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1. Introduction

Most optimal control algorithms construct a sequence of controls
whose corresponding costs form a monotonically decreasing, converging
sequence. Because of this, it suffices to require that the sequence of
controls and initial states constructed have at least one accumulation
point and thét any accumulation point of this sequence satisfies an
optimality condition, rather than to require that it converges.

In studying the convergence properties of nonlinear programming
algorithms, to which the preceding remarks alsé apply, it is assumed
that the seﬁuence of points constructed by the algorithm remains in a
compact subset of R". This guarantees the existence of an accumulation

point. With the exception of penalty function methods (which are not

iterative procedures; see, for example [1{§,1}]), it has been common among
inventors of iterative optimal control algorithms to assure that the
sequences of controls constructed remain in Lw-bounded sets, and to show
that any Lz-accumulation point satisfies the Pontryagin maximum principle

or some relating necessary condition of optimality. (In the absence of

constructive, generally applicable necessary and sufficient conditions,
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one cannot expect proofs of convergence to an optimum.) Unfortunately,
there is no mathematical basis for assuming that a sequence of controls
in an L _-bounded set has an Lz-accumulation point.

The purpose of this paper is to present and illustrate a convergence
theory for optimal control algorithms using iteration formulas of the
form Uin € A(ui), i=0,1, 2, ..., where the u, are the successively
constructed controls and A is a set valued iteration function. This
class of algorithms includes gradient and gradient projection methods,
feasible directions methods, strong variations methods and so forth.

(It does not include penalty function type methods whose analysis requires
a tq;ally different approach). Our theory does not prove that existing
optimal control algorithms always construct controls converging to an
optimal control. This is clearly false. Instead, our theory examines

the properties of accumulation points of control sequences constructed

by optimal control algorithms. In particular, it shows that these
accumulation points satisfy some optimality condition for the relaxed
problem. The optimality condition satisfied differs from algorithm to
algorithm. The theory is based on an extension of results in [9] and

on the use of a topology, based on relaxed controls [14], [12,12a], which

ensures that accumulation points always exist for L _-bounded sequences.

The theory found in Young [14], with some minor modifications, seems
to be the most appropriate one for analyzing optimal control algorithms.
There were two reasons for the modifications. The first is that Young
specifies a priori a fixed set U in which all controls must take their
value. This is extremely inconvenient in analyzing algorithms for problems

without control constraints. We have therefore changed a number of



definitions to make them independent of such a set U. The second reasén
is that we felt it very important to preserve a connection between the
old (L2 N L) and new convergence results and have therefore modified
slightly Young's definition of convergence of relaxed controls.

We illustrate the manner in which this new convergence theory is to
be used by means of two examples: an analysis of a strong variations
algorithm due to Mayne and Polak [7] and of the Pironneau-Polak dual
method of feasible directions [8]. The latter, as well as gradient
methods, require the development of a special directional derivative.
Finally, in Appendix A, we give a short discussion of the use of optimality
conditions in the construction of optimization algorithms and in Appendix

B we establish the relation between the new and the old convergence results.

2. Compactness Properties of the Relaxed Optimal Control Problem

The algorithms which we are about to discuss solve optimal control

problems of the form:

1
1 min g (5,u) 95 L(x(t,E,u), u(t),t) dt + ho(x(1,E,u)),
0

subject to the constraints

2 E’%x(tag,u) = f(x(t,E,u), u(t),t), t € [0,1], a.e.

3 x(O,E,u) =g

e

4 gj(g,u) hj(x(lag’u)) < 0, =1, 2, «ccs P, ’

I
n

5 gj (E’U) hj (g) _<_ 0, j P+l’ esey p+q,

6 wu(t) €UC R for all t € [0,1]
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where f: R® x R x [0,1] » R®, and L: R® x E® x [0,1] + R'.

The functions g,, j=0,1,...,p+q are real valued and u is assumed to be

3

measurable.

The following hypotheses are commonly made, with T 4 [0,1].

1
Assumption 1: The functions f: Rp X Rm x T e-Rp and L: Rn X Rp x T R

and their partial derivatives-%&,-%% exist and are continuous onl

R” x " x T. The functions h,: R* a-R;, j=0,1,...,p+q, and their

h|
oh,
derivatives 3;1 » j=0,1,...,ptq, exist and are continuous on Rp.

Assumption 2: For each compact CZRm, there exists an M > 0 such

that lf(x,u,t)ll <M (Ixl + 1) for all (x,u,t) € RY o x T and

I£(x,u,t) = £(x',ust)l < M lx-x'll for all x, x' € ", u€gq, t €T.

