

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

RECURSIVE GENERATION AND COMPUTATION OF FAST UNITARY TRANSFORMS

by

Bernard J. L. Fino

Memorandum No. ERL-M415

2 January 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

$

To Nadia

-v-

ACKNOWLEGMENTS

I am indebted to Professor V. Ralph Algazi, my research adviser,

for his guidance in this thesis and his criticism at the various stages

of development. I would like to express also my gratitude to Professor

David J. Sakrison for some fruitful and crucial discussions, to

Professor Elie I. Jury for suggesting the research that lead to chapters

4 and 5, and to Mr. Jacques Poncin for introducing me to the world

of fast unitary transforms while I was with his group at the Centre

National d1Etudes des Telecommunications.

I would like finally to thank the agencies which sponsored my

studies at Berkeley: the Institut de Recherches en Informatique et

Automatique in 1968-1970, the European Space Research Organization and

NASA in 1972, and the Electronic. Research Laboratory of the University

of California at Berkeley in 1973.

This research was sponsored in part by the National Aeronautic and
Space Adminitration under Grant NASA-NGR-05-003-538, and in part by the
National Science Foundation under Grant NSF-GK-37282.

«»

-vi-

CONTENTS

ABSTRACT

ACKNOWLEGMENTS

CONTENTS

CHAPTER I : INTRODUCTION 1

1-1. Historical notes

1-2. The set of Walsh-Hadamard functions

1-3. Fast unitary transforms and their applications to signal

processing

1-4. Organization of this thesis

1-5. Review of generalized transforms

1-5-1. Basic transforms : Fourier, Walsh-Hadamard,Haar

1-5-2. Generalizations of the basic transforms

CHAPTER II : RELATIONS BETWEEN HAAR AND WALSH-HADAMARD TRANSFORMS. .9

2-1. Introduction

2-2. Basic relations

2-3. Zonal relations between Haar and W-H transform vectors

2-4. Application of the basic relations to fast algorithms

2-5. Family of unitary transforms inbetween the W-H and Haar

transforms and with a common fast algorithm

2-6. Conclusions

CHAPTER III : A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS

WITH A FAST ALGORITHM 23

3-1. Introduction

-vii-

3-2. Recursive generative rules

3-3. Identical Computation (IC) family

3-4. Basic transforms : Fourier, Walsh-Hadamard, Haar

3-4-1. Generalized Fast Fourier Transform of composite

order

3-4-2. Walsh-Hadamard transform

3-4-3. Haar transform

3-5. Generalizations of the basic transforms

3-5-1. Family between Walsh-Hadamard and Fourier

3-5-2. Family between Haar and Walsh-Hadamard

3-5-3. IC2 family

3-6. Other IC transforms

3-7. Slant transform

3-8. Additional properties and generalizations

3-8-1. Complex extension of a real transform

3-8-2. Multidimensional transforms

3-8-3. Relations between transforms

3-9. Conclusions

CHAPTER IV : ERROR ANALYSIS IN FIXED-POINT COMPUTATION 76

4-1. Introduction

4-2. Error models in fixed-point and block scaling computations

4-3. Error analysis in fixed-point computation with rounding

4-3-1. No-scaling

4-3-2. Step-by-step scaling

4-3-3. Application to FFT

4-4. Error analysis for fixed-point computation with truncation

4-4-1. No-scaling

4-4-2. Step-by-step scaling

-viii-

4-4-3. Application to FFT Cooley-Tukey algorithm

4-5. Block scaling with rounding or truncation

4-6. Conclusions

CHAPTER V : ERROR ANALYSIS IN FLOATING-POINT COMPUTATION 104

5-1. Introduction

5-2. Error models in floating-point computations and organization

of dot products

5-2-1. Error models

5-2-2. Floating-point dot products computations

5-3. Floating-point computations with rounding : analysis of

errors in parent matrix operations

5-3-1. Error analysis in parent matrices

5-3-2. Transmission of errors from input vector

5-4. Floating-point computations with rounding : error propagation

5-4-1. Norm bounds

5-4-2. Statistical model for input vector

5-4-3. Application to FFT and other transforms

5-5. Floating-point computations with truncation ; application

to FFT '

5-6. Floating-point computations with non randomized rounding

of midway point

5-7. Errors in the representation of transfona entries or factors

5-8. Errors in transform domain approximations

5-9. Conclusions

CHAPTER VI : FAST UNITARY TRANSFORMS WITH PRESCRIBED BASIS VECTORS

GENERALIZED SLANT TRANSFORMS 135

6-1. Introduction

*

*-'

-ix-

6-2. General case

6-3. Slant vectors

6-3-1. Basic slant vectors

6-3-2. Sets of slant vectors

6-4. A generalization of Haar transform to include a set of

slant vectors

6-4-1. Expression of a slant vector in the Haar basis

6-4-2. Properties of the slant vectors in the Haar basis

and algorithm to include them

6-5. Examples of slant transforms ; computational complexity

6-5-1. Inclusion of basic slant vectors

6-5-2. Inclusion of a complete set of slant vectors

6-6. Generalization to combined slant vectors and their inclusion

in the WHH transforms

6-6-1. Slant Walsh-Hadamard vectors

6-6-2. Inclusion into WHH transforms

6-6-3. Step slant vectors

6-6-4. Approximation of a vector by a piece-wise linear

vector

6-7. Conclusions

CHAPTER VII : SOME APPLICATIONS OF FAST UNITARY TRANSFORMS 166

7-1. Introduction

7-2. Signal representation and dimensionality reduction

7-2-1. Signal representation

7-2-2. Multiclass signal representation

7-3. Signal encoding

7-3-1. Basic problems of signal encoding

fe

$y

-X-

7-3-2. Unitary transforms encoding techniques

7-4. Signal filtering

7-5. Recursive relation of covariance matrices in transform

domain

7-5-1. Recursive relation

7-5-2. Fast computation

7-6. Comparisons of fast unitary transforms for a first order

Markov process

7-6-1. Signal representation

7-6-2. Signal encoding

7-6-3. Signal filtering

7-7. Conclusions

CHAPTER VIII : CONCLUSIONS 191

8-1. Results

8-2. Further research

REFERENCES (ordered by chapters) 194

-1-

CHAPTER I

INTRODUCTION

1-1. Historical notes :

By the end of the 19 th century, two sets of orthogonal functions

were already well known by electrical engineers: the block pulses

simply generated by switches and the Sine-Cosine functions generated

by resonant circuits made of linear, time invariant components. The

appearance of semi-conductors in the middle of this century made

possible the generation of other sets of orthogonal functions such

as the Walsh-Hadamard functions. Recently, digital circuits are being

prefered to analog circuits, enlarging the need for theoretical

tools and methods adapted to digital techniques. The advent, at last,

of the sophisticated digital computers finally forced the electrical

engineers to "think digital" even when he is studying continuous

phenomena and simulating them on a digital computer. This transition

has been first directed to the use of digital methods as approximations

to continuous problems and this explains the success of the Fast Fourier

Transform (FFT) algorithm known as the Cooley-Tukey algorithm [1].

Only very recently, we have seen the "explosion" of the field for

theoretical as well as practical studies of intrinsically digital

methods. Every year since 1970,the Symposium on the Applications of the

Walsh functions [2] draws a considerable interest. Several books [3]

[4] [5] [6] try to present unified views of the field. It seems clear

however that the field is only in its infancy and that important

-2-

further developments can be expected in the future.

1-2. The set of Walsh-Hadamard functions:

1
Known for centuries by artists , since the beginning of this

century by mathematicians [7] [8] [9], they are now a fashion for elec

trical engineers. Their rapid success comes certainly from both their

simplicity, their fast algorithm [10] and their analogies with the

Fourier functions. The time shift of the Fourier analysis is replaced

by the dyadic shift of the Walsh analysis. The frequency ordering

is replaced by the sequency ordering. But it became rapidly apparent

that differences, practical as well as theoratical, existed in the

use of these functions for signal analysis. Applications which

bear no analogy to the known usage of Fourier functions, are currently

sought and some surprising applications have been discovered :

Harmuth's book [4] points many challenging areas for basic research

in most of the fields traditionally studied with Fourier analysis,

and also other intrinsically digital fields such as coding theory where

some early results seem promising.

1-3 Fast unitary transforms and their applications to signal

processing :

Fast unitary transforms have been used mostly for signal

encoding and , to a lesser extent, for signal representation,

dimensionality reduction and signal filtering. For these applications,

the expression of the signal in a transform domain leads to simpler

processing at the cost of slightly lower performance, compared to

Hlexican drawings at Mitla (near Oaxaca).

-3-

optimal processing. In chapter 7, we comment on the application of these

transform techniques and review the main published works. Here, we wish

to point out that only a few transforms have been considered (Fourier,

Walsh-Hadamard, Haar, Slant transforms) and that these transforms

are considered as given and used mostly on a"try and look" basis. One

may wonder if these transforms have common properties and structure,

and if other transforms of interest exist. Developing a structure

common to all known transforms and studying their common properties

is a goal of this thesis. In each specific application of unitary

transforms, a major question of interest is the comparison of the

transforms. We shall see that, in fact, we are faced with a ternary

trade-off in which computational complexity has to be included and

we shall discuss some practical cases of interest.

1-4. Organization of this thesis :

This research was motivated by some previous*vork on the appli

cation of transform techniques in image processing [11]. It appeared

rapidly that various transforms were used "at random" and that

some thoughts about their relations, about other transforms with a

similar fast algorithm were necessary.

In chapter 2, we first relate the Haar transform with the well

known Walsh-Hadamard (W-H) transform and present some theoratical

consequences of practical importance.

In chapter 3, we present a unified treatment of unitary trans

forms having a fast algorithm. The use of recursive rules to describe

unitary transforms allows a systematic way to view known transforms,

to generate new transforms and provides a general approach to the

-£-

evaluation of the computational complexity.

In chapter 4 and 5, we use the framework of chapter 3 to analyse

the round-off errors in the algorithms of the fast unitary transforms,

with fixed-point representation of numbers (chapter 4), or floating

point representation (chapter 5). Our treatment is valid for most fast

unitary transforms and considers all the cases of practical interest.

In particular, the previous works concerned mainly with the analysis

of the FFT are included with more accuracy and new results are deve

loped .

In chapter 6, we consider fast unitary transforms with a given

set of basis vectors and we study in detail a family of generalized

Slant transforms, most of which are new.

In chapter 7, we describe the main applications of fast unitary

transforms and present, with an example, a comparison of their

performances.

The relations between these chapters follows the diagram of Fig.1-1.

Fig. 1-1. : Relations between chapters

-5-

1-5. Review of generalized transforms :

In this section, we review and comment upon the previous contribu

tions to the generalized fast unitary transforms.

1-5-1. Basic transforms : Fourier, Walsh-Hadamard, Haar, Slant

Fourier: The continuous Sine-Cosine functions and Fourier analy

sis have been known for a long time, but their extensive use had to

wait for the factorisation property developed by Good [12] leading

to the Cooley-Tukey algorithm [1]. This algorithm has been improved

through the years. Gentleman & Sande [13] have developed a different

organization of the algorithm. The interest of mixed radix algorithms

was pointed by Gentleman & Sande [13](radix 4), Bergland [14] (radix

8) ; Singleton [15] reviewed and extended these results. The matrix

notations for the FFT has been presented by Theiheimer [16] and

Kahaner [17]. Glassman [18] studied the FFT algorithm for composite

orders. Many publications [19] [20] [21] discuss other aspects of the

FFT.

Walsh-Hadamard (also called BIFORE - Binary FOurier REpresentation)

The Walsh functions were introduced by Walsh [8], some of their basic

properties, leading in particular to the fast W-H algorithm [10], were

presented by Pa.ley [9], Fine [22], Pichler [23]. The interested

reader can find in Harmuth1 book [4] and in [24] excellent presentations

of their properties. However to date not all their properties are

yet clear, as indicated by the proliferation of notes and papers

(see [25] for references of the most recent publications and the 1970-

1971-1972-1973 Proc. of the Symp. on Applications of the Walsh functions)

However their relation with the Fourier transform has been thoroughtly

considered [26] [4].

@X

-6-

Haar : The set of orthonormal Haar functions were found by Haar

[27] and some convergence properties investigated by Kaczmarz [28.]

and Alexits [29]. Strangely enough, the Haar transform was considered

in applications only by Andrews [5] for image encoding and rapidiy

rejected for unclear reasons. However, we have found [11] that the Haar

transform behaves in image processing subjectively as well (if not

better) as the W-H transform and we strongly believe that it deserves

further consideration. In chapter 2 we prove formal relations between

the Haar and W-H transforms and present some interesting theoretical

consequences.

Slant transform : A slant transform has been introduced by Shibata

and Hatori [30] [31] for TV signals. Pratt & Chen [32] have defined

a slant transform of order 2 . The results obtained with this transform

are promising. Chapter 6 considers fast transforms including a set

of slant vectors. Among them we find the slant transform.

1-5-2. Generalizations of the basic transforms:

Different independent generalizations have been proposed.

Extension to other roots of unity than ±1 for Haar and W-H :

The Haar and W-H transforms have only the roots of unity ±1 as

coefficients (and 0 for Haar). Chrestenson [33] for the W-H transform

and Watari [34] for the Haar transform, have described extensions

using other roots of unity.

Different original matrices for W-H :

The W-H transform is built from the "original" matrix [fI =1/fl 1 1

1 -1

Andrews and Caspari [35] [36] proposed a family of transforms built

-7-

on other matrices. Harmuth [4] defined the " generalized two-valued"

transforms by considering other matrices still with entries ±1 as the

original matrix. Similarly, he defined the " generalized three-valued

transforms" by a "squeeze and shift" process.

Extension to complex transforms:

The FFT is naturally defined as a complex transform in order to

make use of the shift property of the N th roots of unity which

leads to the fast algorithm. The W-H transform is defined with real

entries and an extension called complex W-H or complex BIFORE

transform has been proposed by Gibbs [37] and Ohnsorg [38] and

studied by Ahmed & al. [39] [40] . Ahmed & al. [41] found a modified

complex W-H transform which, in fact is closely related to a complex

Haar transform as it will appear later.

In the case of the FFT, the inverse process of reduction to a real

transform leads also to the Discrete Cosine transform [42] recently

introduced by Ahmed and al.

Families between Fourier and W-H :

Ahmed & al. [43] have defined a finite family of transforms including

the W-H, complex W-H, and Fourier transforms. Their scudy of invariant

quantities in the spectrum of these transforms has lead them to define

the Modified Generalized transforms [44], which, as it will appear

later are a finite family between the Haar and Fourier transforms.

The definitions of these families as they appear in the original

papers are very complex and will be omitted here. In chapter 3, we

shall give simple definitions for these families.

Andrews & al [45] [35] [36] have seen the importance of the Kronecker

JS

-8-

product of matrices to factorize the matrices of some fast unitary

transforms and obtain a fast algorithm. We shall generalize this

approach and introduce a generalized Kronecker product.

To conclude this introductory chapter we sum up in Fig. 1-2

the fast unitary transforms which appeared in the literature with

their connections. This diagram clearly shows the need for a better

structure : such a structure will be presented in the following

chapters.

Generalized spectral

analyser (Andrews)

Walsh-Hadamard f-

Generalized

Discrete transforms

W-H transform with

other roots of unity

than + 1

Generalized 2-valued

transforms

Slant

Modified generalized

transforms

Complex Haar

Haar

Generalized 3-valued

transforms

Haar with other roots

of unity than ±1

Fig. 1-2. Generalized transforms.

-9-

CHAPTER II

RELATIONS BETWEEN HAAR AND WALSH-HADAMARD TRANSFORMS

2-1. Introduction:

The basic results of this chapter are the formal matrix relations

between the Haar and W-H transforms. First, we partition the Haar

2
and "zequency" ordered W-H matrices into submatrices and define the

matrix operators oo and]}] which express simply the recursive genera

tions of the Haar and W-H matrices through their submatrices. Then,

using the properties of the operators <jf6 and tU ,we prove by induction

the basic relations between the Haar and W-H submatrices.

Consequently, we derive the relations between the transform

coefficients of an input vector by the two transforms: we define the

"zones" in these transform coefficients and show that they are related

through W-H transforms of lower orders. So, if we approximate a vector

with the same zones of its transform coefficients by the two transforms,

the Haar transform performs the same approximation vith fewer elemen

tary operations: this result is important in signal representation.

Then we show that the basic relations allow the recursive

decomposition of the W-H transform algorithm into Haar transforms.

Conversely, we propose a slightly modified W-H transform which

Most of the results of this chapter appear in:
B.J. Fino, "Relations between Haar and Walsh-Hadamard transforms", Proc.
of the IEEE (Letter), vol. 60, No. 5, pp. 647-648, May 1972.

This terminology has been proposed by Yuen [lj becauce "sequency"
received different definitions. Here, "zequency" is the number of
zero crossings.

-10-

performs an efficient "pipe-line" Haar transform.

Finally, the decomposition of the algorithms of the two transforms

suggests a family of unitary transforms between the Haar and W-H trans

forms.

2-2. Basic relations:

a) partition and recursive definition of the Haar matrices:

The original definition of the Haar functions [2] gives the

following definition of the Haar matrix of order N = 2 , denoted

M •
H. = {^ for all j
0» J

t h*-*-1 for i2n_k+1^ j <C 2n"k (2i + 1)

Hk-1 •]-V2k-B-1 for 2n-k(2i+l) < j< 2n'k+1(l+l)
V. 0 otherwise (1)

where k = 1, n , i = o, ,2 -1 , j » o, ,z

The Haar matrix of order 8,[HgJ is given in Figure 2-1.
Let us partition this square unitary matrix jH 1 into

r k 7(n+1) rectangular submatrices denoted MH n I of dimensions

(2k_1 x 2n) and such that:
k-1

H . . for i = 0,...,2 -1
_k-1,. .
2 +i'J k= 1 n

= /?""

entry(i,j) of j* MH *

and entry(0,j) of MH

2n

The submatrices of order 8 are shown in Figure 2-1.

We define now the matrix operator db which applied to an

(m xp) matrix [m] gives the following (2m x2p> matrix|3&([m])

N- f

W" TJr"

-11-

2 - 2 - 2

-2

-2

2 - 2 - 2

-2

-2

KJ

KJ

KJ

N

Fig.2-1: Haar matrix and submatrices of order 8

-1 -1 -1 -1

-1 -1 -1 -1

KJ

-1 -1 -1

-1 -1 -1

-1 -1 -1 -1

1-1 l-i-i 1-1 l L OJ

-l -l

Fig. 2-2. : Walsh-Hadamard matrix and submatrices of

order 8

-12-

<[M]> a [m]
[m]

J

[M]

where fi denotes the Kronecker product of matrices [3J . If we

apply dS to the submatrices MH , it is easy to show that:

[**] -[%([*£])] (2)
k = 2, ,n

b) partition and recursive definition of the W-H matrices:

There are different definitions for the W-H matrices giving

different orderings of the rows (see discussion in chapter 3). The

natural ordering appears when we define recursively the W-H matrices,

denoted W J ,by Kronecker products_ :
. 2nJ

[V] - N • [v]
(3)

However, the zequency ordering, which appears in the original paper

by Walsh [4] ,is more appropriate to signal representation and

we use it in the following. In order to express simply the recursive

generation of W-H matrices in zequency order, we define the matrix

operators XXJ and 11? '. These operators, applied to a (m x p)

matrix [m] give respectively the matrices rUs ([MJ){ and

\u) '(M)] such that each row (a-.a., ,a) of JMJ

is replaced by the two rows

In which

, for U) and ^ for U? •

^ =<W »V8lgn(ai aTn} X°W ,am} }

-13-

and U, - (a.,a0, ,a ,-sign(a. a)x (a.,a0, ,a)) (4b)
12 m lm 11 m

If we apply XU to a matrix ("mJ of p consecutive rows of the
.n

W-H matrix of order 2 and in zequency order, it is easy to show

that [U?([M]) is a matrix of 2p consecutive rows of the W-H

n+1
matrix of order 2 . In particular, if we partition the zequency

ordered W-H matrices into submatrices

Haar submatrices, we have:

[«£)- Vf2 [lt)([MW2k:}]>"
k = 1, ,n

and also FWH 1 = 1//T
L 2nJ

The W-H matrix and the W-H submatrices of order 8 are presented in

Figure 2-2.

The relations (5) and (6) are matrix expressions of the difference

equations taken as the definition for the W-H functions by Harmuth [5].

Note that the set of W-H functions defined by Harmuth has some

sign differences with ours.

c) properties of the operators (To ,\P and *Us T :

1) We denote fs J the permutation matrix of order m which

reverses the ordering of rows or columns:

1

It is easy to see that:

o .

r" o

MW
if ~

similar to the

(5)

^([VJ)] (6)

&•

-14-

[S2J [^[«]>] =[u7'(W W>] (7)
a„d[sj [VJ- ([M3)] - [tX)([Sj [M])] (8)

2) Let [m] =|i ,t be a (m xp) matrix, £n] a (p xq)
matrix so that their matix product [p] =[m] [n] =jp^J exists.
We say that the product matrix [p] is sign invariant /contravariant
if, for all i , (p.., xp) has same/ opposite sign as (m±1 xmip).

Then, if P is sign invariant,

[u}([m]>] [# <L»]>] -[u><M >
if P is sign contravariant,

[l^([M])] [«([h])] -[W' ([p])] do)
To prove (9), we consider the product of the (2i) th row (type d)or

of the (2i+l) th row (type ol ') of [l(?([M])] by [38 <[NJ)J :

0nirmi2> 'inip'gsi8n(milniip) X(mil'mi2' ,mip) }

where £ = +1 for U. and -1 for oL '•

By matrix multiplication, the product is :

(Pir ,Piq,£sign(mi]L m±p) x(p^, ,Piq))

So \(? applied to [p] will give the same result as the matrix

product [VO ([M])J [%([N])J ,if [p] is sign invariant.
A similar proof holds for (10).

d) basic relations between Haar and Walsh-Hadamard transforms:

Alexits [6] has suggested that a matrix relation exists

between the submatrices I"mH £1 and j*MW nJ.We now prove
by induction on n that this relation is :

(9)

«TnJ ' 0
_ _ I

.0 .CNJ

-15-

MW

2nJ - [s2k-i] [vi MH

2n
(ID

k = 1, ,n

Assume that (11) is true at the order (n-1), we have:

'~tt .k-1
WH

. 2
k-:

MH
n-1

k -1, ,n-l (12)

Applying <[$ to both sides of (12) and using (5) for the left hand side,

(8) for the right hand side, we obtain:

fi MW k+1]

lv] [*'{ ["V-1! K"^
It is easy to see that the product of a matrix by a Haar submatrix is

sign contravariant ; thus, using (10), (2) and (6) , we obtain (11) for

k = 2, ,n. As (11) is obvious for k = 1, this; completes the proof

of (11).

As fwH . -1 and [s k_jl are real, symmetric and unitary,
they are self-inverse and we have the converse relation:

MH

2nJ
WH

k-1 .k-1
MW

,n

2-3 Zonal relations between Haar and W-H transform vectors:

V (Vn, ,V) is an input vector ; VH (VHQ,....,VH n)
0 2n_1 « ,

~^r —

and VW (VW , ,VW) are the vectors obtained from V by the
2n-l

Haar and W-H transforms :

W = fwH 1 T
I 2nJ

Then the matrix relations (11) and (13) imply some relations between

VH and VW . If we right multiply (11) by V , we obtain :

(13)

2"-l

to

VW

\
VW

-16-

k-i\ VH
,k-l

.k-1
WH

k-1
(14)

2k-l
VH

2k-l /
k =» 1,... .,n

The converse relation is similarly obtained from (13)

Let a "zone" be the set of coefficients of the transform vectors

which appear in the relations (14) for k= l,....vn. We see that

corresponding zones of the two transforms are related by a W-H matrix

and a permutation matrix, therefore by a unitary matrix. Consequently,

a zone in a transform vector determines the corresponding zone of the

other transform vector. This property shows that, if we approximate V

by the same subset of zones of the vectors VH and VW or in

particular if we truncate these vectors at the end of a zone, we obtain

the same approximation vectors after inverse transformation.

As the zones are related through a unitary transform, it follows

by Parseval's theorem (valid for any unitary transform) that the

energies in corresponding zones are identical. These results show that

the performances of the two transforms for signal representation are

identical if the zones are maintained and should be close if they are

not. This result has been verified for image/encoding with transform

techniques [7] .The computational complexity of these transforms has

been studied by Andrews [8j (see also chapter 3) : the W-H transform

of order 2n requires n 2 additions and the Haar transform of

same order requires 2(2n-l) additions and 2 ~ multiplications so

In some applications such as threshold encoding [7] the multiplications
required by the normalizations may not be necessary.

•17-

5 2n"1-2 elementary operations. The ratio of the total number of

elementary operations for both transform appear in Table I.

Table I

n 1 2 3 4 5 6 7 8 9

N=2n 2 4 8 16 32 64 128 256 512

n N 2 8 24 64 160 384 896 2048 4608

52n"1-2 2 8 18 38 78 158 318 638 1278

Ratio 1 1 1.33 1.71 2.05 2.42 2.83 3.21 3.60

We may expect the Haar transform to be faster than the W-H transform

for most implementations.

