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Abstract. This paper presents the structure of optimal nonlinear

filters for the case where the unknown signal process and the observa

tion process have additive noise which is a continuous martingale. Thus

it generalizes recent work where the additive noise is Brownian motion.

The results depend upon a representation theorem which states that all

martingales of the observation process are stochastic integrals of the

"innovations."
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1. Introduction and Summary. This paper extends previous results

[1,5-7,9-14] based on the theory of martingales for filtering and esti

mation where the "noise" process is an additive Brownian motion, to the

case where it is an arbitrary additive martingale with continuous sample

paths.

The first crucial result (Theorem 2.2) states that if m is a n-

dimentional, continuous martingale, then every martingale z , which is

adapted to the a-fields ^ generated by m , can be expressed as a stochas

tic integral

t

••t mz0 +(z„ - zn + I <f> dm
*• n n ys s

0

This is a generalization of the corresponding celebrated result for the

case where m is Brownian motion [16], and is in fact an easy consequence

of the latter result and an important theorem due to Knight [15].

Next, in Section 3, we show that if the probability (P on the

measurable space on which m is defined is replaced by another measure

0~\t mutually absolutely continuous with respect to tr9 then m can be

expressed as

(1.1) m_ = I <j> d <m > +n
s si-4JQ

where nt is amartingale under (r.. Furthermore, the quadratic varia

tions of m and n are equal, <m >• = <n > , and all processes, adapted

to v7"t» which are martingales under {K are stochastic integrals of n

(Theorem 3.1). More importantly, we show that this representation as
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stochastic integrals of n continues to hold when m is given by (1.1)

whether or not (H is absolutely continuous with respect to ^(Theorem

3.2). Both these results use techniques first developed in [7]

as refined later in [19,20].

At this point we are ready to use these concepts to formulate

models for estimating an 'unknown1 process given an 'observed* process

of the form (1.1), and to use these results to obtain the stochastic dif

ferential equation satisfied by the optimum least squares estimates

(Theorem 4.1). This portion of the exercise is worked out in Section 4.

There are various miscellaneous results of minor nature in the

paper. Thus, for example, Section 3 contains a formula for the condi

tional likelihood ratio which extends theone derived in [5,10,11].

2. Martingale representation theorem. Let (ft, 7,(r) De a Proba

bility space and let (J" ), t € R be an increasing, right-continuous
t T

family of sub-a-fields of 7- Let 7^ =V ^.. Every family (xfc) ,

ter of real-valued functions on ft such that x is ^-measurable,

defines astochastic process (x ,J.yjy)* The same family (xt) defines

a different process if either the family (J" ) or the probability (r

changes. In particular, if (x ,"J" >(r) is aprocess, so is (xfc,^ ,j|r)

where 7* X = o{x |0 < s < t). When the context makes it clear we write\j £ s i — _

(xt,^.,^) as (xt,3*t) or (x^f) or (xt). Finally it will always be
assumed that a-fields are complete with respect to the associated

probability measures.

For a discussion of any unfamiliar terms or concepts used below

please refer to [2] or [17].

Let (ft,^" ,p), te R be a fixed family.
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DEFINITION 2.1. 77l1(^t>(p) is the set of all processes (m 9J-9f)
which are uniformly integrable martingales. TT]2(^" ,P) ={(m )e

'^1(3"t,|P) |sup Em* <»}. For i=1»2"^ioc( ^t»P> is the set of
all processes (mt) for which there exists a sequence of stopping times

Sk such that Sk •* -a.s. and (m^g I{g >Q}) GJ(^ for all k.
Without loss of generality, we will assume that every (m ) e/fj1

t loc

has sample paths which are right-continuous and have left-hand limits.

It is evident thatTM2 CIwt and hence"JTl? C%\ . Also, if (m ) 6
loc loc N t

''Aloe has continuous sample paths, then (in )e 7/?? .
t *loc

DEFINITION 2.2. A {J^f) is the set of all right-continuous
processes (a^^f) with aQ =0, and such that they have integrable
variation i.e., Ej |daj <«,. sf^^P) is the set of all pro
cesses (at) for which there exists a sequence of stopping times S that

/-» k
Sk •> co a.s. aad i&^ )e^^.,/7).

