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Abstract

This paper deals with the problem of finding minimum feedback sets

of a digraph. The problem is shown to be equivalent to transforming

sparse matrices to certain optimum triangular forms, thus it is

important in the analysis and solution of large systems by means of tearing.

It is further demonstrated that the minimum feedback vertex set

problem and the minimum feedback edge set problem can be simply reduced

to each other. Algorithms for finding minimum feedback sets of some

important classes of digraph are proposed and their application in the

branch-and-bound approach of solving the general problem for an arbitrary

digraph is discussed. An iterative cardinality reduction algorithm is

also presented for finding a local minimum feedback set of an arbitrary

digraph.
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I. INTRODUCTION

Let G = (X, E) be a digraph [1] with a set of vertices X and a set of

directed edges E={(x±, x) |x^,, x € X}. A subset SCx is a feedback

vertex set , denoted by FVS, of G if the subgraph defined on (X - S)

contains no vircuits [1]. Similarly, F C E is a feedback edge set, denoted by

FES, of G if the subgraph (X, E - F) contains no circuits. A feedback set

with a minimum cardinality is called a minimum feedback set.

Minimum feedback sets of a digraph have been treated in connection

with signal flow graphs [2] - [4] and with computer program simplification

[5], [6]. One way of finding a minimum feedback set is by solving an

associated minimum cover problem [7], [8]. This involves the generation of

elementary circuits in a digraph [2], [8], [9]. In [10], a new method is

proposed in which only a minimal set of circuits is generated. Another

approach to the minimum feedback set problem is to use topological trans

formations. Guardabassi [11] introduces some topological simplification

rules and completes the solution with a branch-and-bound algorithm. Diaz,

et al. [12], Cheung and Kuh [10] further extend the set of simplification

rules. However, these rules fail to determine a minimum feedback set with

out resorting to some other algorithms.

In this paper, we shall present some results on the minimum feedback

set problems and shall address ourself also to the problem of finding a

good local minimum feedback set. However, before we proceed with these,

we will point out in Section II that the problems of FVS and FES have their

*

Some other names for feedback vertex set are essential vertex set and
feedback node set. Terminology used here will be defined in the latter
part of this section.



counter-parts in obtaining canonical forms of sparse matrices. More

specifically, the FVS problem is equivalent to the problem of transforming

a sparse matrix to an optimum bordered triangular form; while the FES

problem is equivalent to that of an optimum pseudo triangular form. These

forms are often desirable in analyzing and solving problems in large systems

by means of the method of tearing [10, 13]. Section III shows that the FVS

and FES problems are basically the same and can be reduced to each other

in a simple manner. In Section IV, we study some classes of digraphs for

which minimum feedback sets can be determined by simple topological trans

formations. Section V presents an iterative method of finding a local

minimum feedback set. In the remaining part of this section, we shall

introduce some relevant definitions.

A (simple) directed path y(x , x.) of length £, I > 0, is an ordered set of

(distinct) vertices:

\x(x±> x ) = {px, p2, ..., P^+1>» such that

Pl =Xi' PA+1 =Xj' (V W GE'

xi * V

A (simple) circuit n of length I, I > 0, is an ordered set of (distinct) vertices:

n = {plS P2, ..., P£+1K such that

P1 = P£+i> (P^» Pfc+i) e E» k = 1, 2, ..., I.

A circuit of length 1, 2 is called a self-loop, doublet respectively.

A digraph is said to be cyclic (acyclic) if it has (does not have) circuits.

The section graph defined on a subset Y C x is G(Y) A {Y, E(Y)}, where

E(Y) = {(x,,, x.) £E I x., x. £Y}. The cardinality of a minimum feedback
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set is called the index of the digraph. For simplicity, feedback vertex /

edge set of a digrah G is denoted by FVS(G)/FES(G).