Therefore, for computations, in which the zones are maintained,

the Haar transform performs as well and is faster than the W-H

transform.

2-4. Application of the basic relations to fast algorithms:

The flowgraph of a fast algorithm for the Haar transform is given

in Figure 2-3 for vectors of order 8. Several fast algorithms for the W-H

transform have been proposed [9] [lo] [ll] .Using recursively the relation
(11), we can decompose the W-H algorithm into a Haar transform of

same order followed by W-H transforms of lower orders which can

also be decomposed. This procedure gives, for the W-H transform of

order 8, the fast algorithm of Figure 2-4, where the Haar transforms

appear inside dotted lines. We call the reordering shown on Figure 2-4

a " bit-inversion" ; we shall discuss it in more detail in chapter 3.

The algorithms for the two transforms, as they appear in Figures 2-3 and

2-4, require the same number of stages of computation, but not the

^
^

k
\>

^

O
R

IG
IN

A
L

V
E

C
T

O
R

v0

st
an

ds
fo

r
th

e
el

em
en

ta
ry

op
er

at
io

n
a

+
kb

H
A

A
R

T
R

A
N

S
F

O
R

M
V

E
C

T
O

R

VH
0

^
^

\
^

^
^

x
y
^

\

V|
vH

|
/
^
V

v
/
l

-1

V
2 v3

Vh
2

Vh
3

w
/C

?1
7

5

y
V

1
"'

7
i

v4
\
\
/
/

\
Vh

4
/0

\
-|

2

v5
VH

5
/

Nv
-j

2

v6
VH

6
-1

2

v7
Vh

7
—

1
c

F
ig

.
2

-
3

.
:

F
a
s
t

H
a
a
r

tr
a
n

s
f
o

r
m

o
f

o
r
d

e
r

8

o
o I

O
R

IG
IN

A
L

V
E

C
T

O
R

v0 v3 v4 v5 v6 V
,

R
eo

rd
er

in
gs

W
/H

T
R

A
N

SF
O

R
M

V
E

C
T

O
R

\> vW
|

Vw
3

Vw
4

Vw
5

Vw
6

vw
?

Fi
g.

2-
4.

:
F
a
s
t
W
a
l
s
h
-
H
a
d
a
m
a
r
d

t
r
a
n
s
f
o
r
m
o
f
o
r
d
e
r
8

I I

-20-

same number of elementary operations. If we can implement these algorithms

with all elementary operations of a stage of computation performed in

parallel, the Haar transform will not be faster than the W-H transform.

However, if we have a sequence of vectors to transform by the Haar

transform, we can make use of the relations between the two transforms

to design a "pipe-line" algorithm for the Haar transform : at each

stage of computation, a W-H stage of computation is constructed from

Haar intermediate results of successive vectors each in a different

stage of computation with respect to the Haar transform . We present

in Fig. 2-5 a possible organization of this algorithm for Haar

transforms of order 8. All stages of computation are identical for

this organization and only one appears on the figure. On the first

14 cells , 14 adders operate to give the intermediate or final

coefficients of the Haar transforms at a successive stage. The 10 last

cells are storage cells and the stored data is properly shifted to

gives the Haar transform coefficients of each successive vector in

the 8 first cells after 3 cycles of computation. On the average

three Haar transforms are performed with less than the hardware and

time needed for two W-H transforms. More generally, n Haar transforms

of order 2n are produced with the equivalent hardware of two W-H

transforms of the same order. This"pipe-line"algorithm is very

efficient with parallel circuitry which is available at more and

more competitive prices.

2-5. Family of unitary transforms inbetween the W-H and Haar

transforms and with a common fast algorithm:

The decomposition of the fast W-H transform into a fast Haar

transform of same order and (n-1) W-H transforms of lower orders,

New

input vector^ \
(P th)

first stage

intermediate results

for (p-l)th vector

second stage)

int. res. for (p-2)th'

partial transform

coefficients f»r

(p-2) th vector

partial transform

coefficients for

(p-l)th vector

-21-

stands for a+b

transform

of (p-2) th

vector

stands for a-b

Fig. 2-5, : Pipe-line Haar transform of order 8

-22-

suggests that we can replace any of these W-H transforms by a Haar trans

form of the same order and still have a unitary transform. We can

use again this rule in further decompositions. This procedure yields

a family of unitary transforms with a common algorithm given in Fig. 2-4.

The non-normalized transform coefficients appear at appropriate nodes

of the algorithm. The number of members of this family, denoted P
n

for the transforms of order 2 , is given recursively by:

The

P =1 + P .P P. = 1 + P _(P -1)
n n-1 n-2 1 n-1 n-1

first values of P are (with P. = 2 -> FfJ and identity matrix)
n l L*

n

P
n

43 1807 3 263 443

In chapter 3, we present an even larger family of unitary transforms

between the Haar and W-H transforms. This family includes the present

family but has not the property of a common algorithm.

2-6. Conclusions :

In this chapter, we have developed some ties between the Haar and

W-H transforms : formal relations between submatrices,corresponding

relations between zones of transform vectors, relations between the

fast algorithms and finally a family of transforms including both Haar

and W-H transforms.

We have also found that the Haar transform, with a faster algorithm

can perform as well as the W-H transform : we conclude that the Haar

transform, for long forgotten and too hastly rejected., should recieve

more attention.

-23-

CHAPTER III

A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS

WITH A FAST ALGORITHM

3-1. Introduction :

The dissemination of the Fast Fourier Transform algorithms,

originally introduced by Good [1], and known as Cooley-Tukey [2] and

Sande-Tukey [3] algorithms, has resulted in a large extension in the

range of applications of the well known Fourier transform. Recently the

Walsh-Hadamard transform, also with a fast algorithm [4] has drawn

considerable interest [5]. The Haar transform although closely related

to the Walsh-Hadamard transform and potentially of interest [6] [7], has

received much less attention. These transforms have been used successfully

for error free signal representation [8], pattern classification [4], [9],

speech signal encoding [10] and above all for picture encoding [11], [12],

[13]. Only a few transforms have been considered in these applications

while many other transforms could be of interest. Some workers have

considered the definition of generalized transforms and we mention the

works by Andrews, et al [14], [15], [16], Rao, et al [17], [18] and

Harmuth [19],

In this chapter, we present a unified view of discrete unitary trans

forms with a fast algorithm. A discrete unitary transform is characterized

by aunitary matrix [T] such that [THT**] = [I] where *denotes conjugate

"t" transpose and [I] is the identity matrix of sama order as [T], say N.

For mathematicians a unitary matrix expresses a rotation of the orthonormal

basis and preserves the Euclidian norm IM = V-V* , of any vector V and

all inner products of vectors. In signal representation, this property

*r

-24-

means energy conservation and an easy expression of the mean square error

when some components of the signal are ignored in the new base. The

computation of the transformed vector 5 of Vby the transform [T] such

that W = [T]V usually requires N multiplications and N(W-l) additions.

For some specific transforms of interest such as the Fourier, Walsh-

Hadamard transforms a fast algorithm has been found which requires fewer

elementary operations. The analysis of these fast algorithms has been

done by factorization of the matrix [T] into a set of largely sparse

matrices, each expressing a stage of computation. This is the approach

followed by Good [1] in his original paper which lead to the Fast Fourier

Transform [2], [3] the Fast Walsh Transform [4] and other known fast

transforms.

Here we consider recursive rules for the generation of unitary

transforms having a fast algorithm. These rules allow us to generate

large classes of such transforms, many of which are new and possibly of

interest, and to give general formulas for the number of elementary

operations required by the corresponding fast algorithm.

3_2 • Recursive Generative Rules:

We shall present three rules which generate a new unitary matrix

from some, original unitary matrices. For each rule we relate the number

of elementary operations for the new transform to the number of elementary

operations of the same type required by the original transforms. For rule 1

there is only one original matrix, for rule 2 two, and for rule 3 a set of

original matrices.

hie denote by "rule" a set of operations performed in a prescribed order.
We reserve the term "operation" for the elementary operations such as
additions, multiplications, etc. which determine the computational
complexity of a transform.

-25-

Rule 1: Operations on the columns of a unitary matrix:

Given a unitary matrix [T], two obvious operations on the columns

yield another unitary matrix of some order:

a) permutation of the columns: This operation does not require

any computation. In the computational process, this operation can be

performed by applying the permutation to the coefficients of the input

vector instead of the columns themselves.

b) multiplication of a column by a root of unity: This operation

requires a complex multiplication if the root of unity is not +1 or

+ j (j = */~l) (see footnote 2).

These operations on the columns may be expressed by a matrix

product [T] [D] with [D] such that D, .« e** * if column k is to be replaced

by column i multiplied by the root of unity, e ^ i, and all other entries

of [D] are null.

Rule 2: Rotation of rows by a unitary matrix

Consider a unitary matrix [T] of order N. The N row vectors form

an orthonormal basis for SN, the N dimensional space they span, m row

vectors of [T] form an orthonormal basis for a subspace S . If these m
m

vectors are rotated by a unitary matrix [U] of order m, we obtain a new

orthonormal basis^o for S . The remaining unchanged N-m rows of [T] are

an orthonormal basis of the subspace S.T orthogonal to S and form with
r N-m ° m

Ba new orthonormal basis for S . Thus, the matrix [T1] obtained after

rotation of the m rows by the unitary matrix [U] is unitary.

Multiplications by +1 and +j may be counted as operations if the hardware
realization of the algorithm is not able to keep track of them. However,
for the error analysis of the algorithm these multiplications, even if
they are performed, do not introduce any error.

-26-

Some particular cases of interest are:

a) multiplication of the whole matrix by a unitary matrix of

the same order

b) permutation of the rows (multiplication by a permutation

matrix)

c) multiplication of a row by any root of unity.

The operations b and c can be represented by the matrix product

[D] [T] where [D] is, as before, such that D±k =eJ ±if row iof Tis
replaced by row k multiplied by the root of unity, eJ x, and all other

entries of [D] are null.

Number of Elementary Operations:

If transforms T and U require respectively t and u elementary

operations of a specific kind, it is obvious that the transform T' will

require at most t1 of these operations with

t» *= t + u (1)

(It may happen that [Tf] so generated has a simpler algorithm).

Equation (1) applies independently to any type, cf elementary

operation, additions, real and complex multiplications as well as any

other specific operation (e.g. shift, multiplication by /2 . . . etc.)

Rule 3: Generalized Kronecker Product:

Given two sets of unitary matrices, sety^rtfof mmatrices [A J

(i=0,... ,m-l) all of order n and sefj^orof n matrices B] (i=0,... ,n-l) ,

all of order m, we define the generalized Kronecker product of the sets

y^A fand <^(-> kdenoted y^f0yfifto be the square matrix [C] of order

(mn) such that

-27-

C„ ,-C_^_ ,^ ,-AW f•BU\ (2)
i,j um+w, ufm+wf uu1 wwf

with i «= um+w u, u,=0, ..., n-1

j « u'm+w1 w, wf=s0, ..., m-1

a) [C] is a unitary matrix:

Proof:

mn-1 * n-1 m-1 ^

/^ ik jk ° 2-j 2-j um+w, vm+z u'm+w*, vm+z
k=0 v=0 z=0

with k = vm+z v=0, ..., n-1

z=0, •.., m—1

Using (2)

mn-1 n-1 m-1 A t .,.
E* V* V1 A A Bv B

Cik C1k " 2L* 2J uv ufv wz w'z
k=0 v=0 z=0

n-1 . , m-1 .
w * w «—» „v „*v

T A AV V B B ./ u uv U V /^j wz wfz
v=0 z=0

—v '
6 i by orthonormality of
w w

n-1 .

M

W,W' j^j UV U V
v=0 V y J

6 i by orthonormality of A

« 6 .6 . - 6,.
ww uu' ij

where 6.. is the Kronecker delta 6., «= 1 if i=j

« 0 otherwise.

This proves that [C] is a unitary matrix. QED

In the particular case in which the matrices A = A are all

M • [•]•identical, and also the matrices B = B I, then the generalized Kronecker

-28-

producti/t} © (-B) reduces to the usual Kronecker product of matrices

[14]: [A]®[B].

b) Factorization of [C]: We now prove that

[C] = [P*] [Diag^}] [P] [Diag{Cg}] (3)

where [Diag{j4}] and [Diag{^B>] are block diagonal matrices formed with

the matrices of the sets {Jk > and {^} (see Fig.3-1) and [P] is the

permutation matrix of order mn such that P, ^ = <5vzt 5 , when k = vn+z,

I = vfm+zf and z1, v=0,, m-1; z, vf=0,, n-1. Equation (3) is

a generalization of the factorization of a simple Kronecker product into

Good matrices [14].

Proof:

[Diag{_/}], ,, = 6 „ AV„ with k» = v"n+zM

[Diag^}]^ =6u,vt BU,wl j =u'm +w'

[P].,i = 5 „ 6 „ i = urn + w
ik' uz wv

We evaluate an element of the matrix on the right hand side of (3)

mn-1 mn-1 mn-1

k'=0 k=0 ft=0

m-1 n-1 m-1 n-1 n-1 m-1

2s 2^, JLj Z-r Z-f Z-/6uz" 6wv" 6w" AI»z 6vzf 6zv' 6u'v' Bz'w«
vM=0 z"=0 v=0 z=0 v'=0 z!=0

AW , BU , = c QED.
uu ww' ij ^

-29

M
]

[Diog{a}] =

"1J

Fig. 3-1. Block diagonal Matrix

>

-30-

c) Number of elementary operations:

With the computational blocks corresponding to the transforms

A°,, Am~ and B , , Bn"~ , the factorization of equation (3)

leads directly to the computational block of the transform C given in

Figure 3-2.

From the structure of the algorithm of Fig. 3-2 it is easy to see

that if the matrices [A] (i=0, ..., m-1) and [B] (j=0,...,n-l)

have algorithms requiring respectively p and q£ elementary

operations of a specific type, their generalized Kronecker product [Cj

will require P of these operations with
n mn

m-1 n-1

p =yPi+yqj (A)
mn / j . n /„tm/ m

i=0 * j=0

In the particular case of a simple Kronecker product p = p and

J -
\ = *i SO

P = m P + n q (5)
mn n • m

Note that the use of rule 1 and 2 only increases the number of elementary

operations while the order of the generated transform does not change.

For rule 3, even if [A] and [B] do not have fast algorithms and thus

2 2
require n and m elementary operations, [C] requires a maximum of

2
(m+n)mn <^ (ran) (for m, n > 1) elementary operations.

The results of equations (1), (4) and (5) are important: for every

transform generated with the recursive rules presented, they give a

simple and systematic way to estimate its computational complexity.

-31-

,nput n n r A Output
vector nmatrices [BJ permutation [PJ mmatrices [AJ permutation [P] vector

| >—*—» , • v ,—*—» , * » |

2m-

(n-l)m
(n-l)nrul

mn-1

Fig. 3-2. Generalized Kronecker product

fast algorithm

-32-

3-3 . Identical Computation (IC) Family:

The generative rules defined above create a unified framework

for the known fast unitary transforms, introduce new transforms, and

allow assessment of the computational complexity of such transforms.

In this paper, one large family of transforms is considered: the

"identical computation transforms" that we discuss now.

We denote by {J(} @ [B] the generalized Kronecker product of

a set {J(} of q matrices [A] (k=0, ..., q-1) of order p and a set {^B>

of p identical matrices [B] of order q. [B] wil3 be called a core

matrix and [A] a parent matrix. The IC transforms are recursively

generated from a unique class, C» °f parent matrices of some order f

and an original core matrix [0] of order q. An IC transform of order

(qfn) is then obtained from the original core matrix [(•)] by the recursive

formulas:

[icqf] - [Dqf] [{A)®[®n [D^f]

[IC] = [D] [04n}®[IC]] [D']
qf qf qf qf

(6)

where the matrices [D] and [D1] express respectively a reordering

followed by multiplications by roots of unity of the rows and the columns.

All parent matrices of C^A.) {Jk 1 belong to C.

The common characteristic of all the transforms of the IC family is

that their algorithms only use in any computation intermediate results'

obtained from the input vector through identical computations (so the name

of the family). This property provides a uniform treatment of successive

components of the input vector if we consider that any parent matrix

-33-

treats uniformly its input vector. For this family, all the normalizations

can be delayed to the last stage of computation.

We shall consider different choices for the original matrix [©],

the class C of parent matrices, the matrices [D] and [Df] and the sets

{J{. }. We first show that the basic transforms, Fourier, Walsh-Hadamard

and Haar, are IC transforms.

3-4. Basic Transforms: Fourier, Walsh-Hadamard, Haar:

In this section with the help of the generative rules, we examine

the well known Fourier, W-H , and Haar transforms. This approach allows

the derivation of some new results concerning the number of multipli

cations required by a FFT of composite order, a concise presentation of

the different definitions of the W-H transform, and simple definitions

of the Haar transform. In addition it makes apparent the common

structure of these transforms. This will lead in the next section to

the definition of families of transforms between the basic transforms.

In the following we emphasize specific orderings for the basic

3
transforms: frequencies for the Fourier transform, zequencies for the

W-H transform and rank for the Haar transform. These orderings have

proved to be useful in signal encoding because they concentrate the

signal energy into the first transform coefficients, for some image

models [21].

o

This terminology has been introduced by Yuen [20J . The zequency is the
number of zero crossings.

-34-

3-4-1. Generalized Fast Fourier Transform of Composite Order

a) decomposition theorem:

Given the Fourier matrices [F] and [F] of orders p and q

respectively, the matrix [F] such that

[F 1=[{[F^]>® [F 1] [Vf (7)
pq q p

k
is the Fourier matrix of order pq. The set {[F]}, k=0, ... p-1 is

such that

lFq] =[Fq] [Dk] Where C8)

ku1[D,] is a diagonal matrix such that (Dfc) = exp(-2-rj —-)
k ufu*
[P] is the permutation matrix such that

P = 6 6, with s = uq + k t =; wp + z
st uz kw

u, z < p

k, w < q

Proof: We denote [{[Fk]}® [F]] by [F'l.
q p pq

(Fpq} ug + k, u'g + k' =(Vuul# ^qW

(F) .e W •(F) - =i=e P Pq q
P uu« q kk' v^q

[F] = [F'] • [P]* "» (F) = (F*) -6,6,,
pq pq pq ,i . pq .i i .i t zu' wk'Kn v l r^ uq+k, wp+z rn uq+k, uTq+k'

-35-

_2lI, (H2. +iS£ +1») -2i,j(uq+k) (wp+z) QED.
=ez p Pq q =e P<1

Note that [F] is symmetric and orthonormal so that
pqJ J „

([F J"1)* = [F]. Making use of (3) and (7) it is possible to derive a

new expression for [F]:

[Fpq] =[[F]® {[F^k]}] [P] (9)

with [F^k] =[Dk] [Fq]

If [F] and [F] require respectively^ and'^A complex additions,

ij\,[and^AA complex multiplications, [F] will require by application
* M XT a

of (4).

<4, = -p.J^ + q^4 complex additions (10)

rXj\ = n^/U + q^'U + C complex multiplications (11)
u pq q p P»q

where C is the number of complex multiplications introduced by (8) .
p,q

C = pq if all the factors including + 1, + j are considered.
p,q rn - -

q = (p-1) (q-1) if the factors + 1 are discarded
p,q ~

C = (p-1) (q-l)-l if the factors + j are also discarded
p»q ""

(when (pq) is a power of 2).

b) Generalized FFT of composite order

If the order of the Fourier transform is composite, i.e. N = p. .

p , the previous decomposition theorem yields the well known FFT

-36-

algorithms [2] [3] detailed by Glassman [22] in the most general case.

The recursive use of the formulae (10) and (11) gives the number of

required operations. In the case of N« rn we can solve these recursive

equations: this is the case of FFT of radix r.

,A n-rn_1oAr +r^n_x or <j*a -nr""1,^

uW = rn_1J/L + rJA . + (r-c.)(rn_1-a)- 6 or
n x n-1

(12)

n-X-l
(r _)

n~I n n~l,

JAR =nrn-Ulr +(r-a) [(n-1) r1^1 - a^j^] - 3^ (13)

(a, B depend on the value of C)> *- p,q

The radices 2, 4, 8 and 16 have been considered in the literature.

For the radix 2, which gives the most popular FFT, the recursive

relations given by the decomposition theorem are

IF 1- [{[**]>» [F^]] [P]t

and [F] = [[F ,]@ {[F*]}J [P]
2n 2

with [Fk] = i
L SI

-2nj
.n

[l -e 2" J

'k 2and [F/] = -
Z /2 -2ttj —

2n

(14)

-2irj —
2n

-e

(15)

The algorithm corresponding to the recursive formula (14) and

obtained by recursive use of Fig. 3-2 is shown in Fig. 3-3a ; it can be

arranged equivalently with all operations "in place" as shown in Fig.3-3b

Columns
permutations

-37-

Output
vector

Fo
F,
F2
F3
F4
F5
F6

F7

(Oj Cooley-Tukey algorithm deduced from Fig. 3-2

Input
vector

(b) Cooley-Tukey algorithm
in place

bit reversal

ordering

Fre
quency

0

I

2

3

4

-3

-2

Fig. 3-3. Fast Fourier Transform of order 8, radix 2

-38-

which is the classical diagram of the Cooley-Tukey [2] algorithm

with decimation in time.

The algorithm corresponding to the formula (15) is the Sande-

Tukey [3] algorithm with decimation in frequency and is shown in

Fig. 3-3 c and d.

For these Figures the factors are

a = 1
o

a = exp(-27ij/8)

a = exp(-4iTj/8) = -j

a3 = exp(-6irj/8)

We can compare the FFT with radices 2,4,8 and 16 for transforms
n

n l0g2r
of order N = 2 = r (n is then a multiple of 12). The formulas

(12) and (13) then give:

Radix <A ^/'IL J*n X \kJ
n U\k ntt

(all factors) (no factors + 1) (no factors + 1 + j)

(n-1) 2'

n
n2

(f-D 2n

24 (f^D 2n

16 64 (f^-l) 2n
J

n2n~1 - 2n + 1

3n2n"3 - 2n + 1

H2- - 2n + 1

n
21n2

64
2n + 1

0n-l « 0n-l 0
n2 - 3.2 +2

n-3 13.2n"2-4
3n2

n2n 57.2n-3 - 8

21n2n 241.2n~4-16
64 15

The column ,{,(has been given by Singleton [23]. In fact our approach
r

allows the evaluation of the computational complexity for any composite

order, in particular for mixed radix FFT.

-39-

Input
vector

column
permutations Output

vector

Input vector

Vo

(0 Sande-Tukey algorithm deduced from Fig. 3-2

Output vector

Fo

bit reversal
/ . x ordering
^a' Sande-Tukey algorithm :

in place

Fig. 3-3. Fast Fourier Transform of order 8, radix 2

-40-

The factors + 1 are easy to track in the algorithms and for most

realizations multiplications by + 1 are not performed. The factors

+ j appear in various places in the algorithms and in most realizations

multiplications by + j are performed; however, in an error analysis

these multiplications do not introduce any rounding error and the

column /W is then of interest,
n

r

3-4-2 Walsh-Hadamard Transform:

The W-H functions are well known and the results presented in this

section are explicit or implicit in many publications. Here, we

wish to express these results in terms of our generative rules; we

think that the following compact notation clarifies the relations

between the various orderings of the W-H functions and the different

algorithms. This approach also makes apparent the common structure of

the W-H transform with the Fourier and Haar transforms.

Three distinct orderings or rows of the W-H transform are commonly

used and are of interest (see the discussion by Yuen [20]). For each of

these orderings there exists a recursive matrix definition:

a) "natural order" It is obtained by simple Kronecker product

without any permutation

[WH n nat.] = [F2]® [WH ^ nat.] (16)

with the original core matrix [F_]. This relation gives directly, by.

recursive use of Fig. 3-2, the fast algorithm of Fig. 3-4a (without the

reorderings). A different presentation of this algorithm with identical

stages of computation is given in Fig. 3-4b.

Input
vector

Input
vector

-41-

Output
vector
natural
order

Output
vector
zequency
order

RQ Ordering

(a) Algorithm with rows in natural order

(b)

Output
vector
natural
order

Output
vector
zequency
order

RQ Ordering
Algorithm with identical stages

Fig. 3-4. Walsh-Hadamard transform of order 8

-42-

b) Paley's ordering: Used originally by Paley [24] it seems

more suitable for mathematical developments than the other orderings.

The recursive relations introduced by Yuen [20] are expressed by the

matrix relation

[WH pal.] - [[F9]@ [WH -pal.]] [P]* (17)
2n 2

with the original core matrix [Fj and [P] as defined previously for

the Fourier transform (see section 3.3). This relation gives the algo

rithm of Fig. 3-4 c (without the bit-inversion reordering) by recursive

use of Fig.3-2. A different presentation of this algorithm has been

given in chapter 2.

c) zequency ordering: This is the original ordering by Walsh

[25] and is the ordering of interest for signal encoding because it

ranks the transform coefficients roughly according to their variances

for signal statistics commonly encountered in practice. The generating

process^MJ , of chapter 2 ,defines recursively the W-H matrices in

zequency order. We can express it by the matrix relation

[WH zeq.] = [W] [[Fj@ [WH zeq.]] (18)

where [W] denotes the reordering of the process ~IV. A zequency ordered

algorithm has been investigated by Manz [26].