Now if (mt) €^oc(3-t,/:)), then there exists aunique ^-predic
table process «m>t)e 4loc(^t,P) such that <•* -<m>£) E?^oc(^t,<P)-
tfm>t)is called the (predictable) quadratic variation of (m ). It is

important to note that unless (m ) is continuous, ((m > ) depends crucially
^ t

upon the family (^*t,f). These statements are proved in [16]. For (m )

and (nt) in 7)1 ^(3^, f),let <m,n>t «A(<m+n>t -<m>fc -<n>).
If <m,n >t =0a.s. we say that (mt), (nt) are orthogonal; it then fol
lows that (m n )€ TTI J" .

t t 'loc

Our representation theorem is a consequence of the following result.

THEOREM 2.1. (Knight [15]) Let <«*) eTlf^P),k=l,...,n,
be a collection of continuous, pairwise orthogonal martingales. Let

(Bt> <7t>f ) be a n-dimensional Brownian motion which is independent of
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(™t) »' ••» (mt) . Let

Set

T (a) = inf {s| <m >(to) > t}, if this is finite

= °°, otherwise

x£(u>) =mk (<o), if T*<w) <
Tt(o>)

k k
(2.1) = m (w) + B , (cu), otherwise,

t - <m* >(u>)

and let ^7" be the sub-a-field of v/ generated by x , 0 < s < t,
t s

1 <_ k £ n.

Then (x. ,,t . »/r ) is an n-dimensional Brownian motion.

Remark 2.1. The sample paths of (x ) are obtained from those of
s

k k
(m ) by a random time change up to the time s = <m >, and after this

t °°

k k
time an independent Brownian motion B is attached to x . Note that

k k
<m >. (u>) = t if <m >(w) > t. Also, if t1 < t0, then on the set

T>) ^ 1 2
i k k k k{u)| <m > (oj) = <m > (to)} we have m (ui) = m (oj) a.s. for t1 <_ t <_ t„.

tl t2 1
Different components x of x are obtained by different time changes, and

the importance of the theorem lies precisely in permitting this, since

1 Tl

the result has been long known for the case when <m )=•••= <m >.

It should be clear that there is no general inclusion relation between

J-m, the a-field generated bym , 0<_s_<t, l£k£n, and u*. Of

course Jj"™ c v?X» Meyer [2] has given a simple proof of this theorem

when <m > = °° a.s. for all k.
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DEFINITION 2.3. For aft €4^3^ f) , let L2 (at, 3t,6
(Lloc(at>^t»(r)) denote the set of all 5~t-predictable process
(♦tt ^yf) such that EI <J>2|das| <• (1
teR+).

(I <|> Ida | < » a.s. for all
s s

COROLLARY 2.1. Under the hypothesis of Theorem 2.1 every random

variable z € L (ft,5*m,(T) has a representation

(2.2) z=E(z|j?») +£T ^k

for some processes (<|>k) 6L2( <mk >t, ^m,/P). (The integral in (2.2)
is a stochastic integral, see [4]).

Proof. First of all L2(ft,^m,(P) CL2(ft,^*,/P). Next, since

^t'^V ^is Brownian motion, therefore, by the well-known result

for the representation of functionals of Brownian motion [16],

-_- n /•»

(2.3) z - El<*'̂ *sf «

for some processes (i/,k) GL2( <xk >t J*,<P). Now, using (2.1), rewrite
(2.3) as

z=E(zl<f!) + r I tbkdvk + V f /dBk
11 t-( mk >"

< m >
n f o* u oo

k=l Jo k=lj[k>

Since (Bt) is independent of </m, therefore the second integral above

vanishes a.s.,
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\m >

(2.4) z=E(z|Jm) +£ f *kdxk
u k=l JO c c

Finally, set

k k
<JV(W) = * ir (w), k = l,...,n
C <mK>(w)

t

It is easily checked (see [18]) that 4 is ^ -predictable, and

im I k k•oo /•

lo *"* =Jo
$Cm >

oo /* oo

(<j)k)2d<mk>t - E I (i|/k)2d<xk>t.