II. EQUIVALENT PROBLEMS IN SPARSE MATRICES

Consider an n X n non-singular sparse matrix A and its transformed

T
matrix PAP where P is a permutation matrix. The transformed matrix is

said to be in a Bordered Triangular Form (BTF) if the nonzero entries are

restricted to the shaded area of Fig. la. If, for a particular permutation

matrix P, the number of the bordered columns, k, is a minimum, we say that

PAP is an optimum BTF, or

k(P) = min k(P) = k . .
p min

T
In Fig. lb, the transformed matrix PAP is called a Pseudo Triangular Form

(PTF)« The removal of nonzero elements designated by crosses in the upper

triangular part of Fig. 1(b) makes the matrix triangular. If, for a

particular transformation P, the number of nonzero elements in the upper

— — T
triangular part, q, is a minimum, we say that PAP is an optimum PTF, or

q(P) = min q(P) = w

The advantages of these two optimum forms are quite obvious in solving

large sparse matrix equations. Basically, the optimum forms yield optimal

strategy in tearing, and, thereby one is capable of minimizing computation

and storage.

In [10], we demonstrated that the problem of finding an optimum BTF

is equivalent to that of finding a minimum feedback vertex set of a digraph.

An associated digraph of an n X n matrix A = [a ] with nonzero diagonal

entries is denoted by Q(A). Q(A) = (X, E), with cardinality of the vertex
t
We assume that A has a nonzero diagonal and that symmetric permutation in
any order is numerically stable.
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set, |x| = n. The edge, (x , x ) € e iff a ^ 0 for i^ j;

i, j« 1, 2, ..., n. Obviously, Q(A) and Q(PAP )are isomorphic. Thus

deleting the element a.. from the matrix can be interpreted as deleting

the edge (x±, x.) from the associated digraph. Using the fact that a

matrix is transformable by symmetric permutation to a triangular form if

and only if the associated digraph is acyclic, we conclude that q. is the

edge index of the digraph. Thus to find an optimum PTF is equivalent to

that of finding a minimum FES of the associated digraph Q(A).

The algorithms and techniques for finding minimum feedback sets of a

digraph are therefore useful in solving many large system problems. It v

should further be pointed out that the triangular matrix form is a special

case of the block triangular form. Thus the bordered and pseudo triangular

forms are, respectively, special cases of the bordered block triangular

form and the pseudo block triangular form. These general forms occur

frequently in physical problems such as large power systems and integrated

circuits. Often we may consider the diagonal blocks in the general forms

as modules or clusters in the physical problems, thus reducing the general

problem to that of the bordered triangular form and pseudo triangular form

which we treat in this paper.

III. CONVERSION OF FEEDBACK VERTEX AND FEEDBACK EDGE SETS

In this section, we show that the FVS and the FES problems are basically

the same and can be reduced to each other in a simple way.

First we consider the conversion from FVS to FES. In this case, a

minimum FVS of G = (X, E) is identified as a minimum FES of G which is

constructed as follows. G » (X, E) has two vertices x1 and x" for each

vertex x in G. There is an edge from x1 to x" in G. All edges directed to
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x in G becomes edges directed to xf in G. Similarly, for edges directed

from x in G, we have a corresponding set of edges directed from x" in G.

Thus |x| = 2|X| and |e| = |e| + |x|. The construction of G from G is

illustrated in Fig. 2(a). We observe that there is a 1-1 correspondence

between a circuit in G and a circuit in G. We now show how to identify a

FVS of G from a FES of G, and vice versa, by means of the following theorem.

THEOREM 1. There is a correspondence between a minimum FVS of G and a

minimum FES, with the same cardinality, of G.

Proof. (i) Suppose FVS. (G) = {x-,x2,... ,x, } is a minimum FVS of G, then

FES1(G) = {(x*, x"), ..., (x£, x£)} is a FES of G. Suppose FES (G) is not

minimum, let FES.(G) be a minimum FES of G. FES„(G) may contain two types

of edges (a): (x!, x") and (b): (xV, x!). For each edge of the second type,

we replace it by an edge (x!, xV). It is obvious that the resulting set of

edges, FES3(G), is also a FES of G. Now, corresponding to each edge in

FES3(G), we can identify a vertex in G. Let FVS2(G) be the set of vertices

in G constructed in this way. Obviously, FVS2(G) is a FVS of G. Since

|fvs2(g)| = |fes3(g)| = |fes2(g)| < |fesx(g)| = Ifvs^g)!, so fvs1(g)

is not a minimum FVS of G.