Although the zequency ordering could be generated recursively, the

corresponding algorithm would not be simple and it may be preferable to

obtain the W-H transform in natural or Paley?s order and then perform a

global reordering.

Input
vector

(0

Transformed
coefficients
in Paley's
order

Transformed
coefficients
in zequency
order -

*

bii reversal bit inversion

ordering ordering
Algorithm with rows in Paley's order

Fig. 3-4. Walsh-Hadamard transform of order 8

i

I

^

-44-

Given the transform coefficients in Paley's order a

"bit inversion" reordering, denoted in matrix form by [Q], is necessary

to put them in zequency order: in a bit-inversion permutation,

consecutive coefficients with k bit of the binary representation

of their indexes equal to 1 are put in reverse order. This operation

is performed for all bits starting from the rightmost bit. With 8

coefficients to reorder this means the following permutation:

index of binary reverse order reverse order final
coefficients in representation for middle for leftmost order
Paleyfs order bit bit (see Fig. 4c)

0 000 >• 000 •- 000 0

1 001 >• 001 •- 001 1

2 010 ^r 011 - 011 3

3 011 ^* ""^ 010 •- 010 2

4 100 *• 100 HO 6

5 101 '.—- 101 <v>> HI 7

6 110 \^^^ I1! /\^ 101 5
7 111 ^^^ 110 100 4

Given the transform coefficients in natural order, a bit reversal

ordering, denoted by the matrix [R], will order them in Paley's order and

a bit-inversion will order them in zequency order. For 8 coefficients

to reorder we have:

index of binax

coefficients in represent

natural order

0 000

1 001

2 010

3 Oil

4 100

5 101

6 110

7 111

-45-

bit

reversal

bit

inversion

final

ordering
(compare
tfith Fig.4a,b)

0

4

6

2

3

7

5

1

It is important to note that, as the W-H matrices are symmetric

in any of the three orderings, these reorderings can be performed on

the columns as well as on the rows. Hence we have the matrix relations:

[WH zeq.] * [Q] [WH n pal.] = [WH pal,] [Q]
2n 2n 2n

[WH zeq.] « [Q] [R] [WH nat.] « [WH nat.] [R] [Q]
2n 2 2

Since the W-H matrices are their own inverses, we have also using (16)

and (17) the following recursive relations

[WH nnat.] =[P]C [[WH ^ nat.]® [F2]] [P]

[WH pal.] - [[WH pal.]® [F,]] [P]
2n 2

These relations however do not give different algorithms. All these

-46-

algorithms differ only by reordering and so have the same number of

additions given by

,Ji =2•^A n_1 + 2, 2 with 'J* =2which givesA =

A = n2 , a well known result.

3-4-3. Haar transform:

The Haar transform is usually defined from the Haar functions [11]

The Haar matrix of order 8 [Hfi] ordered by ranks is as follows

[V 7?

i

0

2

0

0

0

1

0

-2

0

0

0

V2

0

0

2

0

0

1

*&
0

0

-2

0

0

-1

0

-1

0

0 0

0

-2

0

-1 -1

0 0

-v/2~ V"2"

0 0

0 0

0 0

2 -2

^

^

Zones

0

Here we use the generative rules to define recursively the Haar matrices

and we have found two definitions:

1) The Haar matrix of order 2 is obtained from the Haar matrix of

1 0

order 2 by simple Kronecker product with Il„] = followed by

0 1

rotation of the rows 0 and 2n by [I..]. This is the process ^Jj of

-47-

chapter 2 in terms of generative rules.

2) The Haar matrices are recursively defined by the relation:

[H n nat.] {[F2], [1^,...., [I,,]} ® [H ^ nat.] (19)

The rows are obtained in "natural" order. To reorder them

by their ranks, we need a "zonal bit reversal" ordering. A zone as

defined in chapter 2, is a set of coefficients with indexes between two

successive powers of 2. A "zonal bit reversal" ordering is a bit-reversal

followed by a reordering in the original order inside each zone. For 8

coefficients the zonal bit reversal ordering gives:

Index

0

1

2

3

4

5

6

7

Binary representation Bit reversal Reordering
inside zones

*- 100

final order

(see Fig. 5a)

0

4

2

3

1

6

5

7

With both definitions, we obtain by recursive application of the

diagram of Fig. 3-2 the algorithm of Fig. 3-5 a. This algorithm can

be more conveniently organized as shown in Fig. 3-5 b and give the

rows directly ordered by their rank.

By application of (4) we obtain the following recursive formula for

the number of additions:

-48-

Algorithm with rows

in natural order
Zonal bit reversal

ordering

Output vector
rank order

Ho

H,
H2

H3
H4

H5
H6
H7

(b) Algorithm with rows in rank order

Fig. 3-5. Fast Haar transform of order 8

-49-

n-1

,A -2• tA , +2- Hence ^« =2<2n-1> with'A -2. 2'~*n ^n-1 2n ^

normalizations are also required. A modified Haar transform obtained from

the Haar transform by permutation of its columns is related to the

Fourier transform (see section 3-7-3): it is defined recursively by:

[MH n] = [Z] [{[F2], [I2], ..., [I2]>® [MH n-1]] [P]
2 ^

(20)

Globally the permutations [Z] perform a bit-reversal ordering inside each

zone.

The modified Haar matrix of order 8 is as follows

lms] 7F

-1

\fi

0 yfl

1-1 1-1 1-1

-j! o +y^ ° V2 °

0 s/2 0 V2" ° V2"

0 -2

0 0 0 0

002 000-2 0

0002000-2

and its algorithm is given in Fig. 3-5 c.

3-5. Generalizations of the basic transforms

For the three basic transforms we have found recursive definitions

with a matrix formula similar to (6). The direct comparison of these

definitions suggests the generalization of the basic transforms to families

between them. The simplest generalizations are two families between the

-50-

(c) Modified Haar transform

Fig. 3-5. Fast Haar transform of order 8

-51-

Fourier and W-H transforms, and between the W-H and Haar transforms. A

larger generalization is the IC„ family which includes all three basic

transforms with parent matrices of order 2. A number of these generalized

transforms have recently been discussed independently. We would like to

show that they fall easily within the framework we have developed and that

further generalizations are clearly possible.

3-5-1. Family between W-H and F:

If we compare the recursive generation of the Fourier matrices with

radix 2 (14) and the W-H transform (17), we notice that they differ only

by a set of factors. If we exclude the reordering of the rows, we see

that we can easily generalize the W-H and Fourier transforms to a large

family of unitary transforms given by the recursive formula

[ay ={[F2(o0)....F2(e2n.1^)) ©[gi^] rr]t

where [F2(9)] =yj
1 exp(-jG)

1 -exp(-j8)

This family includes the W-H and Fourier transforms for the appropriate

choices of the parameters 9x ... 6 -
U 2n -1

Two families have appeared in the literature for special choices of

these parameters:

1) 6. - where c is a realk 2n

scalar varying from 0 (W-H transform) to 1 (Fourier transform). The

corresponding transform has been called "general spectral analyzer" [14]

[15].

-52-

2) e, - ^-^ if k mod (211"1 8) =0k 2n
where g is an integer varying from 0 (W-H transform) to n-1 (Fourier

transform), and 8, = 0 otherwise. The corresponding transform is the

"Generalized Discrete Transform" [17]; we will denote it [GT8]. Fig.
2 2

3-6 shows the matrix [GT] and its fast algorithm. Many other choices

for these factors are obviously possible and these two special choices

do not seem to bear any exceptional importance.

As an example of use of our general formulas we compute now the

required number of multiplications for the Generalized

Discrete Transform. There are 2S-1 factors different from 1.

So^ll8 - 2JA* -+ 2g-l for n - 1 > g2n 2n-l

X1S = 2^Ug , + 2n~1-i otherwise,^u^n 2

So that J(\g = g 2n"1 - 28 +1
2n

If we do not count the multiplications by +j, we find similarly :

LAl8 =(g-D 2n"1-28 +2 Both results are new.
2n

3-5-2 Family between Haar and W-H

In chapter 2, we have presented a family of transforms between

the Haar and W-H transforms. This family was obtained by replacing W-H

transforms of lower order by Haar transforms in the decomposition of the

fast algorithm of a W-H transform. Now we have further decomposed the fast

-53-

vO VO CM St vO CM CM ^O ^^ f^.. **_ 'D-« ^^ ^.hCO CO CO «J « « CO rH tO ttj CO CO CO CO «J
• •II 1 I • '

^ ** ^ . ^ **-. ^CO cO tO H tO CO co
I I I I

vO st CM vo_^ St CM
CO cO CO rH CO tO CO
I I I I

st cm -* <t <* vo st «tf cm_, <t sr «* vo -*cOcOcOcOtOcOcOrHcOcO f cOcOcO cO
| III I • '

st
-A CO iH

I I

cO iH CO
I I

(0 rH CO rH cO rH to
| I II

.H "• °« ^ -- "« N« *• H N« ^ ^ •*• *V ^ "%
III ' ' I I I

N < vO CM St vO
CO CO CO rH CO CO CO
I II I

C\J st VO CM st vO
CO CO CO rH *0 CO CO
I 11,1

rH rH CO rH CO rH CO
I I I

CM st , *© .
HrHrH COH ? *7* ?
II I I + I

rH rH rH rH
I I

H rH H
I I

vO vO CM st ^D CM tN
rHcOcOcOcOcOcOcp

I I I I I

vO vO CM St vO CM CM
HcOcOcOtOcOcOCO
I I I

vO St CM vO St CM vO st CM VO st CMcOcOtOrHcOcOcOrHcOcOtOrHcOtOtO
I II I I I ' »

st- cm st st st vo st st cm st st st vo st
cO CO CO CO CO CO CO rH cO cO cO cp cO cO cO

II I I I I II

rH CO rH CO
I I

st st st st <*_ . *>*
(OrHCOrHCOrH CO-HCOrH CO

II II I i

CM VO vO st CM CM vO CM vO vO St CM CM vO
rHtOtOcOcOcOtOcOHcOcOcOtOcOtocO

CM St vO CM St vO CM St vD CM St VO
cOcOcOrHCOcOcOrHcOcOtOrHcOcOcO

I I I I I I I I

st vOCM St VO
CO rH CO

r-{ rH

CM

H rH CO «H
I I I I

rH rH rH

«>

CO rH
I I I

rH rH

U
u

VO
CM r-\

s

o

(0
c
CO
U
u

0)
4J
<U
rl

o
(0

•H
P

Tj
<u
N

•H
H
CO
ri

0)
(3

vO
I

t>0

5!

Input
vector

Vo

V,

V2

V3

V4

V5

v6

• v8

V9

V,o

V,i

V12

V13

V|4

V,15

-54-

bit-reversal
ordering

-a4 -06

a=exp(-27rj / 16)

VD j Fast algorithm

Fig. 3-6. Generalized Discrete tranform i<]

Output
vector

Wo

-55-

algorithms of the two transforms up to similar recursive formulas (16)

and (19) or (17) and (20). Obviously, if we choose any of the 2

parent matrices needed to generate the matrix of order 2 to be either

[FA or [IA, we obtain a large family of unitary matrices which includes

the Haar, W-H, and unity matrices. There are

n-1 n-2 1 i+ + a""1 . ,2n-l
2 • 2 •....•2=2 = I

members of order 2 in this family.

The number of additions is obviously twice the number of parent

matrices equal to [FA. For the W-H transform we have n2 such matrices

and therefore n2 additions. For the Haar transform we have 2 +2

... + 1 = 2n-l such matrices [FA and so 2(2n-l) additions. The number of

normalizations varies from O(W-H) to 2 -2 (the normalizing factors come by

pairs and all pairs are different in the worst case). No multiplication is

required during the computation. At the order 8, 2 matrices are in the

family. We show in Fig. 3-7 one of them with its fast algorithm.

Assume as a particular case that we choose the parent matrices of

the recursive formulas to be

[Fk] k - 0, ..., 2P~1-1

with

[Fk] =[F2]for k=0mod (2P+h~n) or if p±n-k

[F] « [IA otherwise

where p is the stage of computation up to n when we generate a transform of

-56-

1 1 0 0 0 0 0 0 x 2

1 -1 1 -1 1 -1 1 -1

C 0 1 1 0 0 1 1 x /2

1
1 -1 -1 1 0 0 0 0 x Jl

/8
0 0 0 0 1 1 0 0 x 2

1 -1 1 -1 -1 +1 -1 +1

0 0 1 1 0 0 -1 -1 x /2

0 0 0 0

a)

1

Matrix

-1 -1 +1 x /2

(b) Fast algorithm

Fig. 3-7. Example of a transform of the family
between the Haar and Walsh-Hadamard

transforms

-57-

order 2n and h an index lower than n.

Then, if the recursive formula used is similar to (16) and (19) we

obtain a subclass of n transforms: for h = 0 we have the W-H transform and

for h - n - 1 we have the Haar transform, both in natural order.

If the recursive formula is similar to (17) and (20) (with the per

mutation [P] of the columns) we still obtain n transforms: for h = 0 we

have the W-H transform in Paley*s order and for h = n - 1 we have an

unordered modified Haar transform. We denote these transforms [WHH„n]. Fig*

3-8 shows [WHH1£] and its fast algorithm.
Id

3-5- 3 IC2 family:

To generate the family between W-H and p we have introduced a set of

factors into the recursive formula for the W-H transform. To generate the

family between W-H and Haar, we have replaced some parent matrices by the

identity matrix [I«] in the same recursive definition of the W-H transform.

If we allow simultaneously both operations we generate a larger family

that we call IC9»

More formally if [T] is a member of IC„ of order 2 , a member

of order 2 is given by

V "IV "lC0> V1-!1'® VlJ:l ^

where [D-] and [D0] are permutation matrices and C«, ..., C , are either1 2 0 2n-l-]L

[IJ or [F9(0)] = ^
2 2 Si

1 exp(-j 9)
1

1 -exp(-je)

I
0

0
m

i

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
+
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1
-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1

•
S

I
0

S
I

0
S

I
0

S
I

0
S

I
0

S
I

0
S

I
0

S
I

0

0
S

I
0

S
I

0
S

I
0

S
I

o
S

I
0

^
0

S
I

0
S

i

S
I

0
S

I
0

^
2

0
S

I
0

S
I

o
S

I
0

S
I

0
S

I
0

0
S

I
0

S
I

0
S

I
0

*/2
0

S
I

0
S

i
0

S
I

0
S

I

4fl6
2

0
0

0
2

0
0

0
2

0
0

0
2

0
0

0

0
2

0
0

0
2

0
0

0
2

0
0

0
2

0
0

0
0

2
0

0
0

2
0

0
0

2
0

0
0

2
0

0
0

0
2

0
0

0
2

0
0

0
2

0
0

0
2

2
0

0
0

2
0

0
0

2
0

0
.

0
2

0
0

0

0
2

0
0

0
2

0
0

0
2

0
0

0
2

0
0

0
0

2
0

0
0

2
0

0
0

2
0

0
0

2
0

0
0

0
2

0
0

0
2

0
0

0
2

0
0

0
2

a
)

m
a
t
r
i
x

F
i
g
.

3
-
8
.

T
2
1

G
e
n
e
r
a
l
i
z
e
d

t
r
a
n
s
f
o
r
m

I
W
H
H
-
,

Input vector
Vo

V,

V2

V3

V4

V5

V6

V7

V8

V9

V,o

Vii

V,2

V,3

V|4

V,5

-59-

Output vector
Wo

W|

W2

W3

W4

W5

\

W7

W8

W9

W,o

W„

W,2

W,3

W,4

W,5

\\\ 1 f\ YV / XX ^^^^^
-1

*9

Yv\ v5

\ Vrx/ A%

V / \-l Ji%
-i -1 j£

M/vyW-K zl

mTOv\\ // i
///W\\\\ YY / 2*
7//AWVYV 2

/// \\V/y xv
2

// \ v//\v 2

/ V/ \h 2

•

(b) Fast algorithm

Fig. 3-8. Generalized transform [wHHy

-60-

Let us call this class of parent matrices C2« For the order 2,

2n-l(2n~1 + 2n~2 +-••+ 1= 2n-l) parent matrices have to be chosen

independently in C'. we say that the family IC2 has 2-1 degrees of

freedom over L/? (see footnote 4).

The IC family is very large and includes the families between W-H

and F, W-H and Haar.

The number of required operations is given recursively by

additions: -Ji =2 -J „ ,+ 2An
2 2

n

Hence ,J(q=]T 2n"k+1 ^ (21)
k=l

multiplications : J(j[^=2^(n-1 + Lr

n

.n-k

hence^Un=2-r2 Lk (22)
2

k=*2

(4) This notion of degree of freedom is an extension of a concept introduced
by Andrews and Caspari [16]. For them the degree of freedom of a class of
matrices is the number of free parameters required to define this class.
This definition is ambiguous when the constraints which define a class cannot
be reduced to a set of free parameters. For example, tne unitary matrices
of order 2 are given 1 degree of freedom in [16] when in fact, on the real
numbers, the most general matrix is

cos a sin a

e sin a -e cos a

E = + 1

a G [0,2tt]

and on the complex numbers the general solution depends on 4 angles
G [0,2tt] and 2 binary choices. Our approach is to track as far as possible
the reduction to independent choices. If it can be reduced to a number of
free parameters our degree of freedom will be the number of these parameters.
Note that the relations (1) and (4) apply also to! the recursive computation
of the degree of freedom of a class. Note also that the degree of freedom
has generally no relation with the computational complexity (which varies
usually for the transforms of a class).

-61-

t-Vi

where \ is the number of parent matrices different from [I2] at this k

stage, and L, the number of factors different from +1 (and maybe + j) at

this stage.

For Haar A, = 1 for any k and >J\ = 2(2 *-l)
k. 2

For W-H A, = 2k"1 and Jk =n2n"k 2n

For Fourier J(=n2n and L =2k~1, 2k""1-l or 2k~2-2, which yield
2n

the results of section 2.3 (radix 2).

We present now an example of interest in the IC^ family: a class of

transforms which make a discrete transition between the 3 basic transforms

and which we call therefore the WFH class.

Each transform of this class is indexed by two positive integer para

meters h and g such that h + g < n when 2 is the order of the transform

and is denoted [WFHS,h].
2°

a lr

[WFH] is obtained recursively as the Fourier transform of radix
2n 1 "1

2 (formula 14) but with the parent matrices [P2] k = 0, .., 2P~ -1 such that

[Pk] = [F0(2irk/2P)] for k = 0 (mod 2P"8"1)
2 **

>ki - rr< i *_ k = o (mod 2P+h"n]

k $ 0 (mod 2p~g~1)

[P!p = fF2J for k =0 (mod 2p""1~n) or if p <n - h

[P2] = [I2] otherwise

where p is the level of computation up to n,

-62-

We can represent then WFH transforms on a (g, h) plane as shown in

Fig. 3-9.With appropriate permutation matrices, for h s 0 we have the n

Generalized Discrete Transforms (see section 5- 1), for g = 0 the n WHH

transforms (see section 5-2). WFH0,0 is the W-H transform, WHH 'n the
n —i n

Modified Haar transform and WHH * the Fourier transform. For h + g =

n - 1 we have a set of n transforms in between the Fourier and Haar trans

forms which have been called the Modified Generalized Discrete Transforms and

defined after much work in [18].

3-6. Other IC transforms:

Except for the Fourier transform, we have restricted ourselves

so far to IC transforms obtained from original core matrix [F2] and parent

matrices of order 2. The generative rules have given a unified approach

to the usual unitary transforms. We now consider some examples with a

different original core matrix and parent matrices of higher orders.

The matrices of order 2 are of practical interest for the fast

algorithm as long as we perform the required operations (specially

additions) with only two operands at a time. If fast additions involving,

let us say, f operands, become available, the transforms with parent

matrices of order f may be of interest.

Most of the recursive structures of the transforms presented in the

previous sections can be applied to parent matrices of higher orders

than 2. We now give some examples:

a) different original core matrix

In the definition of the W-H transform the original core matrix

cos 6 sin 9

[F_] may be replaced by the core matrix and we obtain a

sin 6 -cos 9

WHH {
class

-63-

transformed
coefficients

related

0

Walsh-Hadamard

Complex
Haar

l\2 3 4
complex W-H

n Modified

Generalized

transforms

-Same algorithm
with different

factors

n-l\ g

Fourier

n Generalized discrete transforms

Fig. 3-9. WFH family of fast unitary transforms

-64-

transform considered by Andrews et al. [15]. This original core matrix

can be used for all the recursive definitions considered,

b) Generalized 2 and 3 valued transforms:

In the definition of the W-H transform the role of [F2] as original

core matrix and parent matrix can be performed by any unitary matrix

[U] of order f. If [U] is an Hadamard matrix (its entries are +l/yf)

the generated matrix of order fn will also be a Hadamard matrix. These

matrices have been called "generalized 2-valued transforms" [19].

Similarly we can replace [I] in the definition of the Haar transform by

the same matrix [U] and we will generate a unitary matrix with entries 0
t-Vi

or + 1/C where C. is the normalizing factor of the i row: these
— i l

matrices are the "generalized 3-valued transforms" [19]. More generally [U]

can replace [F„] in the definition of the family of transforms between

W-H and Haar.

c) ICp family:

The IC9 family was based on the set CL for the parent matrices. We

can define similarly the ICf family based on the class (,f of parent matrices

of order f which contains [I_] and [Ff(9 , ..., 9)] where k column

of [Ff(91, ..., 0^)] =kth column of [Ff] xexp(e_:S0k) ([Ff] is the
fn-lFourier matrix of order f). The family ICf has - - independent parent

,.n .

matrices chosen in (,.: we say that IC,. has -=—;— degrees of freedom over
f J f f-1

(,f. The required number of additions and multiplication is computed

recursively as done for (21) and (22):

additions:.^ =f.J +.Jf An
(23)

k=l

-65-

multiplications: J[\ n = f ^Un-1 +^Mf An + Ln
n

ow. =^f D 'n"k \+£ ^ (24)
k=l k-2

where A, is the number of parent matrices different from [I] at the k stage

and L, the number of column multiplications with factors different from
k

+ 1 (and maybe + j) at this k stage.

b h
d) WFH*' subfamily of IC£
— _n z =^£

o ft
By analogy to the WFH subfamily of IC? we can define the subfamily

[WFH8,h] of IC, as follows:
fn f

e h
[WFH6'] is obtained by successive generalized Kronecker products with

0 k i^"1-!
the sets {[M], ... [M] ..., [M]} of parent matrices such that

[Mk] =[Fk] with column iof [Fk] =column iof [Ff] xe~2lTJkl
for k = 0 mod (fp"e"X)

[Mk] =[Ff] for k=0mod (fP+h~n) and

k 4 0 mod (fP"8"1)

[M] = [I] otherwise

and at each level the permutation matrix [P] , P ,_ - 6 <5, with s = uf + k,
• st ua kw '

t = wf" + z, is applied to reorder the columns.

It is easy to see that [WFH '] is the usual Fourier transform of
fn

order fn; the matrices [WFH *] and [WFH 'n~] have been introduced in the
£n n

-66-

literature respectively by Chrestenson [27] and Watari [28]. For these

2 matrices (23) and (24) reduce to the same recursive formulas and denoting

by ^P the number of additions or multiplications:

for WFH
0,0
.n

for WFH
0,n-l

.n

<P = n <gfn-1

V - ^
fn-l

f f-1

(This last result corrects the result given in [15], page 200

The other matrices of the family can be represented in the g-h diagram of

Fig. 3-9.

3-7.Slant transform:

The Slant transform has been proposed by Enomoto et al. [29] for the

order 8. Pratt et al. [30] have generalized this transform to any order

2n and compared its performance with other transforms [31]. In this section

we want to express the recursive generation of the Slant transform with our

generative rules and compute the number of elementary operations required

by its fast algorithm.

The Slant transforms of orders 4 and 8, [S,] and [SR]» are as follows

(in "natural" order).

Ny?
-3

-1

1 1

—"

Zequencies

0

3 -1 x 1//5 3

1 -3 x 1//5 1

1 1 2

-67-

-3 3-11 -3

•1 -9 -17 17 9

Zequencies

1 1 0

3 -l x l/jr 7

1 -7 x 1/0x21 3

-1 -1 -1 -1

ls8l=yr
5 3 1-1-3

-3 3-1-1 3

1 -1 -3 -3 -1

-1 -1 -1

5 -7 X l/y/H i

3 1 X 1/y/T 6

1 3 x l/yr 2

1 -i 5

The rows can be reordered by zequencies with the same permutation as

the W-H transform in natural order.

The Slant transform of order 2 in natural order is obtained from the

Slant transform of order 2 in natural order by simple Kronecker product

n—9 n—^

with [F~] followed by rotation of the rows 2 and 2 """by the matrix

Sin 9
n

Cos 9
n

Cos 9 -Sin 9
n n

(22n~2-l
with Sin 9 =nA/22n_x

>n-l

and Cos 9 =— niagj.—— firnm

This choice of 9 introduces in the Slant matrix [S] the Slant vector $
2n

-68-

with components linearly decreasing:

.ns c (2 - 1) - 21_

Jln(22n- 1)

But some normalizations can be delayed to the last stage of computation

and the rows 2n"2 and 2n~1 are rotated by the matrix

.n-1 (22n-2-l)

.n-1

requiring 2 shifts, 2 additions, 1 multiplication. The corresponding

algorithm is shown in Fig. 3-10 a.