Notation. We use the notation (<J>om) to denote stochastic integral

«•$:(<j>om)_ =\ <f>sdmg

Our representation theorem is an easy consequence of the Corollary

above.

THEOREM 2.2. Let (mk) G7)^(3™, (P) ,k=l,...,n be pairwise orthogonal

martingales with continuous sample paths. Then

(i) («t) e")Tl2(J™,B •there exist <♦*> .6 L*< <mk \3\,f)
such that

(2.5) z. =zn + £ C^omV
c u k=l
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has continuous sample paths.

(il) (zt) 6^oc(3^,P) -there exist <*k) eL^C <mk >t;3",<P)
such that

n k k,(2.6) z « z + £ ((TornS
k=l c

Remark 2.2. (i) This result is certainly false if the sample path

continuity assumption is dropped. For suppose that N**" and N2 are two
t t

independent Poisson processes. Then m s N* - N2 is a discontinuous

martingale and xt =N* -t, i-1,2 both belong to 7)\2(J?411). But neither
of these can be represented as stochastic integrals of (m ). However

the result continues to hold without the orthogonality restriction. To

see this, suppose that the (mt) are not orthogonal. Then we can construct

orthogonal martingales (mk) eTr]2(jm,f)) such that

-1 _ 1mt = mt,

(2.7) m^*V "I? <*k,±°m\, k> 1.
i=l z

~k kand such that the (mt) and the (mt) generate the same family of martingales

(see [16, p. 223]). Using Theorem 2.2 we obtain the representation in

terms of stochastic integrals of the (mk) and then substitute the rela

tions (2.6) to obtain a representation in terms of the (mk).
t

(ii) It is easy to see that the processes (<j>k) in (2.5) or (2.6)

satisfy

-8-



hence

<z,m^ > = I <f> d <m >,
* • s s'mk =̂lo

(d <zym>N = (<|>k)
Kd <m> ; V

3. Translation of martingales by an absolutely continuous change

of measure.

We need two results of a somewhat general nature, the first of these

is an immediate consequence of [3, Theorem 1].

LEMMA 3.1 Let (n )£ jl\ (3^ttu) have continuous sample paths.

Then

(3.1) At = exp(nt - <n >t),t e R+

is the unique process which satisfies the integral equation

(3.2) A = 1 + 1 Ant JQ s- s

Furthermore A ^0 a.s., (At>_?t>(r) is a supermartingale, and

(3.3) E(At) 1 1 for all t

The next result is a special case of [20, Theorem 3.2]. For com

pleteness, we present a proof in the Appendix.

LEMMA 3.2 Let (n ), (z ) be continuous local martingales in

Jf\1 (^" ,/P) and let A be given by (3.1). Suppose that
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(3.4) E(Aj = 1

and define the probability measure [y- on (ft, 3") by

P±W =JAw((d) (P(dw).AeJ'
A

Then the process (xfc) €7^)^(3^»(r[),where xfc is defined by

(3.5) x = z - <n,z >

and, furthermore,

(3.6) <x >t = <z>t a.s,

Remark 3.1 Lemma 3.2 is a generalization of [8, Theorem 1].

As a corollary of Lemmas 3.1, 3.2 and Theorem 2.2 we obtain our

first interesting result. Let (mk) ^jflf(3^* P> *k=l,..,n be continuous,
pairwise orthogonal martingales. Let (p. be another measure on (ft,3")

such that 6f - (r. Define the conditional likelihood ratio

(3.7) L£ =E(_^|>»)>teR+

THEOREM 3.1 There exist processes (fy e L? (<mk >,3 m, V) such
t loc t t

that

0.8) lt-x*"p£(Jo*X-i£
Let

(3.9) xk =mk -mk -f <f>kd <mk >t t 0 JQ *s s

-10-
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Then

(3.10) (xk) eTf[2emt, (Pj , <xk >t i <mk >t, <x\x3 >t i 0for Wi ,

and we have the representations

Grt).e7Tf<3£. (pj •there exist (*k) eL2( <xk >t, J", ^) such
that

n k k.(3.n) yt = y0 + E (+ <>ot,
k=l

^ e7rlioc(^'^i) •there exist <**>e Lioc( <xk >f 3mt>f^
such that

n k k,(3.12) yt - y0 + E <rox )t
k=l

Proof. From (3.7) it is immediate that (Lt) e7flj^(£™9P). Als<
since ^. ~ (f9 L > 0 a.s., and so

(At) =(£> eTT]1^, (?)