(ii) For a given minimum FES of G, we can construct a FES..(G) having the

same cardinality and containing only edges of the type (x!, xV). Then as

in case (i), we get a FVS^G) from FES-(G). Parallel to case (i), we can

show that FVS1(G) is a minimum FVS of G. This concludes the proof.

Next we show the conversion of FES to FVS. In this case, a FES of

G is identified as a FVS of a new graph G*. G* for this purpose is the line

graph of G [1]. A line graph can be. constructed from a graph G in the

following way. For each edge e. of G, we define a vertex x* in G*.
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(x*, x*) is an edge of G* iff in G the terminal vertex of e coincides
J i

with the initial vertex of ej. Fig. 2(b) illustrates this point. Again,

we observe that a circuit in G, defined in terms of a set of edges, is 1-1

corresponding to a circuit in G*, defined in terms of a set of vertices.

As a consequence of the construction, we have the following theorem.

THEOREM 2. There is a 1-1 correspondence between a (minimum) FES of G

and a (minimum) FVS of its line graph G*, in particular, both sets have-

the same cardinality.

Proof. Let FES(G) - {e.^ e2, ..., ek> be a FES of G. Obviously FVS(G*) £

1' X2' ""' xk^ is a FVS °^ G** Tne converse is also obvious.

REMARKS. <*•) The above two theorems show the duality between the FVS and

FES problems. So knowing an algorithm for one problem, we can solve the

other by applying it to the derived digraph. The price we pay for this

unified approach is that, in general, the derived digraph is more involved

than the original graph.

(ii) Note that in THEOREM 1, the correspondence is not 1-1. Also if the

FES of G is not minimum, we cannot construct a corresponding FVS in G,

such that the the two feedback sets have the same cardinality. To see this

point, consider the case when FES(G ) contains two edges: (x", x!) and

(x£> xj). (Note that this can happen only when FES(G ) is not minimum.)

To identify the corresponding FVS in G, we have to replace the above two

edges by, say (x.j, x^»). This implies that the FVS in Ghas a smaller
cardinality.

(iii) 1-1 correspondence holds in THEOREM 2, even if the sets are not

minimum sets.

(iv) In [10, 11], a set of topological transformation rules has been
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introduced for the FVS problem. Since the FVS and FES problems can be

reduced to each other, it is obvious that there exist similar reduction

rules in the FES problem [14]. °

(v) Since the FVS and FES problems are reducible to each other, we shall

pursue only on the FVS problem from here on.

IV. MINIMUM FEEDBACK SETS OF SOME CLASSES OF DIGRAPHS

As pointed out in the introduction, existing topological transformation

rules are insufficient for finding FES/FVS of an arbitrary digraph. In this

section, we shall show that for some classes of digraphs, simple reductions

rules can be used to find minimum FVS/FES. The importance of these results

is that they enable us to find efficiently the lower bounds of the index of

an arbitrary digraph under study. In addition, they can be used to itera-

tively reduce the cardinality of an initial estimate of a feedback set.

First, let us define two basic topological transformation [11].

(1) Deletion of a vertex x € X from a digraph G = (X, E):

Remove x and form the section graph G(X - {x}) of G.

(2) Elimination of a vertex x £ X:

Delete x according to (1) and add a set of edges F A {(p, q)|(p, x),

(x, q) G E, Vp, q G X} to G(X - {x}), i.e., we form

G A (X - {x}, (E - Inc(x)) U F)»where Inc(x) is the set of edges

incident with x.