Number of elementary operations:

Formulas (1) and (5) give:

for the number of additions:

.n-1,A =2,4 ,+2" "-2 + 2 witheA- = 2
^ \n -y „n-l I

<A =

hence (j/\ = (n+1) 2 - 2

for the number of shifts:

Q =2-0 +2 with 20 = 0

hence ,^> =2-2
2n

Input
vector

Input
vector

-69-

(O)Direct fast algorithm
of order 8

Output vector

natural
order

— So •—

zequency
order

So

RQ Ordering

Output vector

Natural
order

Zequency
order

, . RQ Ordering
\D)Modified fast algorithm

of order 4

Fig. 3-10. Slant transform

-70-

for the number of multiplications:

uW =2^11 ,+1 with^/U =02n 2n-l *

hence <M = 2n"2-l
2

Finally 2n - 2n~2-l normalizations are required at the last stage of

computation.

However the algorithm at the order 4 can be performed with 8

additions, 2 multiplications as shown in Fig. 3-10 b [30] instead of 10

additions and 2 shifts. The formulas (1) and (5) give then:

additions:

Jk '=2Jk '.+2n~1 -2 +2 withcj:' =8
2n 2n_1 *

hence Jk'=(2n+l) 2R~1-2 =tJ(-I*'1
2n 2n

shifts:

fi '-2. fi ?1+2with S! =0
°ln ^-v.n-1 4

hence o = 2 -2 - o> „ z2n 2n

multiplications:

hence ^U = 32n~2-l =^L{ + 2n-12n - 2n

and as before 2-2 - 1 normalizations.

-71-

3-8. Additional properties and generalizations of unitary transforms:

In this section we discuss briefly the complex extension of a real

transform. We also point out some additional relations between transforms

suggested by the unified framework presented.

3-8-1.Complex extension of a real transform:

From a real unitary matrix [RT] with rows RTQ, ..., K^^, we construct

a complex extension noted [CT] with rows CTQ,...., CTN by creating two

complex rows CT and CT from two real rows RT RT as follows
r p q m n

CT =h- (RT -j RT)p yr m J n

(25)

CT = ± (RT +j RT)
q II m n

Then the complex transform 1/ =^k + j.y °^ a complex input vector

V = R + j I is expressed uniquely from the real transforms of ^k: and

•9 denoted^} and 9 :

% =CTP ' v=yr(RV- RTJ <r+j x> orm n

qjp -M-(Qm +3J +j($rft -Qj and similarly
-ra n m n

With these relations the properties of complex transforms can be

deduced from those of the real transform. In the literature, besides the

real and complex Fourier transforms, the complex W-H transfoms (also

called Complex BIFORE transform) [32][33] complex Haar transform (also

called Complex Modified BIFORE transform) [34] have been defined.

-72-

Note that the complex W-H transform obtained by relations (25) would have

entries -1 -j :commonly the rows are then rotated by -^- to give a trans-
_ v'2

form with entries +1 and +J . The rows of the complex W-H transform can

be ordered according to a generalized frequency defined as the number of

clockwise rotations around the origin when following cyclically the entries

of a row.

3-8-2. Multidimensional transforms

The techniques presented for the one dimensional transforms extend

to multidimensional separable transforms. Let us denote an input array

of p dimensions by A. , ,± and the p-dimensional separable transform

Kv t = T1 T2TP . • Then the
7\, V 11* S "l ^ U2 ""2 Up p
transformed array

\ "p'SZ/;*"^* h k\ V *i *Sp

can be written

BV ••"' Up 2-J Tud K " ""2-fAil» ••'S ul ii"
P P-l 1

If we express both arrays as 1 dimensional vectors A and B , for which

indexes are obtained by lexicographic ordering of the indexes (i^ ,i)

and (u , u), the multidimensional transform can be expressed as a
1 P

1-dimensional transform:

-73-

A- [[T1]® [T2] ... ® [TP]] B

A = [T] B

The multidimensional transform has been reduced to a 1 dimensional trans

form. This expression now allows the evalution of the number of elementary

operations and other generalizations discussed previously.

3-8-3. Relations between transforms

Two transforms with similar structures will often be related by matrix

relations or energy invariants between the two sets of transformed

coefficients.

a) matrix relations between transforms of same order:

In chapter 2, matrix relations between the Haar and W-H transforms were

proved. More generally, for WFH families, similar relations hold for all

transforms lying on the same vertical line in the g-h graph of Fig. 3-9.

These transforms only differ by the number of parent matrices [F«] they

include. Therefore, a multiplication by all the missing [F?] matrices will

generate one transform from the other. Note that these relations only

involve computations in zones as defined in 3.3 or subzones (zonal

divisions of a zone).

b) energy invariants:

By Parseval's theorem the total energy of the transform coefficients

of a same vector with different transforms is preserved. However, it may

happen that the energy of a subset of coefficients is the same for some trans

forms: we say then there is an energy invariant between these transforms.

Energy invariants are most likely when the transforms have an identical struc

ture with different factors. For example, by direct comparison of the

-74-

algorithms for the Fourier, W-H and modified Haar transforms (Fig. 3-3b,

4c and 5c), it is clear that the transformed coefficients before respective

reorderings have identical energies in the zones defined in 3.3. This

leads to the follov/ing energy invariants for the order 8.

Zone Fourier

(frequencies)
W-H

(zequencies)
Mod. Haar

(rank)

0 0 0 0

1 4 7 1

2 2,-2 3,4 2,3

3 1,3,-1,-3 1,2,5,6 4,5,6,7

For the WFH families, the transforms with same sets of invariants

form nested triangles as shown in Fig. 9: the introduction of additional

factors leads to additional smaller subsets of coefficients of a same

subzone over which energy is invariant; the relations between transforms which

exist along vertical lines of the diagram of Fig. 3-9 preserves the energy

invariance in zones. The invariants between the Generalized Discrete

Transforms and the Modified Discrete Transforms have been studied by

Rao et al. [18].

3-9. Conclusions:

In this chapter, we have presenter a unified treatment of unitary

transforms having a fast algorithm. The use of recursive rules to describe

unitary transforms allows a systematic way to view known transforms,

to generate new transforms and provide a general approach to the evaluation

of the computational complexity of transform algoritlims. Among transforms

-75-

which are clearly related, we have studied the ICf families and the WFH

subfamilies which include most of the transforms considered in the

literature.

In addition to allowing the introduction of new transforms with

properties of interest,'the framework provided can be used in several

other studies and applications of unitary transforms. In particular an

error analysis of unitary transforms is &•#•/ presented in the following

chapters.

10

-76-

CHAPTER IV

ERROR ANALYSIS IN FIXED-POINT COMPUTATION

4-1. Introduction:

In chapter 3 we presented a common framework which defines

unitary transforms with a fast algorithm by using simple generative rules

In practical implementations of algorithms, numbers are represented with

finite length registers. This will lead to errors in the representation

of coefficients and to round-off errors in computations. In this chapter

arid the following one we consider an analysis of round-off errors and

comment only briefly on representation errors. Round-off errors depend

on (1) the mode chosen to represent numbers: in this chapter we

consider the fixed-point and block-scaling (also called block floating

point) modes while in chapter 5 we consider the floating-point mode,

and (2) the computational procedure : truncation or rounding (and for

rounding we have to specify how the midrange point is handled).

Our objective is to estimate the round-off error of each output

coefficient or at least to estimate the average mean square error

over the set of output coefficients. We shall also consider the output

error-to-signal ratio (ratio of total output mean square etror to

total output signal energy). However round-off errors are usually data

dependent: in floating-point mode we shall see that each error is

data dependent while in fixed-point mode the algorithm is usually

data dependent. In order to carry out an analysis, we have two options:

-to compute bounds (worst or best case analysis)

-to assume a statistical model for the input coefficients and the

-77-

simplest such model is a white signal (statistically independent input

coefficients with equal variances).

Previous contributions to the round-off error analysis for fixed-

point computation consider only the Fast Fourier Transform (FFT) of radix

2 . Welch [l] has considered the best and worst cases and derived bounds.

Oppenheim & Weinstein [2] ,Weinstein [3] have considered a white signal

model and presented experimental results for rounding and truncation.

To our knowledge there has not been any theoretical approach for the case

of truncation nor any study of the block-scaling mode previous to our work,

In the following we evaluate the round-off errors with a general framework

applicable to any fast unitary transform defined in chapter 3. We use

the models and assumptions of previous works but our systematic approach

allows us a more complete and accurate study. We reestablish most of their

results as particular cases and, even for the well known FFT, we obtain

some new results.

In the following, we discuss first the error models for computation

round-off and scaling with rounding and truncation. Then we use the

framework of chapter 3: fast unitary transforms are defined by combination

of "parent matrices" according to recursive generative rules. We recall

our notations for the generalized Kronecker product cf two sets of

parent matrices, JL/L 1- j [aJ, ,j"Am Jj- and j(JJ -<|J3 J,...

..., [b11"1] I. [c] =\^}& j(3(and we have shown that
[C] -[P] {««{/.}] F] f°iag|G}]

The backbone of our approach is to exploit the recursive use of the

generalized Kronecker product in the definitions of fast unitary

transforms in order to derive recursive relations between round-off

errors at successive stages of computation. Therefore our analysis

-78-

will have two steps:

(1) generation of round-off errors in parent matrices [A J,...., JA J

and 0°] ,[IT1}
(2) propagation of these errors in a generalized Kronecker product.

We will take this approach successively for the different conditions

of scaling and computational procedures considered in this chapter

for fixed-point computation and again in chapter 5 for floating-point

computation.

4-2. Error models in fixed-point and block-scaling computations:

In a fixed-point representation of numbers there are two sources

of error : the round-off errors introduced in a multiplication and

the scaling errors introduced to avoid overflow. We consider them

successively in the cases of rounding and truncation,

a) round-off errors in multiplications:

From Wilkinson f4«page 4-1 the fixed-point representation of

the product a . a* ,denoted fi(aa'), is such th<?t

fi(aa') = aa' + 8

where £ is the round-off error such that

for rounding : I£| ^ h 1

for truncation : 0•< c/- |£|= -sign(aa')6 <T 2

when the register has b bits and a sign bit.

If we consider that 6 and a are random variables uniformly

distributed in their respective intervals, we have

for rounding : £ has zero mean and variance A =2 /12

for truncation : u has mean M = h 2 and variance A .

We note that a complex multiplication involves in general 4 real

-79-

multiplications and, assuming that the errors they introduce are

independent, the variance of a complex multiplication error is 4 A .

For rounding the error has zero mean while for truncation the mean

depends on the signs of the real and imaginary parts, If the operands a

and a1 have been previously scaled by S bits, XA is multiplied by

oS A A2 u o2s2 and A by 2

b) scaling error:

Let us assume that a cumulative scaling by (S-q) bits has already

been performed at previous stages of computation end that we scale now the

number a by q bits. We choose to write the error 5 ' as :

for rounding : jcV| ^ h 2~b+q. 2S"q
for truncation : 0 ^ cT' = -sign(a) <£ ' s£ 1 q. 2 ~q

Assuming that 6' and cTf are uniformely distributed random

variables, we have:

for rounding : 6* has zero mean and variance &? 2

with d2 = 2"2(b-q) / 12

for truncation : cT' has mean JM 2 q with M-% = 2~ / 4
and variance 22(S"q) A|2

For q = 1 however, the scaled bit is either 1 or 0 , making the

uniform distribution erroneous. We have then directly :

A'2 = j^ 2"2b = 6 A2 and

J^ »= h 2"b

c) scaling methods:

In the next section we analyse the combination of round-off and

scaling errors in the case of rounding while the case of truncation will

be studied in section 4-4. However there are many ways to perform scaling;

depending on the test of overflow. Following Welch [l] and Weinstein £3J

-80-

we first consider two extreme cases:

- no scaling is ever performed

- a fixed scaling is performed at each stage of computation.

In these two cases the errors are independent of the data and we obtain

directly simple recursive relations for rounding and for truncation.

Then we consider the more common scheme of block-scaling in which we

impose a scaling of all intermediate results of a stage of computation

if any overflow occurs : this scheme is data dependent and we shall need

a statistical model for the probability of overflow.

4-3. Error analysis for fixed-point computation with rounding:

We consider successively the two extreme cases of no-scaling

and step-by-step scaling.

4-3-1. No-scaling:

This case with rounding is the simplest case of error analysis we

consider in this dissertation. We give a detailed treatment in this

section in order to stress the successive steps of our approach and also

because subsequent analyses will depend heavily on this section.

We consider first a parent matrix [t] of order N which

transforms an input vector V into W so that

W = [t] ~V or
N-l

Separating real and imaginary parts, we have :

N-l r]
Re(wk) =Yl Re<Tk£) Re(ve. } " Im(Tu } Im(v£ n

N-l f 1
Im(W) =Y2 Im(Tko > Re(V£ } + Re(TkO) Im(V& }

(1.

£-0

-81-

We denote by C*-(W,) and Co(W,) the round-off errors on

the real and imaginary parts of W, , £ the round-off errors
Ev • j •

caused by real multiplications. £ is null if the corresponding

multiplication is a multiplication by ±1 . We assume the individual

round-off errors to be independent and that there is no error in

the representation of T. .. Then :

Sl(\) =
N-l Re(Tkt) $L(yt) +£Ufk - Im(Tk^) &(\)

_ a

N-l

k 1=0

4£+l,k

i ' • 4e+2,k +Re(Tk*} ^O
(2)

Im(Tk£>) St(V0) +<^

+ £
41+3,k

In case of rounding, the mean square error of W, 9 denoted E (k), is

given by the error variance. Assuming that all errors in the input

vector are independent of each other and of the new round-off errors,

(2) gives :
M_1

A2
N-l

Ew(k) -
'kl

Ev(i) + A (3)

where M, is the number of real multiplications performed to compute

_ •♦

W, from V
k

For a transform generated by a generalized Kronecke. product

(rule 3), by permutation and multiplication by roots of the unity of

the rows (rule 2 b and c) and columns (rule 1 a and b), the previous

assumption of independence of the input errors § (V^) holds

Note however that the output errors are then correlated.

j»

-82-

For a transform generated by the general rule 2, the errors in the input

vector of a parent matrix are not independent and their correlations

should be considered in (3).

Error propagation :

Let us now use (3) and focus attention on the combination of errors

in a generalized Kronecker product. Following the notations of Figure 3-2

we denote by b. A the variance of the error on the j th coefficient

of the output vector of the matrix [B] (of order m) and o\

the number of real multiplications in a dot product with the i th row

of matrix [AJj (of order n). Then the variance of the

error on the (im + j) th coefficient of the output vector , denoted

E(im + j), is obtained from (3) :

n 1

E(im +j)= £ b.k AJ 2 A2 +°(i3 A2 («)
sum of variances of sum of variances

independent error of new errors
random variables

propagated from
input vector

Summing the error variances of all the output coefficients, we obtain the

total error variance.:e, denoted VQ , ([c] =)Ji j fi \} \) :
n-1 m-1 ^

VC = g> g, E(I» +j)

n-l m-1 n-l ii0 0 n-l m-1 . 0
v. = v y y-b^uji2 A2+y r<.JA2(5>'c • H H 5Z N llAiiH a + 51 r^JA'c k j^O fa : " lltl1 i=o j=o

Several cases of interest give simplified expressions :

This happens for the WFH family of transforms for example (see chapter 3

section 4-3) when the normalizations are performed after the last

-83-

stage of computation. Then (4) and (5) become :

n-l . . ?
E(im + j) = (Y~ V + °V > A (6)

or

or

n-l m-1 n-l « _ n-l m-1 . 2

vc =z: n r: ^k A2+ r r ^ a
i=0 j=0 k=0 J i=0 j=0

n-l m-1

Vc = n JZ V + 12 V (7)
^ k=0 B j=0 AJ

where V . (V .) denote the total error variance of the output error
B* AJ

vector after multiplication by matrix [b J ([aJ]) ,when the input

vector is error free.

2) b. = b. for any k
J J

This happens for example for all IC transforms (see chapter 3). Then ,

using the orthonormality of the matrices [AJJ , (4) and (5) become :

E(im +j) = n b. A2 + o(±j A2 (8)

m-1 9 n-l m-1
vc = «T n a2+ r r

1=0 -1 jR) j^D

2F. .2 . F-1 r=-* ^ J A2

2

j=0 J i=0 j-

m-1

l

V. = n' V + Yl v * (9)
C B 3=6 AJ

Note the similarity between the relations (7) or (9) and the relation

(4) of chapter 3 . This is not surprising since all 2rrors have the same

weight and thus the total error variance is proportional to the number

of real multiplications performed. A factor n appears however due to

the fact that the normalizations are carried out only after the last

stage of computation.

Now for each fast transform defined in terms of parent matrices

-84-

and rules 1, 2 b and c, 3 of chapter 3, we can compute, using the

recursive relations between errors at successive stages presented in

this section, the mean square error of each coefficient and the total

output mean square error. We shall consider as an example the FFT

algorithms in section 4-3-3.

4-3-2. Step-by-step scaling:

We consider now the other extreme case where a fixed scaling is

performed at every stage of computation. An expression similar to (2)

but with the scaling error is obtained :

.S&<v =x: j Re<Tk* >L5(v*} +2S"q v2%,k]+64*,k2'

- Im<Tk£ > fe(V^) +2S"q £• 1 £ 2S)
2Jfc+l,kJ 4€+l,k * [

(10)

where S is the number of scaling bits up to the present stage of

computation (S-q at the previous stage) and £f the scaling
•»•

error. As in (3) the round-off errors are zero mean and the mean square

of each output coefficient is obtained from (10) and the similar

expression for So(W,):

vk> - £ iiv»2 [v*> +2•22S"2q <]+A 2's A'
Error propagation:

To analyse the error propagation in a generalized Kronecker product,

we assume that we scale the intermediate results before each stage

of computation. However the scaling errors introduce a dissymmetry between

the roles of the two sets of matrices),A-\ and <Oj fof ageneralized

Kronecker product. As we have seen in chapter 3, fast transforms may

-85-

be defined recursively with the previous stage making the set \iA\ (e. g.

FFT with Cooley-Tukey algorithm) or the set VM j(e. g. FFT with
Sande-Tukey algorithm). We assume first that scaling is performed after

the matrices of the set j^/4, v.Then ,using the notations of 4-2-1,

the mean square error on the (im + j) th coefficient of the output vector

is obtained from (11) :

n-i r

b.k A2 +2^2 22S~2q

(12)

3 II 2 + ^ 3 A2 22SE(im + j) = Y2
k=0

ik

errors from scaling
previous stage errors

Using the orthonormality property we can write:

n-l m-1

new round

off errors

n-l m-1 n-l ...

v-x: Z&^ki
i=o j=o k u

a +r r * ±J az (2b)
I=t) j=0

+2 m n2 A'2 (2S"q) 2
(13)

Again we consider two particular cases of interest which simplify (12)

and (13) :

» h£\ = 1

Then (12) and (13) become :

E(im+j)= Y~ b-k A2 + ^-j A2 (2S)2 + 2n A'2(2S"q)2 (14)
k=0 3 x

n-l m-1

vc = n H v k +
C k=0 Bk

J2 V. (2S)2+ 2mn2 A'2 (2S"q)2
j=0 AJ

2) b. = b. for any k:
3 3

Then, with the orthomormality of [A^j ,(12) and (13) give :

E(im + j) =n b. A2 + °^.j A2 (2S)2 + 2n A'2 (2S"q)2

m-1

Vr =^ V* + H Va (2S)2 +2mn2 A'2 G>S~q)2
C B j=0 AJ

(15)

(16)

(17)

-86-

Whithout details we give now the similar relations obtained when

scaling is performed before the matrices of the set •(U?) f" . In this

case we obtain for the error variances

n-l

E,"
k=0

{<B}.

(i- +J) = E /«* A2 (2q)2 || AJ||2 + *±* Z\2 (2q)2
k=0 ' x x

« i ™ i + 2mn 6'2
n-l m—i

vr =]r 51 E(im + j)
i=0 j=0

where /3 . denotes the number of real multiplications in the dot

product with the j th row of matrix [b J, a. A denotes the

variance of the error in the j th coefficient of the output vector

of matrix [aJ]. In the particular case where ||A.? = 1 we obtain:
n-l m-1

V =n Yl vk(2q)2 + Yl Vi(2q)2 +2(m n) i.2

k=0 B j=0 Aj

(18)

(19)

4-3-3. Application to FFT:

The previous formulas allow the fixed-point error analysis for

a large variety of transforms. The FFT with radix 2 is certainly the

most widely used and the precision obtained is ?n important problem.

We now apply the results we have obtained to the Cooley-Tukey and Sande-

Tukey algorithms. Both algorithms have been defined with generalized

Kronecker products in chapter 3. We first recall these expressions:

Cooley-Tukey algorithm:

lv] tf]
._ i

.n-l H

with Kl=

n.
exp(-2>7jk/ 2")

n,•exp(-2)7jk/ 2")

Sande-Tukey algorithm: JF |= F

with ki- w .n n,
exp(-2frjk/ 2") -exp(2V7jk/ 2")

-87-

a) Cooley-Tukey algorithm:

The application of (8) and (16) leads to equal mean square errors

on coefficients of a same zone , as defined in chapter 2. Here, before

reordering according to the frequency, the zones appear as the sets of

coefficients with indexes K such that As 2 (mod 2) -£=0,..,n-l

Then it can be shown that the mean square errors are :

no-scaling:

EU) = (ln~Z"2-l) 4 A2 for As 2i (mod 2£+1)

i =0, ,n-2

=0 for \= 0, 2n~l

step-by-step scaling :

for U 2l (mod 2£+1)

E(A) = (22n+1 - 2a+l+3) 4 A2 +2nfl(2n-l) A'2

= 2n+1(2n-l) A'2 for X=0,2n_1

(20)

(21)

The corresponding total error variance is given by the following

recursive formulas :

no-scaling:

From (9), we obtain :

V =4V .+2AA4A2 (22a)2n 2n-l /*n

where IX is the number of factors (each introduces two round-off

errors in a parent matrix hence 2 M- in the relation). Then for

/= 2 - 2 as given in 3-3-1 a, we obtain, solving for V :n 2n

V = (22n~1/3 -2n + 4/3) 4 A2 (22)
2n

-88-

which is, with more accuracy, the result obtained by Welch [lj for

the round-off error alone (we obtain his result by taking

yU =2n~1 for n>3 and kx =2n_1 -2 for n43 in the
above recursive equation). Weinstein [2] [3J has an approximate

result by taking >u = 2n"~ for all n. In fact (22) is a direct

consequence of (20) , by averaging over X :

Vn=2 f1 l*-1"1 (2n^"2-l) 2 A2
u1 X

step-by-step scaling :

From (11) we obtain:

V = 4V ,+2 « 4 A2 (2n)2 +2" 4 A'2 (2n_1)22n 2n-l /n "

With a = 2n"1-2 we obtain
/ n

V = 4n+1 (2n_1- n) 4 A2 + 4n (2n+1- 2) A'2 (23a)
2n

result which could also be obtained by averaging (21) over £• :

V = Y~ E(A) 2n^_1 +2.2n. 2n (2n-l) A|2 (23)
2n /=D
On Figure 4-1 we have plotted the experimental results reported

by Weinstein [3] with white imput signal uniformely distributed in

T-l ,+l] (real and imaginary parts). We have plotted the error
estimation with his approximation and finally the curve obtained from

(23). We find a perfect fit of our theoretical results with his

experimental measures.

Welch assumes also that rounding is performed only after the
additions of the results of the two multiplications of each term 2
of the dot product of (2). This procedure reduces the factor of A
by half.

•d
I a
' I e

n

r
t

0
)

n w o c
o K
»

H
«

3 T
O

0Q

I H H
i

a> i
-
o o 0) H •i O ft g C
O

H
«

C
O

2
0

0
-i

1
0

0
-

5
0

-

2
0

-

io
-J

5
-

sq
ua

re
ro

ot
er

ro
r

to
sig

na
l

ra
tio

8
16

ex
pe

rim
en

ta
l

(W
ein

ste
in

)
-t

he
or

et
ic

al
wi

th
si

m
pl

ifi
ca

tio
n

-t
he

or
et

ic
al

ex
ac

t
co

m
pu

ta
tio

n

-
r
-

3
2

64
12

8
25

6
51

2

*
X

bl
oc

k
si

ze

1
0

2
4

2
0

4
8

i
0

0 I

-90-

b) Sande-Tukey algorithm:

In a very similar way we can compute the individual and total

mean square errors for the Sande-Tukey algorithm. We obtain:

individual mean square errors: From (8) and (18), we have

^ i 2no-scaling: E(\) = £~ (2 ~2) Vn_± * A

with \ =pQ+ 2P;L + +2n"1 pn_1
(binary expression of A)

step-by-step scaling:

E(X) -E(2i-2) 4n-±p A A2 +2n+1 (2n-l) Af2
i=Y Fn-i

total mean square error: From (7) and (19) or by summation of the

individual errors, we have:

no-scaling: V = 2n_1M 4 A2 +2V ,* 2n fn 2n-l

Hence V = 2n (2n_1 -n) 4 A2 (24)
2n

step-by-step scaling:

V = 4 2n_1 /a 4 A2 + 2 4 V . + 2 22n A'29n /n 9n-l

Hence V.= (23n+1/3 -22n + 2n+2/3) */)2 + 22n+1 (2n-l) A'2

(25)

2n

c) Comparisons:

The Cooley-Tukey algorithm has the advantage that multiplication

errors in parent matrix operations occur in later stages of computation

as compared to the Sande-Tukey algorithm (see Figures 3-3 b and c), On

the other hand each mutiplicative round-off generates two errors which

propagate independently while each Sande-Tukey factor introduces only

-91-

one error. These two effects oppose themselves so that no-scaling

and step-by-step bounds for the Sande-Tukey algorithm lie inside the

corresponding bounds for the Cooley-Tukey algorithm. However, if we use

one of these extreme cases, the Sande-Tukey algorithm has to be prefered

for a step-by-step scaling while the Cooley-Tukey algorithm has to be

prefered for a no-scaling scheme. For an intermediate scheme our only

conclusion is that the Sande-Tukey algorithm has a smaller range of

possible errors.