Hence, if we define (n ) by

dA
s

then (nt) €^JocC?^!f/3 and A satisfies (3.1). By Theorem 2.2 there
exist (<(>k) e L2 ((mk >,3" (P) such that

t loc t t

n k k,(3.13) n = £ (rom^).
u k=l
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Also (n ) has continuous sample paths. Hence by Lemma 3.1

At - Vo1 • exp(nt - i <n>t>

which upon substitution of (3.13) yields (3.8).

Next, in (3.5), if we identify zfc with mk - m, then (3.5) and
(3.6) yield the first and second assertions of (3.10). To prove the

orthogonality, note that, by (3.6)

<xk +xj >= <mk +mj > ,

hence

(xV >=i ( <xk +xj >- <xk >- <xj >) =I ( <mk +mj )> - <mk >
*• . *• tt tz t t

- <mj >t)

= <m ,mJ > = 0 a.s, for k^j by hypothesis.

Finally to obtain the representations we begin by the well-known

fact that

By Theorem 2.2 there exist (nk) SlJqc( <mk >,^,P) such that

or, dividing throughout by L ,

(3.14) y A -y + Ea'1nkomk)t
k=l u c

-12-



From (3.2), (3.9), (3.13), and the differentiation formula [4], it is

easy to show that

(3.15) dA"1 =- £ A"1 <|>k dxk
Z k=l

which together write (3.14) and the differentiation formula gives

dyt -(y^dCA;1) +A;1d(ytAt) -t A^n^d <mk >
k=l

k=l

E. (Ltlnt - yt*t)dxt
k=l

Hence

yt = yn + E (^KoxK)
L u k=l

.k k,

where tyk =L"1^ -y<f£. This proves (3.12). To prove (3.11) we merely
need to observe that, because the (x ) are orthogonal, therefore

;(£ (*koxk>.)2 =£ Ef(A
k=l t k=l Jo s

d <x > .
s

Remark 3.2. The significance of this result is twofold. In the

first place it shows that when U is replaced by (r., a continuous martin

gale (m )G7^ (3"m,(K) takes the form of a semimartingale

(3.16) mfc = mQ + I <j>gd <m >g + xt>

-13-



where (<J> ) = ( .m>1\ ),and where (x )e fT\ (-?m, CK). Furthermore,

the linear map (m ,X»m,y )H- (x ^t*U-i) is an isometry i.e., (<x >) =

( <m>). Secondly, all processes (y ) which are martingales on the family

(ft,jJ ,u) are stochastic integrals of the new "basis" martingales

(x ). It turns out that this result holds whenever the semimartingales

(m ) have the form (3.9), as we see below.

Once again let (m ) €//[ (JJ* ,v), k=l,...,n be continuous, pairwise
k 2 k -1 O

orthogonal martingales. Let (h ) e L ( <m >, J3 ,u ) and define the

semimartingales (x ) by

k k + ftxt =xo +)0(3.17) x~ =x~ +\ hkd <mk >+mk t e R
* n • S St +

Let ir* =o{x |0 <s < t, 1 <k <n}.
t s' — — — —

Notation. For any process (f ,l?T,p ) such that EJf | < «> for all

t, let

ft =E(ft|3^)

