponding to the formula (15) is the Sande-

Tukey

Fig. 3~3 ¢ and d.

For these

a =

.
1l

2]
N

[
il

Figures the factors are

1l
exp(-2m3/8)
exp(-4mj/8)

exp(-6mj/8)

= -3

[3] algorithm with decimation in frequency and is shown in

We can compare the FFT with radices 2, 4, 8 and 16 for transforms

of order N = 2n

n
log,r
=r

(12) and (13) then give:

(n is then a multiple of 12).

The formulas

’ 1 (2 (3
Radix ua& u‘u: , Jj‘n M n Jurn -‘Mr“
X r .
(all factors) (no factors + 1) (no factors + 1 + j)
2 2 0 ) (n-1) 2" L L | L DL L
-3 n-3  13.2%7%,
4 8 0 E-1) 2" 302770 - 20 41 |3n2PTY -2 TR
n 2 3
>n2 ~
n n n-3
3n n n2 n n2 57.2 -8
8 24 1 (1D 2 -2+ 5 ;
11n .« .n 21n2 n 2102"  241.2"%.16
16 64 6 (331 2 -2+ e - =5
J

The columnw,uzn has
T
allows the evaluation of

order, in particular for

been given by Singleton [23].

mixed radix FFT.

In fact our approach

the computational complexity for any composite
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Fig. 3-3. Fast Fourier Transform of crder 8, radix 2




-40-

The factors + 1 are easy to track in the algoritams and for most
realizations multiplications by + 1 are not performed. The factors
+ j appear in various places in the algorithms and in most realizations
multiplications by + j are performed; however, in an error analysis
these multiplications do not introduce any rounding error and the

column /LIBn is then of interest.
r ‘

3-4-2 Walsh-Hadamard Transform:

The W-H functions are well known and the results presented in this
section are explicit or implicit in many publications. Here, we
wish to express tﬁese results in terms of our generative rules; we
think that the following compact notation clarifies the relations
between the various orderings of the W-H functions and the different
algorithms. This approach also makes apparent the common structure of
the W-H transform with the Fourier and Haar transforms.

Three distinct orderings or rows of the W-H transform are commonly
used and are of interest (see the discussion by Yuen [20]). For each of
these orderings there exists a recursive matrix definition:

a) '"natural order" It is obtained by simple Kronecker product

without any permutation

[WH2n nat.] = [FﬂC@ [WHZn-l nat.] (16)

with the original core matrix [FZJ' This relation gives directly, by.
recursive use of Fig. 3-2, the fast algorithm of Fig. 3-4a (without the
reorderings). A different presentation of this algoritim with identical

stages of computation is given in Fig. 3-4b.
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Output Qutput
~ vector _vector
Input natural zequency
vector order order
Vo o WHo WHo
V2 3 WH, WH2

V. ™ WHy WH:
" =KX WHe WH:
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V > WH, WHY

Ny e
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(a) Algorithm with rows in natural order

Output Output
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vector order order
WHo ———— WHq
~ WH, WH'
WH2 WH>
> WH3 o WH3
WHa < WH's
> WHs WHs
WH¢ WHe
WH7 WH7
RQ Ordering

(b) Algorithm with identical stages

Fig. 3-4. Walsh-Hadamard transform of order 8
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b) Paley's ordering: Used originally by Paley [24] it seems

more suitable for mathematical developments than the other orderings.
The recursive relations introduced by Yuen [20] are expressed by the

matrix relation

W pal.] = [IF] @ (W, pal.]] (p1" .oan
with the original core matrix [FZ] and [P] as defined previously for

the Fourier transform (see section 3.3). This relation gives the algo-
rithm of Fig. 3-4 c¢. (without the bit-inversion reordering) by recursive
use of Fig.J3-2. A different presentation of this élgorithm has been

_ given in chapter 2.

¢) zequency ordering: This is the original crdering by Walsh

[25] and is the ordering of interest for signal encoding because it
ranks the transform coefficients roughly according to their variances
for signal statistics commonly encountered in practice. The generating
prOcessCLU , Of chapter 2 , defines recursively thea W-H matrices in
zequency order. We can express it by the matrix reiation

[WH2n zeq.] = [W] [[F,]@® [WHZn_l zeq.]] (18)
where [W] denotes the reordering of the process ClU. A zequency ordered
algorithm has been investigated by Manz [26].

Although the zequency ordering could be generated recursively, the
corresponding algorithm would not be simple and it may be preferable to

obtain the W-H transform in natural or Paley's order and then perform a

global reordering.
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coefficients coefficients
Input in Paley's in zequency
vector order ' order
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bii reversal  bit inversion
(c) ' ordering ordering

Algorithm with rows in Paley's order

Fig. 3-4. Walsh-Hadamard transform of order 8

! 3 ¢ 0‘-'

—E 17-



4l

Given the transform cbefficients in Paley's order a

"bit inversion" reordering, denoted in matrix form by [Q], is necessary

to put them in zequency order:

in a bit-inversion permutation,

consecutive coefficients with kth bit of the binary representation

of their indexes equal to 1 are put in reverse order. This operation

is performed for all bits starting from the rightmost bit. With 8

coefficlients to reorder this means the following permutation:

index of binary reverse order reverse order final
coefficients in representation for middle for leftmost order
Paley's order bit bit (see Fig. 4c)
0 000 - 000 ——— 000 0
1 001 - 001 ——— 001 1
2 010 011, ————— (11 3
3 011 >< 010 ——————— 010 2
4 100 —— 100 110 6
5 101 —— 101 111 7
6 110 111 101 5
7 111 :::><::::: 110 100 4

Given the transform coefficients in natural order, a bit reversal

ordering, denoted by the matrix [R], will order them in Paley's order and

a bit-inversion will order them in zequency order. For 8 coefficients

to reorder we have:



index of binary bit . bit final
coefficients in |representation| reversal inversion |ordering
natural order (compare

yith Fig.4a,b)

0 000 - 000 > 0

1 001 100 > 4

2 010\\\ /4( 010 :::::=><=::; 6

3 011 >( 110 2

4 100 001 3

5 101, <::; 101 7

6 110 011 5

7 111 — 111 1

It is important to note that, as the W-H matrices are symmetric

in any of the three orderings, these reorderings can be performed on

the columns as well as on the rows.

2

(Wi zeq.] = [Q] [R] [WH _ nat.] = [Wi  nat.] [R]° [Q]
2 2

(W, zeq.) = [a] [V | pal.] = [, pal.] [Q*

Hence we have the matrix relations:

t

Since the W-H matrices are their own inverses, we have also using (16)

and (17) the following recursive relations

[WH _ nat.] = (p1° ([wn

2

2

2

[wi pal.] = [[WHZn_l pal.] @ [F,1] [P]

nop Dat-1@ [F,1] [P]

These relations however do not give different algorithms. All these
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algorithms differ only by reordering and so have the same number of

additions given by

t]( = 2 -'JA + 2, 2n-1 with’JA = 2 which gives
on 2n-l 2

:Ji n = n2n, a well known result.
T2

3-4-3, Haar transform:

The Haar transform is usually defined from the Haar functions [11].

The Haar matrix of order 8 [H8] ordered by ranks is as follows

2 Zones
(1 1 1 1 1 1 1 1 0
1 1 1 1 -1 -1 -1 -1 1
V2 V2 427 <2 o o 6 o0
: 2
2 -
ey & o o o o V2 2 -7 f2
VBl = 0 0 0 0 0 0 ()
0 0 2 =2 0 0 0 0 >
3
0 0 0 0 2 =2 0 0
0 0 0 0 0 0 2 -2
J/
_

Here we use the generative rules to define recursively the Haar matrices
and we have found two definitions:

1) The Haar matrix of order 2" is obtained from the Haar matrix of
. (; 0
order 2n-1 by simple Kronecker product with 112] =L- followed by
0 1

rotation of the rows 0 and 2" by [IZ]' This is the pr0cess§}é of
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chapter 2 in terms of generative rules.

2) The Haar matrices are recursively defined by the relation:

M

The rows are obtained in '"natural" order.

2

nat.] {[FZ], [12], ceees [12]}() [Hzn-l nat.]

by their ranks, we need a "zonal bit reversal' ordering.

defined in chapter 2,
successive powers of 2,

followed by a reordering in the original order inside each zone.

coefficients the zonal bit reversal ordering gives:

Index

Binary representation

Bit reversal

000 ~ 000 )——— 000
001 100 ) —— 100
010 AN / 010 )—— 019
011 110 - 110
100 001 )e——— 001
101 = - 101 011
110 \ 011 >>< 101
111 111 )——— 111

S

Reordering
inside zones

(19)

To reorder them

A zone as

is a set of coefficients with indexes between two

A "zonal bit reversal' ordering is a bit-reversal

For 8

final order
(see Fig. 5a)

0

4

With both definitions, we obtain by recursive application of the

diagram of Fig. 3-2 the algorithm of Fig. 3-5 a. This algorithm can

be more conveniently organized as shown in Fig. 3-5 b and give the

rows directly ordered by their rank.

By application of (4) we obtain the following recursive formula for

the number of additions:
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Output
vector
natural
order

(0) Algorithm with rows

Input vector

in natural order

Output
vector

- — }{7

+ S —

Zonal bit reversal

ordering

Output vector
rank order

Fig. 3-5.

(b) Algorithm with rows in rank order

Fast Haar transform of order 8
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A =2+ A +2. Hence 'J%,_n - 22"1) wien Ay = 2, 277

2 2

normalizations are also required. A modified Haar transform obtained from
the Haar transform by permutation of its columns is ralated to the

Fourier transform (see section 3-7-3 ): it is defined recursively by:

bu ) = (2] [{(F,), (T)s coos (1,10 D8 1] (e]° (20)
2

Globally the permutations [Z] perform a bit-reversal ordering inside each

zone,

The modified Haar matrix of order 8 is as follows

(M) =‘/%~_ 0 JZ2 0o <2 o w2 o <7
2 0o 0 0 -2 0 0 0
o 2 0o 0 0 -2 0 0
o o 2 o 0 0 -2 0
o 0o 0o 2 0o 0o 0o -z

and its algorithm is given in Fig. 3-5 c.

3-5. Generalizations of the basic transforms

For the three basic transforms we have found recursive definitions
with a matrix formula similar to (6). The direct comparison of these
definitions suggests the generalization of the basic transforms to families

between them. The simplest generalizations are two families between the
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Input vector Qutput vector

MHo
MH,
MH2
MH;
MH4
MHs
MHe
MH+

(C) Modified Haar transform

Fig. 3-5. Fast Haar transform of order 8
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Fourier and W-H transforms, and between the W-H and Haar transforms. A
larger generalization is the 102 family which includes all three basic
transforms with parent matrices of order 2. A number of these generalized
transforms have recently been discussed independently. We would like to
show that they fall easily within the framework we have developed and that

further generalizations are clearly possible.

3-5-1. Family between W-H and F:

I1f we compare the recursive generation of the Fourier matrices with
radix 2 (14) and the W-H transform (17), we notice that they differ only
by a set of factors. If we exclude the reordering of the rows, we see
that we can easily generalize the W-H and Fourier transforms to a large

family of unitary transforms given by the recursive formula

{UJ. ] = {[I‘Z(Uo)’oo,Fz(e

N el b had]
) ) )l ® [szn_lJ [F]

n-l_1

1 exp(-j0)
where{Fz(eﬂ i/%
1 -exp(-j@)

This family includes the W-H and Fourier transforms for the appropriate

choices of the parameters 8 o _ .
21y

Two families have appeared in the literature for special choices of

'0 LAY

these parameters:

= 271 ke
k 2n
scalar varying from O (W-H transform) to 1 (Fourier transform). The

1) 6 where ¢ is a real

corresponding transform has been called "general spectral analyzexr" [14]

[15].
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2) 6 = 2K 4fymod @"1B) =0

k n
2
where g is an integer varying from O (W-H transform) to n-1 (Fourier

transform), and Sk = 0 otherwise. The corresponding transform is the
"Generalized Discrete Transform" [17]; we will denote it [GTgn]. Fig.
3 -6 shows the matrix [GTi6] and its fast algoritnm. Manyzother choices
for thesz factors are obviously possible and these two special choices
do not seem to bear any exceptional importance.
As an example of use of our general formulas we compute now the

required number of multiplications for the Generalized

Discrete Transform. There are Zg—l factors different from 1.

So;AAgn = ZVAAgn_l + 281 forn-1>g
2 2
u"\,lgn = ZJ‘\;'\gn_l + 2% otherwise.
2 2
-1

So that Jngn =g2" -28 41
2

1f we do not count the multiplications by +j, we find similarly :

&Aign = (g-1) 2“'1-2g + 2 Both results are new.
2

3-5-2 Family between Haar and W-H

In chapter 2, we have presented a family of transforms between
the Haar and W-H transforms. This family was obtained by replacing W-H
transforms of lower order by Haar transforms in the decomposition of the

fast algorithm of a W-H transform. Now we have further decomposed the fast
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a=exp(-2wj / 16)

(b) Fast algorithm

Fig. 3-6. Generalized Discrete tranform [GTi6]
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algorithms of the two transforms up to similar recursive formulas (16)
and (19) or (17) and (20). Obviously, if we choose auy of the 2%
parent matrices needed to generate the matrix of order 2" to be either
[F2] or [I2], we obtain a large family of unitary matrices which includes

the Haar, W-H, and unity matrices. There are

n-1 n-2 n-1 n
22 . 22 e . 21 - 21+ oo + 2 - 22 -1

members of order 2" in this family.
The number of additions is obviously twice the number of parent

-1
matrices equal to [F2]. For the W-H transform we have n2""" such matrices

n-1 + n-2

and therefore n2n additions. For the Haar transform we have 2 2

ve. + 1 = 2"-1 such matrices [F2] and so 2(2n-l) additions. The number of
normalizations varies from O0(W-H) to 2m-2 (the normalizing factors come by
pairs and all pairs are different in the worst case). No multiplication is
required during the computation. At the order 8, 27 matrices are in the
family. We show in Fig, 3-7 one of them with its fast algorithm.

Assume as a particular case that we choose the parant matrices of

the recursive formulas to be

with

p+h—n) or if p<n-k

[Fk] = [Fz]for k = 0 mod (2
k
[F] =[12] otherwise

where p is the stage of computation up to n when we generate a transform of
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1 0
-1 1
0 1
-1 -1
0 0
-1 1
0 1
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0 0 0 0 0 x 2 ]
-1 1 -1 1 -1

1 0 0 1 1 x V2
1 0 0 0 0 x V2

0 1 1 0 0 x 2

-1 -1+l - +1

1 0 0 -1 -1 x V2
0 1 -1 -l +1 x V2 |
a) Matrix

Output vector

z— Wo

(b) Fast algorithm

Fig. 3"70

Example of a transform of the family
between the Haar and Walsh-Hadamard
transforms
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order 2" and h an index lower than n.

Then, if the recursive formula used is similar tc (16) and (19) we
obtain a subclass of n transforms: for h = 0 we have the W-H transform and
for h = n - 1 we have the Haar transform, both in natural order.

If the recursive formula is similar to (17) and (20) (with the per-
mutation [P]t of the columns) we still obtain n transforms: for h = 0 we
have the W-H transform in Paley's order and for h = n - 1 we have an

k
unordered modified Haar transform. We denote these transforms [WHHZn]. Fig.

3-8 shows [WHHiG] and its fast algorithm.

3-5-3 }gz'familzz
To generate the family between W-H and p we have introduced a set of
factors into thne recursive formula for the W-H transform. To generate the
family between W-H and Haar, we have replaced some parent matrices by the
identity matrix [12] in the same recursive definition of the W-H transform.
If we allow simultaneously both operations we generate a larger family
that we call IC,.

2

More formally if [T n_1] is a member of IC, of order 2n-1’ a member
2

2
of order 2" is given by

[T 1= 1] [ICgl, oo [0 oy IO IT 411 [by) :

where [D,] and [D,] are permutation matrices and C., ..., C are either
1 2 0 2n-l 1

1 exp(=j0)
[12] or [F2(0)] =

R [+

1 -exp(-30)
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1
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I
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2 8 — W

(b) Fast algorithm
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Let us call this class of parent matrices ()2. For the order 2n,
Zn-l(Zn"l + 2n—2 Feeedt 1 = 2n-1) parent matrices have to be chosen
independently in CZ: we say that the family 102 has 2"-1 degrees of
freedom over CZ (see footnote 4).

The IC., family is very large and includes the families between W-H

2
and F, W-H and Haar.

The number of required operations is given recursively by
additions: 'JA n = 2 1J4 n-1 + 2An
2 2
n
_ n-k+1 21
Hence L}gn = E 2 A ‘ (21)
k=1

multiplications: A =2 M __, +1L
2 2

n
w—— 1.
hence;;b‘n = Z gk L, , (22)
2
k=2

(4) This notion of degree of freedom is an extension of a concept introduced
by Andrews and Caspari [16]. For them the degree of freedom of a class of
matrices is the number of free parameters required to define this class.

This definition is ambiguous when the constraints which define a class cannot
be reduced to a set of free parameters. For example, tne unitary matrices

of order 2 are given 1 degree of freedom in [16] when ir fact, on the real
numbers, the most general matrix is

cos a sin o e=+1

¢ sin « -€ cOS o a € [0,27]

and on the complex numbers the general solution depends on 4 angles

€ [0,27] and 2 binary choices. Our approach is to track as far as possible
the reduction to independent choices. If it can be reduced to a number of
free parameters our degree of freedom will be the number of these parameters.
Note that the relations (1) and (4) apply also to the recursive computation
of the degree of freedom of a class. Note also that the degree of freedom
has generally no relation with the computational complexity (which varies
usually for the transforms of a class).
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. th
where Ak is the number of parent matrices different from [Iz] at this k
stage, and Lk the number of factors different from i.l (and maybe + j) at

this stage.

For Haar Ak = 1 for any k and.Jl;n = 2(2“-1)
2
For W-H Ak = Zk—l and L}ln = n2"
2
For Fourier (JA n = n2" and L= 2k—1, Zk_l-l or Zk'2-2, which yield
2

the results of section 2.3 (radix 2).

We present now an example of interest in the IC2 family: a class of
transforms which make a discrete transition between the 3 basic transforms
and which we call therefore the WFH class.

Each transform of this class is indexed by two positive integer para-
meters h and g such that h + g < n when 2™ is the order of the transform

and is denoted [WFHg;h].
2

[WFH ng,k] is obtained recursively as the Fourier transform of radix
2

2 (formula 14 ) but with the parent matrices [Pi] k=0, .., 2P~13 such that

0

(e [F, (2mk/2P)] for k = O (mod ,P~81y

7]
[PZ] = [F,] for k = 0 (mod P0G ifp<n-h
k # 0 (mod 2P7871)

k
2]

"

[P [12] otherwise

where p is the level of computation up to n.
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We can represent then WFH transforms on a (g, h) plane as shown in
Fig. 3-9.With appropriate permutation matrices, for h = 0 we have the n

Generalized Discrete Transforms (see section 5-1), for g = 0 the n WHH

transforms (see section 5-2). WFHO’O is the W-H transform, WHHO’ n-1 the

n—l ,0

Modified Haar transform and WHH the Fourier transform. For h + g =

n - 1 we have a set of n transforms in between the Fourier and Haar trans-—

forms which have been called the Modified Generalized Discrete Transforms and

defined after much work in [18].

3-6. Other IC transforms:

Except for the Fourier transform, we have restric;ed ourselves
so far to IC transforms obtained from original core matrix IFZJ and parent
matrices of order 2. The generative rules have given a unified approach
to the usual unitary transforms. We now consider some examples with a
different original core matrix and parent matrices of higher orders.

The matrices of order 2 are of practical interect for the fast
algorithm as long as we perform the required operations (specially
additions) with only two operands at a time. If fast additions involving,
let us say, f operands, become available, the transforms with parent
matrices of order f may be of interest.

Most of the recursive structures of the transforms presented in the
previcus sections can be applied to parent matrices of higher orders
than 2. We now give some examples:

a) different original core matrix
In the definition of the W-H transform the original core matrix
cos 6 sin &

[Fé] may be replaced by the core matrix and we obtain a

sin 6 -cos ©
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- Same algorithm
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\
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. ,
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n Generalized discrete transforms

Fig. 3-9. WFH family of fast unitary transforms
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transform considered by Andrews et al. [15]. This original core matrix
can be used for all the recursive definitions considered.

b) Generalized 2 and 3 valued transforms:

In the definition of the W-H transform the role of [F2] as original
core matrix and parent matrix can be pérformed by any unitary matrix
[U] of order f. If [U] is an Hadamard matrix (its entries are j}A/?S
the generated matrix of order fn will also be a Hadamard matrix. These
matrices have been called "generalized 2-valued transforms' [19].
Similarly we can replace [Fz] in the definition of the Haar transform by
the same matrix [U] and we will generate a unitary matrix with entries 0
or il/Ci where c; is the normalizing factor of the ith row: these
matrices are the "generalized 3-valued transforms'" [19]. More generally (U]
can replace [FZ] in the definition of the family of transforms between
W-H and Haar.

c) IC_ family:

The IC2 family was based on the set (E for the parent matrices. We

can define similarly the ICf family based on the class (& of parent matrices

of order f which contains [If] and [Ff(e . ef_l)] where kth column

1’ L)
- th : -3k
of [Ff(el, vees Bf_l)] = k= column of [Ff] x exp(e ) ([Ff] is the
n
Fourier matrix of order f). The family ICf has %:i— independent parent
n
matrices chosen in (;: we say that ICf has g_; degrees of freedom over

) .
(T° The required number of additions and multiplication is computed

recursively as done for (21) and (22):

additions:gJ4 N f . :J{ a1 +'¢Af An

£ £

n (23)
. 4 .n-k
= Af“ = ‘Af E £ Ay
k=1



-65—

multiplications: ,/M n - f Jun—l +Juf A+ L
f

£
n n
M, =M, E 7 A+ Z 7L, (20)
£
k=1 k-2

‘ th
where Ak is the number of parent matrices different from [If] at the k~ stage

and Lk the number of column multiplications with factors different from

+ 1 (and maybe + j) at this kth stage.
gsh Lo
d) WFH subfamily of IC_
£ t

By analogy to the WFHg;h subfamily of IC
2

, We can define the subfamily

[WFHgéh] of IC; as follows:

f

[WFHg;h] is obtained by successive generalized Kronecker products with
f

p~-1_
the sets {([M°], ... M7 ..., Mf 1} of parent matrices such that
[Mk] = [F?] with column i of [F%] = column i of [Ff] X e~2njk1
for k = 0 mod (fp-g—l)
) = [F.] for k = 0 mod (£P*"™") and
-p-g-1
k # 0 mod (f )
k .
M) = [If] otherwise
and at each level the permutation matrix [P]t, P =46 & _with s = uf + k,

st uz  kw
¢ = wiPl 4 z, is applied to reorder the columns.
n-1, 0

It is easy to see that [WFH n
f

] is the usual Fourier transform of

0,n-1

o ] have been introduced in the
f

order fn; the matrices [WFHOQO] and [WFH
f
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literature respectively by Chrestenson [27] and Watari [28]. For these
2 matrices (23) and (24) reduce to the same recursive formulas and denoting

by Cpthe number of additions or multiplications:

for wrn®>° P =a Pt
£ £ -f
n
for wrrO?"7L P = PL-l
£ " £f-1 -

(This last result corrects the result given in [15], page 20)
The other matrices of the family can be represented in the g-h diagram of

Fig. 3-9.