The first class of digraphs to be considered has the following prop

erties:

Q±i G=(X, E) € Q± if
There exists a tree T and a co-tree E such that E = T U e , T n e =<j>

and for all (u,v) £ E^ u^ v, there exists a directed path from v to u

in T.
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Let K be an algorithm operating on G £ Cj- defined as follows.

STEP 1 Delete all vertices with self-loops, if the resulting section

graph is (<f>, <J>), go to STEP 3

STEP 2 Eliminate a vertex whose min(in-, out-degree) _< 1 and

go to STEP 1

STEP 3 Set S = set of all vertices deleted in STEP 1. End.

Example. Consider the digraph shown in Fig. 3(a) where the solid lines

represent tree branches. Obviously, G^ y . We will demonstrate that

by applying £p_, we are able to reduce G to (<f>, <J>), and thus obtain a

minimum FVS of G.

(a) Apply STEP 2 at vertex a. We obtain the graph of Fig. 3(b).

(b) Apply STEP 1 and delete vertex b which has a self loop. We obtain

the graph of Fig. 3(c).

(c) Apply STEP 2 at vertex c. We obtain the graph of Fig. 3(d).

(d) Repeat STEP 2 at vertex f. We obtain the graph of Fig. 3(e).

(e) Apply STEP 1 and delete vertex d which has a self-loop. We obtain

the graph of Fig. 3(f).

(f) Apply STEP 2 at vertex e. We obtain the graph of Fig. 3(g), which

is nothing but a vertex.

(g) Repeat STEP 2. We have totally reduced the graph,

(h) According to STEP 3, a minimum FVS is {b, d}.

THEOREM _3. Let GG Q 4^ will reduce G to (<j>, $). Furthermore S is

a minimum FVS of G.

Proof. It is obvious that all vertices with self-loops are part of a

minimum FVS, so remove all these vertices. First, we show that there

always exists avertex to which (^ can be applied. Since G£ Q ,there
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exists a tree T satisfying the conditions of Q,. By assumption, for

each end vertex (a vertex in T with only one edge incident with it) x of

the tree T, if (u, x) £ T, then all other edges incident at x must go out

of x, and vice versa if (x, u) £ T. This means that min(in-, out-degree

of x) = 1. Suppose we eliminate such a vertex (STEP 2) and obtain a

reduced digraph with T C t as the tree, then vertex u can be in any one

of the following states: (i) it becomes an end vertex with respect to T..

without self-loop; (ii) it becomes a non-end vertex without a self-loop;

(iii) it has a self-loop. If (i) or (ii) happens, the reduced digraph

has more than two vertices, the tree T- has more than two end vertices.

Hence STEP 2 can be applied on the reduced digraph. Now consider case

(iii). On deleting x (STEP 1), we delete some edges and links of T-.

Let the reduced tree be T« C t . The resultant digraph is either

decomposable to a set of strongly connected components each having the

same property as G, or, a non-end vertex of T- becomes an end vertex

of T«. This end vertex again has min(in-, our-degree) = 1. Thus in

all cases, the reduced digraph has the same property as G. Hence

deletion and elimination can be used to reduce G to a null graph (<j>, <f>).

The set of vertices deleted (STEP 1) forms a minimum FVS of G because

STEPs 1 and 2 are index preserving [11]. Next, suppose we eliminate an

arbitrary vertex x whose min(in-, out-degree) <_ 1 from G , we want to show

that the transformed graph is also a Q1 graph. Since GG Q., there

exists a tree T having the property of Q,. Eliminate x, form the

transformed graph and construct a new tree as follows. The new tree contains

all original tree edges except those removed in the elimination process,

plus the new edges (y,z) where (y,x) and (x,z)£ T, Vy, z £ X. It is
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obvious that this new tree has the desired Q1 property. This completes

the proof.

We now consider a generalization of the above to an arbitrary digraph.