The step-by-step scheme, for both algorithms, has a much higher

error ; however the input signal acceptable with this scheme has a

much higher magnitude. To compare the two schemes it is therefore

interesting to compute the error-to-signal ratio, denoted E/S. The

error-to-signal ratio is the ratio of the total mean square error

2
to the total output signal variance. If <3* is the average input

2 2
signal variance, the total output signal variance is N <$ so

that E/S =VN / N2 (T 2
In the case of no-scaling, we have roughly from (22) and (24)

2
V «s K. N (K is a constant).
N

To insure that no overflow occurs in the computation, the input

coefficients must have a modulus smaller than 1/N. We further assume,

following Oppenheim & Weinstein[ij thatthe real .and imaginary parts of

input coefficients are independent random variables uniformely
"1 2 2distributed in [-1//2N ,1//2N J so that 6* =1/ 3N and

E/S * 3K N2
2

Thus, in the case of no-scaling E/S varies as K .

In the case of step-by-step scaling, we have roughly from (23)

-92-

and (25): VN ^ K1 N3
But assuming again a uniform distribution of the input variables, now in

1-1 ,+1J we have (T =2/3 and therefore

E/S /v -|- K' N
Thus, in the case of step-by-step scaling, E/S has a linear variation

with N. This shows, as expected, that the step-by-step scheme is in

general much better.

4-4. Error analysis for fixed-point computation with truncation:

This analysis is very similar in its organization to the analysis

for the case of rounding done in the previous section. However, new

terms appear in the derivation due to the bias of truncation errors

and also due to the correlations between errors and signs. We consider

again successively the extreme cases of no-scaling and step-by-step

scaling.

4-4-1. No-scaling:

Relations (1) and (2) are still valid but with &^. k'^4i+l k'

E, „,„ , and £ „,, . respectively replaced in (2) by
4 £+2,k 4 £ +3,k

~srt Srkl ^4£,k ' ~S±l Sikt ^Al+l.k '~Sr* S±kt 4*+2,k and
-sie srke ^4*+3,k where sr* 's±i 'srk£ and sik£ are
the respective signs of Re(V£) ,Im(V£) ,Re(Tke) and Im(Tki).

Then, with the same assumptions of statistical independence as in

the case of rounding, we obtain for the mean square error Ey(k) of

Wk :

vk) =5; KJi2 vi>+/k< a2 v2) +Evk> (26)

-93-

where the two first terms are similar to those of (3) . The complementary

term E' (k) , which comes from the crossmultiplied terms in Si (W,)
W K

and <5 (W,), results from the correlations between the signs of the

input coefficients and the errors on these coefficients. Denoting

n2i = E(srt §», (Vx)) and n^ +1 = E(si^ %i {V&)), we
have

(27)E-W(k) =-2 Jg, ^t+W lRe^}|
+£ (»2l +n2t+l) H^i5!]

This expression simplifies if all input coefficients of any parent

matrix have similar error statistics, i. e. nno ~ n2P+l = n

independent of £ . This happens for all the IC transforms of chapter 3

and so for the usual transforms. Then , with
N-l N-.T

\ =ro R*<Tk* > +£ im<v >
|fte(T*)|#i |WI«)|*H

we have: EVk) ="^/Ln\ <28>

As Sfc(V^) and Re(V^) are only correlated by their signs, we have:

E(Sc (V^) Re (Ye,))
n2i E|Re(Vt)|

E(& (V£) Im(V.))
and also n?Z, +1

we have :

N-l

Im(Vx)(

We study now a recursive relation for n and n2p+i • From (!) and (26)

Re(Wk) §c(Wk) = YL (Re2(Tk }Re(V* > ^(V4 }+Im2(TU }Im<V^<V
1=0 kt

(29)

-|Re(Tke)||Re(V,)|cr4e>k- |lm(Tkl)| |Im(V| J^^
+ terms with random signs)

-94-

For simplicity let us denote N2k= E(srk Dt,(Wk)) ,

"E(Sik & <V> 'P2k -EIRe(V I'P2k+1 "E|Im(Wk}|'2k+l

p2e = E
Re(Vp)| and p0... = E Im(V.)|. Then taking the expectation

2e+l

of (29), we obtain:

*2k '2k

N-l 2

*™ p2k = II <Re <Tw } n2e p2e + Im (Tke >n2e+i p2£+i >
(,=0

N-l N-l (30)

-/£! |Re<Tu }lp2e "/X^ lIm(\e }l p2t+i
|Re(Tw)|#l |ln»(Tkg)|//l

N . . Pu . gives a similar expression.

If n2* = n2*+l =n and simutaneously P2e = P2£+l = P ?

then (30) simplifies to

N2k+1 P2k+1 =N2k P2k= npN ' P\ 01)

In (31) ,the computation of p=E|Re(V^)| requires the knowledge
of the statistics of the input coefficients. For simplicity and also

because the intermediate results tend to have a normal distribution

(law of large numbers) we assume that the input coefficients have a zero-
2

mean normal distribution with variance ($^ . Then, from (1), we see

that the output coefficients have also a normal distribution with variance

? 2ft* = N <TV . Now we can compute P=?2k =?2V.+l :
r<0

2 xexp(- x2/ 2(T2) dx =2CTW ifTv

Similarly p = 2C^lfTrr so that P=v/n p (32)

Then, from (31) and (32) , we have

N = N0, ,, = iN n - -t=- A, (33)w2k 2k+l ^ He

To sum up this development, the truncation round-off errors are

-95-

obtained in general from the recursive relations (26), (27) , (30) and

from the statistics of the intermediate results. In the particular case

of importance where the input coefficients of any parent matrix have

similar statistics such that n2« = n«. . = n and p2« = Pop+i " P»

then (26) (28) and (33) give a simpler way to compute the round-off

errors.

The propagation of the round-off errors in a generalized

Kronecker product can be carried out as done for the case of rounding.

We shall consider as an example only the FFT with Cooley-Tukey algorithm

in section 4-4-3.

4-3-2. Step-by-step scaling:

The basic relation giving the round-off error on Re(W .) is

still given by (10) with the variables £^ k , £^+1 k > ^4 +2 kand

£ B1„ , modified as done in the previous section. The variables &!« ,
44+3,k zc.,k

and £o&+l k liave also to be rePlaced respectively by -sr^ 6^ k

and -si. 6' ,. . . Then we obtain a relation for the mean square
K, 2c+1,k

error of each coefficient similar to (26) and (27) :

N-l

vk> = x: iM
2 Ey(0 +22S 2q(A'2 +y"'2) 2 ? 2S

+/*k (A +/) 2
N-l 0 „ (34)+422S-1 //' ^ - IJf y Tkel(2 2s"" (n2i ^2t+l)

-2/ {]~<V +"zt+i5 IRe(V I +%in2X +n2«+l)lIm<Tke
|ReZ(TM)|#l MVl#1

where we have two new terms corresponding to the correlations between

the scaling and truncation errors and between the signs of the input

coefficients and the scaling errors. As for (27), (34) can simplify

-96-

when n_0 = n_„,- = n. Then we have :
2t 2fc+l

2. „2N 22S

(35)

ew« = L Kell2 Kw +22S"2q <A'2 +r2> +A(A2+/2) 2

+422S~q y"y*f \ -An(2S"q NyW» +2S a A^

The relation corresponding to (29) is now :

N-l r r-

Re(Wk) &.(Wfe) = £ Re2<Tkt) <Re<V &<V -|Re(v£)|2S_q 28 k)

+Im2(Tk) (Itn(V^) ti(\) -|lm(^)|2S_q <^e+1 k)

Re(Tke)| |Re(V,), -^ fccT_. 2S

-\IMTU)\ Im(V) cT4t+1>k2S
+ terms of random signs I

giving similarly to (30) :

N-l

N P
2k 2k g,(Re2(V P2e (n2£ -2S_q /'> +Im2(V P2e+i(n2C+r2S"V')j

.S N^ .2N-l

"/Jo Re(T^} P2^ 2 -/gj Im (V P2t+1 2'
|Re(Tk£) #1 Im(Tke)|//l

which, if n2Jt = ^2i+l = n and p^ = P2£+1 = P > reduces to

,S-q
N2kP2k = Nnp- 2 / N P " /*p \

(36)

(37)

And finally making use of (32),which is unchanged, and (37) we have?

1

N2k =N2k+l= ^ n 'ft (N2S"q f + yU 2S Ak) (38)

-97-

The relations (34), (36) or (35) and (37) when the simplifications

apply, provide a set of recursive equations to compute the truncation

errors in this case of step-by-step scaling. In the next section we

consider, as an example,the FFT with Cooley-Tukey algorithm.

4-4-3. Application to FFT Cooley-Tukey algorithm:

As an example, we consider the round-off error for the FFT

with Cooley-Tukey algorithm in the case of truncation. In order to ob

tain closed form results we shall introduce some approximations in

our computation ; they are not however strictly necessary.

We first compute for a Fourier parent matrix the coefficient A, :

A^ = (Cos 0 |+ |Sin 9 \ ^lOor tt/2

At the n th stage of computation the average value of A. , denoted A is

An -JL YZ ~l Cos (2»k/ 2n) =-§- (M»(2W2n> _h)
2n k=l 2n 2 - Cos(2^/2n)

For n large An tends to a limit A = "v 1.27

For simplicity, we shall replace A, by the constant A in the following,

We consider now the cases of no-scaling and step-by-step scaling,

a) No-scaling:

We first solve the recursive relation (33) which is now

» - , „ 2-b A* . « „ 2-b A» (,fo«-2
N = 2 N giving N = *——*

n_1 2/2 n 2 n (fl -1)
Then the recursive use of (26) and (28) gives the following recursive

relation for the total mean square error: 3n -2
#2 2

V =4 V . + (2n -4) 2"2b(l/3 +1) + 2"2b -^ * (39a)
911 911"1

z (fl -1) fz

giving approximatly V = 2 2 (1.5)
2n

-98-

about 10 times the rounding error but with the sane variation on N .

b) Step-by-step scaling:

The recursive relation (38) gives now:

N = f2 N -L, 2n'1 2"b (1 + A#)
fl 2"b 2n (1 +A#)Hence Nn =—* 2_±L± A;

4 ({l - 1)

Then, from (35), we obtain the following recursive relation:

V =4V . +(2n -4) 4n 2"2b (1/3 + 1) + 23n 2~2b (h +f- (39b)
2 2 + (1 +aV }

2 (/i - 1)

Thus V * 23n+1 2~2b (8.7) (39)
2n

which is also about 10 times the result obtained for rounding.

On Figure 4-1 we have plotted the experimental results obtained

by Weinstein [3] with white signals and the approximate theoretical

results of (39). Our approximation in the value of A, is responsible

for the slight discrepancy between the results. The exact theoretical

error estimation done by computer computation gives the results also

plotted on Figure 4-1 and which match perfectly the experimental results

Our result suggests that the output mean square error should be

drastically reduced if the correlations between signal signs and

errors could be suppressed, for example by leaving random the last

bit of each truncated number.

-99-

4-5. Block-scaling with rounding or truncation:

In the previous sections, we have considered the two extremes

cases of no-scaling and step-by-step scaling. In both cases the algorithm

is independent of the data and we have derived bounds valid for any input

vector. These extreme cases do not correspond however to usual situations.

A commonly used fixed-point algorithm is block-scaling: at every multi

plication overflow is checked and, whenever it occurs, all intermediate

results at this stage of computation are equally scaled. The cummulative

number of shifts is counted and gives the scaling factor common to all

output coefficients. For a known scaling sequence, the recursive relations

for the mean square error in a block-scaling computation are easely

deduced from the results of the previous sections. However the scaling

sequence for a given set of data is difficult to know a priori. Weinstein

[3J has measured the probability of each possible sequence with 500

sets of 512 independent complex numbers with real and imaginary parts

uniformely distributed in [-1 ,+ll for the FFT with Cooley-Tukey

algorithm. Such approach to determine the probability of each scaling

sequence requires repeated computations for each transform and block

size of interest. We propose a more general approach.

In order to obtain the probability of overflow at each stage, we

assume that each input coefficient V^ has independent normal real and
2

imaginary parts with variance <S . Any intermediate result at the

k th stage of computation is a weighted sum of N, input coefficients

and the weights YJ^ are normalized to the same factor N^:
Nk-i :

Eo lir-»^

-100-

It is easy to show that the intermediate results, denoted Y , are

independent and normally distributed with variances

Var(Re(Yi)) =Var(Im(Yi)) = <$2 Nfc

The probability that one overflow occurs for one of these intermediate

results when S scalings have already been performed at previous stages
2S

is P„ = erf (7 a) (see footnote 3)
0 V2 N 6"2

and so the probability Pg(k) that no new scaling is

necessary during the k th stage of computation when S have been performed

.S

is : Pg(k) =(PQ)Pk erf (, 2 ^)
/ 2\6

(40)

where P, is the number of intermediate results at this stage,
k

It is interesting to note that, with this model, the scaling factor

is known with a high probability (see Weinstein [3j) and also that

the number of scaling sequences with a significant probability is low.

One might expect therefore good approximations when averaging over the

possible scaling sequences.

Then for a transform defined with the recursive generative rules

of Chapter 3, we can compute an expected mean square error for each

output coefficient and an expected total mean square error. This result

will apply also to all transforms giving the same recursive relations

for the errors in case of no-scaling and step-by-step scaling. For each

scaling sequence we compute the corresponding mean square errors. Then,

using (4o)» we take an average of all the mean square errors with their

corresponding probabilities. As an example , we apply this method to

erf(x) = ^L- J exp(-t2) dt

-101-

the FFT with Cooley-Tukey algorithm for rounding and truncation.

a) Rounding:

The mean square errors at each stage are given recursively by

(4) and (5) if no scaling is performed, (12) and(13) if a scaling

is performed. In particular for the FFT with Cooley-Tukey algorithm

we obtain the total mean square error from (22 a) and (23a). We

have plotted on Figure 4-2 the theoretical points we obtain along

with the experimental results (for white uniformely distributed

input coefficients) reported by Weinstein [3J . For N sufficiently

large our results are quite accurate.

b) Truncation:

The mean square errors are now computed from (26) (28) (or (26)

(28) when the simplifications apply) when no scaling is performed

and from (34) or (35) when a scaling is performed. However we need

also to compute the random variables N_. and N24+l from tne relations

(30) or (33) with no scaling and (36) or (37) with a scaling. In

particular for the FFT with Cooley-Tukey algorithm, we have an

approximate computation by using the relations(39 a) and (39 b). We

have plotted the corresponding points on Figure 4-2 along with the

experimental results by Weinstein f~37 . Again we find a good agreement

for N sufficiently large.

00

3
OQ

I
to

3
Ml
H-
X
CD
O-
I

T>
O
H*

ft

(D

•-{
O
H

01
3

CO

CO

100 n

50 -

10 -

5 -

square root
error to
signal ratio

16

x experimental (Weinstein)
theoretical with simplification

— theoretical exact computation

32

—r-

64

Jr'

1—

128 256 512

•— "" X

block size
—I

2048
T

1024

o
to

l

-103-

4-6. Conclusions:

In conclusion we review the results derived in this chapter

and comment upon their interest in practical situations. For transforms

which give independent errors on the input coefficients of every

parent matrix, we have developed a general method to compute the indi

vidual and total mean square errors in the case of rounded computation.

This restriction on the transforms does not seem very stringent : the

previous condition is verified for the very large family of IC transforms

and for other transforms it is possible that the correlations between

error terms do not introduce a significant output error. In case of

truncation our derivation required also a model for the intermediate

results ; to obtain simple recursive relations we have further assumed

some similar statistical properties for the errors on intermediate

results and also for these intermediate results.

Our method is a direct application of the recursive generation

of fast unitary transforms, developed in chapter 3, to the error models

for fixed-point computations. In the following chapter, we use the

same method but with floating-point error models.

We have applied our method to the FFT algorithms and our results

fit closely the experimental results reported for white uniformely

distributed data. We feel confident that for other transforms and other

data this method of error analysis will provide meaningful results.

However it should be noted that specific type of data may not verify

the error model and one should be careful in using our results or

method.

-104-

CHAPTER V

ERROR ANALYSIS IN FLOATING-POINT COMPUTATION

5-1. Introduction:

In chapter 4, the error analysis of fast algorithms in fixed-

point computation is based on the error models and the recursive

definition of fast transforms developed in chapter 3 . The analysis

was successful because the error models used were consistent with the

recursive relations, in the sense that the errors also satisfied

recursive relations. In this chapter, we derive similar results for

error models valid in floating-point computations. The main difference

is the dependence of every round-off error on the represented data.

Thus in this chapter, we shall rely heavily on bounds and on statis

tical models for the data.

Previous work has been mainly concerned with FFT algorithms.

Kaneko and Liu ML Jwere able to carry out an exact study of the

FFT Sande-Tukey algorithm for rounding as well as for truncation errors

in computation. Weinstein F2J [3J ,Oppenheim and Weinstein [4Jhave

modelled the input vector as a white signal and studied the total

mean square error due to rounding for the FFT Cooley-Tukey algorithm.

Weinstein reported also some experimental results for errors due to

truncation. Chan and Jury [5] extended some of these results to the

Generalized discrete transforms (see chapter 3) which include the

Walsh-Hadamard transform. Gentleman and Sande \ 6J and also Ramos [7J

have derived bounds on errors for the FFT algorithms. Ramos |7.1 ,

-105-

Chan and Jury •[5J have also extended some of these results to multidi

mensional transforms.

In this chapter, we follow the same steps as for the fixed-^point

computation: we first develop the error model used and also discuss the

importance of the organization of a dot product, the basic operation in

fast algorithms. Then, we study the generation of errors in parent matrices

and finally how these errors combine in the generative rules of chapter

3 . We study successively the cases of rounding and truncation errors.

To conclude the error analysis, we comment briefly on the effect

of errors in the representation of the transform entries or factors

of the computation. These errors may not be negligeable for some floating

point computations.

5-2. Error models in floating-point computations and organization

of dot products:

5-2-1. Error models:

Errors in floating-point computations appear whenever a result

is obtained in an arithmetic operation. Let fl(a) denote the floating

point approximation of the operand a. Wilkinson [8J has shown that :

fl(a) = a (1 + c{) with

o(£ [-2"b, 2~b] for rounding
o(£ F-2~ ,0J for truncation

In the following, the analysis requires only the mean and variance

We assume here a base 2 representation as done in most computers.
For other bases, our results will apply if the error model is still
valid.

•106-

of the random variable «< . With the assumption of a uniform distribution

of o< in its interval of variation, we find the following values:

2 —2b
rounding: zero-mean, variance £ = 2 /3

—h 9
truncation: mean A= -2 , variance £ .

Unfortunately, a uniform distribution of errors is net a good model

since usually the input numbers have their values concentrated in

a small interval of the total range of the floating-point numbers.

Additions and multiplications by coefficients also within a small

interval of variation results in higher probability of occurence of

some numbers. An exact study of the distribution of o(is quite complex

W [lOJ and no simple model valid in most circumstances seems feasible.

In the numerical applications of our results, we shall use the experi

mental values obtained by Weinstein [3] for the variance and Liu &

Kaneko [llj for the truncation mean:
9 —9h

rounding: zero-mean, variance £ = 0.23 2

truncation: mean u = - 0.26 2~ , variance £ .

Experiments on the FFT algorithms reported by Gentleman & Sande \f\

and Weinstein [3J show a discrepancy with their theoretical analyses

when usual rounding is used. Weinstein [2J [3] showed that a randomized
2

rounding of the midway point yields experimental results in agreement

with the previous error estimates but no theoretical model has explained

the usual rounding situation. Here we use the experimental observation

by Liu and Kaneko [ll] that the midway point has a higher probability

of occurence in additions. Our theoretical work, based on this model,

gives error estimates in good agreement with experimental results.

2
Value half way between quantization values.

-107-

5-2-2. Floating-point dot products computations:

Consider a parent matrix vector multiplication

vT = [TJ T or (1)
N-l

Re(Wk) = J2 (Re(Tkt} Re(V^) "Im(TkiL) Im(V«-) } (la)
N-l

>(wk) = YL <Im(Tu) Re(V +Re(\t> Im(V } (lb)

The computation of a dot product is the basic operation : there are

many different ways to compute a dot product each giving a different

error.

a) We may roundroff after each multiplication such as

Re(T) Re(V.) in (la) and (lb), and then perform the additions
KJt

in full precision rounding or truncating only to store the result of

the dot product. We introduce then an error °^ such that:

fl(dot product) = (sum of approximate) (1 +o()
products

b) Assume that we have adders with f operands (usually 2)

to add the p terms of the dot product addition. Many choices are

open for the organization of this addition. The usual way uses only

one accumulator to store the partial sum and the computation is

performed as follows (we take f = 3 and p = 8 in the following

diagram):

terms to sum :

partial sums

If we have several accumulators (or temporary storage register locations),

we can organize the computation in a tree-like manner as follows:

-107-

5-2-2. Floating-point dot products computations:

Consider a parent matrix vector multiplication

W* = [tJ T or
N-l

Re(W) = l_ (Re(T) Re(V^) - Im(T) Im(Vt))
1=0

N-l

Im(W)= YL <I»(Tk.) Re(Ve) + Re(T .) ImfV^))
A-0

(1)

(la)

(lb)

The computation.of a dot product is the basic operation : there are

many different ways to compute a dot product each giving a different

error.

a) We may roundroff after each multiplication such as

Re(T. „) Re(Vp) in (la) and (lb), and then perform the additions
kJc *-

in full precision rounding or truncating only to store the result of

the dot product. We introduce then an error °^ such that:

fl(dot product) = (sum of approximate) (1 +c<)
products

b) Assume that we have adders with f operands (usually 2)

to add the p terms of the dot product addition. Many choices are

open for the organization of this addition. The usual way uses only

one accumulator to store the partial sum and the computation is

performed as follows (we take f = 3 and p = 8 in the following

diagram):

terms to sum :

partial sums

If we have several accumulators (or temporary storage register locations),

we can organize the computation in a tree-like manner as follows:

-108-

terms to sum: a. a0 a0 a. a_ a, a, a0
.1 .2 .3 .4 .5 .6 .7 .8

partial sums

result

The number of elementary operations is usually the same but the error

expression is different. Assume that an elementary operation intro

duces an error 0 such that :

fl(ax + +af) =(ax + +af) (1 +cf) with
Si [-2-\ 2-»]

In the first case, we have:

fKa^ +ag) = fl(fl(fl(fl(a1+a2+a3)+a4+a5)+a6+a7)+a8)

=((((a1+a2+a3)(l+ of) +a4+a5)(L+ cf) +a6+a?) (1+ cT) +ag)

=(ai+a2+a3) (1+ <J)(1+ cT)(l+ cT)(l+ of)
+(a4+a5) (1+ «£)(1+ cT)(l^ cT)

+(a6+ay) (1+ J")(l+ d4) + ag(l+ «£)

(1 + J)

In the second case, we have:

fl(ax+ +ag) = fl(fl(ai+a2+a3) + fl(a4+a5+a6) -?• fl(a?+ag))

=(a1+a2+a3)(l+J1)(l+ ^) +(a4+a5+a6) (1+ J^) (1+ cT)

+ (a?+ag) (1+ J3) (1+ cT)

Except for the common parent matrices of order 2, for which there is

no choice to organize the dot product, the error analysis of a matrix

vector multiplication and from there the error analysis of a fast

transform, depends heavily on the type of adders and the organization

-109-

of dot products as shown on the previous example.

In the following, we consider only the case of adders with two

operands and of dot products performed step-by-step. We also assume

that rounding is performed just after any addition or multiplication.

Other cases of organization of the computation can be studied as

in the following sections but they will yield quite different results.

5-3. Floating-point computations with rounding: analysis of errors

in parent matrix . operations:

Following the approaches of previous workers mentioned in 5-1

but with the steps of the previous .chapter , we express in this

section the mean square error of each output coefficient or the

total mean square error of the output vector, first in a parent

matrix operation.