3-7.Slant transform:

The Slant transform has been proposed by Enomoto et al. [29] for the
order 8. Pratt et al. [30] have generalized this transform to any order
2" and compared its performance with other tramnsforms [31]. 1In this section
we want to express the recursive generation of the Slant transform with our
generative rules and compute the number of elementary operations required
by its fast algorithm.

The Slant transforms of orders 4 and 8, [84] and [SS]’ are as follows

(in "natural" order).

Zeguencigg

- -
1 1 1 1 0
5. 1! -3 3. -1 x 14/5 3
4 /&
‘/—3 1 -1 -3 x 1Af5 1
LS T 1 2
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HZeguencies

(1 1 1 1 1 1 1 1 0
1 -3 3 -1 1 -3 3 -1 x1A5 7
7 -1 -9 -17 17 9 1 -7 x 1//5x2] 3
1 -1 -1 1 1 -1 -1 1 4
[5¢l~ /5
8 V8l, s 3 1 a3 -5 a1 x1p2 1
1 -3 3 -1 -1 3 -3 1 x W4/5 6
3 1 -1 -3 -3 -1 1 3 x 145 2
RS S 1 -1 1 1 -1 5

The rows can be reordered by zequencies with the same permutation as
the W-H transform in natural order.

The Slant transform of order 2" in natural order is obtained from the
Slant transform of order 2n—l in natural order by simple Kronecker product

with [F,] followed by rotation of the rows "2 ana 2771 by the matrix

Sin en Cos en

Cos 6 -Sin 06
n n

with Sin 0
n

and Cos 6 =

This choice of en introduces in the Slant matrix [S n] the Slant vector §
2
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with components linearly decreasing:

o Q" 1) - 24
i
2n(22n__ 1)
3

But some normalizations can be delayed to the last stage of computation

and the rows 2°7% and 2"1 are rotated by the matrix
- 2
2n-1 _ (22n-2—l)
3
L 1 2n-l
-

requiring 2 shifts, 2 additions, 1 multiplication. The corresponding

algorithm is shown in Fig. 3-10 a.

Number of elementary operations:

Formulas (1) and (5) give:

for the number of additions:

- , n-1 -
UI{Zn-z,len_l+2 .2+ 2 with A, = 2

hence ulln = (n+1) 2" - 2
2

for the number of shifts:

9‘2“ =2 . gzn_l +2 with §, =0
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Output vector

Input S natural zequency

vector order order
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, V5
S3 53

Jios
Sa Sq
Ss Ss

.« Se S
26 ://5 6
S7 s S7

Y

. V5

e —

(g) Direct fast algorithm RQ Ordering

of order 8
Qutput vector
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Fig. 3-10. Slant transform
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for the number of multiplications:

l/ = \/‘/l w b =
ulzn 2 M+ 1eh M, = 0

henceg/btn = 2n-2_1
2

n—2_1 normalizations are required at the last stage of

Finally 2" - 2
computation.

However the algerithm at the order 4 can be performed with 8
additions, 2 multiplications as-shown in Fig. 3-10 b [30] instead of 10
additions and 2 shifts. The formulas (1) and (5) give then:

additions:

Ul{n=2u4' + 2242 withu4;=8

2 ot
' —
hence A = (2nt1) 2712 = 4 2" 1
n n
2 2
shifts:
1 1 (\'
§,=2- G ;+2vith 5 =0
2 2
. .-
hence £; = 2n—1_2 = 5 - 2" 1
2" 2"

multiplications:

uu; = Zv/bl;_l + 1 with 'J\j‘a‘= 2
2 2

hence UM | = 32%72.1 = | + 2°71
2n 2n

and as before 2" - 2n—2 - 1 normalizations.



-71~

3-8. Additional properties and generalizations of vnitary transforms:

In this section we discuss briefly the complex extension of a real
transform. We also point out some additional relations between transforms

suggested by the unified framework presented.

3-8-1.Complex extension of a real transform:

From a real unitary matrix [RT] with rows RTO, erey RTN—l’ we construct
a complex extension noted [CT] with rows CTO""" CTN by creating two

complex rows CTp and CTq from two real rows RTm RTn as iollows

1
CT, = /5 (RT_-j RT )

X | 25)
\/—2“— (RTm'!"j RTn)

CT
q

Then the complex transform CU =<12 + jKQ of a complex input vector

V=R+ J I is expressed uniquely from the real transforms ofCIQ and’
~ P—
9 denotedcp and 9

= L - ;
CUP = CT, -V -;/Z_(RTm RT ) (R+j I) or
Q/p v%._(fpm + ,_On) + j(,Qm _CDn) and similarly

With these relations the properties of complex transforms can be
deduced from those of thé real transform. In the literature, besides the
real and complex Fourier transforms, the complex W-H transfoms (also
called Complex BIFORE transform) [32]}[33] complex Haar transform (also

called Complex Modified BIFORE transform) [34] have been defined.
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Note that the complex W-H transform obtained by relations (25) would have

entries H tj; commonly the rows are then rotated by l-'-:-jl-to give a trans-
v2

form with/Z;tries +1 and +j. The rows of the complex W-H transform can

be ordered according to a generalized frequency defined as the number of

clockwise rotations around the origin when following cyclically the entries

of a row.

3-8-2. Multidimenéional transforms

The techniques presented for the one dimensional transforms extend
to multidimensional separable transforms. Let us denote an input array

of p dimensions by Ai s eeees and the p-dimensional separable transform

q
1 2 P
ul’ sesey upg il, see ey ip Tu i T oo Tu i . Then the

1 h w i p 1p

||y =]

by T

transformed array

can be written

B =§ TP E ) Z :A. Tt
u s e 0 u * L ...i . -
1° * Y - up lp £ - 11’ P uq ll
P p-1 1

If we express both arrays as 1 dimensional vectors A and B , for which
indexes are obtained by lexicographic ordering of the indexes (il, ceeey 1)
p

and (ul, cees up), the multidimensional transform can te expressed as a

l~dimensional transform:
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A= (T@ [T%) ... ® (1P1] B
A=[T] B

The multidimensional transform has been reduced to a 1 dimensional trans-
form. This expression now allows the evalution of the number of elementary

operations and other generalizations discussed previously.

- 3-8-3.Relations between transforms

Two transforms with similar structures will often be related by matrix
relations or energy invariants between the two sets of transformed
coefficients.

a) matrix relations between transforms of same order:

In chapter 2, matrix relations between the Haar and W-H transforms were
proved. More generally, for WFH families, similar relations hold for all
transforms lying on the same vertical line in the g-~h graph of Fig. 3-9.
These transforms only differ by the number of parent matrices [FZ] they
include. Therefore a multiplication by all the missing [FZ] matrices will
generate one transform from the other., Note that these relations only
involve computations in zones as defined in 3.3 or subzones (zonal
divisions of a zone).

b) energy invariants:

By Parseval's theorem the total energy of the transform coefficients

of a same vector with different transforms is preserved. However, it may

happen that the energy of a subset of coefficients is the same for some trans-

forms: we say then there is an energy invariant betweer these transforms.

Fnergy invariants are most likely when the transforms have an identical struc-

ture with different factors. For example, by direct comparison of the
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algorithms for the Fourier, W-H and modified Haar transforms ( Fig. 3-3b,

4c and 5¢) it is clear that the transformed coefficients before respective
reorderings have identical energies in the zones defined in 3.3. This

leads to the following energy invariants for the order 8.

Zone Fourier W-H Mod. Haar
(frequencies) (zequencies) (rank)
0 0 0 0
1 4 7 1
2 2,-2 3,4 2,3
3 1,3,-1,-3 1,2,5,6 4,5,6,7

For the WFH families, the transforms with same sets of invariants
form nested triangles as shown in Fig. 9: the introduction of additional

factors leads to additional smaller subsets of coefficients of a same

subzone over which energy is invariant; the relations between transforms which

exist along vertical lines of the diagram of Fig. 3-9 preserves the energy
invariance in zones. The invariants between the Generalized Discrete
Transforms and the Modified Discrete Transforms have been studied by

Rao et al. [18].

3-9. Conclusions:

In this chapter, we have presenter a unified treatment of unitary
transforms having a fast algorithm. The use of recursive rules to describe
unitary transforms allowé a systematic way to view known transforms,
to generate new transforms and provide a general approach to the evaluatinmn

of the computational complexity of transform algoritlms. Among transforms
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which are clearly related, we have studied the ICf families and the WFH
subfamilies which include most of the transforms considered in the
literature.

In addition to allowing the introduction of new transforms with
properties of interest,‘the framework provided can be used in several
other studies and applications of unitary transforms. In particular an

error analysis of unitary transforms is o presented in the following

chapters.
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CHAPTER IV

ERROR ANALYSIS IN FIXED-POINT COMPUTATION

4-1., Introduction:

In chapter 3 we presented a common framework which defines
unitary transforms with a fast algorithm by using simple generative rules.
In practical implementations of algorithms, numbers are represented with
finite length registers. This will lead to errors in the representation
of coefficients and to round-off errors in computations. In this chapter
arid the following one we consider an analysis of round-off errors and
comment only briefly on representation errors. Round-off errors depend
on (1) the mode chosen to represent numbers: in this chapter we
consider the fixed-point and block-scaling (also called block floating-
point) modes while in chapter 5 we consider the floating-point mode.
and (2) the computational procedure : truncation or rounding ( and for
rounding we have to specify how the midrange point is handled).

Our objective is to estimate the round-off ervor of each output
coefficient or at least to estimate the average mean square error
over the set of output coefficients. We shall also coasider the output
error-to-signal ratio ( ratio of total output mean square e.ror to
total output signal energy). However round-off errors are usually data
dependent: in floating-point mode we shall see that ezch error is
data dependent while in fixed-point mode the algorithm is usually
data dependent. In order to carry out an analysis, we have two options:

-to compute bounds (worst or best case analysis)

-to assume a statistical model for the input cozfficients and the
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simplest such model is a white signal ( statistically independent input
coefficients with equal variances).

Previous contributions to the round-off error analysis for fixed-
point computation consider only the Fast Fourier Transform (FFT) of radix
2 . Welch [1] has considered the best and worst cases and derived bounds.
Oppenheim & Weinstein [2] » Weinstein [3] have considered a white signal
model and presented experimental results for rounding and truncation.

To our knowledge there has not been any theoretical approach for the case
of truncation nor any study of the block-scaling mode previous to our work.
In the following we evaluate the round-off errors with a genmeral framework
applicable to any fast unitary transform defined in chapter 3. We use

the models and assumptions of previous works but our systematic approach
allows us a more complete and accurate study. We reestablish most of their
results as particular cases and, even for the well known FFT, we obtain
some new results.

In the following, we discuss first the error models for computation
round-off ;nd scaling with rounding and truncation. Then we use the
framework of chapter 3: fast unitary transforms are defined by combination
of "parent matrices' according to recursive generative rules. We recall
our notations for the generalized Kronecker product cf two sets of
parent matrices, {A} = { [AO_J sesesas ’ .[Am-lj} and {03} - { [BO], VN
ceey [Bn_lj} . [C] = {A}Q § 63} and we have shown that

[c] = [¢] [ Diag {A}] [2%] [Diag§ @”
The backbone of our approach is to exploit the recursive use of tﬁe
generalized Kronecker product in the definitions of fast unitary
transforms in order to derive recursive relations between round-off

errors at successive stages of computation. Therefore our analysis
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will have two steps:
0 m-1
(1) generation of round-off errors in parent matrices [A J,....,[A J
0 m-1
and [8,....., "]
(2) propagation of these errors in a generalized Kromecker product.
We will take this approach successively for the different conditions
of scaling and computational procedures considered in this chapter
for fixed-point computation and again in chapter 5 for floating-point

computation.

4-2, Error models in fixed-point and block-scaling computations:

In a fixed-point representation of numbers there are two sources
of error : the round-off errors introduceéd in a multiplication and
the scaling errors introduced to avoid overflow. We comnsider them
successively in the cases of rounding and truncation.

a) round-off errors in multiplications:

From Wilkinson [4-page dﬂ the fixed-point representation of
the product a . a' ,denoted fi( aa' ), is such thst
fi( aa' ) = aa' + &
where & is the round-off error such that

for rounding : lel < & 2P

for truncation : 0 PE |C|= -sign(aa')& < Z-b

when the register has b bits and a sign bit.

If we consider that €& and cT are random variables uniformly

distributed in their respective intervals, we have

A2 -2b

1}
%]
~
[a—
N

for rounding : & has zero mean and variance

. 2
for truncation : cr has mean /A* =1 2 and variance A°.

We note that a complex multiplication involves in general 4 real
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multiplications and, assuming that the errors they introduce are
independent, the variance of a complex multiplication error is 4 ﬁg.
For rounding the error has zero mean while for truncation the mean
depends on the signs of the real and imaginary parts. If the operands a
and a' have been previously scaled by S bits, /u is multiplied by

ZS and Az by 228 .

b) scaling error:

Let us assume that a cumulative scaling by (S-q) bits has already
been performed at previous stages of computation a2nd that we scale now the

number a by q bits. We choose to write the error £ ' as

o—

for rounding : &'l < % 27b%a 58-a
- -btq  ,5-q

for truncation : 0 < ' = —sign(a) €' < 2 .
Assuming that &' and J' are uniformely distributed random
variables,.we have:
for rounding : &' has zero mean and variance A'z 22(S-q)
vith A% = 272079 gy
for truncation : Jﬁ has mean /i' ZS-q with //UJ = Z-b/ 4
and variance 22(S-q) [VZ
For q = 1 however, the scaled bit is either 1 or 0 , making the
uniform distribution erroneous. We have then directly :
0% = 7 o6 2 and
/k' -b

c) scaling methods:

L2

In the next section we analyse the combination of round-off and
scaling errors in the case of rounding while the case of truncation will
be studied in section 4-4. However there are many ways to perform scaling,

depending on the test of overflow. Following Welch [1] and Weinstein [BJ
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we first consider two extreme cases:

- no scaling is ever performed

- a fixed scaling is performed at each stage of computation.
In these two cases the errors are independent of the data and we obtain
directly simple recursive relations for rounding and for truncation.
Then we consider the more common scheme of block-scalirg in which we
imposé a scaling of all intermediate results of a stage of computation
if any overflow occurs : this scheme is data dependent and we shall need

a statistical model for the probability of overflow.

4-3. Error analysis for fixed-point computation with rounding:

We consider successively the two extreme cases of no-scaling

and step-by-step scaling.
4-3-1. No-scaling:

This case with rounding is the simplest case of error analysis we
consider in this dissertation. We give a detailed treatment in this
section in order to stress the successive steps of our approach and also
because subsequent analyses will depend heavily on this section.

We consider first a parent matrix [T] of order N which

transforms an input vector V into 'ﬁ so that
-»>
o= [0 7 or
N-1
M T ; Tie Ve

Separating real and imaginary parts, we have :

N-1
Re(Wk) = £Z=0 [Re('l’kz ) Re(Vz )y - Im(TkE ) Im(VQ )J
(1,
N-1
In(W) = BZO [ Im(Tkl ) Re(Vg )+ Re(T,, ) Im(Y, )J
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We denote by E;(Wk) and Ei(wk) the round-off errors on

the real and imaginary parts of wk s, & the round-off errors

o9

caused by real multiplications. & is null if the corresponding

ey

multiplication is a multiplication by *1 . We assume the individual

round-off errors to be independent and that there is no error in

the representation of Tkt' Then :

HCH

™

- -542+1,k]
N-1 (2)
L) = € By
ST ;J { (T ) Buy ) +E o, FRe(r, ) By
+ €
4243,k

In case of rounding, the mean square error of wk , denoted Ew(k), is
given by the error variance. Assuming that all errors in the input
vector are independent of each other and of the mew round-off errors,

(2) gives :

N-1 2 9
Ew(k)=§;0 "Tu” B () 4 fr B (3)
where/[#k is the number of real multiplications performed to compute
W £ v
" rom .

For a transform generated by a generalized Kronecke. product
(rule 3), by permutation and multiplication by roots of the unity of
the rows (rule 2 b and ¢) and columns (rule 1 a and b), the previous

assumption of independence of the input errors ﬁ? (Vp ) holds 1 .

1Note however that the output errors are then correlated.
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For a transform generated by the general rule 2, the errors in the input
vector of a parent matrix are not independent and their correlations
should be considered in (3),

Error propagation :

Let us now use (3) and focus attention on the combination of errors
in a generalized Kronecker product. Following the notations of Figure 3-2
we denote by bjkAAZ the variance of the error on the j th coefficient
of the output vector of the matrix [Bk] (of order m) and 0<ij
the number of real multiplications in a dot product with the i th row
of matrix [Ajj (of order n). Then the variance of the
error on the (im + j) th coefficient of the output vector , denoted

E(im + j), is obtained from (3) :

n-1

. . k j 2 2 2
E(im + j) = §_ by ” Aﬂi A +0(ij A 4)
= . N
sum of variances of sum of wariances
independent error of new errors

random variables
propagated from
input vector

Summing the error variances of all the output coefficients, we obtain the

total error variance, denoted V. , ( [C] = i/‘t} e {&} ) @

n-1 m-1 °C
Vo T ;) g; E(im + 3)
n-1 m-1 n-1 n-1 w1l
_ kI, 512 A2 )
v, = b, || A, | + o« (5)
¢ 5 =0 L ol & ;0 e 4

Several cases of interest give simplified expressions :

1) ”Aiiic “= !

This happens for the ygy family of transforms for exanple ( see chapter 3

section 4-2 ) when the normalizations are performed after the last
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stage of computation. Then (4) and (5) become :

-l j 2
E@m+3) = (p b+ &3 ) A (6)
k=0 .
n-1 m-1 n-1 Kk 9 n-1 m-1 j
Vo = _ _ _ bJ AT+ 2; Z 0(1 A
i=0 j=0 k=0 i=0 j=
n-1 m-1
or V., = n \ + vV . @)
¢ =0 5 e

where V Kk (v j5 denote the total error variance of the output error
B A

vector after multiplication by matrix [Bk] ( LAj] ) , when the input

vector is error free.
k
2 b = b. for any k
) j j y

This happens for example for all IC transforms (see chapter 3). Then ,

using the orthonormality of the matrices [AJ] , (4) and (5) become :

E(im +j) = n b, A2+ O(ij % (8)
m—-1 n-1 m-1
_ 2 2 j 2
Vo = n z;: bj A+ _ Z;% X i JAY
j=0 i=0 j=
9 m-1
or \' = n°V + v, 9)
¢ B 0 Al

Note the similarity between the relations (7) or (9) and the relation

(4) of chapter 3 . This is not surprising since all =2rrors have the same

weight and thus tﬁe total error variance is proportional to the number
of real multiplications performed. A factor n appears however due to
the fact that the normalizations are carriéd out only after the last
stage of computation.

Now for each fast transform defined in terms of parent matrices
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and rules 1, 2 b and ¢, 3 of chapter 3, we can compute, using the
recursive relatioms between errors at successive stages presented in
this section, the mean square error of each coefficient and the total
output mean square error. We shall consider as an example the FFT

algorithms in section 4-3-3.

4-3-2. Step-by-step scaling:
We consider now the other extreme case where a fixed scaling is
performed at every stage of computation. An expression similar to (2)

but with the scaling error is obtained :

N-1
) =

S-q ¢, S
> Re (T, , ) [E(Vl )+ 2% e ,kJ+E42 g 2

- Im(T )[‘é(v ) + 2579 ¢ ]_ S |
ke £ €onwr i)™ Cuerr i 2

(10)
where S is the number of scaling bits up to the present stage of

computation ( S-q at the previous stage) and €' the scaling

error. As in (3) the round-off errors are zero mean and the mean square
of each output coefficient 1is obtained from (10) and the similar

expression for %ia(wk):

B, (k) = g;o' I, Il [EV(L) v, 28 A'ZI*/“k 2?5 p?

(11)

Error propagation:

To analyse the error propagation in a generalized Kronecker product,
we assume that we scale the intermediate results before each stage
of computation. However the scaling errors introduce a dissymmetry between
the roles of the two sets of matrices {UA_} and géai'of a generalized

Kronecker product. As we have seen in chapter 3, fast transforms may
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be defined recursively with the previous stage making the set{oAl} (e. g.
FFT with Cooley-Tukey algorithm) or the set -{63} (e. g. FFT with
Sande-Tukey algorithm). We assume first that scaling is performed after
the matrices of the set {F/( g . Then , using the notations of 4-2-1,
the mean square error on the (im + j) th coefficient of the output vector

is obtained from (11) :

(12)
n-1i
E(im + j) = Y _ [b.k 6%+ 247 228'2‘1] ”Aii! +o 3 p% 2%
errors from scaling new round-
previous stage errors off errors
Using the orthonormality property we can write:
n-1 m-1 n— . n-1 m-1 .
k J||2 2 i 2
Ty 2k Y i DI T
i—0 j=0 K . ==
(13)

- 2
+2 m n2 A'z (ZS q) N

Again we consider two particular cases of interest which simplify (12)
and (13) :
k|
lagl
Then (12) and (13) become :
n-1 Kk

Bam+) = > b A+ LI A2 @B e2n A% 5D s
k=0
n-1 m—1
V. =n) v, o+ v, @H% 2002 A% 2592 (15)
C = k o= 3
=0 B j=0 A
k
2) bj = bj for any k:
Then, with the orthomormality of [Ajj, (12) and (13) give :
E(im + j) = n b, Az + o(iJ Az 252 + 20 A2 (25?2 (16)
VC =nq VB ZE: . (27) mn A
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Whithout details we give now the similar relations obtained when
scaling is performed before the matrices of the set {G%E-. In this

case we obtain for the error variances :

) n- . .
E(im + §) = kZO (-Jik a2 aH? [adll? + o A? 29?2 (18)
ool m-1l +2mn [)'2
vV, = E(im + j)
¢ ;) ;0

where /gjk denotes the number of real multiplications in the dot

product with the j th row of matrix [BkJ, aiJ [52 denotes the

variance of the error in the j th coefficient of the output vector

of matrix [AJ]. In the particular case where f|Aii|l= 1 we obtain:
n-1 .2 m~-1 Q.2 2 2
- : U
Ve=n )}V, @HT + ) v, @H +2 @) A (19)
k=0 B j=0 A

4-3-3. Application to FFT:

The previous formulas allow the fixed-point error analysis for
a large variety of transforms. The FFT with radix 2 is certainly the
most widely used and the precision obtained is en important problem.
We now apply the results we have obtained to the Cooley-Tukey and Sande-
Tukey algorithms. Both algorithms have been defined with generalized

Kronecker products in chapter 3. We first recall these expressions:

Cooley-Tukey algorithm: [F n] = [{[F;] } 2 {F n—l]} [Pt]
2 2
1 exp(-27 3K/ 2% |

. k- _1_
wien [Fz] /R —exp(-2 7 jk/ 2™)

Sande-Tukey algorithm: [? n] = (F n_q a {[F'k]} [f]
2 2 2
1 1

2 | oxp(-27ik/ 2% -exp2wik/ 2%
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a) Cooley-Tukey algorithm:

The application of (8) and (16) leads to equal mean sSquare errors
on coefficients of a same zone , as defined in chapter 2. Here, before
reordering according to the frequency, the zones appear as the sets of

2£+1

)
coefficients with indexes l\such that k = 2 (mod ) £=0,..,n-1

Then it can be shown that the mean square errors are :

no-scaling:
E(L) = (Zn-z—z—l) 4 Az for )\:—_— 22 (mod 2€+l)
,2=0,....,n—2
- (20)
=0 for M=o, 2*!
step-by~step scaling :
\]
E(Ly = @20t gntdasy a2 ontloe ) A2
L 2+]1
for l =2 27 (mod 27 7) 1)

™%y A% for A =02

The corresponding total error variance is given by the following

recursive formulas :

no-scaling:

From (9), we obtain :

n

2
V_= 4V + 2 4 N (22a)
2 1 /M

where /un is the number of factors (each introduces two round-off

errors in a parent matrix hence 2//Uh in the relation). Then for

//un = 2n—1 - 2 as given in 3-3-1 a, we obtain, solving for V .