Let us partition the edges E into 4 disjoint sets: T, E^ E2, E3 such that

T = tree constructed using the depth-first search method with

a: {1, 2, ..., n} **• X being the ordering on X generated in the course of

the depth-first search [15]; E- = set of edges each of which connects a

vertex to its ancestor, where x is an ancestor of y (which is a descen-

dant of x) if there exists a directed path from x to y in the tree T;

E_ = set of edges each of which connects vertices in different subtrees,

where two subgraphs of a tree are called subtrees if there exists no

directed path between any vertex in one subgraph and any vertex in

the other subgraph; E_ = set of edges each of which connects a vertex

to its descendent. In Fig. 4, an example of this is shown. With this

partitioning, we have the following obvious result.

THEOREM 4. Let G = (X, E) and G 4 (X, T U E ). Then (i) ty can be

applied to G to find a minimum FVS of G ,and (ii) G A (X, TUe^ E3)

is acyclic.

Proof, (i) is a special case of Theorem 3 and (ii) is a consequence of

the depth-first search.

Theorem 3 shows that for graphs in which a particular tree can be

constructed, we can determine a minimum FVS simply by using two topological

transformations. For an arbitrary graph, we may not be able to partition

the set of edges into disjoint subsets having the properties defined in

Theorem 3. In this case, one possible way of finding a local minimum FVS

is to extract a subgraph G from G such that this subgraph satisfies the
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conditions in Theorem 4. A minimum FVS is then determined for this subgraph.

On deleting this FVS from G, we again extract a subgraph satisfying the

conditions in Theorem 4. Repeating this process, we get a local minimum

FVS of G. The results in the above two theorems can also be incorporated

into a branch-and-bound method [11], [16] of finding minimum FVS. In this

method, we pick an arbitrary circuit n (preferably one with a shortest

length) and assume that a particular vertex x. ^ n is in a minimum FVS. We

delete this vertex from G and obtain a section graph G(X - (x^). Similarly,

we pick another vertex from the circuit, delete it from G and obtain

another section graph. In this way we obtain k section graphs, where k

is the number of vertices in the circuit n. We illustrate this operation

by Fig. 5. This is the branching process. On repeating the process on

each and subsequent section graphs, we will end up with null graphs which

are the end-vertices of the branch-and-bound tree. Obviously, it is not

efficient to construct the whole tree. The whole idea of the branch-and-

bound method is where to branch. One way \16] is to branch at a vertex

having a minimum lower bound of the index of G. This requires a quick

estimate of the index of the section graphs. This can be done simply

using the result of Theorem 4, namely, for the section graph G under study,

we extract G..which satisfies the conditions of a Q1 graph. Since

G.. S y we obtain index of G. immediately. Since GL is a subgraph of G,

index of G- is a lower bound for the index of G. In conclusion, results

in Theorems 3 and 4 can be used to find efficiently lower bounds in the

branch-and-bound method of finding the index of a digraph.

The second class of digraphs y. we are going to consider has the

following property.
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Q2: G=(X, E) e Q2 if index (G) <2.
For this class, we define the following operation (^p2-

STEP 1 Set G A (X, E) = the given graph

STEP 2 Delete all vertices with self-loops.

STEP 3 In G, if there exists x € x such that rain(in-degree, out-

degree of x) <_ 1, go to STEP 3, else go to STEP 4.

STEP 4 Eliminate x from G. Set G « the transformed graph. Go

to STEP 2.

STEP 5 In G, if there exists a vertex x £ X such that on removing

edges that form doublets at x, min(in-, out-degree of x) = 0,

then delete all edges incident at x, except those forming

doublets at x. Set G = the transformed graph, go to STEP 2

else go to STEP 6.

STEP 6 Set S = all vertices deleted in Step 2. S is a minimum FVS

of the original given graph.

END.

The following Theorem shows that ^P2 determines indices of Q2 graphs

THEOREM 5. Let G=(X, E) GQ^ Then index (G) =0, 1iff Sgenerated
by ^P~ has 0, 1 vertices respectively.