5-3-1. Error analysis in parent matrices:

a) Direct norm bounds:

Let us consider the matrix relation between real vectors

Y = [Tj X

where (_tJ is a real unitary transform. Wilkinson _8J has

established the following norm relations when the input vector is error

free:
||v|U||t|| ||x|| (2)

and j| Ej||̂ 1.06 N6||T|| |)X|| (3)
where || X|| =(X^2) * ||t|/ - (E I!^2)*

E = Y - Y (Y computed value of Y)

£ = rounding error variance

-110-

As [t] is unitary, |JT'|| = /i so that:

KIN ^ e *3/2 I/* II
In case of a complex vector relation W = jjrj V , we write:

/ Re(W)

\ Im(W)

so that |) Ew ||

Re(T) •Im(T)

Im(T) Re(T)

1.06 t 2 N /l? j| V|| (5)

This result was used by Gentleman and Sande [6] . If the matrix

[tJ is not normalized by 1//N, then (5) becomes:

W\< 1-06 2^ £ n2I/v'/ (6)
This bound is independent of the parent matrix and of the operations

involved in the computation: thus, the bounds obt&ined by combination

of parent matrices will depend only on the orders of these parent

matrices. However the gain in generality is paid for in the looseness

of the bound. We note finally that relation (3) has been applied above

to the matrix relation corresponding to the rotation by a parent matrix.

It can be used for any matrix relation and later in this section, we

shall use it again.

b) Expression of the error:

Here, instead of direct norm bounds, we evaluate exactly the error

at each output coefficient. Then, we simplify the expression of the

error with norm bounds or with a statistical model for the input coeffi

cients. If round-off errors occur in the computation of dot products,

then relations (la) and (lb) become, with denoting approximate values

(we have assumed that there is no error in the expression of V) :

/Re(V)

^lm(V)

(4)

Re

-Ill-

(\) =Ha+S.) JrRe(Tkl)Re(V1)(l+o(i) -LnCT^ImOl^) U+ft>] U^) j

Y J7 (1+^) |JRe(Tki)Re(Vi)(l+^i) -ImCT^ImO^) (1+/9.)] (1+Y±)\
(7)

Im(Wfc) = f7(1+^) jIm(Tkl)Re(V1)(l-H<p +Re(T^Im(V^ (HjBJ)I (1+^) V

N N-l (r)
+Z /7 <1+Jj> JIm(Tki)Re(Vi)(l+c(p +ReCT^ImO^) (1H^) (1+fyV

where o^., /$! (c(!> /?.) are multiplication rounding errors which

are zero if Re(T, .) = ±1 (Im(T, .) = ±1).
ki ki

Y., Y1. are addition rounding errors in the complex multiplica

tions and are zero if T is real or purely imaginary.

0 .> tfl are also addition rounding errors in the dot product

computation , organized with step-by-step additions of two operands. We

assume here that T, - has non null real or imaginary part to obviate

unnecessarly complicated expressions. J (J») are zero if Re(T) = 0
j J kr

(Im (Tke) =0).

Relation (7) can be written :

/Re(W)'

M 0 [€]
\Im(W)

Re(V)

(8)

Im(V)

in which (D denotes the direct product of matrices (each entry is

multiplied the corresponding entry).

M is the 2M x 2N matrix such that :

Fkl= JT d+^)(1+^(1+^) k=l,...,N
1=1

' - fl (1+cf)(!+/.) (1+c^.)
j=i-l J

i = 2,...,N

and

-112-

k,2n+i " TJ (i+^)(i+^(1+/^)

k,2n+i =JJ_<1+ ^a+^xi+A)
N-l r

-77 (i+^»)(i+ Yi)(i+^1I)
2n+k,l j=l J ± J-

N-l

= 77 (i+ Jj)(i+ Y*)d+o(!)
2n+k,i j=i-l J 1 1

N-l

77 (i+ J!)(i+ ^a+flj)
j=i J ' -1
N-l f
/7 (1+ ci«)(i+ Y])(l+/3!)
j=i-l 3

2n+k,2n+l

2n+k,2n+i

Im([t])

Then (1) can be written:

Re(W)

Im(W);

Re([T]) -Im([T])

Re([T])

[«]
/Re(V)1

^Im(V)/

and, from (8) and (10), we obtain:

Re(Ew)\ /Re(W - W)

Im(Ew)/ \lm(

/Re(V)

Im(V)-
"""')= H-H].PJ
W - W)/ [>—-v—'J \

where [ll is the 2N x 2N matrix with all entries equal to 1. The

error matrix P?Jof (11) takes a simple expression if we neglect in (9)

the second order errors:

(9)

(10)

(ID

fek,i=(«i+yi+i! js> ^v N+l error terms at most

CI
\

jv«

CI

th

+

••9

c-i

•H

-^

&*
C-1

..v J

ill

/""£ «(_>

+

/—w

cv

L":

+

•hr-V
IT--" ,

r-
M •»-•

+ •"N

>- +'
». .1-;

H./'

;---^ ^t...
^

X.V

+ ••">

"H
J* +
.. -h
•v^ Co

- "i

CO

O
i- .l_JT",

+

+

-C5

0
L j

I

e

r-—1
fr—*

i—i

f-s •

H

I)

*:
«

1-4

$4

£« •T: <*!

fcl «-.' <-; 'CI
^ .•—~*"~"""*'"-'--. <n i~! Ci

&• w M V-, O
e- v"l I-- fv

:!•< »-'v ,—., CO
*•< r-'i_ PJ ,-—.-.. K f"t

b £3 '~. ^i 6
E \. <» V,' I ' 1 1 tr.

•-......,„ "•" <•» •.G
.-*^ •'-(-i
CO CO i-; o
•-^' i: t"l

i-> :; ;n /->

<»» -" ~v- "d c^ 'Jt
*"i

•m M 01 • » s-.
X.' Cf! t": o

/"-•. '•-. CI i"i"* Q

'-f <^ r> ** n
O j*; f"\ o

J—

i ~

\ j

0 v

0)

C1

a n

5} «
*T -^
n 01

•H 03

><;
<a

>>

•-\ OJ

•n -M
X' KJ

I—,••

fQ *~{

*~! O
i_.j

"J
o*» K
»i tf

•^T h*
M (n

.•-« «

•3) r-j

m •>-•

c
Q t;
Q.

i3 'H
£Q .t-<

<_-;

5=
-n <Ti

H «T(
TI O
a tl

lf5*J

"^

J2.

>«,

H
^

?v p2

'~.' o
w
n

-113-

N-l

N+2-i error terms at most

3=1-1 J

^,2°+! =^i+ fi+ r Si> [-im<Tki>] n+i
3= 1 J

&k,2n+i "^l +*L +.f fP h^V] B«-1
i=i-l J J3:
N-l

fe2n+k,l X 1 j=l *

^ki^*^^
Z +k,i j=i-l

/ N-l

02n+k,2n+l ' X X S J kl
1=1

N-l

P = (/&! + Y: + T J!) Re(T. .)
fc2n+k,2n+i fl X j=T-lJ kl

N+l

) Im(T) N+2-i
EvX

N+l

N+2-i

(12)

The general expression (11) with the simplifications of (12)

lead to expressions for the output errors which depend on the values

of the input coefficients. For later use in recursive relations, we

wish to obtain expressions depending only on the magnitude of this

input vector. To reach this result, we consider two approaches:

computing bounds

- assuming a statistical model.

c) Rounding mean square error:

All the random variables c(, A ,Y ><f appearing in the expression

of ISj are then zero mean, so that, from (11) and (12),

*<V - o

To estimate the mean square error, we first apply the norm relation (2)

-114-

to relations (11) and (12) . We obtain a bound for jE |which is

function of the random variables o(., A etc. Taking the expectation

value over this bound and considering that no error variable is null,

we obtain an upper bound for the total mean square error of the output

vector. The computation of the matrix norm |J|| involves only the number
of error terms appearing in (12):

EHEjl <^24N |(N+1)2+ (N+l)2+ N2 + +4} (|v||2 (13)
error s • sr~ input vector
variance matrix norm norm

Thus E||Ej < 2£ N2 Ivj
This bound was obtained by Ramos \j\ with a slightly different

computation.

We may also express the error variance of each coefficient

from relations (11) and (12), considering now the null terms among the

error variables :

HlKJ2 =£2 \T_ Re2(Tki) ((Vj)2 +Z ^(Tki) ^J2
|Re(Tkl)|//l |lm(Tki)|#l

+£Q Ihki Ml2
^Qk (14)
N-l n i+1

+

LN-± 11 1T1

£ 1 £(T^ ve'
T, . # 0
kx

where Q is the set of indexes i such that T is not real or

purely imaginary. The terms of (14) correspond respectively to the

error variables o(and A1 , £ and A , |f and V' , cTand u\ In (14),

V will appear only through its magnitude in the few particular

cases where || V || can be factored out in the two last terms. One

-115-

such case of interest is the FFT of radix 2 performed by the Sande-

Tukey algorithm. Since the rows of [t] are then:

either { * " giving E||e ||2 =2 62 (|v||2 =fe2 ||wl|2
V j ±1 k

(15)

e~j ±e^ giving E||\ f = 62 (2|| v|2«||v||2+2||v||2)
- 3 £2 ||w||2

This result makes possible the work by Kaneko & Liu fl] for this

particular transform. It is also valid for the W-H transform as shown by

Chan & Jury |5J and for a limited number of transforms such as the

WHH family of chapter 3. However there are many transforms of interest,

for example the FFT Cooley-Tukey algorithm, which do not have this

simplification. For them the following statistical approach will yield

the desired property. We note finally that, by taking summations in (14)

over all indexes including those which do not give any error, we obtain the

norm bound of the previous section.

The second approach is to assume that the input signal is

2
white with variance (J . Then, we have :

E(V) = 0

2,„ x „,, 2,„ x ^2
E (Re^(V.) = E(Ini (V) = (? /2

E(Re(V) Im(V))-0 for all i and j

These relations imply similar relations for W showing that W

is also white with variance <$ if [t] is normalized, N 6

otherwise. Then, taking the expectation value of (14) over the random

variables V., we obtain:

-116-

Re(Tfci) |#1 |lm(Tki)|#l
eii\»2= *2 *2W B*2(Iki) +^ 1>2<Xkl)

+ E
i£Q,

Lkiif

N-l i+1

1=1

T. . #0
ki

1 2 ^2which can be written EII EL. || = £~ <S"" bk (16a)

where b, depends only on the k th row of TtJ . We notice that (16a)

gives as expected (15) for the FFT (Sande-Tukey algorithm).From (16),

we can also compute the total error variance by summation over k and

we find:

9 9 fc-1Vw= £2 <Sl Z bk (17)

5-3-2. Transmission of errors from input vector:

We have assumed so far that the input vector V of the parent

matrix rotation [TJ was error free. We assume now that the input vector

has an error E , so that the input signal is in fact V + E . Due

to the linearity of the transform, the exact output vector would be:

W = [t] "v + [t] ly (18)

We have studied in the previous sections the error introduced by

the rotation [tJ V .We neglect the secondary errors introduced in

the computation of [tJ E and therefore consider that the error vector

E^ is exactly transformed. Then, it is clear from (18) that the trans

mission of the input errors depends on the transform as well as the

input error vector. However , we know by Parseval's theorem that

the energy of a vector is transmitted exactly through a unitary tranform,

Then ; total MSE(W) = total MSE(V) + V,
t

H Tkt (16)

W (19)
— ••—»

total rounding MSE in

the computation W = £t] V

-117-

If [TJis not normalized, (19) becomes:
a

total MSE(W) = N total MSE(V) + V (19a)

5-4. Floating-point computations with rounding : error propagation

In the previous section, we have considered how the different

approaches for floating-point error analysis apply to parent matrix

multiplications. We now use these results and the framework developed

in chapter 3 to derive, using the recursive generative rules, the

rounding errors of fast unitary transforms. We consider successively

the computation of norm bounds and exact computations with a statis

tical model.

5-4-1. Norm bounds:

Refering to the three generative rules of fast unitary transforms,

we observe that permutations do not change vector norms. Thus we

have to consider the combination of error bounds for parent matrix

computations in the cases of generalized Kronecker product and rotations

of rows.

1) For a generalized Kronecker product of two sets of matrices,

jtX [and](Jo| such as defined in chapter 3, we have (from (3) of

chapter 3):

'W-[P'J [Diagptj] [P] [Diag{fi|] V
As the matrix operations are performed from right to left, we have:

||Ej|= ||fl([DiagjcXj] fl([Diag{®|] V)) -[oiag{^ jj[piag[<&}] vj
» =||fl([Diag|ii{] fl([DiagjGJjJ V)) -[Diag<UJ] fl([Diagjfijj V)

+ rDiag|^4.l fl(|Diag jft)}] *V)- j~Diag{C>j] "v
We decompose the right hand side of the last expression into:

©

-118-

Ex =fl([Diagj^}] fl([Diag|(B}J V)) - [Diagj/jj fl(Diag {(&j)V
E2 = j^Diag|(yt|J fl([Diagjft}])V - Diag {$} V

Then, by the triangle inequality, we have:

M ^

We first consider E
-2V

since DiagJtAJ is unitary [| Ej[reduces to:

E2 = fl([Diag |(0]])V-[^lag {$]] "v
Assume that for the parent matrices [*A] of the set J^J, I,we have

found norm bounds similar to (3) or (6), and which we denote

I' Ew II * Ek £ II v 'I for the (21)A k
vector rotation "w" = [A] "v*

Assume also that we have similar bounds and notations for the matrices

IB Jof the set <lvjj .Then, decomposing . V in subvectors on which

operate the matrices [bjJ ,we obtain by applying (21) to each matrix

rotation:

fEj2 < t2 I(E.)2 || V
' 3 BJ

It follows from (22) that:

|| fl([Diag {&}])t | = || [Diag |(Bj] ? jj +0 (£>
|| V || + O (8)

The computation of |(E [follows the steps of the computation of

cy

E || and using (23) into (20) gives:

< e <

1 = t2 Z(Ek)
k A

Then, from (22) and (24), we have:

k A

V

JI <E k>2 + \IL& i>V k A* V j BJ

(22)

(23)

(24)

(25)

-119-

2) For a rotation of rows (rule 2) by a unitary matrix [u],

after applying the transform [t] , a similar derivation would give

with E_ and E.. specifying the norm bounds obtained for [t] and

[U] :

|| Ejl^ 6 (Ej +Ey) ||V|| (26)

The relations (25) and (26) allow the computation of error bounds

for any transform defined within the framework of chapter 3. We apply

now (25) to the case of fast transforms of composite order.

Assume that N = 77 n and that the error bound for the
i 1

parent matrices of order n. are given by:

E. * Kn 2 as in (6). Then (25) becomes:

I^H 'f ^ K2 "i4 >MI
HEwll< <e fv II K/» Z<V3/2 (27)or

a result given by Gentleman & Sande [6] for K= 1.06 2 Jl and

Ramos [7] for K=2 ,both for the FFT.

5-4-2. Statistical model for input vector:

In our analysis of floating-point rounding errors, we have in

the previous section used the norm bounds derived for parent matrix

rotations. In this section we use the results obtained with a white

statistical model for the input vector.

Whenever we can express the mean square error of the output

coefficients of a parent matrix as proportional to the norm of the input

vector, directly such as (15) or with the assumption of a white signal

(16a) , we can obtain a recursive relation for the error by neglecting

-120-

the secondary errors (errors occuring on error terms coming from

previous stages of computation). Then, if the input errors for any

parent matrix are independent, we derive by (19) a total error variance

of the input vector.

- for a rotation of the rows (rule 2), with independent input

errors and denoting by VT, V^ VTl the total error variances of the

vectors transformed by [Tj,[uJ, and [T'J (notations of chapter 3),

we have:

V = VT + VU (28)
- for a generalized Kronecker product (rule 3), we have with

the notations of the previous section:

*~ " (29)vc s r vk iiv i
C k=0 A* j=T> B3

We note that relations (28) and (29) are very similar to the

relations (1) and (4) of chapter 3 for the expression of the number of

elementary operations. This is not surprising since all error sources'

are considered to be of equal importance for a white signal model.

5-4-3. Application to FFT and other transforms:

We now apply the general results of 5-4-1 and 5-4-2 to the usual

transforms, mainly the FFT; we restablish simply some known results

and we find some new results.

a) norm relations:

We have already noted that the general result of relation (25)

applies in particular to FFT of composite orders. However for the

particular parent matrices of the FFT algorithm with a given radix,

-121-

we can derive tighter bounds before applying (5) and (26). First, we

may take the exact value of K as given by (13) or compute directly a

bound from (11) and (12). For example, we have seen that for the FFT

with the Sande-Tukey algorithm, we have an exact value for the error

given in (15). So, refering to the notations of relation (15) of

chapter 3, we have:

E. -2 for k=0 or 2n~2 (n ^ 2)
F

= 2 {l otherwise.

Applying (25), we have then:

n

Ew
Thus

<||v||t(2(E^-1)2 + (2n-1-2) 8+8)
MtUf^ +2£ /2n -2j)

1 j=l

^"klHei/N (2n+f2- 2)
This result is given as an example of application of the norm approach

but the exact computation of the total mean square error is possible

in this case.

Another way to obtain a tighter bound for the FFT is to consider

the definition of the parent matrices as given by (8) or (9) of chapter

3 as the product of a diagonal matrix [d] and a Fourier matrix. The

error norm f||EJ|, for this matrix [d] of order r is such that:

\\h\\< a H ED With ED=^~
by direct application of (14). Then, if we have a tight bound for the

Fourier matrix of order r , radix of the FFT, and denoted E„ , we
r

have from (26) a bound for the parent matrix of the FFT of radix r :

IMI < e H <ef +V2T>
For radix 2, Ej, - 2, so : || ^ ||< * 6 || v

-122-

For radix 4, we obtain E from (11) and (12) directly and find

|ef f 2fx so || e^ eM U<® **«)
These bounds correspond to the bounds proposed by Ramos [7]

with a similar approach. They show the flexibility allowed by our

derivation and its generality.

The experimental results obtained by Ramos [7] for the FFT show

how far these bounds may be from the. errors encountered in practice.

The statistical approach we appy now will give more realistic

estimates of the errors. However the merit of the norm bounds is to

provide an error estimate which does not depend on the input coefficients

as for the statistical estimate.

b) Statistical analysis:

We show now how the previous relations simplify greatly the compu

tation of error-to-signal ratios.

1) For the FFT of radix 2, it easy to show that in relation (16a)

the coefficient b. is:
k

b. * 2 (number of complex multiplications) + (number of additions)

a relation valid for both FFT algorithms. Thus, the error-to-signal

ratio for the FFT of order 2n=N is given from (17) and (29) with the

notations of chapter 3-3 :
2 2

E/S - N/ /2 (2 (M + oij (30)
N (^ 2 2

If we include in (/lan all factors ±1 and ±j except for two stages

of computation (the two first ones for the Cooley-Tukey algorithm, the

two last ones for the Sande-Tukey algorithm) we have (n-2) 2n

multiplications and n 2n additions, giving:

-123-

E/S - £ 2 (n-1) (31)

aresult given by Weinstein [2] [3] for the Cooley-Tukey algorithm

and Kaneko & Liu [l] for the Sande-Tukey algorithm. If we exclude

all factors ±1 and ±j we find, using the column c/tx of the
r

table given in -3-1 :

E/S - (n - 3/2 +(%)n"1) 2 S2 (32)

a result given by Weinstein [2] [3] for the Cooley-Tukey algorithm and

Chan & Jury [5J for the Sande-Tukey algorithm.

2) For the FFT of higher radices, the relation (30) is still valid

and the column (All gives the most accurate estimates of the error-
r

to-signal ratio . In order to give a comparison of the FFT with radices

2, 4 , 8 and 16 we express the error-to signal ratio as a function of

N = 2n = rn/l082r :n such that

Radix

2

4

8

16

E/S x 1/2 <f"

n
n-3/2 +Z(h)

1.75 n

2

1 .66 n

2

1 .656 n

- n -13/12 + 4/3&)

-57/56 + 8/7 (h)

- 241/240 +16/15 (h)

3) For the W-H transform, we find directly:

E S = n £2

a result obtained by Chan &Jury fs).

4) For the Generalized Discrete transforms, we apply again (30)

and the result 0f 3-4-1 to (17):

E/S = a2 (n +g- 1) - 284"1"11 +22"n

a result obtained through long computations by Chan& Jury [5]

-124-

5) multidimensional transforms :

We have seen that multidimensional transforms reduce to a one-

dimensional transforms obtained by sucessive simple Kronecker products

(see 3-7-2). The error-to-signal ratio is then easily obtained

by recursive use of (29). For an L-dimensional Fourier transform of
L

composite order N= Jll n. / ^—)

£l m (£l -'or N= 2ffi=2 1"1

the error-to-signal ratio derived from (31) is:

E/S =2 t2 YL (m - 1) -2 62 (m-L)
i=l X

and , with more accuracy, the error-to-signal ratio derived from (32)

is: « L r nK-1

E/S «2 c2 2l [m± "3/2 +ft) ±]
i=l *•

= 2 £Z m- 3L/2 + 2l Oi)
L i-1

Both results are given by Chan &Jury £b].

The previous examples have been considered because they show the

efficiency of our approach compared to other works.

5-5. Floating-point computations with truncation ; application

to FFT:

The derivations obtained previouly in the case or rounding are

still valid for truncation but they no longer give the output mean

square errors, only the error variances: there is now a bias vector.

Each operation introduces a new bias and since the truncation errors

have the same sign, the biases always add.

R T
Denote by the superscript () the errors in the output

coefficients for rounding (truncation). From (10), we have directly:

-125-

TRe(E i) \ /Re(V)
W

T E(Im<^)/ " \Im(V)

where E([H]) can be written, using (12), as a direct matrix product:

E([tJ) -/-[If] 0 [<£j (34)
M . is the number of non zero error terms in y.. . In a generalized
ij 1J

Kronecker product, the mean error vector in the input vector is trans

formed and new error biases given by (33) are added. In general, we

cannot pursue further our analysis without specifying the transform

and the original data. However, some particular cases of interest

allow to express the bias vector proportionally, .to the intermediate

results of the computation : then, knowing how the signal is

propagated, we can estimate the contribution of the bias vector

to the output mean square error. We consider now two cases of

simplification.

a) At each stage, the bias vector is proportional to the

intermediate output vector:

This situation is approximately verified for the large family

of IC transforms (see chapter 3). Two conditions are necessary, one

concerning the generation of the bias vector in parent matrices, and

the other condition concerning the propagation of this bias errors.

1) First we need M.. = M. for all j and all parent matrices :

then, from (34) E(5.)=M± u€ ,and from (33) we see that
the bias introduced in a parent matrix rotation,denoted B , is such

that: (B)± = ia- M± W±

Therefore the new contributions to the bias vector are proportional

r<gj. I !+I I (33)

-126-

to the intermediate output vector.

2) Secondly, we require that the bias vector at the input of any parent

matrix be proportional to the input vector. This condition is verified

for the IC transforms in particular.

If both conditions hold, the final bias vector B is related to the

output vector W (see footnote 3) :

\ "/< I V \ (35)
where the summation is extended to all indexes j of parent

matrices appearing in the computation of W, .. Then, the contribution

2 x~ 2 • r'of the bias vector to the output mean square error is /*• (/. M.) fWyJb

k j k

Summing (36) over k gives the total mean square error:

RV^2 l(ltfi\t+ vw
If 2_M = C and does not depend on k, we have:

j j

VWT = yu2 C2 N2 (J 2 + VWR (37)

For the FFT, Sande-Tukey algorithm, the relation M .= M± is

approximately satisfied (it is exactly verified if the factors ±1

and ±j are taken to introduce round-off errors) and the above

relations yield the approximate truncation error analysis of this

algorithm, even for correlated input coefficients, as done by

Kaneko & Liu [l] .For independent input coefficients, this leads

3
We assume here that secondary errors are negligeable.

-127-

to the following error-to-signal ratio:

(E/S)n = yu2(4 n2-7n+2) + £2(2n-2) (38)

where the multiplications by ±1 and ±j are considered to introduce

truncation errors except at the two last stages of computation.

b) At each stage, the bias vector corresponds to an input

bias vector proportional to the intermediate input vector:

This case of simplification is symmetric to the previous one :

we propagate a fictitious bias vector towards the input vector, i.e.

we determine which bias vector added to the input vector would

produce the same bias vector at the output through the normal error

free transform. If it happens also that these fictitious error vectors

are proportional to the signal output vectors of any of the parent

matrices, then we can obtain an additive input vector which will

account for the bias vector. To compute the error-to-signal ratio,

we need the magnitude of the output bias vector which, by Parseval's

theorem, is obtained from the fictitious input bias vector as well.

In particular, this approach gives an approximate error analysis

for the Cooley-Tukey algorithm of the FFT and it easy to show that (38)

applies also to the Cooley-Tukey algorithm. On Figure 5-1, we have

plotted the experimental points obtained by Weinstein £3J and the

theoretical curve given by (38). For the theoretical curve, we have

2
taken the experimental values of u and £ presented in 5-2-1.

We find a good agreement between the curves.

error to

signal ratio

Vc o2b

150 t

100-

50-

0

x experimental (Weinstein)
theoretical (approximate)

t 1 1 r t 1 1 r

16 64 256 1024

Fi8- 5-1. FFT error analysis for

floting-point and truncation

block
1 size

-129-

5-6. Floating-point computations with non randomized rounding of

midway point:

The results derived in 5-4 have been compared with experimental

error measures [l] [2] [3] [5] and for transforms of low orders

a good agreement was found. Weinstein [2] jji] has shown that they

descibe in fact with good accuracy the case of a perfect rounding

situation when the midway point is randomly rounded up or down.