2
v o= (223 0% h a3 4 AP (22)

2"
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which is, with more accuracy, the result obtained by Welch2 [1] for
the round-off error alone ( we obtain his result by taking
n-1 n-1
= 2 = - 1
/; for n ;’3 and /uh 2 2 for n £ 3 in the
above recursive equation ). Weinstein [2] [3] has an approximate

result by taking /&; = 2n-1 for all n. In fact (22) is a direct

consequence of (20) , by averaging over A :

n-2
-1-2 -
v =2§ R O LS DR S
2" =

step-by-step scaling :

From (11) we obtain:

- 2 ,.n.2 n 2 ,,n~-1.2
V2n 4 Vzn_1 + 2 /“n 4 N (2)° +27 4 AT (@20)
With /u, = 2n—1_2 we obtain
n
v =™ @y e A 40 @™l p'? (23a)
2
result which could also be obtained by averaging (21) over £ :
n-2
v_= Z) BNy 2270 o4 2t ol (23)
2 1=

On Figure 4-1 we have plotted the experimental results reported
by Weinstein [3] with white imput signal uniformely distributed in
[-1 , +1] ( real and imaginary parts ). We have plotted the error
estimation with his approximation and finally the curve obtained from
(23). We find a perfect fit of our theoretical results with his

experimental measures.

2Welch assumes also that rounding is performed only after the
additions of the results of the two multiplications of each term
of the dot product of (2). This procedure reduces the factor of A
by half.
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b) Sande-~Tukey algorithm:

In a very similar way we can compute the individual and total
mean square errors for the Sande-Tukey algorithm. We obtain:

individual mean square errors: From (8) and (18), we have

n-1
no-scaling: E( 1) = }___l @t-2) o, 4 4
i=

with A= ) 271 P

(binary expression of A)

step-by-step scaling:

n-1
B(R) = 3 (gtegy 4%Ep, 4 &%+ 2™ 2%y A2
=1 n-i

total mean square error: From (7) and (19) or by summation of the

individual errors, we have:

_ -1 2
no-scaling: V = 2 /An 4 N +2v N1

2 2
S n-1 2
Hence \Y n - 27 (2 -n) 4 A (24)
2
step-by-step scaling:
-1 2 2n 2
v_= 42" L N°+2 4V +22°" A
,n M ,n-1
Hence v, = (23n+1/3 -22n + 2n+2/3) 4 Az + 22n+1 2"-1) A'Z
2

(25)

c¢) Comparisons:

The Cooley-Tukey algorithm has the advantage that multiplication
errors in parent matrix operations occur in later stages of computation
as compared to the Sande-Tukey algorithm ( see Figures 3-3 b and ¢ ). On
the other hand each mutiplicative round-off generates two errors which

propagate independently while each Sande-Tukey factor introduces only
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one error. These two effects oppose themselves so that no-scaling

and step-by-step bounds for the Sande-Tukey algorithm lie inside the

corresponding bounds for the Cooley-Tukey algorithm. However, if we use

one of these extreme cases, the Sande-Tukey algorithm has to be prefered

for a step-by-step scaling while the Cooley-Tukey algorithm has to be
prefered for a no-scaling scheme. For an intermediate scheme our only
conclusion is that the Sande-Tukey algorithm has a smaller range of
possible errors.

The step-by-step scheme, for both algorithms, has a much higher
error ; however the input signal acceptable with this scheme has a
much higher magnitude. To compare the two schemes it is therefore
interesting to compute the error-to-signal ratio, denoted E/S. The
error-to-signal ratio is the ratio of the total mean square error
to the total output signal variance. If 6'2 is the average input
signal variance, the total output signal variance is N2 (52 S0
that E/S =V / N% G 2
In the case of no-scaling, we have roughly from (22) and ( 24)

vN ~ K N2 (K is a constant).

To insure that no overflow occurs in the computation, the input
coefficients must have a modulus smaller than 1/N. We further assume,
following Oppenheim & Weinstein@ thatthe real _arnd imaginary parts of
input coefficients are independent random variables uniformely

distributed in [ -1/2N , 1/J‘2N] so that 6‘2 =1/ 3 N2 and

E/SHSKNZ
Thus, in the case of no-scaling E/S varies as Nz .

In the case of step-by-step scaling, we have roughly from (23)
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and (25): VN ~ K N3

But assuming again a uniform distribution of the input variables, now in
[—1 R +1] we have 2= 2/3 and therefore
E/S w~ é% K' N
Thus, in the case of step-by-step scaling, E/S has & linear variation
with N. This shows, as expected, that the step-by-step scheme is in

general much better.

4-4. Error analysis for fixed-point computation with truncation:

This analysis is very similar in its organization to the analysis
for the case of rounding done in the previous section. However, new
terms appear in the derivation.due to the bias of truncation errors
and also due to the correlations between errors and signs. We consider
again successively the extreme cases of no-scaling and step-by-step
scaling.

4-4-1, No-scaling:
Relations (1) and (2) are still valid but with &42’1( . 5—41_*_1’1( ,

£ . .
84 242,k and 4243,k respectively replaced in (2) by
“STy STie JM,k > T8 St (f4£+1,k » STy Slyy  Yype2,x 204
-s%z srkz ¢f4£+3,k where ST, siz R Srk! and Sikﬂ are

the respective signs of Re(V, ) , Im(Vz ), Re(Tke ) and Im(Tkt)'
Then, with the same assumptions of statistical independence as in
the case of rounding, we obtain for the mean square error Ew(k) of

wk :

N-1 ,
E,(k) = > “Tkz “2 E (L) +/»k ( &% +/uz} + R (k) (26)
t::
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where the two first terms are similar to those of (3). The complementary
term E'w(k) , which comes from the crossmultiplied terms in g(wk)
and 8. (wk), results from the correlations between the signs of the

input coefficients and the errors on these coefficients. Denoting

n,, = E( ST, &(Vf_)) and Nop 4] = E( SiL gd (V'e)), we
have N-1
B (k) =-2 A ; (nyp + 04t |re(Ty,, )| 27)
-1
+ g:_ (n22+n2£+1) lIm(Tkﬁ)‘}
=0

This expression simplifies if all input coefficients of any parent

matrix have similar error statistics, i. e. n

fap T M2e+1 T
independent of L . This happens for all the IC transforms of chapter 3

and so for the usual transforms. Then , with

N-1 N-1 ,
A, = ;} Re(T,, ) + )g) Im(T), )
| Re(Twe)| #1 [Im(Tge)l #1 .
we have: E'W(k) = —4/}. n Ak (28)

As a(vl ) and Re(V, ) are only correlated by their signs, we have:

B( B (v ) Re(¥y ) )

n =
2% E ‘ Re(V, )|
BC EL (v ) Im(Vp ))

and also Ny 41 =
We study now a recursive relation for N and Mooy From (1) and (26)
we have :

N-1 2 2
Re(W,) &, (W) = :;0 (Re’(T ) Re(Vy ) Bu(vy ) + I (T, ) In(V,) FilVy)

(29)
Re(Tkz)“Re(Vc),J-l’e’k - (Im(Tkg)( ’m(v&), ‘):;Q+1,k

+ terms with random signs )
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For simplicity let us denote N2k= E( st E;(wk)) ’
Ny pp = ECsiy E @),y - E‘ Re(wk)‘ s Pyyp = E \Im(wk)(,

Ppg = EI Re(Vz )l and Popg1 = E ‘Im(Vz ﬁ. Then taking the expectation

+  of (29), we obtain:
N-1 2

_ 2
Nor Pox = L;) (Re“(T,p ) myp Pop +Im™ (T ) Mypyy Popyy )

N-1 N-1 (30)
-/{:0 [Re(Tyy )]y A= (T | Poeay
| Re (T, , )} 1 [Im (T, 1
N2k+1 P2k+1 gives a similar expression.
If Ny = Mooy = n and simutaneously Py = Popp1 - P
then (30) simplifies to
Nort1 Portl Mok Pa T RPN - P&y (31

In (31) , the computation of p = E ‘Re(vz )l requires the knowledge

of the statistics of the input coefficients. For siwmplicity and also
because the intermediate results tend to have a normal distribution

(law of large numbers) we assume that the input coefficients have a zero-
mean normal distribution with variance ({3 . Then, from (1); we see

that the output coefficients have also a normal distribution with variance

G; = N 6‘2/ . Now we rn compute P = P, =Powtl :
P = 2 x exp(- x2/ 2 E;é) dx = 2 er /W?}
\/z n Cfl 0
Similarly p = 2 GT§/J§7% 36 that P = JE P (32)
Then, from (31) and (32) , we have
- - el
Ny =Ny = VN n = A (33)

To sum up this development, the truncation round-off errors are
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obtained in general from the recursive relations (26), (27) , (30) and
from the statistics of the intermediate results. In the particular case
of importance where the input coefficients of any parent matrix have
similar statistics such that Ny = Moy =0 and Pog =
then (26) (28) and (33) give a simpler way to compute the round-off

Poet+1 © P

errors.

The propagation of the round-off errors in a generalized
Kronecker product can be carried out as done for the case of rounding.
We shall consider as an example only the FFT with Cooley-Tukey algorithm
in section 4-4-3,

4-3-2., Step-by-step scaling:

The basic relation giving the round-off error on Re(W k) is

€ é and

still given by (10) with the variables sa+l,k * C4 42,k

€
40,k °

3 . , .
4243,k modified as done in the previous section. The variables 28,k

and €&!

. - U
2e+1,k have also to be replaced respectively by sty £

2¢,k

and -si, E&. . Then we obtain a relation for the mean square

L T2e+l,k

error of each coefficient similar to (26) and (27)

B, (k) = Z I Tke}lz {E (@ + 22572 2 +/w2)J + M (a2 +phy 2%
,25-4 (34)

(2 8-
VAl L”Tke‘ 2770 (nyy )
) 2/(2 (R0 * pp4r) lRe(Tkt), +Z;(“2£ 2z+1)‘1‘“(Tke§

[Re (T, )| #1 |Tm(T, )| #1
where we have two new terms corresponding to the correlations between
the scaling and truncation errors and between the signs of the input

coefficients and the scaling errors. As for (27), (34) can simplify



iy

-96~

when n = n, Then we have :

20~ Mo+l

N-1
ORI L b [Evm + 285729 (A2 +/w2>] + (% phy 278
£2=0 :
(35)

+4228—q/ﬂ/“'Ak—4n(28_qN/“ +2s/4 A)

The relation corresponding to (29) is now :

N~-1
re) B = ;O[Re%m) Re(tp) Bcvy) ~[rev)| 2% Iy, )

+1a? (1, ) (nyp) By -|mey)| 257 s

- [Re(T )| [Re(¥)| J;e,k 25

s
-l @Ol WY g 2

+ terms of random signs J

giving similarly to (30) :

N-1
- 2 _S5=q ' 2 _55=q ,
Nok Pox = }LZO(R‘E (Tyg) Py (nyy =277 M+ Im (T, ) Popyg (g =27 ° 4 ))
N-1 N-1
S 2 \ S (36)

'/";-O Re(Ty,) Pyp 2 '/“;) Im™(Tyo) Pooyq 2

[Re(Ty ) #1 JIm(T, )| #1
which, if n21 = n22+1 =n and Pop = Popep =P > reduces to
N. P, =Nnp-29 w N p - mp (37)
2k Fax M Mr A

And finally making use of (32),which is unchanged, and (37) we have:

1
_ _ - S-q ' S
NZk_N2k+1—‘/—ﬁn-\/ﬁ‘ (N2 5 p o+ p20 A (38)



-97-

The relations (34), (36) or (35) and (37) when the simplifications
apply, provide a set of recursive equations to compute the truncation
errors in this case of step-by-step scaling. In the next section we

_ consider, as an example, the FFT with Cooley-Tukey algorithm.

4-4-3. Application to FFT Cooley-Tukey algorithm:

As an example, we consider the round-off error for the FFT
with Cooley-Tukey algorithm in the case of truncation. In order to ob-
tain closed form results we sha%l introduce some approximations in
our computation ; they are not however strictly necessary.

We first compute for a Fourier parent matrix the coefficient Ak :
A = | cos ekf + |sin 9k| 040 or n/2

At the n th stage of computation the average value of Ak , denoted A" is

n 8 2271 n 8 , sin(2x/2™
AT = —— ) Cos (27k/ 27) =——( )
2 k=1 27 2 - Cos(22/27)
For n large ' A" tends to a limit A# -3 v 1.27
27

For simplicity, we shall replace Ak by the constant A# in the following.
We consider now the cases of no-scaling and step-by-step scaling.

a) No-scaling:

We first solve the recursive relation (33) which is now

-b # -b # n-2
No=2N_, - 2 A giving N = - 27 4" (V)

2 V2 2 V2 (V2 -1
Then the recursive use of (26) and (28) gives the following recursive
relation for the total mean square error: 3n -2

#2 2
voo=4 v+ @) 2Py +27 A2 (392)
2 2 (V7 -1 V2

giving approximatly \Y n = 22n Z-b (1.5)
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2
about 10 times the rounding error but with the same variation on N .

b) Step-by-step scaling:

The recursive relation (38) gives now:
No= 2N, - ol opth g At
n A n-1 JE -b
N =

2 o g 44t
4 (Y2 -1)

Then, from (35), we obtain the following recursive relation:

e
Henc n

#

V=4V v (2 @2 asen #2007 g5 (o)
2 2 . _aeah? |
2 (V2-1)
Thus v 2™ gy (39)
2

which is also about 10 times the result obtained for rounding.
On Figure 4-1 we have plotted the experimental results obtained
by Weinstein [3} with white signals and the approximate theoretical
results of (39). Our approximation in the value of Ak is responsible
for the slight discrepancy between the results. The exact theoretical
error estimation done by computer computation gives “he results also
plotted on Figure 4-1 and which match perfectly the experimental results.
Our result suggests that the output mean square error should be
drastically reduced if the correlations between signal signs and
errors could be suppressed, for example by leaving random the 1last

bit of each truncated number.
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4-5, Block-scaling with rounding or truncatiomn:

In the previous sections, we have considered the two extremes
cases of no-scaling and step-by-step scaling. In both cases the algorithm
is independent of the data and we have derived bounds valid for any input
vector. These extreme cases do not correspond however to usual situationms.
A commonly used fixed-point algorithm is block-scaling: at every multi-
plication overflow is checked and, whenever it occurs, all intermediate
results at this stage of computation are equally scaled. The cummulative
number of shifts is counted and gives the scaling factor common to all
output coefficients. For a known scaling sequence, the recursive relations
for the mean square error in a block-scaling computation are easely
deduced from the results of the previous sections. However the scaling
sequence for a given set of data is difficult to know a priori. Weinstein

Eﬂ has measured the probability of each possible sequence with 500
sets of 512 independent complex numbers with real and imaginary parts
uniformely distributed in [—1 s +1] for the FFT with Cooley-Tukey
algorithm. Such approach to determine the probability of each scaling
sequence requires repeated computations for each transform and block
size of interest. We propose a more general approach.

In order to obtain the probability of overflow at each stage, we
assume that each input coefficient V, has independent normal real and
imaginary perts with variance ({2. Any intermediate result at the

k th stage of computation is a weighted sum of N iaput coefficients

k

and the weights Y;z are normalized to the same factor Nk:
N -1

I EN R

L=
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It is easy to show that the intermediate results, denoted Yi’ are
independent and normally distributed with variances

Var (Re(Y,)) = Var(In(¥,)) = gl N,

The probability that one overflow occurs for one of these intermediate

results when S scalings have already been performed at previous stages

S
2
is P = erf (——m———) {see footnote 3)
0 VZNk62
and so the probability Ps(k) that no new scaling is

necessary during the k th stage of computation when S have been performed

p (k) = (P)Fk = |erf ¢ 2 ) " 40)
S 0
\2 2 NkG2

where Pk is the number of intermediate results at this stage.

is

It is interesting to note that, with this model, the scaling factor
is known with a higg probability (see Weinstein [3] ) and also that
the number of scaling sequences with a significant probability is low.
One might expect therefore good approximations when averaging over the
possible scaling sequences.

Then for a transform defined with the recursive generative rules
of Chapter 3, we can compute an expected mean square error for each

output coefficient and an expected total mean square error. This result

will apply also to all transforms giving the same recursive relations

for the errors in case of no-scaling and step-by-step scaling. For each
scaling sequence we compute the corresponding mean square errors. Then,
using (40), we take an average of all the mean square errors with their

corresponding probabilities. As an example , we apply this method to

3

erf(x) = Vif- exp(-tz) dt
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the FFT with Cooley-Tukey algorithm for rounding and truncation.

a) Rounding:

The mean square errors at each stage are given recursively by
(4) and (5) if no scaling is performed, (12) and(13) if a scaling
is performed. In particular for the FFT with Cooley-Tukey algorithm
we obtain the total mean square error from (22 a) and (23a). We
have plotted on Figure 4-2 the theoretical points we obtain along
with the experimental results ( for white uniformely distributed
input coefficients ) reported by Weinstein [3] . For N sufficiently
large our results are quite accurate,

b) Truncation:

The mean square errors are now computed from (26) (28)(or (26)
(28) when the simplifications apply) when no scaling is performed
and from (34) or (35) when a scaling is performed. However we need

also to compute the random variables N and N from the relations

2¢ 28+1
(30) or (33)_with no scaling and (36) or (37) with a scaling. In
particular for the FFT with Cooley-Tukey algorithm, we have an
approximate computation by using the relations(39 a) and (39 b). We
have plotted the corresponding points on-Figure 4-2 along with the

experimental results by Weinstein [3] . Again we find a good agreement

for N sufficiently large.
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4-6. Conclusions:

In conclusion we review the results derived in this chapter
and comment upon their interest in practical situations. For transforms
which give independent errors on the input coefficients of every
parent matrix, we have developed a general method to compute the indi-
vidual and total mean square errors in the case of rounded computation.
This restriction on the transforms does not seem very stringent : the
previous condition is verified for the very large family of IC transforms
and for other transforms it is possible that the correlations between
error terms do not introduce a significant output error. In case of
truncation our derivation required also a model for the intermediate
results ; to obtain simple recursive relations we have further assumed
some similar statistical properties for the errors on intermediate
results and also for these intermediate results.

Our method is a direct application of the recursive generation
of fast unitary transforms,devel&ped in chapter 3,t§ the error models
for fixed-point computations. In the following chapter, we use the
same method but with floating-point error models.

We have applied our method to the FFT algorithws and our results
fit closely the experimental results reported for white uniformely
distributed data. We feel confident thét for other transforms and other
data this method of error analysis will provide meaningful results.
However it should be noted that specific type of data may not verify

the error model and one should be careful in using our results or

method.
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CHAPTER V

ERROR ANALYSIS IN FLOATING-POINT COMPUTATION

5-1. Introduction:

In chapter 4, the error analysis of fast algorithms in fixed-
point computation is based on the error models and the recursive
definition of fast transforms developed in chapter 3 . The analysis
was successful because the error models used were consistent with the
recursive relations, in the sense that the errors also satisfied
recursiye relations. In this chapter, we derive similar results for
error models valid in floating-point computations. The main difference
is the dependence of every round-off error on the represented data.
Thus in this chapter, we shall rely heavily on bounds and on statis-
tical models for the data.

Previous work has been mainly concerned with FFT algorithms.
Kaneko and Liu [}] were able to carry out an exact study of the
FFT Sande-Tukey algorithm for rounding as well as for truncation errors
in computation. Weinstein [2]]}] ,Oppenheim and Weinstein [4] have
modelled the input vector as a white signal and studied the total
mean square error due to rounding for the FFT Cooley-Tukey algorithm.
Weinstein reported also some experimental results for errors due to
truncation. Chan and Jury [5] extended some of these results to the
Generalized discrete transforms ( see chapter 3 ) which include the
Walsh-Hadamard transform. Gentleman and Sande [Q} and also Ramos [7]

have derived bounds on errors for the FFT algorithms. Ramos [7] ’
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Chan and Jury -[51 have also extended some of these results to multidi-
mensional transforms.

In this chapter, we follow the same steps as for the fixed-point
computation: we first develop the error model used and also discuss the
importance of the organization of a dot product, the basic operation in
fast algorithms. Then, we study the generation of errors in parent matrices
and finally how these errors combine in the generative rules of chapter
3 . We study successively the cases of rounding and truncation errors.

To conclude the error analysis, we comment briefly on the effect
of errors in the representation of the transform entries or factors
of the computation. These errors may not be negligeable for some floating-

point computationms.

5-2. Error models in floating-point computations and organization

of dot products:

5-2-1. Error models:

Errors in floating-point computations appear whenever a result
is obtained in an arithmetic operation. Let fl(a) denote the floating-
point approximation of the operand a. Wilkinson {8} has shown thatlz
fl(a) = a (1 +A ) with
od € [—Z—b, Z-b] for rounding

A € [-2_b+1, 0] for truncation

In the following, the analysis requires only the mean and variance

1We assume here a base 2 representation as done in most computers.
For other bases, our results will apply if the error model is still
valid.
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of the random vériable-.( . With the assumption of a uniform distribution

of A in its interval of variation, we find the following values:

rounding: zero-mean, variance 82 = 2-2b

/3

truncation: meaﬁ M= -2_b , variance 62.

Unfortunately, a uniform distribution of errors is nct a good model

since usually the input numbers have their values concentrated in

a small interval of the total range of the floating--point numbers.

Additions and multiplications by coefficients also within a small

interval of variationresults in higher probability of occurence of

some numbers. An exact study of the distribution of ig quite complex
[9] [IOJ and no simple model valid in most circumstances seems feasible.

In the numerical applications of our results, we shall use the experi-

mental values obtained by Weinstein [3] for the variance and Liu &

Kaneko [11] for the truncation mean:

2

rounding: zero-mean, variance £ =0.23 Z-Zb

truncation: mean /u = - 0.26 Z-b, variance 6,2.

Experiments on the FFT algorithms reported by Gentleman & Sande &5]
and Weinstein [3] show a discrepancy with their theoretical analyses
when usual rounding is used. Weinstein [;] [3] showed that a randomized
rounding of the midwayzpoint yields ekperimental results in agreement
with the previous error estimates but no theoretical model has explained
the usual rounding situation. Here we use the experimental observation
by Liu and Kaneko [lﬂ that the midway point has a higher probability
of occurence in additions. Our theoretical work, based on this model,

gives error estimates in good agreement with experimental results.