THEOREM 3.2. There exist continuous martingales (uk) e™2(3r*t(r)
with

(3.18) <yk>tH <mk>t, (pk,pj>=0 k*j

such that

k kjlxt =xo+)0 4c, , k(3.19) x^ = x* + \ fiKd <uK> + uK
4. n " 8 8 t

Furthermore, we have the representations

-14-



<yt) ^0\,f) • there exist (*k) EL2( <uk >J"*/7) such that

n
,k k.(3.20) yt =yQ + £ (*%%,

(yt> £^lloc^t'^ *there exlst <+t> SLLc( <l,k >f5*.^ such that
n

(3.21) yt -yQ +£ (*kouk)t

k,Note. In analogy with the case where in (3.17) (m ) is Brownian

motion [10], we call the (y )the innovations of the (xk).
t -——•——~—— t

Proof. First of all, it is clear from the proof of (3.6) that

<m >. is jr t-measurable. Next define the continuous processes (y ,j?"X,0)

by

(3.22) yk =xk - xk - l hkd<mk>.
t t 0 \n 3 3

k k ffc cl

It is easy to check, using this relation and (3.17), that (y )e /"'

<?"*»P). From (3.17) and (3.22)

y^ = \ (he - he)ds + mf B Jh ds + m ,say,
s c

ik =(V -hk)ds +mk =Pi
t )0 S 8 t Jo

which, using the differentiation rule, yields

vt -Vs -£^+^v+ f <»x+^""^+

so that

-15-
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E(ukvj - uku^x) - <mk,mj >- f.k,«J >g

It follows that

<P >y >t = <m ,mJ > a.s.

and this proves (3.18).

We prove the representations (3.20), (3.21) in a sequence of stages.

Let (yt) E#£oc(3-X,/P). Firstly, define

*k ,Ak k.zt = (h oy )t

Evidently (zk) eV\2&r\tf) since (hk) €L2( <yk >t£\9f). For each
integer 4, let T be the stopping time

T^ =inf{t[ <z >= I (hk)2d <yk )• >%for some k), if this is finit
Jo s s

= °° otherwise

e

Evidently T^ t «> a.s. Define

yA,t =yt4T£' z*,t =SMT£« h,t =k£ *A,t» ^,t =yMT£» X*,t =Xt/1T

Secondly, let (A£ ) be the unique solution of the integral equation

t- = ! + 1 A0 dz0 fc,t JQ 4>s *,t**

Since <z£ >t <_ nl a.s. for all t, it follows from an adaptation [19, 3.3.6]

of a technique due to Clark that

-16-
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E<y»> •*

Hence by Lemma 3.2

(3.23) (,k>t -<Jt,uJ >t) .(^ +̂ Vd<yk >s) .(xk
^2(?x tf9)

where the probability measure y is given by d(p = A da; furthermore
Jo Jo %,°°

the (x ) are orthogonal martingales since
jo, z

<vxi>t5<v"i>t5<^j>t

Thirdly, by Lemma 3.2 again

k 2 k "Tx /OHence, by Theorem 2.2, there exist processes (<f>. ) € L (<x. \*y t/\i * 9)
x»

such that

n k k.

4Ti

' k=l

=y0 +£«*K>t -£<>sd <S£.^ >8}, by (3.23),

which we can rewrite as

y* >t -y0 -£(*W)t -<̂ >t -g£ *k)8d <z,,pk >8 =wt, say
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The left-hand side is a member of 71\ (j AT »/K), whereas the right-

hand side is amember of ?r(} *_ ,«?). Hence, by [16, p. 213], w =0,

Thus we have shown that

n k k.
y*,t= yo+ £ (Wt

k=l

k
Finally, define the processes (A ) by

♦t(u) • »!ltw f°r Vi <• *i y

It is easy to see that

(3.24) y -y + £ (♦kouk) .
C U k=l *

The integrability conditions on (<J> ) follows from the fact that if y

satisfies (3.24) then

k=l Jo
<yl- £ I (4£)2d<uk>8 a.s.

This is our most important result of this section. We use it to

extend the likelihood ratio formula which has been obtained previously

for the Brownian motion case [5,11].