Proof, (i) Suppose index (G) = 0, then G is acyclic and <P2 can always

be applied at the "source" vertex (vertices with in-degree = 0) of G and

its transformed digraph. Hence by repeated application of STEP 5 of C[X,

we can delete all edges of G. Hence S is empty. Conversely, if S is

empty, then index (G) is 0 because STEPs 4 and 5 are index preserving,

(ii) Suppose index (G) = 1. It is obvious that the theorem holds for

cases with |x| = 1, 2, 3. Suppose it is true for |x| <_ n. Consider G
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with |x| = n+1. We want to show that ^P7 can be applied to at least one

vertex of G. Since index (G) = 1, there exists a vertex s such that

G* = G(X - {s}) is acyclic. Partially order vertices in G* so that x > y

iff (x, y) £ E. In G*, let us call vertices with zero in-degree (out-

degree) the source (sink) vertices. If a source vertex has a doublet with

s (or has an edge going to s), we apply STEP 5 of (42. If the source vertex

has an edge coming from s, we can apply STEP 4 to eliminate the vertex.

In any case, we can eliminate at least one vertex of G. On doing

so, we get a reduced digraph having at most n vertices and with the same

index as G. Hence sufficiency is proved. Necessity is obvious because the

single vertex (with a self-loop) in the reduced digraph is a minimum FVS

with cardinality equal to 1. Finally, we note that steps 3-5 when applied

to an arbitrary vertex of aQ2 graph produces again aQ graph. This is

because these steps are index preserving. This completes the proof.

Thus, for graphs with index less than 2, we can determine their

indices using ^R. Though y_ is a limited class of digraphs, we can

make use of its property in the determination of a local minimum FVS of

an arbitrary graph as will be shown in the next section.

V. LOCAL MINIMUM FEEDBACK VERTEX SET

In this section, we propose an iterative reduction algorithm for

finding a local minimum FVS of an arbitrary digraph. The algorithm is

as follows. Let G = (X, E) be the graph under study.

LFVS (Algorithm for the generation of a local minimum FVS)

STEP 1 Initialization. Find a minimal FVS of G

STEP 2 Reduction. Reduce the minimal FVS found in STEP 1 to

a local minimum FVS.

END.
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The algorithm begins by generating a reasonably small initial

estimation of FVS of G. For the purpose, we use a minimal FVS of G as our

starting point. We define a minimal FVS of a graph G as a FVS such that

no proper subset of it is also a FVS of G. In STEP 2, we reduce this

minimal set to a local minimum set by means of some elementary augmenta

tions. We shall elaborate on these steps. First consider the following

algorithm for generating a minimal FVS of G = (X, E).

MINIMALS (Algorithm for finding a minimal FVS of G = (X, E))

STEP 1 Set G1 A (X^ E±) =GA (X, E), n= |x|.

i = 1, S = 0. S is a minimal FVS of G.

STEP 2 In G , if there exists x. £ X with a self-loop,

go to STEP 3, else, go to STEP 4.

STEP 3 Delete x. from G. A (X., E.) and form G.,- A (X.,-, E.,-)
i i = i' i l+l = i+1 i+1

where X±+1 = X± - {x±}, E±+1 = E±(Xi+1).

Set S = SU {Xi). Go to STEP 5.

STEP 4 Eliminate any x. from G and form G ..

STEP 5 Set i = i+1, if i = n+1, Stop, else, go to STEP 2.

We now show that MINIMALS does generate a minimal FVS.

THEOREM 6. Let MINIMALS operate on G = (X, E) and produce a feedback

vertex set S. Then S is minimal.

Proof. Let S = {x^ , ..., x^ } and suppose MINIMALS deletes S from G in

the order x^ , ..., x^ . MINIMALS deletes Xj_ because it has a self-loop

in either G or the transformed graph gJ = G*(X - {x., ..., x^ _i}), which

is obtained from G as a result of eliminating x., ..., x^ _^. In the

latter case, the self-loop in G* is in fact a circuit in G passing through

only the eliminated vertices. Similarly, a self-loop at x^ is either a
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self-loop in G or a self-loop in G* , which is obtained from G± +i as a

result of eliminating vertices. Note that G* +1 is obtained from g£ by

deleting x^ . Thus each vertex in S has a circuit which does not pass

through any other vertices in S. Also, S is a FVS of G because any

circuit in G must pass through some vertices of S, as a consequence of the

vertex elimination process. Hence, S is minimal.