2Value half way between quantization values.
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5-2-2. Floating-point dot products computations:

Consider a parent matrix vector multiplication

v o= [T] v or 1)
N-1
Re(W,) = ;0 ( Re(T,,) Re(V) - Im(T, ) Im(%) ) (1a)
N-1
In(W,) = igo ( Im(Ty,) Re(V) + Re(Ty,) Im(Vy) ) (1b)

The computation of a dot product is the basic operation : there are
many different ways to compute a dot product eack giving a different
error.

a) We may round=~off after each multiplication such as
Re(TkQ) Re(V,) in (1a) and (1b), and then perform the additions
in full precision rounding or truncating only to store the result of
the dot product. We introduce then an error « such that:

fl(dot product) = ( sum of approximate ) (1 +« )
products

b) Assume that we have adders with f operands (usually 2)
to add the p terms of the dot product addition. Many choices are
open for the organization of this addition. The usual way uses only
one accumulator to store the partial sum and the computation is
performed as follows ( we take f = 3 and p = 8 in the following
diagram ): |

terms to sum : a

P N

partial sums result
If we have several accumulators (or temporary storage register locationms),

we can organize the computation in a tree~like manner as follows:
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5-2-2. Floating-point dot products computations:

Consider a parent matrix vector multiplication

v = [T] v or (1)
N-1
Re(W,) = 2;% ( Re(T,,) Re(%) - Im(T, ) In(%) ) (1a)
N-1
In(W,) = E;% ( In(Ty,) Re(Vp) + Re(T,) Im(V,) ) (1b)

The computation.of a dot product is the basic operation : there are
many different ways to compute a dot product each giving a differenf
error.

a) We may round=~off after each multiplication such as
Re(Tkg) Re(V,) in (1a) and (1b), and then perform the additions
in full precision rounding or truncating only to store the result of
the dot product. We introduce then an error «{ such that:

fl(dot product) = ( sum of approximate ) (1 + )
products

b) Assume that we have adders with £ operands (usually 2)
to add the p terms of the dot product addition. Many choices are
open for the organization of this addition. The usual way uses only
one accumulator to store the partial sum and the computation is
performed as follows ( we take f = 3 and p = 8 in the following
diagram ):
terms to sum :

3 2 23 8 & 3 3a; 33

P N

partial sums result
If we have several accumulators (or temporary storage register locatioms),

we can organize the computation in a tree-like manner as follows:
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terms to sum:  a, a, a3 3, 3a; a5 a; ag
\_,__v___/ N————— S———
partial sums -
— /f———-“*’“'/
result *

The number of elementary operations is usually the same but the error
expression is different. Assume that an elementary operation intro-
duces an error J such that :
fl(a1 S R 2 af) = (a1 Foeerennenot af) (1 + J ) with
Cf'e [—Z—b,‘Z-bJ
fn the first case, we have:

fl(al+....+38) = fl(fl(fl(fl(a1+a2+a3)+a4+a5)+a6+a7)+a8)

=((((a +a,t+a ) (1+ Jl) +a,*ag) (L+ Jz) tagta,) (1+ J3) +ag)

a+9)
= (aytaytay) (1+ 9+ &)+ A+ 9)
+(agtag) 1+ &) (1+ I as a;)
+(a6+a7) (1+ JS)(I+ J;) + a8(1+ 02)
In the second case, we have:
fl(a1+. ..... .+a8) = fl(fl(al+a2+a3) + fl(a4+a5+a6) 4 fl(a7+a8))

= (a +ayta,) (1+ Jl)(1+ {‘) + (a,tacta ) (1+ d’z)(1+ d;)
+ (agtag) (1+Jy) (1+ JZ)

Except for the common parent matrices of order 2, for which there is
no choice to organize the dot product, the error analysis of a matrix
vector multiplication and from there the error analysis of a fast

transform, depends heavily on the type of adders and the organization
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of dot products as shown on the previous example.

In the following, we consider only the case of adders with two
operands and of dot products performed step-by-step. We also assume
that rounding is performed just after any addition or multiplication.
Other cases of organization of the computétion can be studied as

in the following sections but they will yield quite different results.

5~3. Floating-point computations with rounding: analysis of errors

in parent matrix . operations:

Following the approaches of previous workers mentioned in 5-1
but with the steps of the previous .chapter , we express in this
section the mean square error of each output coefficient or the

total mean square error of the output vector, first in a parent

matrix operation.

5-3-1. Error analysis in parent matrices:

a) Direct norm bounds:

Let us consider the matrix relation between real vectors
pres
Y = 11 X
where [T] is a real unitary transform. Wilkinson [8] has

established the following norm relations when the input vector is error

free:
el izl fx (2)
and “ EYng 1.06 N & T} 5|xn - (3)
where - " X” = (Ej-;xiz) ] “'1‘” = (; % Tijz) %
-E; = 7{? - :I’ ( /}» computed value of—Y,)

2 . S
& = roundlng error variliance
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As [T] is unitary, IT]] = VN so that:
| =l < 106 E 62 x| @
In case of a complex vector relation W= (T] V , we write:
Re (W) Re(T) ~Im(T) Re (V)
Im(W) i Im(T) Re(T) Im(V)
so that I8/l < 1.06 € 25 /2§ | v (5)

This result was used by Gentleman and Sande [6] . IT the matrix
@ﬂ is not normalized by 1/{N, then (5) becomes:

|Ey [ < 106 2V7 € N | (6)
This bound is independent of the parent matrix and o the operations
involved in the computation: thus, the bounds obtsained by combination
of parent matrices will depend only on the orders of these parent
matrices. However the gain in generality is paid for in the looseness
of the bound. We note finally that relation (3) has been applied above
to the matrix relation corresponding to the rotation by a parent matrix.
It can be used for any matrix relation and later in this section, we
shall use it again.

b) Expression of the error:

Here, instead of direct norm bounds, we evaluate exactly the error
at each output coefficient. Then, we simplify the expression of the
error with norm bounds or with a statistical model for the input coeffi-
cients. If round-off errors occur in the computation of dot products,
then relations (la) and (1lb) become, with - denoting approximate values

-
(we have assumed that there is no error in the expression of V )
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Re(l) = n @)

(7

~—~ N1
Im(T PPRe (V) (+d)) + Re(Tkl)Im(vl)(l+pii] (1+V})}

In(W, ) = ]'] (1+J !

N-1
+ 5 j (1+J}) {{Im(Tki)Re(Vi)(1+4;) + Re (T, ) In(V, ) (146) (1+X;)}

i=2 j=i-1
where o<i, /ai (C(',/Qi) are multiplication rounding errors which
are zero if Re(Tki) =x1 ( Im(Tki) = *]).
Y', Yi are addition rounding errors in the complex multiplica-
tions and are zero if Tki is real or purely imaginéry.
J}, J} are also addition rounding errors in the dot product

computation , organized with step-by-step additions of two operands. We

assume here that Tkl has non null real or imaginary part to obviate

unnecessarly complicated expressions. {f (&y.) are zero if Re(Tkﬂ) =0
h| J

( Im (Tke? =0).

Relation (7) can be written :

NN

Re (W) Re (V)

_ || e [€] ®
'Im(W) Im(V)

]
in which ©® denotes the direct product of matrices ( each entry is

multiplied the corresponding entry ).

Eﬂ is the 2N x 2N matrix such that :
N-1

Fla = ]Eﬁ (1 )+ Y (1 4)) k=1,...,N
N-1 )
R = 11 ardpas Ypardp 1=2,...,N

j=i-1

N N-1 |
+ g;; Iz @+ { Re (T, IRe(V,) (1+d,) - Im(Tki)Im(Vi)(l+ﬁi)] (1+Y;)} 1

Re(T )Re(Vl) (l+°(1) - Im(Tkl)Im(Vl) (1+P1)} (l+Yl)} |

!
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N-1
fota =TT OF JparpHar @)
N-1
NPLI I jT]i-§l+ n);) (1+ ‘(i)(1+ A
N-1 i v
F = I+ YD+ Y a+ oD
2%, 1 j7=71 j 1 1 ©
T Fyas ¥
F - 1+ J) 1+ Y @+ o))
24k, 1 j=i-1 3 1 1
T ar fas v
F = I+ )Y+ YO @a+panH
M4k, 2™ =1 i 1 0 iy
N-1 g ¥
F = 1 a+Inar ¥oa+pn
2™+, 241 j]Zi-l i P py
" and - 7
Re([T]) -Im([T])
In([T]) Re([T])

Then (1) can be written:
Re (W)
Im(W)
and, from (8) and (10), we obtain:
A
Re (Ey) Re( W~ W) [ Re (V)
1 - ) - [F] - [1]]0 G] k ) (11)
m(E,) In( W~ W) D Im(V)
(€]

where [1] is the 2N x 2N matrix with all entries equal to 1. The

n

Im(V)

E,g] ( Re(V)) 10

error matrix [_g]of (11) takes a simple expression if we neglect in (9)

the second order errors:

E \( N-1 J
k.1 = (0(1 + 1 + JZ::I j) Re(Tkl) N+1 error terms at most
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8 -(°( +‘(+Z J) Re (T

j=i-1

ki) N+2-i error terms at most

d;) [—Im(Tkl)] N+ "

1
f) [Im(T ] N+2-1 "

Bl o =Cp v Y+

gk,2n+i =(fy + 1,

M7 ‘EI"L

j=i-1 3
. N-1
.-.(d' +\(| J’) I (T ) N‘l‘l 11]
€?2n+k,l =1 h| k1
N 1 5 (12)
E§2n+k . =( i i j) Im(Tki) N+2-1
? j=i-1
N-1
€2“+k,2“+1 = (p+ Yi + ; JJ!) Re(T, ;) N+1 "

(B! + ¥+ 07) Re(T, )  M2-1 "
gz“+k,zn+1 it 2-1: 1 d

The general expression (11) with the simplifications of (12)
lead to expressions for the output errors which depend on the values
of the input coefficients. For later use in recursive relations, we
wish to obtain expressions depending only on the magnitude of this
input vector. To reach this result, we consider two approaches:\

- computing bounds

- assuming a statistical model.

¢) Rounding mean square error:

All the random variables 4, [4 »¥ ,J appearing in the expression
of [E] are then zero mean, so that, from (11) and (12),
—
E(Ew) = 0

To estimate the mean square error, we first apply the norm relation (2)
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to relations (11) and (12) . We obtain a bound for ” EW’/which is
function of the random variables d&,{ei......etc. Taking the expectation
value over this bound and considering that no error variable is null,

we obtain an upper bound for the total mean square error of the output
vector. The computation of the matrix norm I|E:“ involves only the number

of error terms appearing in (12):

2
E(El < f_f 4 N {(N+1)2+ a1y % n° +......+4} lv? (13)
error —v input vector
variance matrix mnorm norm
Thus E gl < 2 & N | v

This bound was obtained by Ramos [7] with a slightly different
computation.

We may also express the error variance of each coefficient
from relations (11) and (12), considering now the null terms among the

error variables :

F‘"F‘wk”2 - & { Z:- Re'(ny ) [V [|* + Z: In’ (T,,) Ak

[Re(T, )| #1 [Im(T, )] 1
. 2

* 2 | T Vi”
LEQ | (14)
> 5 e,

+ T v l
Tki # 0

where Qk is the set of indexes i such that Tki is not real or

purely imaginary. The terms of (l4) correspond respectively to the
error variables o and p' » o' and ﬁ , Yand Y' , Jand J'. In (14),
17 will appear only through its magnitude in the few particular

2
cases vwhere IlVfl can be factored out in the two last terms. One
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such case of interest is the FFT of radix 2 performed by the Sande-

Tukey algorithm. Since the rows of [TJ are then:

1 *1
either {. giving E “Ew "2 = 2 €2 “V[lz = g2 ”Wﬂz
i k
. (15)
or e e grving e [P = € Cof|vfPefviPe)viy
k

1

3 & |w|?
This result makes possible the work by Kaneko & Liu [1] for this
particular transform. It is also valid for the W-H transform as shown by
Chan & Jury [5] and for a limited number of transforms such as the
WHH family of chapter 3. However there are many transforms of interest,
for example the FFT Cooley-Tukey algorithm, which do not have this
simplification. For them the following statistical approach will yield
the desired property. We note finally that, by taking summations in (14)
over all indexes including those which do not give any error, we.obtain the
norm bound of the previous section.
The second approach is to assume that the input signal is

white with variance (52. Then, we have :

E(V) =0

E(Rez(Vi) - E(Imz(vi) = 0%

E(Re(Vi) Im(Vi))=0 for all 1 and j

These relations imply similar relations for W shewing that W
is also white with variance <§2 if [f]is normalized, N 62
otherwise. Then, taking the expectation value of (14) over the random

variables Vi’ we obtain:
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E"Ewk"z = 62 62 ; Rez(Tki) + Z Imz(Tki)

i
lRe(Tki) ,#1 ]Im(Tki)l#l
N-1 i+l
£ ) T 2+ i (16)
1€Q, I ?:—1 121 e |
, Tki #0
which can be written E,’Ewk” = g2 <§2 b, (16a)

where bk depends only on the k th row of [T} . We notice that (16a)
gives as expected (15) for the FFT (Sande-Tukey algorithm).From (16),

we can also compute the total error variance by summation over k and

we find:

2
g ' > by (17)

5-3-2. Transmission of errors from input vector:

-
We have assumed so far that the input vector V of the parent

s

matrix rotation [T] was error free. We assume now that the input vector

>

- -
has an error EV , so that the input signal is in fact V + EV . Due

to the linearity of the transform, the exact output vector would be:
T o=V + [ E (18)

We have studied in the previous sections the error introduced by

the rotation [Iﬂ ;; . We neglect the secondary errors introduced in

the computation of rﬂ E; and therefore consider that the error vector
E; is exactly transformed. Then, it is clear from (18) that the trans-
mission of the input errors depends on the transform as well as the
input error vector. However , we know by Parseval's theorem that

the energy of a vector is transmitted exactly through a unitary tranform.
Then : t?tal MSE(W) = total MSE(V) + VW (19)

total rounding MSE in
—s -
the computation W = [f} \'
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If [ﬁ]is not normalized, (19) becomes:

total MSE(W) = N total MSE(V) + VW (19a)

5-4. Floating-point computations with rounding : error propagation

In the previous section, we have considered how the different
approaches for floating-point error analysis apply to parent matrix
multiplications. We now use these results and the framework developed
in chapter 3 to derive, using the recursive generative rules, the
rounding errors of fast unitary transforms. We consider successively
the computation of norm bounds and exact computations with a statis-
tical model.

5-4~1. Norm bounds:

Refering to the three generative rules of fast unitary transforms,
we observe that permutations do not change vector norms. Thus we
have to consider the combination of error bounds for parent matrix
computations in the cases of generalized Kronecker product and rotations
of rows.

1) For a generalized Kronecker product of two sets of matrices,

{U4:}and {63} such as defined in chapter 3, we have (from (3) of
chapter 3):
W= (2] [Diag {J(H [¢] [Diag{@?)” v

e, I|= | £2¢ [Diag{u‘(,” £1( [p1ag{B}] V) - [_Diag{ﬂ}}[Diag{@” 'v'”
H £1( [Diag{ l/4,” £1( [Diag{ 03}_] f)) - [mag{u‘l}]fl([niag{@}]")
+ {Diag{Ji} fl([Diag {Cb}] V) - [Diag{@” v ”

We decompose the right hand side of the last expressinn into:

]
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t~
]

L = £1( [Diag{ﬂ}] £1( [Diag{@)}] vy - [Diag%,}.}] £1( Diag {6})‘\7
2 [Diag{ift}] [ £1( [Diag{@)}] ) _\; ~ Dieg {@)} ;”} 20
Then, by the triaﬁgle inequality, we have:

| Bl < B+ E

We first comsider | E,|:

=1
1l

since [Diag {‘A}J is unitary H Ezllreduces to:
E2 = f£f1( [Diag -{@}] )-\7- [Diag {63}} _\7
Assume that for the parent matrices [Akj of the set {J(} , we have
found norm bounds similar to (3) or (6), and which we denote
“ EW | < EAk 3 || v ” for the (21)

vector rotation W = [Ak] v
Assume also that we have similar bounds and notations for the matrices
[Bj] of the set {@} . Then, decomposing . —V. in subvectors on which
operate the matrices [Bj] » we obtain by applying (21) to each matrix
rotation:

[ < &€ Tt e’ @

It follows from (22) that:

“ £1( [Diag {@}] ) V ”

[ps B 71+ O

[v] + O ® (23)

]

The computation of " El ” follows the steps of the computation of

” E, ” and using (23) into (20) gives:
” E, “2 - &2 % (EAk)Z ” V” 2 (24)

Then, from (22) and (24), we have:

2 2 I
F.W < ¢ (,/}k:(EAk) + \/é(EBj) y v (25)
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2) For a rotation of rows (rule 2) by a unitary matrix [U],
after applying the transfonmﬂﬂ, a similar derivation would give
with ET and EU specifying the norm bounds obtained for [T] and
ﬂﬂ :
e, ls & (e +E) (V] (26)

The relations (25) and (26) allow the computation of error bounds
for any transform defined within the framework of chapter 3. We apply
now (25) to the case of fast transforms of composite order.

Assume that N = 7” n, and that the error bound for the
parent matrices of order ini are given by:

Ei = K niz as in (6). Then (25) becomes:

sl €2 ¢ [ & ot vl
i

or “ Ey " < € ” vk ' Z (ni)3/2 (27)
i

a result given by Gentleman & Sande [ﬁ] for K=1.06 2 /E- and

Ramos [7] for K= 2 , both for the FFI.

5-4-2, Statistical model for input vector:

In our analysis of floating-point rounding errors, we . have in
the previous section used the norm bounds derived for parent matrix
rotations. In this section we use the results obtained with a white
statistical model for the input vector.

Whenever we can express the mean square error of the output
coefficients of a parent matrix as proportional to the norm of the input

vector, directly such as (15) or with the assumption of a white signal

(16a) , we can obtain a recursive relation for the error by neglecting
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the secondary errors ( errors occuring on error terms coming from
previous stages.of computation). Then, if the input errors for any
parent matrix are independent, we derive by (19) a total error variance
of the input vector.

- for a rotation of the rows (rule 2), with independent input
errors and denoting by VT’ v VT' the total error variances of the
vectors transformed by [TJ,[UJ, and [Tﬂ ( notations of chapter 3),
we have:

Voo = VT + VU - (28)

-~ for a generalized Kronecker product (rule 3), we have with

the notations of the previous section:

Ve =Z Vo ; ij T (29)

k=0 A
We note that relations (28) and (29) are very similar to the

relations (i) and (4) of chapter 3 for the expression of the number of
elementary operations. This is not surprising since all error sources’

are considered to be of equal importance for a white signal model.

5-4-3. Application to FFT and other transforms:

We now apply the general results of 5-4~1 and 5-4-2 to the usual
transforms, mainly the FFT; we restablish simply some known results
and we find some new results.

a) norm relations:

We have already noted that the general result of relation (25)

applies in particular to FFT of composite orders. However for the

par ticular parent matrices of the FFT algorithm with a given radix,
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we can derive tighter bounds before applying (5) and (26). First, we
may take the exact value of K as given by (13) or compute directly a
bound from (11) and (12). For example, we have seen that for the FFT
with the Sande~Tukey algorithm, we have an exact value for the error
given in (15). So, refering to the notations of relation (15) of
chapter 3, we have:

n-2

EFk =2 for k=0 or 2 <ﬁ>2)

= 2 fi otherwise.

Applying (25), we have then:

n n-1,2

g, “llefvlec 2 @FH? ¢ @™l s+s )

-1 —
Thus By g[]v]]&(z{z“'r +2nZ V2" - 2 )

By " ||<Ivlel o+ 72 - 2)

This result is given as an example of appiication of the norm approach

but the exact computation of the total mean square error is possible
in this case.

Another way to obtain a tighter bound for the FFT is to consider
the definition of the parént matrices as given by (8) or (9) of chapter
3 as the product of a diagonal matrix [D] and a Fourier matrix. The
error norm ,"Elu, for this matrix [D] of order r 1is such that:

el € vl &y, wien Ej =92 ¢
by direct application of (14). Then, if we have a tight bound for the
Fourier matrix of order r , radix of the FFT, and denoted EF , We

: r
have from (26) a bound for the parent matrix of the FFT of radix r :

Il < €]V (EFr+zfz?)

For radix 2, EF2= 2, so : ” Ewné 6 & "V”
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For radix 4, we obtain EF from (11) and (12) directly and find

“EFJF 2025 s [l Ele €IVl (223 + #VZ)

These bounds correspona to the bounds proposed by Ramos -[7] °
with a similar approach. They show the flexibility allowed by our
derivation and its generality.

The experimental results obtained by Ramos [7] for the FFT show
how far these bounds may be from the. errors encountered in practice.
The statistical approach we appy now will give more realistic
estimates of the errors. However the merit of the norm bounds is to
provide an error estimate which does not depend on the input coefficients

as for the statistical estimate.

b) Statistical analysis:

We show now how the previous relations simplify greatly the compu-
tation of error-to-signal‘ratios.
1) For the FFT of radix 2, it easy to show that in relation (16a)
the coefficient bk is:
. bk = 2 ( number of complex multiplications) + ( number of additionms)
a relation valid for both FFT algorithms. Thus, the error-to-signal

‘ratio for the FFT of order 2"=N 1is given from (17) and (29) with the

notations of chapter 3-3 :

2 2

N £E°G

E/fs = 4= 23_ (9 + A (30)
N s (/Mz“ 2"

1f we include in 044!1 all factors #1 and +j except for two stages
2

of computation ( the two first ones for the Cooley-Tukey algorithm, the

two last ones for the Sande~Tukey algorithm) we have (n-2) Zn-l

multiplications and n 2" additions, giving:
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E/S = €2 2 (n-1) (31)
a result given by Weinstein [?] [?] for the Cooley-Tukey algorithm
and Kaneko & Liu [}] for the Sande-Tukey algorithm. If we exclude
all factors *1 and *j we find, using the column c/i{g of the

r
table given in -3-1:

E/S = (a - 3/2 +09™ 1) 2 &2 (32)
a result given by Weinstein [2][?] for the Cooley-Tukey algorithm and
Chan & Jury[S] for the Sande~Tukey algorithm.

2) TFor the FFT of higher radices, the relation (30) is still valid
and the column 0443n gives the most accurate estimates of the error-
to-signal ratio . I; order to give a comparison of the FFT with radices
2, 4 , 8 and 16 we express thg error-to signal ratio as a function of

n _ rn/logzr )

n such that N=2

Radix E/S x 1/2 c?

2 n-3/2 +2()"

4 1—;—5— n -13/12 + 4/30)"

8 2800 _57/56 + 8/7 9"

16 1-636 8 _ 941/240 +16/15 ()"

3) For the W-H transform, we find directly:
ES= n 8.2
a result obtained by Chan & Jury [5].
4) For the Generalized Discrete transforms, we apply again (30)
and the result of 3-4-1 to (17):
E/S= €2 (n+g-~1) - 28710 4520

a result obtained through long computations by Chan® Jury [5] .
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5) multidimensional transforms :

We have seen that multidimensional transforms reduce to a oﬁe—
dimensional transforms obtained by sucessive simple Kronecker products
(see 3-7-2). The error-to-signal ratio is then éasily obtained

by recursive use of (29). For an L-dimensional Fourier transform of

L
composite order N= m ng (ZL: o )
i=1 m i=1 :
or N= 2 =2
the error-to-signal ratio derived from (31) is:
L
Bs=2 ¢ ) @m-1 =2¢° (m-L)
i=1
and , with more accuracy, the error-to-signal ratio derived from (32)
is: L m,-1
s =2 €8 3 [ m 32409 1 ]
i=1
L o,-1
=2 € [m-3L/2+Z ¢ 1 J
i=1

Both results are given by Chan & Jury ES].
The previous examples have been considered because they show the

efficiency of our approach compared to other works.