Let (G,J?t, (y±)t t€R+, i*l,2 be two families with the same
measurable spaces (ft,^.). Let xk, mk, k=l,...,n be families of real-
valued functions on ft such that

(i) the (m ) are continuous, pairwise orthogonal martingales in

^2(^t» ^i} for both 1=1'2'

(ii) there exist processes (hk,i) eL2( <mk >,J ,P ) 1=1,2 such

-18-



that under (/± (x.J, (mt) are related according t*>

(3.25) xk =xk +P hk,id <mk >, +mk, t€R,

(iii) fx -^

THEOREM 3.3. The conditional likelihood ratio L =E, (^-^- |^x) is
t Id (\sn ' t

given by the formula

s t* +

<
Ti

•«=l° exp s it(fi",2_ ^i)iv"'1 -*\y°a- fi"'Vd <^ -
where hk,i =Ei(hk,i|>x) and (yk>1) is the innovations of (xk,>X, ^)
given by (3.19).

Proof. By Theorem 3.2 and the argument which led to (3.13) we can

conclude that

At -Vo1 =1+£Adn
s s

where n = V (c^oy1*'1). for some processes (<j>k) e L2( <yk>1 >,3X, (f?)
iTTZi ^ » C C -L

So by Lemma 3.1

(3.27) A=exp £ ( ( *k yk>1 - \ f (<>k)2d <yk>1 >)
C k=l JO 8 8 L Jo S S

By Lemma 3.2

c^-j/W-^mL^t^)
so that substitution using (3.19), (3.20) leads to
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(xk -xk -£fi^d <.*>,- £♦".-,</>) .Ttf^. (P2)

On the other hand, again by Theorem 3.2,

so that

(xk-xk-£hk.2d<mk>)e^loc(^JP2)

By [16,p.213] this can happen only if

•t

S(<|>k +hk,:L - hk,2)d <mk >=0 a.s. for all t, which in
8 8 8 8

turn implies by well-known properties of stochastic integrals that

((J> oy )t = ((h - h *)oy ) a.s.

Substituting this into (3.27) leads to (3.26). «

4. Nonlinear filtering of processes. We use Theorem 3.2 to obtain

the structure of optimal least-squares estimates of an "unknown" process

(zfc) when the observed processes (x ) have the form of a semimartingale

(3.17). The unknown process is also modelled as a semimartingale but of

a more general form. We begin with a more abstract result.

Throughout this section the unknown process (z ) is a semimartingale,

(4.1) zt = zQ + at + nt, te R+

with e|zq| <oo, (at) €4i3rt,P)r (nt) e?)f(Jt,/ft with nQ =0a.s.
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The observed process is vector-valued with components (x ,̂ ,(f),
~Lx k i

k=l,... ,n. J7 = cr{x |k=l,... ,n, 0 <^ s <_ t}. For any t, s in R , and

any process ^X 9^ 9p) denote

ft|8 =E(ftl^),ft =ft|t.

LEMMA 4.1. There exist aunique predictable process (a )^7\i3t,^ )

and aunique martingale (n )€ lf\ (3"*>tf) with nQ =0a.s. such that

(4.2) zt= ^0+at+nt, te R+

12 1 2Proof. Write (at) as at = at - afc where (at), (at) are increasing

processes in ^4(3* 9P), and check that (a*,jf'X,<P) and (a2,j?X,^) are
both submartingales. By [17,VII T31] there exist unique increasing, predictable

processes (a1) e^f(^x,P) and unique martingales (mj) eTjfiJ^.f)
—i

with mQ * 0 a.s. such that

(4.3) a* =a^ +m£ a.s. teR+.

Then, z = z + a + n , where

(4.4) at =4 "V

nt ="t +"t "mt + *0|t " V

satisfies the assertion.

Remark 4.1. (i) If (at) in (4.1) is given by at =Ifgds for some
process (f ), then it is easy to check that (a ) in (4.2) is given by
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H f ds a.s.
s

(ii) For t > s, the predictor z i is given by
t|s

For the remainder of this section we make the following additional

assumptions:

(Al) (nt) 6Ty\2(3-t,P),

(A2) the processes (x ) satisfy

(4.5) xk-xk+ jVd<rak> +mk, tgR+,

where the (mt) are continuous, pairwise orthogonal martingales in Tf(J ,P)
with „£ =0a.s., and (hk) €L2( <mk >t> 3- ,f).