However common rounding schemes are not so sophisticated and systema

tically round up or down this midway point, thus introducing a bias

similar , for computation purposes, to the truncation bias. Therefore,

our analysis of the truncation errors can also explain the strange

experimental results obtained with common rounding schemes.

Weinstein has shown that additions are responsible for an

additional error when common rounding is used and that this error

becomes rapidly predominant as the block size increases. Let us assume

that each addition introduces an error with mean u! and variance

£ . We assume, as previously, that the multiplications introduce an
2

error with zero mean (no bias) and variance £ . Then, from (36)

we obtain in this case and for the FFT a new error-to-signal ratio:

E/S = /|2 (2.25 n2 -2.75 n+0.5) +(E/S)R (39)
where (E/S)R is given by (31) or (32).

We have plotted on Figure 5-2 the experimental results reported by

Weinstein f3]. For each experimental point we compute, from (39) the

corresponding value of /*•' ; for all points, except maybe n=ll, we

2
obtain roughtly M1 = 0.028. This value corresponds to a probability

of 0.33 of occurence of the midway point in an addition. This result

error to

signal ratio

Vc 22b
2N2,X2
15 -i

10 -

5 -

-130-

i experimental (Weinstein)
—theoretical approximation
—theoretical exact

computation

non

1 randomized
J midway

point

i randomized
/midway

•"" .-^ point

i—|—i—i—•—r gock
64 256 1024 s,ze

Fig. 5.2 FFT error analysis for floating-point with rounding-effect

of non-randomized midway point.

-131-

has an experimental support in a work by Liu and Kaneko (llj • In
2

Figure 5-2, we have plotted the curve given by (39) for A1 » 0.028.

Again we see a good agreement with the experimental results.

A natural conclusion to this section is that the rounding error

model is quite imperfect to describe the common rounding situations.

The general problem of rounding errors in floating-point computations

seems quite complex ^J £lo] but a better understanding of

the floating-point representation errors is necessary to obtain

an accurate analysis of rounding errors in fast transform algorithms.

We have only considered the case of the FFT in this section but

our approach is obviously valid for other transforms, provided that

the error model still applies.

5-7. Errors in the representation of transform entries or factors:

So far, we have considered only the round-off errors introduced

in the computation. The parent matrix coefficients and the factors

of the algorithm are also represented with finite length registers and

therefore with approximations. In the experimental results obtained

by Weinstein and used in the previous sections to support our analyses,

these errors do not appear since both the "exact" computation and

the rounded or truncated computations used the same entries or factors.

These entries or factors are usually stored in a table and

it is reasonable to store them with a rounding scheme since this

operation is done once. However, the same coefficient is usualy used

several times in a transform computation and also the coefficients

are correlated. We believe that with our recursive approach, it is

-132-

possible to express the output errors introduced by each coefficient.

But it is certainly much simpler to assume that these representation

errors are independent. Then, we may use the results of chapter 4 for

fixed-point computations and chapter 5 for floating-point computations.

Relation (3) of chapter 4 and relation (7) of chapter 5 would

then have additional terms which would modify the following derivations

adding new error terms to our results. However, for both cases of

number representation, the contribution of the enties or factors

approximations to the output error-to-signal ratio is a term

proportional to the number of stages of computation n .In most cases,

this term is rapidly negligeable. Experimental evidence for the FFT

by Weinstein [3] and Kaneko &Liu [l] confirm that the new error

terms are of second order . Therefore, we shall not pursue further

the analysis of the errors due to the representation of entries or

factors.

5-8. Errors in transform domain approximations:

The transform encoding methods introduce coding errors in the

transform coefficients of a vector (quantization, selection of trans

mitted coefficients). After inverse transform of the approximated

transform vector, we obtain an approximation of the original vector.

In chapter 7, we shall present with more detail these encoding

Ramos [7] finds however with a different model (an absolute error
model similar to the model we have used for "»*-»** ««•£"'?>
an additional error term of same order of magnitude .«•<*** ^"V
model overemphasises the errors coming from the representation of entries
and factors.

-133-

methods. In this section, we give some qualitative comments on the

introduced errors.

By Parseval's theorem, we know that the mean square error can

be computed on the original vector or on the transformed coefficients.

However, a question of fundamental interest is to know the distribution

of these errors for a given encoding scheme. It is known that a low-pass

filter for the FFT will produce a Gibbs phenomenon on each signal

discontinuity(either inside the input sequence or at its extremities).

For the W-H transform of pictorial data, It has been reported that the

errors accumulate on the edges of small blocks [12]. Still with the

W-H transform, suppression of the discontinuities between extrimeties

of the sequence yields a clear improvement [13J. The Haar transform,

finally, shows a net improvement over the W-H transform when threshold

encoding is used [l4j .But both W-H and Haar transform let false
contours appear in the shape of grids.

A general theoretical treatment of these effects does not

seem easy; we should like to state some qualitative results which

conclude our error analysis of fast unitary transforms and motivate

the search for other transforms such as the generalized slant transforms

of next chapter. With smoothly varying basis vectors , a transform

will badly represent dicontinuities which will be rejected as transform

coefficients of low magnitudes (high frequencies for the FFT). The

errors then on the reconstructed data concentrate on dicontinuities, i. e.

enhance the true contours. With discontinuous basis vectors, some

discontinuities of the data will be reproduced or even enhanced while

-134-

some false discontinuities will appear. With locally defined basis

vectors, the false contours will remain close to the real ones

and so will be less objectionable.

These remarks lead to the need of a compromise transform between

smooth and discontinuous basis vectors (the smoother versus the faster)

and also with as much local properties as possible. Some generalized

transforms verify this compromise.

5-9. Conclusions:

In this chapter, we have presented an error analysis of fast

unitary transforms in the case of a floating-point representation

of numbers. Using a systematic approach, made possible by the recursive

definition of fast unitary transforms, we have considered all the

cases of practical interest for rounding as well as for truncation

arithmetic. We have, at the same time, presented a synthetic survey

of previous works carried out for the FFT; we have emphasized their

common assumptions and their different approaches. We have derived more

accurate expressions, specially for the norm bounds, and also some

new theoretical results, specially when the round-off errors have

a bias. However, we should stress that the results obtained are

either bounds which may be loose for specific input vectors or

approximations valid under statistical assumptions. We are confident

that they give nethertheless reasonable guides in the comparison

and choices of transform hardware and software implementations.

-135-

CHAPTER VI

FAST UNITARY TRANSFORMS WITH PRESCRIBED BASIS VECTORS

GENERALIZED SLANT TRANSFORMS

6-1. Introduction:

In chapter 3, we have developed a common framework for unitary

transforms with a fast algorithm in terms of recursive generative rules.

We have derived several families of such transforms depending on the

choice of parent matrices in a given class. Now, we wish to design unita

ry transforms with desirable properties and still a fast algorithm.

The problem considered in this chapter is to include exactly a preassigned

set of basis vectors, called replacement vectors.

We first dicuss the problem in its most general form. Then we

concentrate on a specific problem of interest: the inclusion of so

called slant vectors into the WHH family of transforms between the

Haar and Walsh-Hadamard transforms.

6-2. General case:

We have a set of p orthonormal replacement vectors denoted

X^ , X. , , X of dimension N (p ^. N) and we want to design

a fast unitary transform[uj which will have the vectors X. ,xl ,..

..., X among its row vectors.
P

The first approach to this problem is to examine the set of

basis vectors obtained within a family of unitary transforms with a

fast algorithm and to try to select a transform which includes the

replacement vectors. Unfortunately, the set of basis vectors of

-136-

such a family is not large. For example, the basis vectors of order 8

of the IC„ family belong to the set (coefficients not necessarly ordered)

(1 ,Wj ,w2 ,w3 ,Wj w2 ,wx w3 ,w2 w3 ,wx w2 w^

with w. a root of unity. Therefore this approch is not likely to succeed

in general.

The next approach is to modify a unitary transform |tJ with a fast

algorithm in order to include by some rotations the replacement vectors.

Of course, this approach will succeed in a fast algorithm only if the

set of replacement vectors belongs to a subspace SM of low dimensiona

lity, say M (p^M^; N), in the basis of [Tj . The rotation of SM
2

will add a maximum of M multiplications and M (M-l) additions to the

elementary operations already required by £tJ . It may happen that

the rotation of S„ can be further decomposed into rotations of lower
M

dimensionalities if there are subspaces of SM of dimensions M., M2>..

..., M (M = M. + M. + + M), in which the projections of Xt, X. ,
m 1 Z m l z

....,X are also orthogonal. Then, the inclusion of the vectors X.,
P l

,X into the basis will require at most
P

^-2 22_ ML < M multiplications
k=l R
m •

and Y2 \ <\ ~ x) < M (M - D additions

However we may wish to perform these rotations of various

dimensions as a sequence of rotations of fixed dimension, say f.

Then, the successive rotations which include the different basis

vectors canbe performed as shown on the following diagram, where M.

is the dimension of a subspace of S as previously considered:

inclusion of the

projection of the

first replacement

vector

inclusion of the

projection of the

second replacement

vector

-137-

old basis vectors to be

rotated

1 2 iy(f+1) (2f-l)Mt
first

rotation

second

rotation

etc

1 2 f.(f+D (2^1)...^-!
first

rotation

second

rotation

etc

and similarly up to the last projection of a remplacement vector

in this subspace. The total number of rotations of order f is then

at most, when S__ is not further decomposed :

R . 4- rji^j-i
k=l f-1

L

where fx] denotes the smallest integer larger than x .

Although this number of rotations is fixed, they depend on

the ordering chosen for the original basis vectors, and on the choice

of unconstrained projection vectors making an orthogonal base with

the projections of the replacement vectors. The new basis vectors

depend on these choices.

Two particular cases may reduce the computational complexity of

these rotations:

a) two (or more) replacement vectors have merged or orthogonal

projections in a subspace rotated by a matrix of order f : their

projections may be included simultaneously.

b) two (or more) replacement vectors have orthgonal projections

-138-

of the same magnitude: some entries of the rotation matrix are then

±1 so that the number of multiplications is reduced.

In the following we shall make use of these simplifications.

We are not able to discuss further the inclusion of replacement

vectors without considering their properties . In the following, we

examine the inclusion of a set of Slant vectors.

6-3. Slant vectors:

The slant vectors we define in this section have a piecewise linear

variation of their components. Various combinations of these vectors form

sets of orthonormal vectors which can be included in the WHH bases with

few operations: we obtain a class of "slant transforms" which offer a

possible compromise for the trade-off discussed in 5-8. Their interest

will be shown in chapter 7 where we compare the performance of several

fast unitary transforms for processing a first order Markov process.

6-3-1. Basic slant vectors:

There are three basic slant vectors of length 2 : the "linear

slant vector", denoted L , the "cup slant vector", denoted V ,

~*" k
and the "jump slant vector" , denoted J . They are defined as follows:

a) Linear slant vector:

Its components are linearly decreasing and given by:

L±* . <2k "*? -" i-0 2k-l (la)
\| 2k (22k-l)

on. "*" k
The vector L is normalized and orthonormal to the constant vector,

-*- k
denoted C

b) Cup slant vector:

-139-

k-1
Its components are linearly decreasing for 0^ i <. 2

k-1 kand symmetrically increasing for 2 ^ i^ 2 ,thus showing a "V"

shape ; they are given by:

V.k * (2 "^ — i» 0, ^^-l (lb)
i

2k (22k-l)
3

V,k = Vk i=2k"1,.....,2k-l
1 2 -1-i

-*k
The cup slant vector is normalized and orthonormal to both C and

c) Jump slant vector:

Its components are linearly decreasing with a positive discontinuity

in the middle of the sequence:

(2k-l)(2k"1-l) 9k
k T ~ k-1J* - J i = 0, ,2-1

./ 2k'(22k-l) (22k-1-l)
If 9 (lc)

i k
1 2 -1-i

-^k —**k -*•k
The jump slant vector is normalized and orthonormal to C , L and V

""^k -*"k —•'k "*" k
We note that the basic slant vectors C , L , V and J

have respective zequencies 0,1,2,and 3 just as the first W-H vectors.

However, the average variation between successive components is reduced

so that these slant vectors form a smoother basis. The basic slant

vectors for k=2 and 3 are shown on Figure 6-1 a and b.

6-3-2. Sets of slant vectors:

We denote by L< , V* , and J% the slant vectors of length 2 but

-139-

k-1
Its components are linearly decreasing for 0^ i < 2

k-1 kand symmetrically increasing for 2 <^ i^ 2 ,thus showing a "V"

shape ; they are given by:

V.k - <*W-1> ~2i i-0. 2^-1 (lb)

V.k » Vk i=2k"X,.t...,2k-l
1 2 -1-i

"*k
The cup slant vector is normalized and orthonormal to both C and

c) Jump slant vector:

Its components are linearly decreasing with a positive discontinuity

in the middle of the sequence:

(2k-l)(2k"1-l) k
k T k-1J* « J i - 0, ,2-1

/2k (22k-l) (22k-1-l)
If 9 (lc)

J k . - J k i - 2k"1» *2 ~l
1 2 -1-i

-^k —*-k -** k
The jump slant vector is normalized and orthonormal to C , L and V

""•"k -*k ~**k -*" k
We note that the basic slant vectors C , L , V and J

have respective zequencies 0,1,2,and 3 just as the first W-H vectors.

However, the average variation between successive components is reduced

so that these slant vectors form a smoother basis. The basic slant

vectors for k=2 and 3 are shown on Figure 6-1 a and b.

6-3-2. Sets of slant vectors:

-*•£ -»< -*l k
We denote by L, , V% , and J% the slant vectors of length 2 but

-140-

with only 2 non-null components with index i , ^2 ^ i <(/H+l) 2

(A= 0, ,2k~ -1). For any L such that ^,£k, any }<2 "
- o

k-1.
and any A' < 2 * , V

"£<t
and

<N

^
^

7 i

I

1
1

1

>*
f i

/
/

/

i
1

I

1

1

1
1

t

/

1

/

/
1

1

/

/

/
/

/

*•»

I
1

1
1

1
>

T>V

-*t -» k 1
Ji are orthogonal to C , L.f ,

2, - *i -* 2 "* 2 2 «. ^ /* ,
V.7 and Jx, . The slant vectors L > ,V. , and J , for /* • 0,1

-> *5 —♦ 7 -*• 3and LQ , VQ and JQ all for k=4 are shown on Figure 6-lc .

Any set of orthogonal vectors is acceptable as a set of replacement

vectors. In the following, we shall consider particularly the "complete"

Ci
SX

^ M-l
o

K

CO
u

V- -* o
(/ 4J

1 o

/
0)
>

1

/ a
/ «8

/ *-4
CO

/

/

/
•

/

/ 1

f*
^

SO

J* #

60
•H
fe

*> f
^

/

/
/

/

/
1 ^^BM

/

/
t

/
/

/

k- V»

CO

vo

»o

CH

It

**

O

&

«o

•sj

X

K
i

1
rH
1
f

«o
1

1

r
/

? -*

/

f

/

/

/

i-H

l

f

*- >
' 1

r

-J

f

io

-141-

*

V

\

\

\

*0

i ->,
1

t
I

1

> >•

i

r—*-•
1

t
1

*l

V

Fig. 6-1 b. Slant vectors of size 8

t

V

-142-

0 1 2 3 • t S G 7 IS

L

V„

'o t

I I I

«___^_J_

j3
J0

012 3 4*67 IS

Fig. 6-1 c. Examples of slant vectors

-143-

/O (V \, n)set SO (a., a , n) which includes all orthonormal slant vectors

n f

of length 2 and with 2 non-zero components when

2^ tx 4? I < \ <Cn
This set includes specifically:

(Tn

Lp for A«0 ,2 *-1

"v* ,J* for i1 ,< I *c 12 and >< 2n"£

For i = 2 and £ « n we have the set of all 2 orthogonal slant

vectors of dimension 2 : they are the basis vectors of the Slant Haar

transform (see 6-4).

Ordering of a set of slant vectors:

A set of slant vectors can be ordered according to the following

successive rules:

1) decreasing number of non-zero components , so that the ordering is

from globally to locally dependent vectors as in the ordering of the Haar

basis vectors by their ranks.

2) increasing zequencies : we have seen that slant vectors which are

non-zero on the same interval have different zequencies.

3) from left to right: the slant vectors withsame number of non-zero

components and with same zequency, are defined on disjoint intervals

and so can be ordered.

The corresponding ordering is uniquely defined and consistent with

the rank ordering of the Haar transform and the zequency ordering of

the W-H transform.

-144-

6-4. A generalization of Haar transform to include a set of slant

vectors:

Our goal is to define one or more discrete fast unitary transform

which includes a given set of orthonormal slant vectors. Following the

general ideas of section 6-2, we first need a fast transform which can

be modified to include the slant vectors. We choose first the Haar trans

form and we shall generalize in 6-6 to the WHH transforms.

Thus, we have to determine the subspaces of Haar vectors which

include the slant vectors of the replacement set: for this, we give

first the general expression of a slant vector in the Haar basis.

6-4-1. Expression of a slant vector in the Haar basis:

Our discussion will consider the Haar transform in natural order

for sake of simplicity and further generalizations. It is not difficult

"^k -*k ~^k
to verify that the transformed vectors of L % , V \ and J ^ by

the Haar matrix fv] are given respectively by:

(Tr Lk), =- g
A x / n Jc _2k

(Tr Vp± -

2" 2 (2 -1)
3

[2n 2k (22k-^.1)

=1/2^ !2t+1 if 0£ i-A2k<2k
and i-^2k =2*mod(2c"ri)

0 ^ * ^ k-1

V.C » 0 otherwise
(2a)

2^+1 if 0^ i-;2k< 2k-1

i-j2ks2 mod(2l+l)

- -\(2n"1"^ 22e+1 lf °^±" ^^""V 2k~1
and i-^2k -2k~Xs 2l mod(2e+1)

0 «? I *Z k-2

C « 0 otherwise

(2b)

-145-

(c - ^Firr22£* if 0<ri-A2k<-21
and i-^2k =2^ mod(2e+1)

<*?*>, -, __ °2/2 e*k-2 (2c)
X /2ttfk(22k-l)(22k-ll)C - l/F* (2 ^ 2k if i-^ +a*"1

|f. 9 x 3
I C B 0 otherwise

The parameter I indicates the zones as defined in chapter 2.

6-4-2. Properties of the slant vectors in the Haar basis and algorithm

to introduce them:

We first observe or show some properties of the projections of the

slant vectors using the relations (2a), (2b) and (2c).

a) equal components inside the zones:

As we have noted in 6-2, the presence of equal components leads to rota

tions without multiplications. In the expressions of the transformed vectors,

we note that components in a zone of the definition interval of the

slant vector are equal for each vector but vary for different vectors.

The practical consequence is that we first rotate each zone with any

unitary transform of same order and having the constant vector in its

basis. The simplest of such transforms is the Haar transform (but a W-H,

Fourier.... or Slant transform would also do with more operations).

After performing the Haar rotations of each zone, the slant

vectors would be expressed in the new basis by the following components:

(TrLk)'± = l — for i» A2k +2l
|22k <f -» s0- ^ (3a)

« 0 for i# /i 2k + 2l

(fTv k)j^

(Tr JJ)J

-146-

jc+e

22k (22k"2-l)

22k(22k -l)(22k"1-l)

for i - ^2k+2k"1 + 2
ft- 0, ,k-2

for i # A2k +2k"1 + 2e (3b)

/C - 22k+*"1 for i - A2k +2
X -0, k-2

. 2k(232k-2>l) fQT±mX 2k+2k-l

0 for 1 # /l2k + 2*

Comparing the new components of each slant vector, we note that:

1) V . belongs to a subspace orthogonal to the subspace containing

~*"k -*kL * and J ^.

-^ k -^k
2) L x and J , have proportional components except one ; we

can then .include both vectors by the same rotations (the last one

will account for the different components).

b) slant vectors in nested intervals:

We wish to prove that it is more efficient to include slant

vectors defined in nested interval in order of their respective

sizes (number of non-zero components in the original definition.

Let us assume that the slant vector S * is non-zero only in the

k ~"interval I of size 2 and that the slant vector Sj is non-zero

in I and at least one consecutive interval. The components of S. in

I are linearly varying and so S. , the restriction ot S^ in I, is
-*"k *-^k

linearly related to L f" (same indices as S .). Then the rotations

of the zones of I by Haar transforms, which were introduced in the

previous paragraph to include S , will be useful to include S, .

-147-

—*"k "*kMorever, if Ss s J j , we may choose rotations which include simulta-

~*"k "* k
neously J •* and L : all these rotations will be useful to include

*i • •
c) algorithm:

Making use of these properties, we state now the algorithm

to design a fast transform which includes a set of orthonormal slant

vectors.

Initialization: fl] ,Haar transform of appropriate order is first

applied to the input sequence.

Step 1 : Express a slant vector with smallest size in the basis

of [tJ.

Step 2 : Rotate the zones with equal coefficients with Haar

transforms of appropriate orders. The transform is now [t'J.

Step 3 : Rotate the rows with non-zero coefficients in the

expression of the slant vector in [t'J. For the last vectors to be in

cluded, if thev are of the tvPe L and J defined on the same

interval, they have to be included simultaneously . Let us call

the obtained transform Ft].

Step 4 : Start step 1 again if the whole set has not yet been

included.

This method generates a fast transform which includes the prescribed

set of slant vectors in its basis and requires, when starting from

the Haar transform, the minimum number of operations.

As the coefficients of an Haar transform are obtained at various

stages of computation, some rotations for the inclusion of slant

vectors can be performed earlier in the algorithm :JLn general, all

s+

-148-

—^k
operations to include a slant vector S can be performed at the k th

stage of computation. Consequently, the corresponding slant transform

of order 2 can be expressed by a generalized Kronecker product.

6-5. Examples of slant transforms ; computational complexity :

6-5-1. Inclusion of basic slant vectors:

a) Linear slant vector:

Let us first include the vector L into the Haar transform of

order 2n . From the previous discussion, we first rotate each zone by

corresponding Haar transforms and thus reduce the dimension of the

subspace representing L to k (for * = 0,....,k-l). We then

rotate the corresponding rows by (k-1) matrices of order 2. We have

(k) x (k-2)|= kf /2 possible choices, (k-1)/ /2 of them including
-*-k

also the vector J . For n=k»3, we have 3 possible matrices, one

including also the vector J . We present them in Fig. 6-2 a and

their corresponding algorithms in Fig. 6-2 b.

The fast algorithm for the corresponding slant transform requires

additions : 2(2n-l) + 2(2k~1-l) + + 2(2-1) + 2(k-l)

= 2(2n.-l) + 22 (2k_1-l)

multiplications :(k-l)-l (one multiplication per matrix is postponed

to the next rotation matrix, two happen to be a multiplication by

a power of 2 and therefore are performed with a shift.

shifts : 2(k-1)

normalizations : 2n - 2n~ - (k-1) (we normalize to the 2 vectors

with 4 non zero components and the k rotated components are assumed

to be normalized by the multiplications.

w-iH18

H-d

LcH£

1 1 1

7 5 3

1 1 -1

7 11 -27

1 -1 1

3 -5 3

1 -1 -1

0 0 0

i

5

1

1

-1

-13

-1

0

1

3

-1

-3

1

9

-1

0

-149-

1

1

-1

-17

-1

-1

1

0

1

1

-1

-23

-1

-5

1

0

1

1

•1

-3

-1

-11

1

0

23

1

-3

-1

9

1

-3

0

-1

1

-3

-1

27

1

-3

0

-1

1

-3

-1

3

1

-9

0

-1

1

-5

1

1

-1

3

0

-1

1

-5

1

-11

-1

5

0

-1

1

-5

1

-1

-1

13

0

-1

1/^21

i/ftos

1/fS

1i'
i * a

-7 n l/jf21

i

-7 *l/lf357

1

-3 , 1//17

0 , V5

1 . fl

-7 « i/ffi

1

-1 * 1/^5

1

-7 * l/fi05

0 »VT

1 * ^2

T3Fig. 6-2 a. : Slant matrices derived fromfoJl and including L

-150-

Vl^J

-1 -i

Fig. 6-2 b. Fast algorithms for the slant matrices of 6-2 a.

-151-

b) Cup slant vector :

A very similar development yields (k-2) rotation matrices of

order 2 after the Haar transforms of the rows and therefore (k-1) / /2

possible choices. The corresponding fast algorithm requires :

additions :2(2n -1) + 22 (2k"1-l) + 2

multiplications : k-3

shifts :2(k-2)

normalizations : 2 - 2 - (k-2)

In Fig. 6-3 , we show the matrix obtained after inclusion of V fl to

[Hg] with rows ordered by their ranks.
—*k -*,k -*,k

c) Slant vectors L , V and J __:

Using both previous results, we need (2k-3) rotation matrices

and we have [(k-1) j] choices. The corresponding fast algorithm
A

requires :

additions: 2(2n -1) + 22 (2k_1 -1) + 2 (k-2)

multiplications : (2k - 5) if k > 2

shifts : 2(2k - 3) (4)

normalizations: 2 - 2 - 2k + 3

In Fig. 6-4, we present the slant transform of order 8 obtained

"*2 -*2 -*2from the Haar transform and which includes the vectors Ln , V. , Jft

(in this case our method gives only one transform). On Fig. 6-5,

we present the slant transform of order 8 which includes all slant

vectors with k = 2.