5-5. Floating-point computations with truncation ; application

to FFT:

The derivations obtained previouly in the case or rounding are
still valid for truncation but they no longer give the output mean
square errors, only the error variances: there is now a bias vector.
Each operation introduces a new bias and since the truncation errors
have the same sign, the biases always add.

Denote by the superscript R ( T) the errors in the output

coefficients for rounding (truncation). From (10), we have directly:
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T R
Re(E ") Re (V) Re (Ew )

- E(rg] ) + (33)

In(E, ") Im(V) In(E,")

where E([E]) can be written, using (12), as a direct matrix product:
e([€])= m[u] o [€] (34)

Mij is the number of non zero error terms in E;j . In a generalized
Kronecker product, the mean error vector in the input vector is trans-
formed and new error biases given by (33) are added. In general, we
cannot pursue further our analysis without specifying the transform
and the original data. However, some particular cases of interest
allow to express the bias vector proportionally to the intermediate
results of the computation : then, knowing how the signal is
propagated, we can estimate the contribution of the bias vector
to the output mean square error. We consider now two cases of
simplification.

a) At each stage, the bias vector is propcrtional to the

intermediate output vector:

This situation is approximately vérified for the large family
of IC transforms (see chapter 3). Two conditions are necessary, one
concerning the generation of the bias vector in parent matrices, and
the other condition concerning the propagation of this bias errors.
1) First we need Mij = Mi for all j and all parent matrices :
then, from (34) E( E&j ) = Mi /;ff;j , and from (33) we see that
the bias introduced in a parent matrix rotation,denoted ﬁ; , 1s such
that: (Bp)i = /)LMi Wi

Therefore the new contributions to the bias vector ars proportional
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to the intermediate output vector.
2) Secondly, we require that the bias vector at the ‘input of any parent
matrix be proportional to the input vector. This condition is verified
for the IC transforms in particular.
If both conditions hold, the final bias vector f is related to the
output vector ;(see footnote 3) :

B, = /A( Zj_‘ M) W (35)
where the summation is extended to all indexes j of parent

matrices appearing in the computation of W, . Then, the contribution

k.
2 2 2
of the bias vector to the output mean square error is M " ( Z Mj) l wkﬂ
42 _ 2 2. .2 R2 3
so that E I° = (Z M)W [T +E (36)
!ka In 5 § ¥l 9F‘wk |
Summing (36) over k gives the total mean square error:
T 2 S ( )2 2 R
v, = 7M wil + v
w - M A (¥ W
If ZMj = C and does not depend on k, we have:
k|
T 2 2 2 _2 R
vy = /x C N° O + v, (37)
-For the FFT, Sande-Tukey algorithm, the relation M,. =M, is

ij i
approximately satisfied ( it is exactly verified if the factors 21

and *j are taken to introduce round-off errors) and the above
relations yield the approximate truncation error analysis of this
algorithm, even for correlated input coefficients, as done by

Kaneko & Liu [1] . For independent input coefficients, this leads

3We assume here that secondary errors are negligeable.
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to the following error~to-signal ratio:

E©/5), = PPt n’-Tm2) + e2(2n-2) (38)

where the muitiplications by 1 and tj are considered to introduce
truncation errors except at the two last stages of computation.

b) At each stage, the bias vector corresponds to an input

bias vector proportional to the intermediate input vector:

This case of simplification is symmetric to the previous one :
we propagate a fictitious bias vector towards the input.vector, i.e.
we determine which bias vector added to the input vector would
produce the same bias vector at the output through the normal error
free transform. If it happens also that these fictitious error vectors
are proportional to the signal output vectors of any of the parent
matfices; then we can obtain an additive input vectcr which will
account for the bias vector. To compute the error-to-signal ratio,
we need the magnitude of the output bias vector which, by Parseval's
theorem, is obtained from the fictitious input bias vector as well.

In particular, this approach gives an approximate error analysis
for the Cooley-Tﬁkey algorithm of tﬁe FFT and it easy to show that (38)
applies also to the Cooley-Tukey algorithm. On Figure 5-1, we have
plotted the‘experimental points obtained by Weinstein [3] and the
theoretical curve given by (38). For the theoretical curve, we have
taken the experimental values of M and £2 presented in 5-2-1.

We find a good agreement between the curves.



error to

signal ratio

Ve 52 o o
2N? 2 “ x experimental (Weinstein)
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° * 16 64 256 004

Fig. 5-1. FFT error analysig for
floting-point and truncation
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5-6. Floating-point computations with non randomized rounding of

midway point:

The results derived in 5-4 have been compared with experimental
error measures [1] [2] [3] [5] and for transforms of low orders
a good agreement was found. Weinstein [2] [3] hes shown that they
descibe in fact with good accuracy the case of a perfect rounding
situation when the midway point is randomly rounded up or down.
However common rounding schemes are not so sophisticated and systema-
tically round up or down this midway point, thus introducing a bias
similar , for computation purposes, to the truncation bias. Therefore,
our analysis of the truncation errors can also explain the strange
experimental results obtained with common rounding schemes.

Weinstein has shown that additions are responsible for an
additional error when common rounding is used and that this error
becomes rapidly predominant as the block size increasés. Let us assume
that each addition introduces an error with mean /ﬂ and variance

&2. We assume, as previously, that the multiplications introduce an

error Wwith zero mean ( no bias ) and variance 62. Then, from (36)
we obtain in this case and for the FFT a new error-to-signal ratio:

2 _9.750 + 0.5) + /ST (39)

B/s = m? (2.25n
where (E/S)R is given by (31) or (32),
We have plotted on Figure 5-2 the experimental results reported by
Weinstein [3]. For each experimental point we compute, from (39) the
corresponding value of /#' ; for all points, except maybe n=ll, we

obtain roughtly /M'z = 0,028. This value correspends to a probability

of 0.33 of occurence of the midway point in an addition. This result
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has an experimental support.in a work by Liu and Kaneko [11] . In
Figure 5-2, we have plotted the curve given by (39) for J/ﬂza 0.028.
Again we see a good agreement with the experimental results.

A natural conclusion to this section is that the rounding error
model is quite imperfect to describe the common rounding situatioms.
The general problem of rounding errors in floating-point computations
seems quite complex ‘9] (1Q} but a better understanding of
the floating-point representation errors is necessary to obtain
an accurate analysis of rounding errors in fast transform algorithms.
We have only considered the case of the FFT in this section but
our approach is obviously valid for other transforms, provided that

the error model still applies.

5-7. Errors in the representation of transform entries or factors:

So far, we have considered only the round-off errors introduced
in the computation. The parent matrix coefficients and the factors
of the algorithm are also represented with finite length registers and
therefore with approximations. In the experimental results obtained
by Weins;ein and used in the previous sections to,éupport our anglyses,
these errors do not appear since both the "exact" computation and
the rounded or truncated computations used the same entries or factors.
These entries or factors are usually stored in a table and
it is reasonable to store them with a rounding scheme since this
operation is done once. However, the same coefficient is usualy used
several times in a transform computation and also the coefficients

are correlated. We believe that with our recursive approach, it is



-132-

possible to.express the output errors introduced by each coefficient.
But it is certainly much simpler to assume that these representation
errors are independent. Then, we may use the results of chapter 4 for
fixed-point computations and chapter 5 for floating-point computations.
Relation (3) of chapter 4 and relation (7) of chapter 5 would

then have additional terms which would modify the fcllowing derivations
adding new error terms to our results. However, for both cases of
number representation, the contribution of the enties or factors
approximations to the output error-to-signal ratio is a term
proportional to the number of stages of computation n .In most cases,
this term is rapidly negligeable. Experimental evidence for the FFT
by Weinstein [3] and Kaneko & Liu [i] confirm that the new error
terms are of second order 4. Therefore, we shall not pursue further
the analysis of the errors due to the representation of entries or

factors.

5-8. Errors in transform domain approximations:

The transform encoding methods introduce coding errors in the
transform coefficients of a vector (quantization, selection of trans-
mitted coefficients). After inverse transform of the approximated
transform vector, we obtain an approximation of the original vector.

In chapter 7, we shall present with more detail these encoding

vy .
Ramos [7] finds however with a different model (ar absolute error

model similar to the model we have used for fixed-point computations)
an additional error term of same order of magnitude . We think that his
model overemphasises the errors coming from the representation of entries

and factors.
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methods. In this section, we give some qualitative comments on the
introduced errors.

By Parseval's theorem, we know that the mean square error can
be computed on the original vector or on the transformed coefficients.
However, a question of fundamental interest is to know the distribution
of these efrors for a given encoding scheme. It is known that a low-pass
filter for the FFT will produce a Gibbs phenomenon on each signal
discontinuity( either inside the input sequence or at its extremities).
For the W-H transform of pictorial data, it has been reported that the
errors accumulate on the edges of small blocks [12]. Still with the
W-H transform, suppression of the discontinuities between extrimeties
of the sequence yields a clear improvement [13]. The Haar transform,
finally, shows a net improvement over the W-H transform when threshold
encoding is used [14] . But both W-H and Haar transform let false
contours appeaf in the shape of grids.

A general theoretical treatment of these effects does not
seem easy; we should like to state some qualitative results which
conclude our error analysis of fast unitary transforms and motivate
the search for other transforms such as the generalized slant transforms
of next chapter. With smoothly varying basis vectors , a transform
will badly represent dicontinuities which will be rejected as transform
coefficients of low magnitudes ( high frequencies for the FFT). The
errors then on the reconstructed data concentrate on dicontinuities, 1i. e.
enhance the true contours. With discontinuous basis vectors, some

discontinuities of the data will be reproduced or even enhanced while
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some false discontinuities will appear. With locally defined basis
vectors, the false contours will remain close to the real ones
and so will be less objectionable.

These remarks lead to the need of a compromice transform between
‘ smooth and discontinuous basis vectors (the smoother versus the fasﬁer)
and also with as much local properties as possible. Some generaliéed

transforms verify this compromise.

5-9. Conclusions:

In this chapter, we have presented an error amnalysis of fast
unitaif transforms in the case of a floating-point representation
of numbers. Using a systematic approach, made possible by the recursive
definition of fast unitary transforms, we have considered all the
cases of practical interest for rounding as well as for truncation
arithmetic. We have, at the same time, presented a synthetic survey
of previous works carried out for the FFT; we have emphasized their
common assumptions and their different approaches. We have derived more
accurate expressions, specially for the norm bounds, and also some
_new theoretical results, specially when the round-off errors have
a bias. However, we should stress that the results 6btained are
either bounds which may be loose for specific input vectors or
approximations valid under statistical assumptions. We are confident
that they give nethertheless reasonable guides in the comparison

and choices of transform hardware and software implementations.
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CHAPTER VI

'FAST UNITARY TRANSFORMS WITH PRESCRIBED BASIS VECTORS

GENERALIZED SLANT TRANSFORMS

6-1. Introduction:

In chapter 3,.we have developed a common framework for unitary
transforms with a fast algorithm in terms of recursive generative rules.
We have derived several families of such transforms depending on the
choice of parent matrices in a given class. Now, we wish to design unita-
ry transforms with desirable properties and still a fast algorithm.

The problem considered in this chapter is to include exactly a preassigned
set of basis vectors, called replacement vectors.

We first dicuss the problem in its most general form. Then we
concentrate on a specific problem of interest: the inclusion of so
called slant vectors into the‘WHH family of transforms between the

Haar and Walsh-Hadamard transforms.

6-2. General case:

We have a set of p orthonormal replacement vectors denoted

§l,%,”””§; of dimension N (p £ N) and we want to design
a fast unitary transform[U]which will have the vectors X, s 3{.2 ses

-
ceny Xp among its row vectors.

The first approach to this problem is to examine the set of
basis vectors obtained within a family of unitary transforms with a
fast algorithm and to try to select a transform which includes the

replacement vectors. Unfortunately, the set of basis vectors of
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such a family is not large. For exémple, the basis vectors of order 8

of the 102 family belong to the set (coefficients not necessarly ordered)
a, Wy s Wy s Wg y Wy Wy 3 Wy Wy, Wy Wa, Wy W, w3)

with w, a root of unity. Therefore this approch is not likely to succeed

in general.

The next approach is to modify a unitary transform [@J with a fast
algorithm in order to include by some rotations the replacement vectors.
Of course, this approach will succeed in a fast algorithm only if the
set of replacement vectors belongs to a subspace SM of low dimensiona-
lity, say M ( pgMg N), in the basis of [T] . The rotation of Sy
will add a maximum of M2 multiplications and M (M-1) additions to the
elementary operations already required by [TJ . It may happen that
the rotation of SM can be further decomposed into rotations of lower

dimensionalities if there are subspaces of SM of dimensions Ml’ MZ”’

-

cees Mﬁ M = M1 + M2 Foeesat Mm), in which the projections of Xl, xz ,
P

....;f; are also orthogonal. Then, the inclusion of the vectors Xl,

N ——p
......,Xp into the basis will require at most

0 2 2
Mk < M multiplications

k=1
m - .
and g M, (M - 1) < M (M- 1} additions
=1
However we may wish to perform these rotaticns of various
dimensions as a sequence'of rotations of fixed dimension, say f.
Then, the successive rotations which include the different basis

vectors canbe performed as shown on the following diagram, where M1

is the dimension of a subspace of S

M 28 previously considered:
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old basis vectors to be

rotated
inclusion of the -l__g_LLZLL_EI(f+1)"°"(Zf-l)"“ul
first
proj ection of the rqtatiw
first replacement , ' second
vector rotation

'oto...oetc

inclusion of the I 2 ..., ﬁj(f+1).....(2f-1)....M1-1
i~
projection of the first
second replacement rotation\“—/—”’vf’,,——’J
vector second
rotation
.....etc

and similarly up to the last projection of a remplacement vector
in this subspace. The total number of rotations of order f is then

at most, when S is not further decomposed :

P M- kef
R = ——

where [x] denotes the smallest integer larger than x .

M

Although this number of rotatioms is fixed, they depend on
the ordering chosen for the original basis vectors, and on the choice
of unconstrained projection vectors :making an orthogonal base with
the projections of the replacement vectors. The new basis vectors
depend- on these choices.

Two particular cases may reduce the computational complexity of
these rotations:

a) two (or more) replacement vectors have merged or orthogonal

projections in a subspace rotated by a matrix of order f : their
projections may be included simultaneously.

b) two (or more) replacement vectors have orthgonal projections
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of the same magnitude: some entries of the rotation matrix are-then

+1 so that the number of multiplications is reduced.
In the foll§wing we shall make use of these simplificatioms.

We are notvable to discuss further the inclusion of replacement
vectors without considering their properties . In the following, we

examine the inclusion of a set of Slant vectors.

6-3. Slant vectors:

The slant vectors we define in this section have a piecewise linear
variation of their components. Various combinations of these vectors form
sets of orthonormal vectors which can be included in the WHH bases with
few operations: we obtain a class of "slant transforms" which offer a
possible compromise for the trade~off discussed in 5-8. Their interest
will be shown in chapter 7 where we compare the performance of several

fast unitary transforms for processing a first order Markov process.

6-3~1. Basic slant vectors:

There are three basic slant vectors of length 2k ¢ the "linear

—,k o~
slant vector", denoted L ~, the "cup slant vector”, denoted V k,

and the "jump slant vector" , denoted Hrk . They are defined as follows:

a) Linear slant vector:

Its components are linearly decreasing and given by:

k
k 2" ~-1) -
LX - ( ) -2 1=0,......,2%1 (1a)
V 2% (2%
3

Lk
The vector L is normalized and orthonormal to the constant vector,

denoted ‘C’ k.

b) Cup slant vector:
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Its components are linearly decreasing for 0L 1 & Zk-l

and symmetrically increasing for 2k-1\< ig 2k ,thus showing a "V"
shape ; they are given by:

k-1

Vik = (2 -1) -21 i o’oo.ooogzk-l-l (1b)
' k ,,2k
2”7 (27°-1
3
vik = v i B L TN L
27-1-1
“+k
The cup slant vector is normalized and orthonormal to both C and
L L]

c¢) Jump slant vector:

Its components are linearly decreasing with a positive discontinuity

in the middle of the sequence:

(2k-1)(2k'1-1) k
3

-2 1

Jik = izo’oo.oo,zk 1"1
M zk»(22k_1) (22k-1_1)

' 9 (lc)
k
Jik Q—Jt iazk"l,...-,z -1
27-1-1
-k ==k -k
The jump slant vector is normalized and orthonormal to C ", L ~ and V

~k ™k <=k *k
We note that the basic slant vectors C , L  , V and J

have respective zequencies 0,1,2,and 3 just as the first W-H vectors.
However, the average variation between successive components is reduced
so that these slant vectors form a smoother basis. The basic slant
vectors for k=2 and 3 are shown on Figure 6-1 a and b.

6-3-2. Sets of slant vectors:

>0 el { ~» { k
We denote by LA R VZ , and I the slant vectors of length 2 but
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Its components are linearly decreasing for 0L i K Zk-l

and symmetrically increasing for Zk-1\< ig 2k ,thus showing a "V"

shape ; they are given by:

k-1
v-k4 = (2 -l) -21 i = o,oooooogzk-l-l (1b)
-t k .2k
2" (27 -1
3
vik = v E g =25 L2k
27-1~-1
, -k
The cup slant vector is normalized and orthonormal to both C and
Tk
L.

¢) Jump slant vector:

Its components are linearly decreasing with a positive discontinuity

in the middle of thé sequence:

(zk-L)(zk'l-l) k
3

-2"1i '

Jik = i“o,.....,zk 1-1

M 2k (22k_1) (22k-1_1)
‘ 9 (1c)
k

Jik =-J§ iﬂzk-l’....’z -1

' 2-1-1 '
=k —=k -k
The jump slant vector is normalized and orthonormal to C , L ~ and V

Tk ™k =k “*k
We note that the basic slant vectors C , L , V and J

have respective zequencies 0,1,2,and 3 just as the f;rst W-H vectors.
However, the average variation between successive components is reduced
so that these slant vectors form a smoother basis. The basic slant
vectors for k=2 and 3 are shown on Figure 6-1 a and b.

6-3-2. Sets of slant vectors:

g el -»{ k
We denote by Ll ’ Vl » and J, the slant vectors of length 2 but
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with only 2‘ non-null components with index i , A 2’ L1 <(A+1) 22

(A= 0,......,2k_z-1). For any 11 such that 215 k, any )<21;.£
-t
and any A' < Zk- Y R V;’ and ‘J?;' are orthogonal to < k , L )_],' .
e -1 +>2 w2 2
VR' and JA' . The slant vectors L'2 ,V,2 , and J) for A = 0,1
>3 -3 -3
and L0 , V0 and JO all for k=4 are _shown on Figure 6-lc .

" Any set of orthogonal vectors is acceptable as a set of replacement

vectors. In the following, we shall consider particularly the "complete"

-~ -~
~ ~
O . | ~ ~
8 N [
=~ = \ “
w x - x o
a
" -~ " N b I 8 <
. \' / (3]
AN RN X
! \ / &é (]
\
/ \ /) &
[} X 7 (/]
! \\ P
! ’ q
! \ / o
/ AN / iy
/ ©
N le—~ + Ay \ " .
/ 80
/ \ 7 ol
Il \ ’ =
! \ /
! Ny
U SEURU . Wy A
/
/l /
/ )
/ / ’
/ ’
/ - / " y/
- —] "(—n 1—?‘ S
! 4 /,
! ,/ !
/] / /
! /
/ / y)
] / ’
! / /
! / y
! / 4
/ / /
Q < ~ m A fe— ™~
"
e




-141-

“)

*

Slant vectors of size 8

Fig. 6-1 b.
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Fig. 6-1 c. Examples of slant vectors
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set /1:( ( ﬂi" J;, n) which includes all orthonormal slant vectors

of length 2" and with 21 non-zero components when

20 <« <X <n

~ "1 T 2~

This set includes specifically:

“*n
C
g n -4
—Il.)z ) fOl’ A‘O,......, 2 2- 1
-
“7; ,-ff for ,81 < Y < 12 and A< 2"

For 11 = 2 and 22 = n we have the set of all 2" orthogonal slant
vectors of dimemsion 2" : they are the basis vectors of the Slant Raar
transform ( see 6-4 ).

Ordering of a set of slant vectors:

A set of slant vectors can be ordered according to the following
successive rules:
1) decreasing number of non-zero components , so that the ordering is
from globally to locally dependent vectors as in the ordering of the Haar
basis vectors by their ranks.
2) increasing zequencies : we have seen that slant vectors which are
non-zero on the same interval have different zequencies.
3) from left to right: the slant vectors with same number of non-zero
components and with same zequency, arerdefinedvon disjoint intervals
and so can be ordered. ,
The corresponding ordering is pniquely defined and consistent with

the rank ordering of the Haar transform and the zequency ordering of

the W-H transform.
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' 6-4. A generalization of Haar transform to include a set of slant

vectors:

Our goal is to define one or more discrete fast unitary transform

which includes a given set of orthonmormal slant vectors. Following the

general ideas of section 6-2, we first need a fast transform which can
be modified to include the slant vectors. We choose first the Haar trans-
form and we shall generalize in 6-6 to the WHH transforms.

Thus, we have to determine the subspaces of Haar vectors which
include the slant vectors of the replacement set: for this, we give
first the general expression of a slant §ector in the Haar basis.

6-4-1. Exﬁression of a slant vector in the Haar basis:

Our discussion will consider the Haar transform in natural order

for sake of simplicity and further generalizations. It is not difficult
| >k =k -k,

to verify that the transformed vectors of L A ? vV and J h) " by

the Haar matrix [ H n] are given respectively by:
2 .

= n‘l-l 28+1 k k
At n k .2k .
2" 2° (2% -1) 0 < e ki
| ’ : (2a)
C=0 otherwise
e —-—
C =¢2n-1..z 920+l 1 0g 1-,12"( k-1
——, )
(Tr ka)i = C and 1 -,I2k = md(zzﬂ)
P K Pl
3 0 < ¢ < k-2
¢ = 2T 20 1f 0 d- 2k_pk~L. jk-1
and 1~ 22% -2%71s 2t mod(2c+1)
0 £/ < w2 (2b)
[C = 0 otherwise




L)

-145-

c = [T E 20k . o\<i_ﬂk< ok

and i~ 125 = 2% moa (2t

-—"k c o 4 e < k-2 (2¢)

(Tr J
)\ i -
|/z“+k( 2%k 1)(2 Liye = 2™ ———-'—11 PTG UL

\\C = 0 otherwise

The parameter 2 indicates the zones as defined in chapter 2.

6-4-2. Properties of the slant vectors in the Haar basis and algorithm

to introduce them:

We first observe or show some properties of the projections of the
slant vectors using the relations (2a), (2b) and (2¢).

a) equal components inside the zones:

As we have noted in 6-2, the presence of equal components leads to rota-
tions without multiplications. In the expressions of the transformed vectors,
we note that cdmponents in a zone of the definition interval of the |
slant vector are equal for each vector but vary for different vectors.
The practical consequence is that we first rotate each zone with any
unitary transform of same order and having the constant vector in its
basis. The simplest of such transforms is the Haar transform ( but a W-H,
Fourier.... or Slant transform would also do with more operatioms).