By [16,p.223], there exist predictable processes (*k,jJ- ,P) such
that

(4.6) Ef |*k|d <mk ><»a„d <mk,n >=C fy <n,k >as
JO Jo s s

onTHEOREM 4.1. The optimal filter satisfies the equati

(4.7) z = i +I + £ ((ffk +Jk)0yk) a.s., tSR^
k=l t +

where, a~t is given by (4.4),

(4.8) ^ =xk-xk-jothkd<1Jk,
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is the innovations of (x ), and

ok =E{(zt-£t)(hk-fik)|.?x}

k ~lx
is the conditional covariance of z and h , given JJ..

*- t t

Proof. By Lemma 4.1 and Theorem 3.2 there exist processes (^ ) €

L2( <Uk>t,i'X,^P) such that

n ,k k,(4.9) z = z + a. ,+ £ <* oyV
E k=l u

For convenience denote

zt = Zt " V ht = ht " ht

Then

,n k k
S. = a. - a. +,n - £ (♦ °^ )«-t t t t kml t

and from (4.5), (4.8)

yk =£hkd<yk)s +mk=nt +mk, say

By the differentiation formula [4] we obtain,

zuk-z uk = \~z hkd <yk >+ Izdmk + Iukd(a -I)tMt SMS J8 TT T js S S .Js T t T

+£„,*,,+£mkdnT +£d <n,„k >-g£#** -£j^* <,V

Now we take conditional expectations on both sides with respect toJ?X. The
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different terms are as follows.

k ~ k. -lxE(ztyk-zsyk| >X) =0 since E(zt|^X) =0,

E(J zThkd <yk >T|i^) =E( J^d <yk \\3^)'

From (4.3), (4.4) it follows that E(da -da \3*) = 0, hence
T T' T

E( (nkd(aT-aT)|^-x) =0,

E( ( 1TdnT|J-x) =E( (VdnJ^) =£e( fuVdnJl^
Js Js j=l Js

by the martingale property. Finally,

E( Id<n,yk>T| J-x) =E{ j E(<f>k| JX)d (mk >t |^X} by (4.6), and

£ E( (\jd <yV >|^X) =E( (\*d <yk >t|^x)
j=l Js Js

Thus,

0=E{ f (ak+ik- ^k)d<yk>T|Jx},

which implies that

^s+*s-^<^>)^Lc^t'^.
so that by [3,p.213]

-24-
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I(ok + ik)d <yK >= \/d <)i*) a.s. for all t.
Jo s 8 s Jo s 8

Using this relation in (4.J) yields (4.7).

^ ftRemark 4.2. (i) Suppose a_ = | f ds and suppose that the unknown

process noise and observation noise, (m ) and (n ), are independent.

Then (4.7) becomes

Jo k=l JO
zt =zQ + \ fsds +£ I(ok +♦k)8(dxk -hkd <uk >s)

which has a striking resemblance with the Kalman-Bucy filter and the

formula for nonlinear filters for the Brownian motion case [6,7,9].

(ii) The filter equation (4.7) is not recursive since the quantities

a ,a ,J cannot generally be computed as functions of zfc.

(iii) Equations similar to (4.7) can be. obtained for the optimal

prediction and smoothing estimates. We state the equation for the latter,

For s > t,

t Is t

$s k k
o\ I dy ,t t|t T

where ok|t =B{(»t -^t|T> 0*^ "fit)|3"1h
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Appendix: Proof of Lemma 3.2

First of all since (x ) is continuous it is in 7)1, (3 >(fi) if

it is in Wloc(3't» (/})• To prove the latter it is equivalent to show

that (xtAt) e7yiioc(3't,£?). By the differentiation formula

Xt-At- = xnhn + 1 x«dA« + \Adz - I A d <n,t t 0 0 jQ s s JQ s s JQ s

By (3.2) d <z,A >t = Atd <z,n >, so that

xrht = Kr\hr\ + I x«dA + 1 A dzt t 0 0 J0 s s JQ s s

which is clearly in 77) JQC<3rjP) . Finally, (3.6) is awell-known
property of semimartingales [4].

-26-
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