6-2. Inclusion of a complete set of slant vectors :

We consider now the slant transforms obtained from the Haar transform

which include a complete set of slant vectors. In this case, we can

-152-

X 1 1 1 1 1 1 1

i 1 1 1 -1 -1 -1 -1

(2 n -ft -ft 0 0 0 0

i 0 0 0 0 a r2 -6 -<2

w E -ifi -ft ft 0 0 0 0

0 0 0 0 a -E -6 VI

6 0 0 0 2 -2 0 0

0 0 0 0 0 0 2 -2

-r.2Fig. 6-3. Slant matrix derived from [Hg] and including VQ

and corresponding fast algorithm

-153-

rotation rotation

in zones with multiplication

1 1 1 1 1 1 1 1

i 1 1 1 -1 -1 -1 -1

3 1 -1 -3 0 0 0 0 «^

4 0 0 0 0 a ft -G -ft

Kg n a -ft -ft 0 0 0 0

i -3 3 -1 0 0 0 o < /&

0 0 0 0 2 -2 0 0

0 0 0 0 0 0 2 -2

[1 —*>2 -*"2 -**2
Hft , including Ln , Vn , Jfl

and corresponding fast algorithm

A

w

1

1

3

0

1

0

1

0

1

1

1

0

-1

0

-3

0

1

1

-1

0

-1

0

3

0

-15W-

rotations rotations

in zones with multiplication

1 1

1 -1

3 0

0 3

1 0

0 1

•1 0

0 1

1 1 1

1 -1 -1

0 0 0 ftjl

1 -1 -3 ft/5

0 0 0 ft

1 -1 1 ft

0 0 o ffls

•3 3 -l ft/i

Fig. 6-5. Slant matrix derived from [Hg] ,including all slant
vectors of size 4 and corresponding algorithm.

-155-

define the corresponding slant transform with a set of parameters

and express the computational complexity in function of these parameters.

Let fSH(JL, L, n) denote the slant transform of order 2n, obtained

from the Haar transform |H J and which includes the complete set

of slant vectors sQ (I 9t2>n) with 2g * ^: &2 ^T n.

We first study how the inclusion of slant vectors defined on nested

intervals can be efficiently implemented. Then, we express the

generation of the matrices SH(2+» ^„,n)l with recursive formulas

and derive the computational complexity of these transforms.

a) Inclusion of slant vectors defined in nested intervals:

Let us assume that we have derived a slant tranform which includes

the slant vectors Lrt and L- (and therefore J and J,).
0 1 o 1

We show now that we need only two rotations of order 2 to include

the slant vectors Ln ,Vn, and J°. It is first obvious that:

"V- 1//2 (V^-V"1)
01 ri 1

so that the rotation by the matrix [fJ - 1//2

will include V11 in the basis of the transform and also a vector

Z = l/f2 (L0 + L-) which has the following components

in the original Haar basis :

zi =

z" 1

211"1 - 2i ...,2n-1-l

i
2n(22n-2 _1}

3

Let us denote S the vector of |H 1 with components :
MSn± - 1//? for i-0 ,2n"1-l

Sn± - -1//? for i - 2n"1, 2n-l

-155-

define the corresponding slant transform with a set of parameters

and express the computational complexity in function of these parameters.

Let |SH(JL,L, n) Idenote the slant transform of order 2n, obtained

from the Haar transform /H I and which includes the complete set
L 2°J

of slant vectors sQ (I 9^2,n) with 2^T ^ ^T &2 ^T n.

We first study how the inclusion of slant vectors defined on nested

intervals can be efficiently implemented. Then, we express the

generation of the matrices SH(£., ^2,n)| with recursive formulas

and derive the computational complexity of these transforms.

a) Inclusion of slant vectors defined in nested intervals:

Let us assume that we have derived a slant tranform which includes

the slant vectors "lJ1"1 and T-11"1 (and therefore "7 n"1 and "j""1).
0 1 o 1

We show now that we need only two rotations of order 2 to include

the slant vectors Ln , Vn, and J11. It is first obvious that:

"V- 1//2 (v1-^11"1)0 1 j-x
so that the rotation by the matrix [fJ • l//*2

L

will include v in the basis of the transform and also a vector

Z = l/jf2(LQ + L- ") which has the following components

in the original Haar basis :

Z\ - 2""1 "21 i=0, 2""1-!
2n(22n-2 _1}

3

zn . = znt
2n-1+i i

Let us denote S the vector of [H ~j with components :

Sn± = 1//? for i=0, 2n~1-l

Sn± =-1//? for i-2n~\ 2n-l

-156-

This vector is not affected by the inclusion of L ~ and L.n" .

We prove now that there is 8 such that:
n

n
Sin 0 Cos 9

.n
Cos 9 -Sin 9

n J

This relation requires :

n-1
Si 30 -2i Sin 9n + (1/ 2n) Cos

»n
(2-1) -2i

f2n(22n"2-l) 2n (2n-l)

(2n"1-l) -21 Cos 9 _(1/ 2n} s±n f
|^-2-l> n

(2n-l) (211"1-!) ._ 2n±

|2n(22n-l)(22n"2-l)

i = 0, ,2n"1-l

These equations give :

The relations obtained for i-a11"1, ,2n-l " "asymmetric
and yield the same value of 6 .

n

b) Recursive generation of the slant transform [SH(« t,n)]
We make use of the previous results to obtain the recursive

generation of the slant transform [sH (̂ ^ n)J. The generation ±a
obtained in three steps :the first leads to the transform SH(£±, It }>
the second to the transform SH(/ I 0 \ A^ , *'atH *-v i2, Z2) and the last step to the
transform SH(^, i, n) .

n-1

-157-

gtep 1 : recursive relations to obtain . the Haar transform of

h
order 2 followed by the rotations to include the slant vectors of

size 2 occording to the algorithm of 6-4-2. We obtain \SH(t^9 l^ t^)\
step 2 : recursive relation between slant transforms fSH(L, £, £)1

and |SH(JL,l-l, £-1) which leads to the generation of |SH(^, t^ &-A
from j*SH(i±9 &±9 l^\ :

[mtvi.L>] -{[»2]M[i2] Ihjj* [miv**.t*)]
followed by rotation of the rows 1and 2n~ by the matrix [f2 (6^)J :

[V9*>] "
Sin ^ Cos P^

Cos & -Sin£,

where 9. is given by (5).

step 3: recurive relation similar to the Haar matrices recursive

relation between |~SH(l±9 2>2A)] and jsH(l±9 l%% I-1)7 leading to
the generation of fsH(£-, £2> n) :

SH(lv l2,l) ={[F2] [I2] [I2]| fl [SH(tv l2, i-1)]
c) Computational complexity of the slant transform SH(L , JL, n)

The previous recursive relations and the results of chapter 3

allows the computation of the number of elementary operations required

by the fast algorithm for[SH(L »t0, n)|. In the first step, we include

the slant vectors L , V and J into the basis of 2 Haar

transform. Relations (4) gives the number of elementary operations:
I

additions : 22 (2 1 -1) +2l± - 6 ; shifts :2(2t -3)
multiplications : (2 £ -5) « for 0 ^i>2, 0 for £ «2

1 M—2normalizations : 2 -2-2^+2

Then, we have c« - &. stages of computation for the step 2 requiring

6 Q additions, 2Q multiplications, Q shifts and 2Q + 2 ^ normalizations

-158-

n- 2, + 1 n-£ n-^ n- i
with Q « 2 x + +2 * « 2 x - 2

n-*2
The last step performs a Haar transform of order 2 and requires:

n- JL2 n- i2
2(2) additions and 2 normalizations.

Summing these results, we find finally the computational complexity of

the slant transform |SH(i_, £2> n)J:
n-jp £.+2 n-£+2

additions: 2 i(2±+2£L-4)-2 * -2
n- ^+1 n-A

multiplications : 2 a (t-2) - 2 l if L>2 , 2° -1 if jfc. -2
n-A+2 L n-£9 x x '

shifts : 2 x ((> -1) - 2

normalizations : 2n - 2n - 2 (2 ^-4)

d) Slant Haar transform :

A particular case of the inclusion of a complete set of slant

vectors is the slant transform |SH(2,n,n) Iwhich includes all

orthonormal slant vectors intofH j;we call it the slant Haar

transform. The recursive definition of the slant Haar transform only

involves step 2 of the previous section and the slant Haar

transforms, denoted |SH 1, is recursively obtained by the Kronecker

product \JiJ [F2] [ij (i2J}t |SH^j
followed by the rotation of the rows 1and 2n~ by the matrix (F2^nT

(9 can be also expressed recursively :
" CO80

Cos - n
n_1 strB

n

Sin29
n 1+ 4Cos20 .

n-1

In Fig. 6-6 a we present the corresponding algorithm of order 8,

in Fig 6-6 b a modified algorithm such that the coefficients are

ordered, and in Fig. 6-6 c, we present the ordered slant Haar matrix

-159-

1 \ \fZJs
-l\y ^$ \

it aIv&

^

/\ -1 *\ A A
41

-i •1
Si l/fll

i /
-1 H

sSR
-K. ^^^ /

*m
/\-i z -1

&
"i -i

a) algorithm (natural order)

4 1//2T

^NyV

-$

/*yC

\ -1

Y y* -1

iff

PR
A\-i

fife
-\ -1 -i

b) algorithm (ordered rcws)

1 1 1 1 1 1 l 1

7 5 3 1 -1 -3 -5 -7 *VE

3 1 -1 -3 -3 -1 1 3 ,Vff

i 7 -1 -9 -17 17 9 1 -7 a 4/fioS

ft
1 -1 -1 1 0 0 0 0 . ff

0 0 0 0 1 -1 -1 1 .ff

1 -3 3 -1 0 0 0 0
ri#y

0 0 0 0 1 -3 3 -1 ,1^

c) matrix

Fig. 6-6. Slant Haar transformI of order 8

-160-

of order 8.

Computational complexity : By application of (), or by direct

application of the results of chapter 3, we obtain the following

number of elementary operations for the slant Haar transform:

additions : 2n+2 -6
multiplications: 2 - 1

shifts : 2n - 2

normalizations : 2-2 =32

As the slant Haar transform of order 4 (which is also the slant transform

of order 4 presented in chapter 3) can be performed somewhat differently,

we can trade, in the above results, 2 additions and 2 shifts

for 2n multiplications as we did for the slant transform presented

in chapter 3.

Comparison with the slant transform of chapter 3, which we call

now slant W-H transform to avoid confusion, shows about the same

number of each elementary operation except for (n-3) 2+4 fewer

additions.

6-6. Generalization to combined slant vectors and their inclusion

into the WHH transforms:

So far, we have considered the inclusion of the slant vectors

only into the Haar basis. We have developed in some detail the

slant transforms that could be thus generated and found a

large number of slant transforms. In this section, we suggest different

generalizations. The first considered is the inclusion of so called

slant Walsh-Hadamard vectors.

6-6-1. Slant Walsh-Hadamard vectors:

The linear combination, through a unitary matrix Tu], of a set

-161-

of orthonormal slant vectors yields also a set of orthonormal vectors

and thus a suitable set of replacement vectors. Obviously, the inclusion

of these combined slant vectors requires not only the operations for the

original slant transform, but also the operations for the rotation by the

matrix fuj.

We consider in particular the W-H linear combination of slant vectors

of same size and type but defined on disjoint intervals (variation of

the parameter X in the notation of 6-3-2). We obtain a set of

piece-wise linear vectors of larger size than the original

slant vectors. In Fig. 6-7, we show the combined slant vectors

obtained from the vectors L\ (^ «• 0,1,2,3) and rotation by

Kf
6-6-2. Inclusion into WHH transforms :

Instead of using the Haar matrix as original unitary transform,

we may consider using any of the WHH transforms defined in chapter 3.

In order to avoid some of the basis vectors of these transforms ha-

ving a smaller size than the slant vectors of size 2 , we must have:

k ^ n- h

where h is the parameter of the WHH family. Among the numerous

possible transforms we can generate, we present now two examples,

a) Inclusion of L intoTWH-l :

With a method similar to that used for the Haar transform as

original matrix, we obtain 3 different transforms. We present them

in Fig. 6-8.

b) Slant W-H transform :

We consider the complete set of slant vectors which lead to the

slant Haar transform and combine the vectors of same type and size

by W-H transforms of corresponding orders. We obtain a set of 2

*
V

>.
"
N
.

V
*

\

^
.

'M
^
l

"
M

7
*

'

Fi
g.

6-
7.

E
x
a
m
p
l
e
s
o
f
s
l
a
n
t
W
-
H
v
e
c
t
o
r
s

O
N i

1

1

1

-163-

i

-3

1 1

-5 -7 l/l/S

1 1

1 -7 1//105

-1 1

1 -1

-1 1

3 -1 Iff?

1 * 1
-5 -7 i/ra

1 1

-11 -7 1//357

-1 1

1 -1

-1 1

5 -3 l/fij J

1 1

-5 -7 1//2I

1 1

-1 -1 1//5

-1 1

1 -1

-1 1

13 -7 1//105

3
and indudinR LFig. 6-8. Slant matrices derived from WHQ and indudinR L

-164-

orthonormal vectors which are the basis vectors of the slant W-H transform

presented in chapter 3. We have given in 3-7 a recursive definition of

this transform.

We note finally that the zonal relations between the Haar and

W-H transforms (chapter 2) or between the WHH transforms (chapter 3)

can be extended to the slant transforms with slant or combined slant

vectors.

6-6-3. Step slant vectors:

If we consider the Kronecker product of a slant matrix, denoted

[slt] with a WHH matrix, we obtain aunitary transform, denoted

[SSt] , [SSTJ = [SLT] fi [WHHJ
with piece-wise constant basis vectors and these constants vary

linearly.We present in Fig. 6-9 the step slant matrix given by the

product [SH4J 9 [^4}

6-6-4. Approximation of a vector with piece-wise linear vector:

By combination of slant linear vectors defined on disjoint

intervals and the corresponding constant vectors with variable gains,

we can approximate any vector with linear segments. However, the other

vectors of the set have then constraints and in particular the

constant vector will not be in the basis in general.

6-7. Conclusions :

In this chapter, we have mainly considered the definition of

fast unitary transforms which include a set of slant vectors. All the

transforms considered in this chapter are new, except the slant W-H

transform. The results obtained with this transform in Image processing

give hope that the transforms developed here will be of interest.

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

3
3

3
3

1
1

1
1

-
1

-
1

-
1

-
1

-
3

-
3

-
3

-
3

*

1
1

1
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

-
1

1
1

1
1

1
1

1
1

-
3

-
3

-
3

-
3

3
3

3
3

-
1

-
1

-
1

-
1

*

1
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

3
3

-
3

-
3

1
1

-
1

-
1

-
1

-
1

1
1

-
3

-
3

3
3

*

1
1

-
1

-
1

-
1

-
1

1
1

-
1

-
1

1
1

1
1

-
1

-
1

1
1

-
1

-
1

-
3

-
3

3
3

3
3

-
3

-
3

-
1

-
1

1
1

*

1 |fl
6

1
-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1
1

-
1

-
1

1

3
-
3

-
3

3
1

-
1

-
1

1
1

-
1

-
1

1
-
3

3
-
3

3
*

1
-
1

-
1

1
-
1

1
1

-
1

-
1

1
1

-
1

1
-
1

-
1

1

1
-
1

-
1

1
-
3

3
3

-
3

3
-
3

-
3

3
-
1

1
1

-
1

*

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

1
-
1

3
-
3

3
-
3

1
-
1

1
-
1

-
1

1
-
1

1
-
3

3
-
3

3
*

1
-
1

1
-
1

-
1

1
-
1

1
-
1

1
-
1

1
1

-
1

1
-
1

1
-
1

1
-
1

-
3

3
-
3

3
3

-
3

3
-
3

-
1

h
a

v
e

1
1

r
o

w
s

w
it

h
*

a
fa

c
to

r
l/

v
5

-
1

*

Fi
g.

6-
9.

:S
lan

tm
atr

ix
[s^

H^
fi

[w
hJ

-166-

CHAPTER VII

SOME APPLICATIONS OF FAST UNITARY TRANSFORMS

7-1. Introduction :

In the previous chapters, we have considered fast unitary

transforms and their properties independently of their applications.

Our approach has particularly stressed the recursive generation of

fast unitary transforms, the evaluation of the computational complexity

of their algorithms and the analysis of the computational errors.

This chapter illustrates how fast unitary transforms can be applied to

different domains and how the results of this thesis open new directions

in these applications.

In the following, we first describe the main applications of fast

unitary transforms : signal representation and dimensionality reduction,

encoding and filtering. Our presentation is based on mean square error

analysis because it is most commonly encountered in the literature and

also because it leads to analytically tractable computations. However,

it does not necessarly represent the state of the art in these applica

tions nor is a limit of the application of our results.

All applications involve the computation of the covariance matrix

of the transform coefficients when mean square error is used. An

interesting application of the recursive definition of fast unitary

transforms is the recursive expression of this covariance matrix, leading

to a fast computation.

We shall see that all applications lead to a ternary trade-off

between quantities which will be qualified as :

-168-

However, we may still have a good representation of the original

sequence knowing only a few terms of the transformed sequence. We denote

with "/\" the approximate values. We can the express the mean square

error in the representation of the sequence :

N-1

i«0
\ - \

N-1 N-1

i«0 k=0

k=0

If the input sequences has known second order statistics ,

mean i/*x)± - E (X±)

Tik)l2 li\ - \

'~X'i "* "i' -,

and covariance matrix (

then, we can express the second order statistics of the transformed

sequence:

Wi - M A <2)

<«yy>±3 - E([Yi -</Vi] h -wi]>
£ [Tik <v<av i k (x* -(m] *

=2 Tife T*t E(k-(/,)k] [^-(A^*

[-n] =tTJ [•»]. M* (3)

» E

k

Thus

Now, we assume that we take only a few coefficient

formed sequence and neglect the others. By inverse transform of this

reduced sequence, we obtain an approximation of the original sequence,

The mean square error of this approximation is particularly easy to

compute since , by Parseval's theorem it is the energy of the omitted

coefficients. From (1) , (2) and (3), we have :

MSE(X)
k £ omitted
coefficients

I (w WW")* <«

-169-

In representation problems, the parameters of interest are:

- the quality of the approximation (e. g. MSE)

- the number of maintained coefficients

- the complexity of the transform.

The trade-offs between these parameters have been only partially studied

so far. When the complexity of the transform is not a problem, the Karhunen-

Loeve transform (which, diagonalizes the covariance matrix) has been shown

to be optimal in many ways : for a fixed number of maintained coefficients

[1], for a fixed level of the mean square error with Gaussian sequences

[2]. However, when the complexity is considered to be critical, only

very few results with a limited number of transforms have been reported

[3] [4]. In section 6 of this chapter, we present a theoretical compari

son of transforms for a first order Markov process and a MSE approxima

tion measure.

7-2-2. Multiclass signal representation :

For a long time the feature selection stage of a pattern recognition

scheme has been heuristic while the classification stage received

more attention. Only recently , some efforts have been given to design

automatic feature selectors [5] [6] [7]. It is not the place here

to present these methods; however, we want to stress the use of

unitary transforms in feature selection.

The rotation of the axes of the pattern space by a unitary trans

form may give axes more meaningful to represent an separate the diffe

rent classes. The K-L transform Is again optimal [8] and is the bas

of factor analysis (where classes are unknown). However, other unitary

transforms may perform closely with less computational time and

therefore are of interest. Andrews [9] and Carl [10] have applied

-170-

this approach to a large variety of patterns and found promls

results.

7-3. Signal encoding :

The problem of signal encoding is very similar to the representa

tion problem ; however, the representation is no longer the first step

in the processing of the signal but. the ultimate goal. After quantization

and coding of the maintained coefficients, we have a bit rate which

expresses clearly the performance of the encoding scheme, for transmission

or storage. This is the most popular application of the fast unitary

transforms for a wide variety of signals : speech [11] and image encoding

[12] [13] [14] are the most common examples. In this section, we analyse

the basic problems of signal encoding and discuss the possible options.

7-3-1. Basic problems of signal encoding :

Signal encoding and decoding are performed schematically as follows:

continuous

signal

digital

signal

coded

signal

. -1Sampler Encoder Transmission lDecoder Reconstruction
or Storage

distorted

digital
signal

distorted

continuous

signal

Signal encoding techniques take advantage of the redundancies in the sig

nals which belong to the same class to reduce the transmitted or stored

data. Statistical characteristics of the class of signals are necessary

to analyse an encoding scheme and in section 7-6, we consider the case

of first order Markov process which models especially well speech and

image signals. For a first order Markov process, one single parameter

characterizes the signal complexity. In the evaluation of the performance

of an encoding scheme, the parameters of interest are the bit rate,

-171-

the distortion level (with a distortion measure) and the computational

complexity.

a) distortion : If a human is the ultimate user,through his senses,

of the decoded signal, the distortion measure must consider the subjective

effect of the errors. To our knowledge, such distortion measure is

still under study and commonly the mean square error is considered, mainly

because it leads to a tracktable analysis, but also because it is a

rough approximation of the human perception of distortion [12]. A better

but still somewhat unsatisfactory measure is the frequency weighted

mean square error [13] [15]. The global distortion of the encoded signal

appear at various stages of the encoding process:

- sampling error : since most signals of interest are frequency

limited and since the human senses (hearing and vision in particular)

are mostly sensitive to low frequencies, sampling errors can usually

be made negligible.

- transmission (storage) errors: we neglect them in the following.

- encoding errors on sampled data due to the data compression

technique and depending on this technique.

b) computational complexity : It controls the equipment complexity

and the computation time. The constraints on complexity for various

applications are certain quite different. In this thesis, we shall

measure the computational complexity uniquely by the total number

of elementary operations required in the fast algorithms. By so doing,

we neglect an important constraint of practical encoders : the buffer

size necessary for each encoding technique.

-172-

7-3-2. Unitary transform encoding techniques :

In a transform encoding technique (also called block quantization

technique), the samples are treated by blocks. These blocks are trans

formed by a fast unitary transform (therefore the blocks have usually

2 elements). In the transform domain, many coefficients have a small

amplitude and may be discarted without noticeable loss of quality.

The remaining coefficients are then quantized. The encoder has the

following structure :

Direct transform Selection of

transform coefficients

Quantizer

while the decoder performs the inverse transform. A transform encoding

technique is then determined by the transform, the blocksize, the

method of selection of transmitted coefficients and the quantizer. We

comment on them :

transforms : only a few transforms have been considered :

Fourier, W-H, Haar, Slant, Discrete Cosine (a variation of the Fourier

transform defined recently). In fact, it is known that, in its K-L

basis, the signal is represented by uncorrelated coefficients which are

independent if we assume (experimental evidence somewhat justified

by the law of large numbers) that they are Gaussian [1]• The rate-

distortion theory tells us that these coefficients can be optimally

encoded but without concern for speed of computation. If fast unitary

transforms are used instead, we have a gain in computational complexity

achieved at the expense of a larger distortion resulting from the

remaining correlation among the coefficients.

selection of transmitted coefficients: There are many ways

(1 if i-0

The Discrete Cosine matrix is given by (C) . . =» Cos(yi(2k+l)) *{
2n lf3 2N ($if i//0

-173-

to select the transmitted coefficients and to quantize them. Our goal

here is to concentrate on the effect of the choice of the transform and

therefore we compare in section 7-6 theoretical bounds obtained from

information theory for different transforms ; the corresponding

selection and quantization rules parallel the theoretically optimal

rules used for the Karhunen-Loeve transform.

7-4. Signal filtering t

A common problem in electronics as well as in digital circuits

is to design filters that improve the signal-to-noise ratio of a

noisy signal. Filters are analysed in the signal (time) domain or

equivaleritly in the spectral (frequency) domain. Generalized filters

analysed in the transform domain have been presented by Pratt [17].

In the following, we consider the simple example of a stationary vector

signal X mixed with an uncorrelated additive noise Y . We denote

their respective covariance matrices by [Ryy] and [Ryy] • The noisy

signal is transformed by a unitary transform [T] and then filtered

by a matrix multiplication with the filter matrix. [%\. The inverse
*t

transform [T] is then applied to obtain an estimate X of the

signal. It is well known that the optimal filter in the signal domain

is given by [H] = [R^] ([R^] +[Ryy^"1
and the mean square error of the resulting estimate is..

£2 = Tr {[R^] ([BJ +[V T1 [R^]} (5)
If before filtering, we transform the signal by a unitary transform

[T], we have an optimal filter v3o\ given by :

[*] = [T] [R^] [T] t([T] ([R^] + [R^]) [T] V
rA01 r.i r„i r„i*t (6)

	Copyright notice 1974
	ERL-415 (1 of 7)
	ERL-415 (2 of 7)
	ERL-415 (3 of 7)
	ERL-415 (4 of 7)
	ERL-415 (5 of 7)
	ERL-415 (6 of 7)
	ERL-415 (7 of 7)