After performing the Haar rotations of each zone, the slant

vectors would be expressed in the new basis by the following components:

(TrL ;‘)’i = : for 1= 225 +2%
22k 22k - 1) = Og'oooon,k-l
—S-——-—3 (3a)
L

= 0 for 14 2%+ 2
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for 1= 212428l
2‘0,..-..0,k“2
for 1 # A2F +2Fl 4 ot (3b)
(c= Pk BPSP S P
l‘o,....,k’z
k,,2k=2
< C= 2—%—-11 for i = A 2k+2k-1
\c=0 fori# A2f+2l

Comparing the new components of each slant vector, we note that:

k+e
(Tr V ;‘)i = 2
{22k 222
3
= (0 )
(Tr 7 ;‘)i ¢
2% _h
9
1) VE
—
L ;( and -:I’l;.
2) 'f‘;

- .
and J § have proportional components except one ;

we

can then . include both vectors by the same rotations ( the last one

will account for the different components).

b) slant vectors in nested intervals:

We wish to prove that it is more efficient to include slant

vectors defined in nested interval in order of their respective

sizes ( number of non-zero components in the original definition.

i

Let us assume that the slant vector S ;; is non-zero only in the

" interval I of size

Zk and that the slant vector

-—
S1 is non-zero

i

in I and at least one consecutive interval. The components of S1 in

-
I are linearly varying and so S{ , the restriction of .S

linearly related to

-
L

k
A

i

1 in I, is

( same indices as ?k'). Then the rotations
A

of the zones of I by Haar transforms, which were introduced in the

-k
previous paragraph to include S

)]

, will be useful to include

e
S

1 L]

A belongs to a subspace orthogonal to the subspace containing
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-k _ Tk
Morever, if S 1= J 3 » We may choose rotations which include simulta-

Tk >k
neously' J 2 and L 1 ¢ all these rotations will be useful to include
-~ _

S1 .

c)' algorithm:-

Making use of these properties, we state now the algorithm
to design a fast transform which includes a set of orthonormal slant
vectors.

"Initialization: [T] ,» Haar transform of appropriate order is first
applied‘to the input sequence.

Step 1 : Express a slant vector with smallest size in the basis
of [IJ.

Step 2 : Rotate the zones with equal coefficients with Haar
cransfo#mé of appropriate orders. The transfofm is now [Tﬂ.

Step 3 : Rotate the rows with non-zero coefficients in the
expression of the slant vector in [Tﬂ. For the last vectors to be in.
cluded, 1if they are of the type L and J defined on the same
interval, they have to be included simultaneously . Let us call
the obtained transform [T]. |

Step 4 : Start step 1 again if the whole set has not yet been'

included.

This method generates a fast transform which includes the preséribed
set of élant’vectors in its basis and requires, wheﬁ starting from
the Haar transform, thg minimum number of operationms.

As the coefficients of an Haar transform are obtained at vari&us
stages of computation, some rotations for the inclusion of slant

' vectors can be performed earlier in the algofithm :.in general, all

- 'J-“ .
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—
operations to include a slant vector S k can be performed at the k th

stage of computation. Consequently, the corresponding slant transform

of order 2% can be expressed by a generalized Kfonecker product.

6-5. Examples of slant transforms ; computational complexity :

6-5-1. Inclusion of basic slant vectors:

a) Linear slant wyector:

Let us first include the vector ‘E>k into the Haar transform of
order 2% . From the previous discussion, we firsc rotate each zone by
corresponding Haar transforms and thus reduce the dimension of the
subspace representing Efk' to k (for L= 0,..0..,k=1). We then
rotate the corresponding rows by (k-1) matrices of order 2. We have
(;) x (k-2)] = k !/2 possible choices, (k-l)! /2 of them including
also the vector -E’k. For n=k=3, we have »3 possible matrices, one
including also the vector 3?? We present them in Fig. 6-2 a and
their corresponding algorithms in Fig. 6-2 b.

The fast algorithm for the corresponding slant transform requires:
additions : 2(2°-1) + 22X 1-1) + ..ioeil + 2(2-1) + 2(k-1)

= 2(2".-1) + 22 (21
multiplications :(k-1)-1 (one multiplication per matrix is postponed
to the next rotation matrix, two happen to be a multiplication by
a power of 2 and therefore are performed with a shift.
shifts : 2(k-1)
normalizations : 2° - 2n-2 - (k-1) (we normalize to the 2n—2 vectors

with 4 non zero components and the k rotated components are assumed

to be normalized by the multiplicationms.
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1 1 1 1 1 11 1 : 1
7 5 3 1 -1 -3 - =5 -7+ 1/{21
1 1 -1 -1 -1 -1 1 1
(07 -1 -9 -1 17 9 1 -7 « /105
[A]-f 1 -1 1 -1 -1 1 -1 1
1 -3 3 -1 1 -3 3 -1 « 3/f5
1 -1 -1 1 ()} 0 0 0.2
0 0 0 0 1 -1 -1 1: 02
1 1 1 1 1 1 1 1 T
7 5 3 1 -1 -3 -5 -7 1 /21
1 1 -1 -1 -1 a4 1 1
). 7 1 -27  -23 23 27 -11 -7 »1/{357
[= "V |1 -1 1 -1 -1 1 -1 1
3 -5 3 -5 5 -3 5 -3 17
1 -1 -1 1 0 0 (i 0.,V2
0 0 0 0 1 -1 “1 1.V2
]
1 1 1 1 1 1 1 1
7 s 3 1 -1 -3 -5 -7 «1/{21
1 1 -1 -1 -1 -1 1 1
P E U -3 -3 3 3 -1 -1, 1/\5
[c]r{? 1 -1 1 -1 -1 1 -1 1
7 -13 9 -11 11 -9 13 -7 :1/{10§
1 -1 -1 1 0 0 0 0 .V2
0 0 o o0 1 -1 -1 1.V2

Fi3. 6-2 a. : Slant matrices derived fromfl-ls] and :I.m:luclmg-i.-3




Fig. 6-2 b. Fast algorithms for the slant matrices of 6-2 a.
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b) Cup slant vector :

A very similar development yields (k-2) rotation matrices of
order 2 after the Haar transforms of the rows and therefore (k-1)) /2
possible choices. The corresponding fast algorithm requires :
additions : 2(2" -1) + 2% (21-1) +2
multiplications : k-3 |
shifts :2(k-2)

normalizations : 2°- 2n—2 - (k-2)

In Fig. 6-3 , we show the matrix obtained after inclusion of'ﬁrg to
[Hé] with rows ordered by their ranks.

c) Slant vectors -I.—k ,__—Y_’k and ?k_

Using both previous results, we need (2k-3) rotation matrices

and we have |§k—12! ll choices. The corresponding fast algorithm
4

requires :
additions: 22" -1) + 22 (21 -1) 4 2 (k-2)

multiplications : (2k - 5) if k> 2

shifts : 2(2k - 3) (4)

n n-2

normalizations: 2 -2 -2k + 3

In Fig. 6-4, we present the slant transform of order 8 obtained
| +2 #2 =2
from the Haar transform and which includes the vectors L0 ’ Vb R Jo
(in this case our method gives only one transform). On Fig. 6-5,
we present the slant transform of order 8 which includes all slant
vectors with k = 2.

6-2. Inclusion . of a complete set of slant vectors :

We consider now the slant transforms obtained from the Haar transform

which include a complete set of slant vectors. In this case, we can
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1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
2 2 -2 -l 0 0 0 0
0 0 0 0 2 2 -2 -2
V2 -2 -2 Z 0 0 0 0
0 0 0 0 -2 -2 V2
0 0 0 0 2 -2 0 0
K 0 0 0 0 0 2 -2

Fig. 6-3. Slant matrix derived from [HS] and including —Vg

and coftespondingﬁfast algorithm
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-1
e V3
RN -
N Vz
‘\ /
A vz
'd " \\ N
:Z._-_-1¢:.._-~:$ ﬁﬁ
-1
2
. 2,
-1
rotation rotation
in zomnes with multiplication
. ‘
1 1 1 1 1 1 1l 1
1 1 1 1 -1 -1 -1 -1
3 1 -1 -3 0 0 0 0 V5
1|0 0 0 0 2 V2 a2 N2
B |z 2 -2 -2 0 0 0 0
1 -3 3 -1 0 0 0 0 « V5
0 0 0 0 2 -2 0 0
L0 0 0 0 0 0 2 -2
-2 *2 -2
Fig. 6-4. Slant matrix derived from [HS]’ including LO . VO , Jo

" and corresponding fast algorithm
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-1
V275
V25
Z
vz
w5
s
1
rotations rotations
in zones with multiplication
_ i
1 1 1 L 1 1 1 1
1 1 1 1 -1 -1 -1 -1

w
=

1
=
1
W
o
o
o
o
[
~
j 3

L |0 0 0 0 3 1 -1 -3 {275
V8 |1 1 1 1 0 0 0 o V2
0 0 0 0 1 "] -1 1 V2
1 -3 3 -1 0 0 0 0o V275
0 0 0 0 1 B 3 -1 Y2/5

Fig. 6-5. Slant matrix derived from [Hé] , including all slant

vectors of size 4 and corresponding algorithm.
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define the corresponding slant transform with a set of parameters
and express the computational complexity in function of these parameters.
Let [SH() ’ 2, n)J denote the slant transform of order 2° N obt:a:lned

from the Haar transform [H n] and which includes the complete set

2
of slant vectors J ( 21, ﬂz,n) with 2 < 9'1 < 22 < n.
We first study how the inclusion of slant vectors defined on nested
intervals can be efficiently implemented. Then, we express the
generation of the matrices [SH( 21’ fz,n) with recursive formulas
and derive the computational complexity of these transforms.

a) Inclusion of slant vectors defined in nested intervals:

Let us assume that we have derived a slant tranform which includes

the slant vectors 'fon-l and 'fln-l (and therefore "Fon-l and -5;.“-1).

We show now that we need only two rotations of order 2 to include

“n n -
the slant vectors L , V, and J®. It is first obvious that:
- ne - e
P = I/ﬁ ( Lnl_Lnl)
0 1 1 1
so that the rotation by the matrix . [Fz] = 1//2 [

1 -1
will include V" in the basis of the transform and also a vector
.’ -
2t = 1/ 2 (-fon + I.]_rl 1) which has the following components
in the original Haar basis :

n-1
°, = L—— 150, .0000.,2% 101
J » L2n -2 -1)
n n
Z = Z
271y 1

—
Let us denote s™ the vector of [H n] with components :
2

Sni = 1/@ for 1 = 0’0-000’2n-1-1

Sni = -1/{23- for 1 = 2n-1’..-..’2n-l
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define the corresponding slant transform with a set of parameters
and express the computational complexity in function of these parameters.
Let [SH()l, 22, n)] denote the slant transform of order 2", obtained

from the Haar transform [H n] and which includes the complete set

2
of slant vectors /(_f ( 21, gz,n) with 2 < "1 < 22 <L n.
We first study how the inclusion of slant vectors defined on nested
intervals can be efficiently implemented. Then, we express the
generation of the matrices [SH( [1, Zz,n) with recursive formulas
and derive the computational complexity of these transforms.

a) Inclusion of slant vectors defined in nested intervals:

Let us assume that we have derived a slant tranform which includes

the slant vectors —fon—l and —fln-l (and therefore —;on—l and -%n—l)‘

We show now that we need only two rotations of order 2 to include

-

n “*n -
the slant vectors L , V, and J". It is first obvious that:

—’Vn - llﬁ ( ‘Eon-l _‘fln-l)

1 1
so that the rotation by the matrix . [Fz] = 1//2 [

1 -1
will include V" in the basis of the transform and also a vector
2t = 1/ ("fon-l + —I'..n‘l) which has the following components

1
in the original Haar basis :

n-1
z“i = 2 -2 120, 000002010
2n (22n—2 -1)
3
n n
yA = 2z
21y 1

—
Let us denote S the vector of [H n with components :
2

s* = 1/f2% for 1 =0,.....,2% 1

Sn = -l/ﬁa for i = 2n-1,..-oo,2n-l
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¥ n-l d “~*n-1
This vector is not affected by the inclusion of L0 an L1 .
We prove now that there is en such that:
n n
L sin 6 Cos en z
n - - Y] n
J cos B -stn O s
This relation requires :
n-1 2™1) -2
2= =21 g, Bn + (1/ 2™ cos 9n = —(2-1) -21
- n ,,n
(222 2" (2"-1)
3 3
L | @0y
n-
2__-1) - 21 Cos 9n - (1/ 2n) Sin 9n 3
2ng22n-2_11 of (22n_1) (22n-2 -1)
3 9
i = O,o.ooooo, zn.l-l
?n-l
These equations give : Cos 9n = "
2?7y
3
Sin 9 =
n
The relations obtained for i = Zn_l,......,Zn-l are symmetric

and yield the same value of On.

b) Recursive generation of the slant transform [SH( e 1° 9'2, n?}

We make use of the previous results to obtain the recursive

generation of the slant transform [SH [ ’ 32’ n)]. The generation is

obtained in three steps : the first leads to the transform SH( .el, ll, 51),

the second to the transform SH( / R 22, 22) and the last step to the

transform SH( !Ll, .?,2, n).
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step 1 : recursive relations to obtain. the Haar transform of
order Zel followed by ﬁhe rotations to include f:he slant vectors of
size 221 occording to the algorithm of 6-4-2. We obtain%ﬁ( 91, 21’ 31;}
step 2 : recursive relation between slant transforms|SH((,, £, 2)]
and [SH( Zl, £-1, 2-13] which leads to the generation of [Sl-l( 11, 12’ 12?]

from [SH( 21, 21, ll)]:

[sn( 2., 2, L)] = { [Fz][Fz] [12}.......[12]1} 2 [su( 4,8, 3-1)}

followed by rotation of the rows 1 and 2" by the matrix (Fz (él.)]:

[FZ( 0, )] =

where QZ is given by (5).

Sin 9& Cos 91,

Cos 92_ -Sin 9 3

step 3: recurive relation similar to the Haar matrices recursive
relation between~[SH( {1, 22, L )] and [SH( £1, 22,8,-1)] leading to

the generation of [SH( ll’ 1;2, n)]

sH( £, 4,, { [1?2] [I {12_” [sn( 452, L-l)]

c) Computational complexity of the slant traansform SH( 21, 22, n)

The previous recursive relations and the results of chapter 3
allows the computation of the number of elementary operations required

by the fast algorithm for [SH( Cl, LZ’ n)]. In the first step, we include
-1 =1 n=ty

the slant vectors L 1 s V and '.—J’l into the basis of 2 Haar

transform. Relations (4) gives the number of elementary operations:

L
additions : 22 (2 1 -1) + 2 21 -6 3 shifts : 2( 2 Ql -3)
‘multiplications : . (2 21-5) p. for tnz 0 for £ 1=2
normalizations : 2 1 _ -2 11 + 2

Then, we have 82 - El stages of computation for the step 2 requiring

6 Q additions, 2Q multiplications,‘ Q shifts and 2Q + Zn-p" normalizations
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n- f. +1 n-f n- £ n- £
With Q= 2 1 + eecvceoe +2 2 = 2 1 -2 2
n- 92
The last step performs a Haar tzansform of order 2 and requires:
n- 2 n-
2( 2 2) additions and 2 2 normalizations.

Summing these results, we find finally the computatioral complexity of

the slant transform [SH( 21, 22, n):}:

n-2, +2 n- £ +2

2
additions: 2 Y (2 * +20 - 4) -2 2

. n- !Il+1 n-/
multiplications : 2 (31—2) -2

n- ,P1+2 n-lz
shifts : 2 (?1 -1) - 2

-2
1£ 4,52, 275118 ) =2

(6)

n n-2 _

normalizations : 2 -2

d) Slant Haar transform :

A particular case of the inclusion of a complete set of slant
vectors is the slant transform [SH(Z,n,n)] which includes all
orthonormal slant vectofs intoEl nJ ; we call it *he slant Haar
transform. The recursive definition of the slant Haar transform only
involves - step 2 of the previous section and the slant Haar

transforms, denoted [SH n)’ is recursively obtained by the Kronecker

product (F [ry] [1) oo [ia] } @ [ ]

1

followed by the rotation of the rows 1 and 2" by the matrix [Fz(enﬁ-

9n can be also expressed recursively :

CosG
Cos 9 -1 = I
n S:l.n9
n
Sin29 = 1

2
1+ 4Cos”¢ _,

In Fig. 6-6 a we present the corresponding algorithm of order 8,
in Fig 6-6 b a modified algorithm such that the coefficients are

ordered, and in Fig. 6-6 c, we present the ordered slant Haar matrix
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-7 x4ﬁEi
3 x"/ﬁ
-7 » 4ff05

0 ¥
-1 pm

c) matrix

Fig. 6-6. Slant Haar transform of order 8
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of order 8.

Computational complexity : By application of ( ), or by direct
application of the results of chapter 3, we obtain thé following
number of elementary operations for the slant Haar transform:

n+2

additions : 2 -6
n-2 -1

multiplications: 2

shifts : 2n -2

normalizations : 2" - 2n-2 = 3 an2
As the slant Haar transform of order 4 (which is also the slant transform
of order 4 presented in chapter 3) can be performed somewhat differently,

we can trade, in the above results, 2n-1 additions and 2n—1

shifts
for 2n-1 multiplications as we did for the slant transform presented
in chapter 3. |

Comparison with the slant transform of chapter 3, which we call
now slant W-H transform to avoid confusion, shows about the same

number of each elementary operation except for (n-3) 2" + 4 fewer

additiomns.

6-6. Generalization to combined slant vectors and their inclusion

into the WHH transforms:

So far, we have considered the inclusion of the slant vectors
only into the Haar basis. We have developed in some detail the
slant transforms that could be thus generated and found a
large number of slant transforms. In this section, we suggest different
generalizations. The first considered is the inclusion of so called

slant Walsh-Hadamard vectors.

6-6-1. Slant Walsh-Hadamard vectors:

The linear combination, through a unitary matrix [p], of a set
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of orthonormal slant vectors yields also a set of orthonormal vectors
and thus a suitable set of replécement vectors. Obviously, the inclusion
of these combined slant vectors requires not only the operations for the
original slant transform, but also the operations for the rotation by the
matrix [UJ.

We consider in particular the W-H linear combination of slant vectors
of same size and type but defined on disjoint 1nterfals ( variation of
the parameter A in the notation of 6-3-2). We obtain a set of
piece-wise 1linear vectors of larger size than the original
slant vectors. In Fig. 6-7, we show the combined slant vectors
obtained from the vectors 'ig ( A=0,1,2,3) and rotation by
[W“z.}

6-6-2. Inclusion into WHH transforms :

Instead of using the Haar matrix as original unitary transform,
we may consider using any of the WHH transforms defined in chapter 3.
In order to avolid some of the basis vectors of these transforms ha-
ving a smaller size than the slant vectors Qf size Zk, we must have:
k =n-h
where h is the parameter of the WHH family. Among the numerous

possible transforms we can generate, we present now two examples.

a) Inclusion of-zp into[WHé]:

With a method similar to that used for the Haar transform as
original matrix, we obtain 3 different transforms. We present them
in Fig. 6-8.

b) Slant W-H transform :

We consider the complete set of slant vectors which lead to the
slant Haar transform and combine the vectors of same type and size

by W-H transforms of corresponding orders. We obtain a set of "
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1 1 1 1 1 1 1 1

7 5 3 1 A -3 -5 -1 yfa
1 1 -1 - -1 a1 1

7 a4 -9 -7 W 9 1 -7 fi0s
1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

1 -1 1 -1 -1 1 -1 1

1 -3 3 -1 1 -3 3 - Ufs
1 1 1 1 1 1 1 1 1
7 5 3 1 -1 -3 -5 -7 1IN
1 1 -1 - -1 -1 1 1

7 n -7 -23 23 27 -1 -7 Y0357
1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

1 -1 1 -1 -1 1 -1 1

3 -5 3 -5 5 -3 5 -3 117
1 1 1 1 1 1 1 1 1
7 5 3 1 -1 -3 -5 -7 2
1 1 -1 -1 a4 - 1 1

1 1 -3 -3 3 3 -1 -1 15
1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

1 -1 1 -1 -1 1 -1 1

7 -13 9 -1 1 -9 13 -7 1/105

Fig. 6-8. Slant matrices derived from wﬂa and including L3
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orthonormal vectors which are the basis vectors of the slant W-H transform
presented 1nvchapter 3. We have given in 3-7 a recursive definition of
this transform.

We note finally that the zonal relations between the Haar and
W-H transforms (chapter 2) or between the WHH transforms (chapter 3)
can be extended to the slant transforms with slant or combined slant
vectors.

6-6-3. Step slant vectors:

If we consider the Kronecker product of a slant matrix, denoted
[SLT] with a WHH matrix, we obtain a unitary transform, denoted
Lss'r] , [sst] = [sur] @ [wan]
with piece-wise constant basis vectors and these constants vary

linearly.We present in Fig. 6-9 the step slant matrix given by the
product [Sﬂa] f [WH4]°

6-6-4. Approximation of a vector with piece-wise linear vector:

By combination of slant linear vectors defined on disjoint
intervals and the corresponding constant vectors with variable gains,
we can approximate any ﬁector with linear segments. However, the other
vectors of the set have then constraints and in particular the

constant vector will not be in the basis in general.

6-7. Conclusions : .

In this chapter, we have mainly considered the definition of
fast unitary transforms which include a set of slant vectors. All the
transforms considered in this chapter are new, except the slant W-H

transform. The results obtained with this transform in image processing

give hope that the transforms developed here will be of interest.
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CHAPTER VII

SOME APPLICATIONS OF FAST UNITARY TRANSFORMS

7-1. Introduction :

In the previous chapters, we have considered fast unitary
transforms and their properties independently of their applications;
Our approach has particularly stressed the recursive gemeration of
fast unitary transforms, the evaluation of the computational complexity
of their algorithms and the analysis of the computational errors.

This chapter illustrates how fast unitary transforms can be applied to
different domains and how the results of this thesis open new directions
in these applications.

In the following, we first describe the main applications of fast
unitary transforms : signal representation and dimensionality reduction,
encoding and filtering. Our presentation is based on mean square error
analysis because it is most commonly encountered in the literature and
also because it leads to analytically tractable computations. However,
it does not necessarly represent the state of the art in these applica-
tions nor is a limit of the application of our results.

All applicationé involve the computation of the covariance matrix
of the transform coefficients when mean square error is used. An
interesting application of the recursive definition of fast unitary
transforms is the recursive expression of this covariance matrix, leading
to a fast computation.