Once a minimal FVS is found, we then proceed to reduce this to a local

minimum FVS. The following is the reduction algorithm.

REDUCTION (Algorithm for reducing a FVS to a local minimum FVS)

STEP 1 Let S = {s., s_, ..., s } be a FVS of G
1 I s

STEP 2 For all s., s. £ S, do: Determine index of

G* =G((X - S) U {s±, Sj}),

if index (G*) _< 1, set

S = (S - {s , s }) U {s*} (where s* is tne new FVS of G*,

note that {s*} may be empty) and go to STEP 2,

else continue the do loop.

END.

In the above algorithm, we need a subroutine to detemine the index

of a graph whose index is known to be at most 2. ^R of Section IV is

precisely a tool for this purpose. It can be seen that algorithm REDUCTION

reduces an arbitrary FVS of a digraph to a FVS such that every section

graph of the form G* = G(X - FVS) U {s , s € FVS} has index equal to 1.

Such a FVS is our local minimum FVS of G. Incidentally, a local minimum

FVS is also a minimal FVS, as shown in the following theorem.

THEOREM 7. Let G = (X, E) be a digraph and S be a FVS of G. If S* is

the result of applying algorithm REDUCTION on S, then S* is a minimal

FVS of G.
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Proof. Suppose not, let S < S* be such that S. is also a FVS of G. Take

a vertex se (S* - S) and another vertex y(£c) € S*. Since G((X - S*) U

{s, y}) has index <_ 1, REDUCTION would not terminate at S*. Hence S* is

minimal.

Let us illustrate REDUCTION by an example.

Example. Consider the digraph shown in Fig. 6(a). Suppose we have obtained

aminimal FVS S* = {x2, x3> x5> x?). Let us apply REDUCTION on S*.

Arbitrarily, we pick a pair x2, x3 from S*. Next we form the section

graph G({x1, x2, x3, x4> x6» as shown in Fig. 6(b). Using ^p2 this
section graph can be reduced to the graph shown in Fig. 6(c). So {s* = x^

is a FVS of G({x1, x2> x3, x^9 x6». So we can replace x2, x3 by x± in

the FVS S*. The updated FVS becomes s* = {x^ x5, x?}. Now REDUCTION

terminates at this FVS. So S* is the desired local minimum FVS of G.

VI. CONCLUSION

In this paper, we study the problem of finding minimum feedback sets

of a digraph. We have demonstrated the relation between the problem and

that of transforming a matrix to suitable form for the purpose of tearing.

We have also shown that the feedback vertex and feedback edge set problems

can be reduced to each other in a simple manner. For graphs whose edge

set can be partitioned into subsets having special properties and for graphs

whose index is at most 2, we have proposed simple algorithms for finding

indices. These algorithms are shown to be useful in the determination

of the index of an arbitrary graph by the branch-and-bound method.

Finally, an iterative cardinality reduction algorithm is proposed to find

a local minimum FVS of a digraph.
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The result obtained in this paper provide a stepping-stone towards

the topological determination of minimum feedback sets of an arbitrary

digraph. Further work could be done in extending the class of digraphs

for which existing topological transformations can be used to find their

indices.
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Figure Captions

Fig. 1. The bordered triangular form and the pseudo triangular form.

Fig. 2. Illustration for the conversion between FVS and FES.

Fig. 3. Example of P., algorithm.

Fig. 4. Illustration of edge set partition according to Theorem 4.

Ex = {(4,1), (5,1)}

/ E = {(5,4)}

E3 = {(2,4)}
V,

Fig. 5. Illustration for the branch-and-bound method.

Fig. 6. Example for Reduction.
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