We shall see that all applications lead to a ternary trade~off

between quantities which will be qualified as :
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However, we may still have a good representatiocn of the original
sequence knowing only a few terms of the transformed sequence. We denote
with "\" the approximate values. We can the express the mean square

error in the représentation of the sequence :

Nl ' N-1 N-1
< “ - xi”2= % Z';:o ”Tik” ’ﬁ - YkHZ
- M 1% - %2 (1)

If the input sequences has known second order statistics ,

mean (/l/«x)i = E(Xi)

and covariance matrix ([_Rxx])ij = E ( l: X, -(/ux)i] [Xg -(/Ax)ﬂ)

then, we can express the second order statistics . of the transformed

sequence:

(roy = [ f | @)

7,
(Repdyy = E([Y “(pyy [Y; -3
Zk [Tik (xk"(/“'x)k)] [ Ty, (% '(fx)lﬂ "

-2 oy B [xk -] [x -
e SR G N TR 5 L

Now, we assume that we take only a few coefficient
formed sequence and neglect the others. By inverse transform of this
reduced sequence, we obtain an approximation of the original sequence.
The mean square error of this approximation is particularly easy to
compute since , by Parseval's theorem it is the energy of the omitted
coefficients. From (1) , (2) and (3), we have :

MSE(X) = Z ([T] [Rx] [7] *t) Kk

k ¢ omitted
coefficients
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In representation problems, the parameters of interest are:

- the qualitj of the approximation ( e. g. MSF)

- the number of maintained coefficients

- the‘complexity of the transform.
The trade-offs between these parameters have been only partially studied
so far. When the complexity of the transform is not a probiem, the Karhunen- °
Loeve transform (which diagonalizes the covariance matrix) has been shown
to be optimal in many ways : for a fixed number of maintained coefficients
[1], for a fixéd level of the mean square error with Gaussian.sequences
[2]. However, when the complexity is considered to be critical, only
very few results with a limited number of transforms have been reported
[3] [4]. 1In section 6 of this chapter, we present a theoretical compari-
son of transforms for a first order Markov process. and a MSE approxima-
tion measure. |

7-2-2. Multiclass signal representation :

For a long time the feature selection stagelof a pattern recognition
scheme has been heuristic while the classification stage received
more attention. Only recently , some efforts have been given to design
automatic feature selectors [5] [6] [7]. It is not the place here
to present these methods; however,4we want to stress thé use of
unitary transforms in feature selection.

The rotation of the axes of the pattern space by a unitary trans-
form may give axeé'more meaningful to represent an separate the diffe-
rent classes. The K-L tramgform 1s again optimal [8] and is the bas
of factor analysis (where classes are unknown). However, other unitary

transforms may perform closely with less computational time and

therefore are of interest. Andrews [9] and Carl [10] have applied
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this apprpach to.a large variety of patterns and found promis

results.

7-3. Signal encoding :

The problem of signal encoding is very similar to the representa-
tion problem ; however, the representation is no longer the first step
in the processing of the signal but the ultimate goal. After quantization
and coding of the maintained coefficients, we have a bit rate which
expresses clearly the performance of the encoding scheme, for transmission
or storage. This is the most popular application of the fast unitary
transforms for a wide variety of signals : speech [11] and image encoding
[12] [13] [14] are the most common examples. In this section, we analyse
the basic problems of signal encod;ng and discuss the possible optiomns.

7-3-1. Basic problems of signal encoding :

Signal encoding and decoding are performed schematically as follows:

continuousL’.digital coded coded distorted distorted
- » » digital s continuous

signal signal|, |signal signal 1 signal signal
Sampler Encoder Transmission ‘Decoder Reconstruction

or Storage

Signal encoding techniques take advantage of the redundancies in the sig-
nals which belong to the same class to reduce the transmitted or stored
data. Statistical characteristics of the class of signals are necessary
to analyse an encoding scheme and in section 7-6, we consider the case

of first order Markov process which models especially well speech and
image signals. For a first order Markov process, one single parameter
characterizes the signal complexity. In the evaluation of the performance

of an encoding scheme, the parameters of interest are the bit rate,
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the distortion level (with a distortion measure) and the computational
complexity.
a) distortion : If a human is the ultimate user.through his senses,
of the decoded signal, the distortion measure must consider the subjective
effect of the errors. To our knowledge, such distortion measure 1is
still under study and commonly the mean square error is considered, mainly
because it leads to a tracktable analysis, but also because it is a
rough approximation of the human perception of distortion [12]. A better
but still somewhat unsatisfactory measure is the frequency weighted
mean square error [13] [15]. The global distortion of the encoded signal
appear at various stages of the encoding process:

- sampling error : since most signals of interest are frequency
limited and since the human senses ( hearing and vision in particular)
are mostly sensitive to low frequencies, sampling errors can usually
be made negligible.

- transmission (storage) errors: we neglect them in the following.

- encoding errors on sampled data due to the data compression
technique énd depending on this technique.

b) computational complexity : It controls the equipment complexity

and the computation time. The constraints on complexity for various
applications are certain quite different. In this thesis, we shall
measure the computational complexity uniquely by the total number
of elementary operations required in the fast algorithms. By so doing,
ve neglect an important constraint of practical encoders : the buffer

size necessary for each encoding technique.
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7-3-2. Unitary transform encoding techniques :

In a transform encoding technique ( also called block quantization
technique ), the samples are treated by blocks. These blocks are trans-
formed by a fast unitary transform ( therefore the blocks have usually
2" elements). In the transform domain, many coefficients have a small
amplitude and may be discarted without noticeable loss of quality.

The remaining coefficients are then quantized. The encoder has the

following structure :

— 31 Direct transform [ Selection of Quantizer

transform coefficients

while the decoder performs the inverse transform. A transform encoding
technique is then determined by the transform, the blocksize, the
method of selection of transmitted coefficients and the quantizer. We
comment on them :

transforms : only a few transforms have been considered :
Fourier, W-H, Haar, Slant, Discrete Cosine ( a variation of the Fourier
transform defined recently)% In fact, it is known that, in its K-L
basis, the signal is represented by uncorrelated coefficients which are
independent if we assume ( experimental evidence somewhat justified
by the law of large numbers) that they are Caussian t11. The rate-
distortion theory tells us that these coefficients can be optimally
encoded but without concern for speed of computation. If fast unitary
transforms are used instead, we have a gain in computational complexity
achieved at the expense of a larger distortion resulting from the
remaining correlation among the coefficients.

selection of transmitted coefficients: There are many ways

1the Discrete Cosine matrix is given by (C

2

= Cos( w1i(2k+l)) »

2N

1 if i=0
n)i,j {

V21if 1#0
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to select the transmitted coefficients and to quantize them. Our goal
here is to concentrate on the effect of the choice of the transform and
therefore we compare in section 7-6 theoretical bounds obtained from
information theory for different transforms ; the corresponding
selection and quantization rules parallel the theoretically optimal

rules used for the Karhunen-lLoeve transform.

7-4. Signal filtering ¢

A common problem in electronics as well as in digital circuits
is to design filters that improve the signal-to-noise ratio of a
noisy signal. Filters are analysed in the signal (time) domain or
equivalently in the spectral (frequency) domain. Generalized filters
analysed in the transform domain have been presented by Pratt [17].
In the following, we consider the simple example of a statiomary vector
signal ;; mixed with an uncorrelated additive noise Y . We denote
their respeetive covariance matrices by [Rxx] and [RYY] . The noisy
signal is transformed by a unitary transform [T] and then filtered
by a matrix multiplication with the filter matrix.[%%]. The inverse

*t -

transform [T] is then applied to obtain an estimate X of the
signal. It is well known that the optimal filter in the signal domain
is given by. [H] = [Rxx] ([Rxx] + [RYY])-I
and the mean square error of the resulting estimate is.

2

€8 = e {igl (IR + 1™ [RYY]} ®

I1f before filtering, we transform the signal by a unitary transform

[T], we have an optimal filter [%B] given by :

8] = (1] (R ] (117 (1] (IR ) + (R D) (11757

(%] = (1] [ (11" 6
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and the mean square error is still given by (5).

The interesting consequence of this result is that we may be
able to simplify the filtering operation if [¥] is easier to
perform thén [H]. Or, for a suboptimal filter, we may constrain
[78] and then find the best choice for [T]. Pearl [18] has considered
the case of a diagonal filter matrix bé], called scalgr filtering,
which is optimal ( under the constraint of a diagonal matrix) when :

[Cy,]
XX711 N

[Coxlist [Coylyy

where [CXX] = [T] [RXX] [T]*t

(41 = piag

[Cgyl = [T IRyl [m1™

The resulting mean square error is then :

2
N-1 [C..]
MSE(X) = 1 - -;— > XX 11 (8)
120 [Cyylyy + ICyylyy

In general, we want to minimized the mean square error given by:
MSE(X) = Tr {[cxxl - 2 8] [Cgyl + 18] [E] Cleg ] + [cwn}
with some specified constraints on the matrix [f].
As in the previous applicatioms, a generalized filter is characterized
by a ternary trade-off between :

- filter performance or simplicity
— approximation of the signal or signal-to-noise ratio

=~ computational complexity of the transform.
In section 7-6, we consider this trade-off for a first order Markov
process and we complete earlier results reported by Pratt [17] and Ahmed
& alf19]. These results show that transform filters can perform very

close to optimal filters and with high computational efficiency.
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7-5. Recursive relation of covariance matrices in the transform

domain :

In the applications of fast unitary transforms presented in the
previoﬁs sections, the covariance matrix of the transform coefficients
and particularly its diagonal elements play an important role in
evaluating the performance or even in determining parameters.

In this section, we use the recursive definition of the fast
unitary transforms to derive a recursive relation for the covariance
matrices of the transform coefficients. Then, using this relatiom,
we develop a fast procedure to compute the elements of these covarian-
ce matrices.

7-5-1. Recursive relation :

We first examine the covariance matrices in a generalized
Kronecker product, denoted [C]=={/{}ﬁ. ;63} . The two sets
of matrices i}%} and~{ag have respectively m matrices [Ai] of
order n and n matrices [Bj] of order m., We know, from chapter 3,
that :
(el = (:1° [ptag {4 ]1 12 (nisg { B | 3 ©)

We wish to compute [RYY] as given by (3) for the unitary matrix [c]

[Ry] = €] [Rg] [C]

From (9) and (10), we can express [RYY] -as:

*t (10)

[Ryy) = [21° [Diag{dl} 1 (21 [ptag {B)1 [mg] (D1agfB]17

(P1® [piag {A } 1"t [p)

In order to take advantage of the hermitian property (symmetric

(11)

elements across the main diagonal are complex conjuguate) or even
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are equal for all j) of the

matrix [Rxx] of order (m), we ;ai;ition it as follows :
2 . o
[,Tn:x\] [q’n):’ll ...... ....[R?O’{n-l]}m
[Rex 17 IR 1 weeeneeee (RGT]
Ryl = :
| ,[R,%:(n'ljt[:lslo’(“'ll*f.. ...... [R;l;l,n-ll |

is a matrix [R ]
ZZ

so that [Diag {A}] [Rxx] [Diag {@)}] *t

which can be partitioned into :

m m . -
r“‘géol s TR W )
[R;éol [Réél] ........... [R;En'll } n
[Rzz ] = ;
n-1,0 n-1,1 n-1,n-1
L[RZZ [RZZ ] LR R RN XN NN ) RZZ Is ]

with [Rgég] = (85 [R§§2] [32] t

of this matrix [RZZ]:

(12)
We prove now a
[Rk > L

property

] is hermitian as [RXX] is hermitian

=50 = h mEN 9 - mEY

For k = £ , we have the covariance matrices of the previous stage of

computation and for k# £ , we have the cross-correlation matrices of the

previous stage. Using (11) and expanding (12), we fird :

n-1 n-1 ' v

v',u

Rez

- 13
s — 4= L S (13)
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*
We prove now that [RYY]vm+z,um+w =

n-1 nl w vi,u' * z
* = b
[ YY]ym+z,um+w :;: 5;; A uu' RZZ A wv'!
u'=0 v'=0 Z,W

[RYY] umrtw , vtz (using the hermitian property
] ]
of [RZ‘Z‘ V1)

1f we are only interested in the diagonal terms of [RYY]’ we obtain

from (13) : n-1 n-1
_ w v'u' w %
[RYY]um-Pw,vm+w - Z’ ,2_: A uv' RZZ . A uu' (14)
u'=0 v'=0 ww

showing a dependence only on the diagonal terms of the correlation

matrices [Rz;’el

7-5-2. Fast computation :

Relations (12) and (13) provide a computational method for
the covariance matrix [RYY] which uses efficiently the particu-
lar structure of the covariance matrix [RXX]' Let us denote by P1 and
P2 the respective number of elementary operations required by the
computations corresponding to (12) and (13) and by pnw and pmk
the numbers of these elementary operations required by the fast algo-
rithms for the matrices [AW] and [Bk]. Then, i1f we compute by (12)
all the matrices [Rzg’gl and by (13) all the coefficients of [RYY]
without using the mentioned properties of these matrices, we find

easily that:

m-1 v n-1 k
P=P +P =2m ( > e, ¢t S Py ) (15)
w=0 k=0

This result is in fact the required number of operations when
[RYY] is computed directly from (10) using the Zast algorithm

for [C] , since [C] requires (see (4) of chapter 3)

Z P + P operations.
= k=0 m
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However, the properties of the matrices [Riégl and of the

*
coefficients [RYY] ' re help reduce the computation of [RYY] H
A 9

“‘5‘_-1 %—__1 K 3 B K
P, = m(p  +p ) = mn P
1 =0 f=x o m k=0 D

and similarly for P2, so that :
P =mn ( P + P, )
k=0 " w0 O
This result shows a reduction by half of the number of elementary

operations required by the direct computation with a fast algorithm

(16)

from (10). Moreover, when a transform is defined recursively, P includes

the computation of the covariance matrices at all the previous stages

while with the direct computation, we start the computation from
scratch at each stage. When the covariance matrices of the successive
stages of computation have to be obtained, this method brings a
substantial saving much over the reduction by half.

If the original covariance matrix [Rxx] has also the Toeplitz
property, we have an additional gain when the matrices [Bk] are

identical. Then, it is easy to show that [in’zl = [Ri;-eﬁ so that

1 is then reduced to

we have only n different matrices [Rgée] and P

P1 = mn Pn

7-6. Comparison of transforms for a first order Markov process :

In this section, we consider that the signal is a first order
Markov process with correlation function Ri,j = e-d li-‘jl
i,j = 0,..... ,ni-1 . In the following we consider that this signal is
represented, encoded or filtered ( when white noise is added) with

some fast unitary transforms. We compare their performances for each

specific task.
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7-6-1. Signal representation :

In signal representation, the basic parameters to consider are
the number of maintained coefficients, the mean square error and the
computational complexity. In the following, we weight equally all the
different elementary operations (additionms, multiplicatioms, normaliza-
tions and shifts) . Our results therefore are only of theoretical inte-
rest but , using weights which reflect time or cost, similar curves
can be obtained for each particular implementation. In Fig. 7-1, we
present some typical curves obtained for a first order Markov process
with & = 0.05 and 1/4 of the transform coefficients maintained.

The points of the curves are obtained for different blocksizes. When the
block size increases, there is an improvement of the representation

at the expense of a higher complexity. The blocksize is indicated
whenever possible. In these curves, we have takeu as reference for the

mean square error the error obtained with the K-L transform of order

128 and we have plotted the loss in dB. Notice the interesting

result obtained with the slant transforms.

7-6-2. Signal encoding :

We begin by a brief review of previous works.

a) review of previous works: Many papers present transform

techniques for signal encoding but very few include an analysis of their
performances.
Goblick and Holsinger [20] have compared the rate-distortion
bound and a theoretical bound for the Fourier transform in the case
of a first order Markov process.
Pearl [21] has extended this approach to some other transforms

and also proposed a distance measure that we discussed in [22].
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Habibi and Wintz [12] have compared experimental errors with

the theoretical curves and also considered the subjective appreciation

of images for Fourier and Walsh-Hadamard encoding techniques.

Schwartz,and al. [23] have studied the statistical properties
of the transform coefficients for the Fourier, W-H and Haar transforms
and deduced optimal encoding zones in the transform domain.

Pratt and al. have given some comparisons of fast unitary
transforms in [24].

Ahmed and al. [19] have also compared the discrete cosine trans-
form with the common transforms.

In the following, we emphasize two parameters of importance which
we have mentioned earlier : the image complexity and the computational
complexity. Our approach is similar ﬁo these of Goblick and Holsinger
or Pearl. We present now its theogetical basis from the rate~-distortiomn
theory.

b) rate-distortion with fast unitary transforams:

We assume in this derivation that :
- the transform coefficients have a normal distribution.
- they are coded independently.
Therefore, we can evaluate the rate-distortion bound for each coefficient.
It is known [16] that the rate-distortion curve is given in this case

by the parametric equations :

N-1 Z
=1 ~i
R(/&) =3IN 1Z=o log2 /L

@17)

g
x
]

1 |
. ‘%”*%2 R
0;>/.4. fis/w -

We present in Fig. 7-2 the corresponding curves for ¢ = 0.05 and a
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blocksize of 32. Note that the Haar and W-H transforms and also the
Slant Haar and Slant Hadamard transforms have very‘close performances
This fact is a consequence of the zonal relations tetween these trans-
forms which we proved in chapter 2 and 3. Note also that the semi-
logarithmic scale adopted for these curves gives parallel lines at

low distortion levels. This occurs for mean square errors lower than

the smallest variance of the transform coefficients since we have, from
N-1

2
a7 : T 07
R(D) = E'l'n' 1og21—°ﬁi (18)
D

and therefore we can express the performance of the transforms with a

bit difference dR R with the Karhunen-Loeve transform,
1°72 '

For two transforms denoted with subscripts 1 and g We have :

N-1

d 1 N 614
R,,R, = R, (D)-R,(D) = <—1log, // (—— )
1°R = &y 2 N %2 0 e

Note that de’ ) is no longer dependent on the distorfion D.

To illustrate the dependence of the performance upon the source
statistics, we have plotted in Fig. 7-3. the bit difference as function
of the signal complexity o for a fixed block size 32. It is noteworthy
that the curve for Fourier intersects the other cur;és, showing that
no gene;al conclusion can be obtained on the relative merits of the
Fourier transform with the other transforms.

On Fig. 7-4. , we show the variation of the bit difference when
the block size increases. As expected; the bit difference between the
Fourier ahd Karhunen-Loeve transforms decreases. It can be shown that
the bit difference for the Haar transform increases to a limit and it is
conjectured that the Walsh-Hadamard and Slant transforms have a similar
limiting behaviour. |

Finally in Fig. 7-5. we have plotted the bit difference with the

rate-distortion bound as a function of the computational complexity.



S .

200 RATE, BIT PER SAMPLE

Figure 7-2: Rate Distortion Fupctions
a=0.05, Block Size = 32

Natural (Kronecker)

Walsh/ Hadamard
and Haar

ol

—~"
‘Bit Differences .
Slant Haar and Slant W-H Fourier
i | Karhunen - Loeve
..“|‘j 1 1 l'lllljl [
1.0 10 100

DISTORTION (%)

-¢8i-



-184-

2¢ = ozi§ %%0|g
eI ejey U0 SINSNEls JO 1993 €-/ amndly

§T°0 oro 50°0 | 0

J314n0 4

10

0

£0

(wiojsues| 9A30 —uounyey ym) eduarayig g ‘ Up



-185-

G600 =0
goualalig eley U0 ozi§ ¥20[g JO 10843 ‘- amdig

N 9zig yloig 8¢ t9 [A) 91 8 b

I i |
H-M JuejC pue seey 3ue|¢

N\
121400 4 AN _ Ve
A pieluepel /usiey pue leey

7

&

0

0

aAa0 — Usunyiey unm aduasayg ng ‘ Yp



$0°0 = Yo

ITXO[dWO0 [PUOFIEINdWOD JO UOFIouNy 9oULIdIIFP IFL

: 'smiojsuell] JO UOSTavduwo)

\ \&\uéesa.s%\ciefs \ ;M\@\ecw
oor o¢

‘¢~ *31a

N !

#9

-186-

punag Avajoluoy - 18y eay &
3umon) Y187 \.\.\

7

A8l Jue|G pue aeey 0

'
/

H-M| Juoj¢ eve paewspely - ysiem \\
sung]

a7y - uaunyiey \

{
S
punog  uopiolsiq - 768 wem wesaffip g



~-187-

when varrying the block size. The rate-distortion bound is the limit
obtained for the Karhunen-Loeve transform of infinite block size: this

limit is

R(D) = —%— log, (1- e 2%, --—;—- log, D

This figure shows the trade-off between performance and computational
complexity and we have plotted on the figure an actual rate-complexity
bound valid for the transforms considered.

7-6-3. Signal filtering :

Pratt [17] and Ahmed & al. [19] have presented some comparisons -

in the case of scalar filtering of a first order Markov process with
~additive white noise. We present in Fig. 7-6 and 7--7 similar curves

with a different scale for the mean square error : again we comsider

the loss over the performance of the Karhunen-Loeve transform of order

128. For Fig. 7-6 , the signal to noise ratio is 1 and for Fig. 7-7.

the signal to noise ratio is 50. Again, on this theoretical example,

we find that no intrinsic ranking of the transforms exists and we

suggest again a loss-complexity bound.

7-7. Conclusions @

The application of fast unitary transforms to signal representa-
tion, encoding and filtering leads to a ternary trade-off between
performance, approximation and computational complexity. In the case
of a first order Markov process, we have presented some théoretical
curves to express this trade-off.

In these applications the unified structure of the fast
unitary transforms appears useful to

- generate new transforms such as the slant ﬁaar transform which

seems particularly interesting in the case of a Markov process.
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- compute the computational complexity of éach transform : in
the considered example all transforms perform very closely and their
main difference comes from the computational complexity.

- compute the covariance matrix of the transform coefficients

with a fast procedure.
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CHAPTER VIII

CONCLUSIONS

This chapter concludes the dissertation with a review of the

results obtained and presents various suggestione for further research.

8-1. Results :

In most of this dissertation, our approach has been theoratical.
However, we héve obtained some specific results of current practical
interest, principally for the FFT algorithm and we believe that our
formal results will have practical importance. In this section, we
review the réesults obtained in the perspective of their applicationms.

The formal relations between the Haar and Walsh-Hadamard transforms,
their consequences for the fast algorithms and for the identical "zonal"
repartition of the energy, show that the Haar transform may be prefered
to the W-H transform in some of its applicationms.

The main theoretical result of this thesis is our unified treatment
of fast unitary transforms which has stressed their recursive structure.
It allowed us to organize all known fast unitary transforms into a common
framework which clarifies many of their properties. It lead us to define
large families of fast unitary transforms and in particular the IC
transforms. This large family includes most transforms and we believe
that additional transforms of practical interest can be found in that
family. The recursive definition of fast unitary transforms has provided
us with a systematic way to estimate the computational complexity of

each transform by the exact computation of the number of elementary
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operations required by the fast algorithms.

The unified treatment of fast unitary transforms is also the
basis of the error analysis of the fast algorithms. Our derivation ,
for both fixed-point and floating-point arithmetic, is valid for
most transforms. We note that we were able to derive simply and with
more accuracy previous results of practical interest concerning the
FFT. We even obtained new theoreﬁical results for the FFT in the
case of number representation with truncation for both fixed-point
and floating-point computations and these results are in surprisingly
good agreement with earlier experimental results.

Our study of fast unitary transforms with a given set of basis
vectors leads to the definition of fast unitary transforms with
constraints which are of importance for a specific application. We
defined, in particular, the family of fast generalized Slant transforms
which, considering the results obtained elsewhere for one of its members,
the Slant transform, should be useful in signal encoding. We have
great hopes especially in the slant Haar transform, the fastest
and simplest of the family.

In our rapid‘description of the main applications of the fast
unitary transforms in signal processing (representation and diménsiona-
1ity reduction, encoding and filtering), we showed the important
role of the transform coefficients covariance matrix and the trade-
off between performance, approximation and complexity. We derived a
fast computation procedure of this covariance matrix and, for an
important example, we compared several fast unitary transforms. These

comparisons showed the interest of the Haar and Slant Haar transforms
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and also illustrated the importance of the computational complexity in

the application of unitary transforms.

8-2. Further research :

This thesis brings a unifying and clarifying light upon the
geﬁeration of .fast unitary transforms. We have shown the power of
this approacﬁ in several directions and in particdlar in the analysis
of their algorithms. However, we think that our work could be used in
many diversified areas ; in particular, wé hope to relate these ideas
to data m#nipulation problemsl and other areas in future work.

But, restricting our suggestions to the subjects dicussed in this
dissertation, we believe that many fast unitary transforms of interest
should be found within the scope of the generative rules we have
defined. Moreover, for all applications we have considered, it is
desirable to compute the optimal transform given some constraints
(determining the trade-off between performance, approximation and
complexity) : this design problem would certainly open many applica-

- tions to the fast unitary transforms and should become the central

issue in the use of fast unitary transforms in engineering applications.

lw. Dere, Data organization in linear memory ,

Ph. D. dissertation, EECS Dept. of the University of California at
Berkeley, Aug. 1973.



+

-194-

REFERENCES

The references are listed in order of chapters in which they

appear.

References for chapter 1 :

1. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine
Compufation of Complex Fourier Series,” Math. Comput., Vol. 19,
pp. 297-301, Apr. 1965.

2. Proceedings, "Applications of Walsh Functions,” National Technical

Information Service, U. S. Department of Commerce, Springfield,
Virginia 22151, 1970: AD 707 431, 1971: AD 727 000, 1972:
AD 744 650, 1973: AD

3. L. R. Rabiner and C. M. Rader, Digital Signal Processing,IEEE
Press,New York, 1972.

4. H. F. Harmuth,Transmission of Information by Orthogonal Functions,
New York: Springer, Second edition, 1972.

5. H. C. Andrews, Computer techniques in Image Processing, New York:

Academic Press, 1970.
6. H. C. Andrews, An Introduction to Mathematical Techniques in

Pattern Kecognition, New York: Wiley, 1972.

7. J. Hadamard, " Resolution d'une question relative aux determinants,"
Bull. Sc. Math, serie 2, 17-1, 1893.

8. J.L. Walsh, " A Closed Set of Orthonormal Functions,” Amer. J.
Math, Vol. 55, pp. 5-24,1923.

9. R.E. A. C. Paley, "On Orthogonal matrices," J. Math. Phys.,
Vol 12, pp. 311-320, 1933. |

10. J. E. Whelchel,Jr. and D. F. Guinn, "The Fast Fourier-Hadamard
transform and its use in signal representation and classifica-
tion," FEASCON Rec.,pp.561-573, Sept. 1968.




-195-

References for chapter 1 (continued)

11. B. Fino, " Etude experimentale du codage d’'images par les
transformations de Haar et de Hadamard complexe," Ann. Telecom.,
tome 27, Nos, 5-6,pp. 185-208, May-June 1972. :

12. 1. J. Good,"The Interaction Algorithm and Practical Fourier
Analysis, J. Roy. Statistical. Soc., Vol. B 20, pp. 361-372, 1958

and addendum Vol. B 22, pp. 372-375, 1960.

13. W. M. Gentleman and G. Sande, " Fast Fourier Transform - for Fun
and Profit," AFIPS, 1966. Fall Joint Comp. Conf., pp. 563-578.

14, G; D. Bergland, "A Fast Fourier Transform Algorithm Using Base 8
Iterations," Math. Comp., Vol. 22, pp. 275-279, Apr. 1968.

15. R. C. Singleton, "An Algorithm for Computing the Mixed-Radix
Fast Fourier Transform,'" IEEE Trans. on Audio and Electroac.,
Vol. AU-17, No. 2, pp. 93-103, June 1969.

16. F. Theilheimer, "A Matrix Version of the Fast Fourier Transform,"
IEEE‘Trans. Audio Electroacoust., Vol. AU-17, pp. 158-161,

June 1969.

17. D. K. Kahaner, "Matrix description of the Fast Fourier Transform,"
IEEE Trans. Audio Electroacoust., Vol. AU-18, pp. 442-450, Dec. 1970.

18, J.A. Glassman," A Generalization of the Fast Fourier Transform,"
IEEE Trans. Comput., Vol. C-19, pp. 105-116, Feb. 1970.

19. W. T. Cochran and al.,"What is the Fast Fourier Transform?,"
Proc. IEEE. Vol. 55, pp. 1664-1674, Oct. 1967.

20. IEEE Trans. Augio Electroacoust., special issue on Fast Fourier
Transform, Vol. AU-17, June 1969.

21. IEEE Trans. Audio Electroacoust., special issue on.Fast Fourier
Transform, Vol. AU-15, June 1967.

22. N. J. Fine, "On the Walsh functions," Trans. Amer. Math. Soc.,
Vol. 65, pp. 372-414, 1949.

23. F. Pichler, "Walsh Functions and Linear System Theory," Proc.

Applic. of Walsh functions, 1970 Symposium.
24, N. Ahmed and al., "BIFORE or Hadamard Transform," 1EEE Trans.
Audio Electroacoust., Vol. AU-19, pp. 225-234, Sept. 1971.

25. C.-K. Yuen, "Remarks on the rdering of Walsh Ennctions,"IEEE
Trans- Computo, VO].. C'21, ppo 1452’ Dec. 19720




e

-196-

References for chapter 1 (continued)

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

N. Ahmed and K. R. Rao, "Discrete Fourier and Hadamard fransforms,"
Elect. Lett., Vol. 6, No. 7, pp. 221-224, 2nd Apr. 1970.

A. Haar, "Zur Theorie der Orthogonalen Funktionen-Systeme," Math.
Ann.,Vol. 69, pp. 331-371, 1910.

S. Kaczmarz, Theorie der Orthogonalenreihen, New York :

Chelsea Publ. Co., 1951.

G. Alexits, Convergence Problems of Orthogonal Series.

London : Pergamon Press, 1961.

H. Enomoto and K. Shibata, "Orthogonal Transform Coding

System for Television Signals," Proc. Applic. Walsh Functions

1971 Symposium, pp. 11-17.

M. Hatori and al., " On the band compression of television signals

by the E-sequence transformation technique," 1970 IECEJ Papers

Tech. Group Inform. Theory, IT70-13(1970-13).

W. K. Pratt, L. R. Welch and W. H. Chen, "Slant Transform for

Image Coding," Proc. Applic. Walsh Functions 1372 Symp, pp.
229-234.

H. E. Chrestenson, "A class of Generalized Walsh Functions;"

Pacific J. Math., Vol. 5, pp. 17-31, 1955.

C. Watari, "A Generalization of Haar Functioms," Tohoku Math. J.,

Vol. 8,pp. 286-290, 1956.

H. C. Andrews and K.L. Caspari, " A Generalized Technique for
Spectral Analysis," IEEE Trans. Comput., Vol. C-19, pp. 16-25,
Jan. 1970.

H. C. Andrews and K. L. Caspari, " Degrees of Freedom and Modular
Structure in Matrix Multiplication,” IEEE Trans. Comput., Vol.
C-20, No. 2, pp. 133-141, Feb. 1971.



W

-197-

References for chapter 1 (continued)

37.

38.

39.

40.

41‘

42,

43.

440

45.

J. E. Gibbs, "Discrete Complex Walsh Functions," Proc. Applic.

Walsh Functions 1970 Symp.,

F. R. Ohnsorg, " Application of Walsh Functions to Complex
Signals," Proc. Applic. Walsh Functions 1970 Symp.,

N. Ahmed and K. R. Rao, " Complex BIFORE Transform," Electron.
Letts., Vol. 6, pp. 256-258, Apr. 16 1970.

N. Ahmed and K. R. Rao, " Additional Properties of Complex BIFORE

Transform," IEEE Trans. Audio Electroacoust., Vol.AU~19 , pp. 252-

253, Sept. 1971.
K. R. Rao and N.Ahmed, " Modified Complex BIFORE Transform,"
Proc. IEEE, Vol. » PP. 1010-1012, Aug. 1972.

N. Ahmed and al., "Discrete Cosine Transform," to be published.

N. Ahmed, K. R. Rao and R. B. Schultz, " A Generalized Discrete
Transform," Proc. IEEE, Vol. 59, pp. 1360-1362, Sept. 1971.

K. R. Rao, N. Ahmed and R. B. Schultz, " A Claés of Discrete
Orthogonal Functions," to be published.

H. C. Andrews and J. Kane, "Kronecker Matrices Computer Implementa-

tion and Generalized Spectra," J. Ass Comput. Mach., Vol. 17,

PP. 260-268, Apr. 1970.



3.

10.

11.

-198-

References for chapter 2 :

C.~K. Yuen, "Remarks on the Ordering of the Walsh Functions,"
IEEE Trans. on Comput.,Vol. C-21, pp. 1452, Dec. 1972.

A. Haar, "Zur Theorie der Orthogonalen Funktionen-Systeme,"
Ma¢h. Ann., Vol. 69, pp. 331-371, 1910.

R. Bellman, Introduction to Matrix Analysis, New York : McGraw

Hill, 1960, p. 227.
J. L. Walsh, " A Closed set of orthonormal Functions," Amer.
Jo Math., VO].. 55’ ppo 5-24, 1923.

H. F. Harmuth, Transmission of Information by 6rthogonal Functioms,

New York : Springer, Second Edition, 1972.

G. Alexits, Convergence problems of Orthogonal Series, New York

Pergamon, 1961, pp.46-62.
B. J. Fino, "Etude experimentale du codage d'images par les

transformation de Haar et de Hadamard complexe," Ann. Telecomm.,

tome 27, pp.185-208, May-June 1972.

H. C. Andrews,Computer Techniques in Image Processing.New York :

Academic Press, 1970, pp. 73-70.

J. E. Whelchel, Jr and D.F. Guinn,"The Fast Fourier-Hadamard
transform and iés use in signal representation and calssification,"
EASCON Rec., pp. 561-573, Sept. 1968.

W. K. Pratt and al., "Hadamard Transform Image Coding," Proc.
IEEE, Vol. 57, pp. 58-68, Jan. 1969.

J.L. Shanks, "Computation of the Fast Walsh-Fourier Transform,"




1.

.

4.

5.

8.
9.

10.

-199-

References for chapter 3 :

I. J. Good, "The Interaction Algorithm and Practical Fourier

Analysis," J. Roy. Statistical Soc., Vol. B 20, pp. 361 - 372, 1958,
J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Compu-

tation of Complex Fourier Series," Math. Comput., Vol. 19, pp. 297 -

301, Apr. 1965.
W. M. Gentleman and G. Sande, "Fast Fourier Transform - for Fun and

Profit," AFIPS, 1966 Fall Joint Com. Conf., pp. 563 - 578.

J. E. Whetchel and D. F. Guinn, "The Fast Fourier-Hadamard Transform
and its use in Signal Representation and Classification," Eascon '68
Rec., pp. 561 - 573.

Proceedings, "Application of Walsh Functions,” National Technical

Information Service, U.S. Dcpartment of Commerce, Springfield,

Virginia 22151, 1970: AD-707 431, 1971: AD-727 000, 1972: AD-744 650.

B. J. Fino, "Etude experimentale du codage d'images par les transfor-

mations de Haar et Hadamard complexe," Ann. Telecomm.,tome 27,

pp. 185-208, May-June 1972.

J. E. Shore, "On the Application of Haar Functions," IEEE Trans. on

J. Duan and P. A. Wintz, "Error Free Coding," to be published.

H. C. Andrews, An Introduction to Mathematical Techniques in Pattern

Recognition, New York: Wiley, 1972.
S. J. Campanella and G. S. Robinson, "A Comparison of Orthogonal

Transformations for Digital Speech Processing," IEEE Trans. on Comm.,

Vol. COM-19, No. 6, pp. 1045-1050, Dec. 1971.



L

-200-

References for chapter 3(continued)
. 11. H. C. Andrews, Computer Techniques in Image Processing, New York:

Academic Press, 1970.

12. T. S. Huang, W. F. Schreiber and O. J. Tretiak, "Image Processing,"
Proc. IEEE, Vol. 59, pp. 1586-1609, Nov. 1971.

13. P. A. Wintz, "Transform Picture Coding," Proc. IEEE, Vol. 60
No. 7, pp. 809-820, July 1972.

14. H. C. Andrews and J. Kane, "Kronecker Matrices Computer Implementation

and Generalized Spectra,” J. Ass. Comput. Mach., Vol. 17, pp. 260-268,

Apr. 1970.
15. H. C. Andrews and K. L. Caspari, "A Generalized Technique for Spectral

Analysis," IEEE Trans. Comput. Vol. C-19, pp. 16-25, Jan. 1970.

16. H. C. Andrews and K. L. Caspari, "Degrees of Freedom and Modular

Structure in Matrix Multiplication," IEEE Trans. on Computers,

Vol. C-20, No. 2, pp. 133-141, Feb. 1971.
17. N. Ahmed, K. R. Rao and R. B. Schultz, "A Generalized Discrete
Transform," Proc. IEEE, Vol. 59, No. 9 , pp. 1360-1362, Sept. 1971.
18. K. R. Rao, N. Ahmed and R. B. Schultz, "A Class of Discrete
Orthogonal Transforms," to be published.

19. H. F. Harmuth, Transmission of Information by Orthogonal Functions,

New York: Springer, Second Edition, 1972, pp. 30-36.

20. C-K. Yuen, "Remarks on the Ordering of Walsh Functions,”" IEEE Trans.
Comput., Corresp., Vol. C-21, No. 12, pp. 1452, Dec. 1972.

21. P. Y. Schwartz, J. Poncin and B. Fino, "Statistical Properties of

Orthogonal Transforms," Proc. Conf. on Digital Processing of Signals

in Communications, Vol. 23, pp. 151-174, London, Apr. 1972.




22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

-201-

References for chapter 3 (continued):

J. A. Glassman, "A Generalization of the Fast Fourier Transform,"

IEEE Trans. on Computers, Vol. C-19, No. 2, pp. 105-113, Feb. 1970.

R. Singleton, "An Algorithm for Computing the Mixed Radix Fast

Fourier Transform,” IEEE Trans. on Audio and Electroacoustic, Vol.

R.E.A.C. Paley, "On Orthogonal Matrices," J. Math. Phys. Vol. 12,

PP. 311-320, 1933.
J. L. Walsh, "A Closed Set of Normal Orthonormal Functions,” Amer.
Jl Math-, VOl. 55, ppo 5-24, 1923.

J. W. Manz, "A Sequency-Ordered Fast Walsh Transform," IEEE Trans. on

Audio and Electroacoustics, Vol. AU-20, No. 3, pp. 204-205, Aug. 72.

H. E. Chrestenson, "A Class of Generalized Walsh Functions,"

C. Watari, "A Generalization of Haar Functions," Tohoku Math. J.,
Vol. 8, pp. 286-290, 1956.
H. Enomoto and K. Shibata, "Orthogonal Transform Coding System for

Television Signals," Proc. 1971 Symp. on Appl. of the Walsh Functioms,

W. K. Pratt, L. R. Welch and W. H. Chen, "Slant Transform for Image

Coding," Proc. 1972 Symp. on Appl. of the Walsh Functions, pp. 229~

234. AD-744 650.
W. K. Pratt, "Walsh Functions in Image Processing and Two Dimensional

Filtering," Proc. 1972 Symp. on Appl. of the Walsh Functions, pp. l4-

22. AD-744 650.

N. Ahmed and K. R. Rao, "Complex Bifore Transform," Electron. Lett.,




-202-

References for chapter 3 Scontinuedz :

33. F. R. Ohnsorg, "Application of Walsh Functions to Complex Signals,"

Proc. 1970 Symp. on Applications of the Walsh Functions, pp. 123-127. -

AD-707 431.
34. K. R. Rao and N. Ahmed, "Modified Complex BIFORE Transform," Proc.

1EEE, Vol. 60, No. 8, pp. 1010-1012, Aug. 1972.



-203-

References for chapter 4 :
P. D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis,"

IEEE Trans. Audio and Electroacoust., Vol AU-17, pp. 151-157,

June 1969.

A. V. Oppenheim and C. J. Weinstein, "Effect of Finite Register
Length in Digital Filtering and the Fast Fourier Transform," Proc.
IEEE, Vol. 60, pp. 957-976, Aug. 1972.

C. L. Weinstein, "Quantization Effects in Digital Filters,"

M. I. T. Lincoln Lab. Tech. Rep. 468, ASTIA Doc. DDC AD-706862,

Nov. 21, 1969.

J. H. Wilkinson, Rounding Errors in Algebraic Processes. Englewood

Cliffs, N. J. : Prentice Hall, 1963.



10.

=204~

References for chapter 5 :

T. Kaneko and B. Liu, " Accumulation of Roundoff Errors in Fast
Fourier Transforms,”" J. ACM, Vol. 17,ppp. 637-654, Oct. 1970.
C. J. Weinstein, '"Roundoff Noise in Floating Point Fast Fourier
Transform," IEEE Trans. Audio Electroacoust., Vol. AU-17,

pp. 209-215, Sept. 1969.

C. J. Weinstein, "Quantization Effects in Digital Filters,"

M. I. T. Lincoln Lab. Tech. Rep. 468, ASTIA Doc DDC AD-706862,
Nov. 21, 1969.

A. V. Oppenheim and C.J. Weinstein, "Effects of Finite Register

Length in Digital Filtering and the Fast Fourier Transform,"

Proc. IEEE, Vol. 60,pp. 957-976, Aug. 1972.

0. W. C. Chan and E. I. Jury, "Round-off Error in Multi-
Dimensional Generalized Discrete Transforms, to appear in

W. M. Gentleman and G. Sande, "Fast Fourier Transforms -

for Fun and Profit," Proc. AFIPS Fall joint Computer Conf.,
pp. 563-577, 1966.

G. U. Ramos, "Roundoff Error Analysis of the Fast Fourier

Transform,”" Math. Computation, Vol. 25, No. 116, pp. 757-768,

Oct. 1971.

J. H. Wilkinson, Rounding Errors in Algebraic Processes.

Englewood Cliffs, N. J. : Prentice Hall, 1963.
J. M. Yohe, " Roundings in Floating-Point Arithuetic,"

IEEE Trans. Comput., Vol. C-22 , pp.577-586, June 1973.

W. J. Cody,Jt., "Static and Dynamic Numerical Characteristics of

Floating-Point Arithmetic," IEEE Trans. Comput., Vol. C-22, pp.

598-600, June 1973.



11.

12.

13.

14.

-205-

References for Chapter 5 (continued):
B. Liu and T. Kaneko, " Error Analysis of Digital Filters Realized

with Floating-Point Arithmetic," Proc. IEEE, Vol. 57, pp. 1735-1747,
Oct. 1969.
M. Tasto and P. A. Wintz, "Note on Error Signal of Block Quantizers,"

IEEE Trans. Communic.,.Vol. COM-21, pp. 216-219, March 1973.

V. R. Algazi, "Adaptative Line-by-Line Encoder," Proc. I. T. C.

Conf., Los Angeles, pp. 363-371, 1972.

B. J. Fino, "Etude experimentale du codage d'images par les
transformations de Haar et Hadamard complexe," Ann. Telecom.

tome 27, pp. 185-208, May-June 1972.



3.

10.

-206-

References for chapter T :

S. Watanabe, Rarhunen-Loeve Expansion and Factor amalysis- Theore-

tical Remarks and applications! Proc 4th Prague Conf. on Inform. Th.,

1965.
V. R. Algazi and D. J. Sakrison,”On the Optimality of the

Karhunen-Loeve Expansion", 1EEE Trans. Inform. Th., Vol. IT-15,

pp. 319-321, March 1969.

P. A. Wintz, "Transform Image Coding," Proc. IEEE, Vol. 60, pp.

809-820, July 1972.

H. C. Andrews, Computer Techniques in Image Processing, New York :
Academic Press. 1970. |

M. D. Levine, "Feature Extraction : a Survey," Proc. IEEE,

Vol. 57, pp. 1391-1407,

K. S. Fu, Statistical Pattern Recognition, in Adaptative, Learning

and Pattern Recognition Problems : Theory and Applications

New York : Academic Press. 1970.

IEEE Trans. Comput. , Special issue on Feature extraction and

K. Fukunaga and W. L. Koontz, "Application of the Karhunen-Loeve

Expansion to feature selection and ordering," IEEE Trans. Comput.,

Vol. C-19, pp. 311-318, Apr. 1970.
H. C. Andrews, "Multidimensional Rotations in Feature Selection,"”

IEEE Trans. Comput., Vol. C-20, pp. 1045-1051, Sept. 1971.

J. W. Carl and C. F. Hall, " The Application of Filtered Transforms

to the General Classification Problem" , IEEE Trans. Comput., Vol.

C-21, pp. 785-790, July 1972.



-207-

References for chapter 7 (continued) :

11. S. J. Campanella and G. S. Robinson, "A comparison of Orthogonal

Transformations for Digital Speech Processing", IEEE Trans. Communic.,

12. A. Habibi and P. A. Wintz, "Image Coding by Linear Transformations

and Block Quantization", IEEE Trans. Com. Tech., Vol. COM-19,

pPp. 50-61, Feb. 1971.
13. D. J. Sakrison and V. R. Algazi, "Comparison cf Line-by-Line

and Two-Dimensional Encoding of Random Images", IEEE Tramns. Inf.

14. T. S. Huang and al., "Image Processing,” Proc. IEEE, Vol. 59,

pp. 1586-1609, Nov. 1971.
15.. J. Mannos, A Class of Fidelity Criteria for the Encoding of

Visual Images, Ph. D. Thesis, Electr. Eng. , Univ. of Calif., 1972.

16. R. G. Gallager, Information Theory and Reliable Communication,

New York : Wiley. 1969. Chap. 9.
17. W. K. Pratt, "Generalized Wiemer Filtering Computation Techniques,"

IEEE Trans. Comput., Vol. C-21, pp. 636-641, July 1972,

18. J. Pearl, "Walsh Processing of of Random Signals", Symposium on

Appl. Walsh Functions 1970.

19. N. Ahmed and al.,"Discrete Cosine Transform", to be published.
20. T. Goblick and J. Hoisingerf“Analog Source digitalization : a com-

parison of Theory and Practice,"IEEE Tran. Inf. Th., Vol. IT-13,

21, J. Pearl,"Basis-Restricted Transformations and Performance Measures

for Spectral Representations", IEEE Trans. Inf. Th. , Vol. IT-17,

PP.751-752, Nov. 1971.



22.

23.

-208-

References for chapter 7 (continued) :

V. R. Algazi and B. J. Fino, "Comment on Basis-Restricted Trans-
formations and Performance Measures for Spectral Representations",

IEEE Trans. Inf. Th., Vol. IT-19, pp. 564-565, July 1973.

P-Y. Schwartz, J. Poncin and B. Fino, "Statistical Properties of

orthogonal Transforms", Proc. Conf. on Digital Signal Processing in

Communicat., Vol. 23, pp. 151-174, April 1972.



	Copyright notice 1974
	ERL-415 (1 of 7)
	ERL-415 (2 of 7)
	ERL-415 (3 of 7)
	ERL-415 (4 of 7)
	ERL-415 (5 of 7)
	ERL-415 (6 of 7)
	ERL-415 (7 of 7)