With the original problem (1) - (6) we associate a relaxed problem,
following Young [14], as will be shown after the necessary definitions

have been introduced.

As already pointed out in the introduction, the study of optimiza-
tion algorithms is substantially simplified when a number of definitions

used by Young [14] and Warga [12,12a] are somewhat modified, This is

done to avoid the a priori selection of a compact set U C R" such that
u: T » U, since an a priori selection of a U contradicts the absence
of constraints on u(t) in control unconstrained problems. The reader
is therefore cautioned that our definitions differ from those of Young
and Warga. However, the following results can be deduced directly from
those of Young [14] and Warga [12,12a] and are presented here, without
claims of originality, so as to make the paper readily accessible to

the large number of specialists in ‘computational methods who are not



familiar with the theory of relaxed controls.

Definition 1: Let V be the set of non-negative unit measures (probability

measures) on R™ and let T A [0,1]. A relaxed control is any functiom v(-):

T -+ V with the property that for some compact set U C Rp, the measure
v (t) is wholly concentrated on U for all t € T (this will be referred
to as "v(-) vanishes outside of u").

Throughout the paper a relaxed control will be denoted by a boldface

u or v and an ordinary control (measurable function) by an ordinary u or v.

Definition 2: Given a continuous function $(*) defined on RP and a

measure v € V, we shall write ¢r(y) for its integral in the measure v,

i.e. ¢r(xi) g j m¢(u)dv, whenever that integral is well defined. More
: . M

generally, if ¢(x,u,t) is continuous in (x,u,t), the symbol ¢r(x,y,t)
denotes, for fixed (x,t), the integral on & of ¢(x,u,t) with respect

to the probability measure v, i.e. ¢r(x,v,t) 4 ¢ (x,u,t) dv.

Rm

Definition 3: A relaxed control v(*) will be termed measurable if for

every polynomial p(u) in (the components of) u, the function

p_(v(r)) éj. p(u)dv(t) of t is measurable.

m
R

Remark: From page 290 in Young, [14], it follows that if v(:) is a

measurable relaxed control and g(t,u) is a continuous function of (t,u),

ne>

then the function gr(t,y(t)) j. g(t,u)dy(t) of t is measurable.
m
R

The relaxed problem is obtained from the original problem (1) - (5)

by substituting the cost

1

7 8,(E>v) 8 § L (x(t,&,v), v(t), t)dt + b (x(1,&,v))
0

-5—



for the cost (1), the differential equation

8 &) = £_(x(t),¥(0),0) 2 § £ (x(t) ,u,£)dv (t),
m
R

for the differential equation (2), and the requirement that
9 v(-) vanish outside of U

for (6).

We now give an existence and uniqueness theorem for the solution to
the relaxed differential equation (8). The proof is found in Young, [14]
on pages 291~292 and 298, where the theorem is proved under weaker assump-

tions.

Theorem 1: Suppose that Assumptions 1 and 2 are satisfied. Then for any
measurable relaxed control v(*), which vanishes outside some compact set
ucC Rp, and any ipitial state X, there exists an absolutely continuous
function x(-,xo,y): T > R® that is the unique solution to (8), satisfying
x(O,xo,y) =X,

In our analysis, in addition to the relaxed optimal éontrol problem,

we will also need associated multiplier functions, defined as follows.

Definition 4: For j ='0,l,2,...p, let Aj(-,g,y): T > Rn, denote the

solution of
. om, \T
10 -A(66Y) = | 5] ((E,E69),7(0),4,(5,5,9),¢)

dh
11 2,8y = &i (x(1,£,v))



where the superscript T denotes transposition and Hj: R x R
x R x T R;, j=0,1,...,p, is defined by

ATE(x,u,t) + 6. L(x,u,t)

[[i>g

12 Hj(x,u,k,t) 30

where 6j0 is the Kronecker delta.

The relaxed optimal control problem leads to two crucial sequential

compactness theorems, as we shall shortly see. The first one of these

two theorems is due to Young [14], the second one to Warga [12a].

Definition 5: A sequence'{yi(-)}:=O of measurable relaxed controls

converges in the sense of control measures (abbreviated i.s.c.m.) to a
relaxed control ;(-) if for every continuous, real-valued function g(t,u)

defined on T x R" and every subinterval A of T the values‘sg (t,vi(t))dt
r

A
converge to el
J 8, (t,v(t))de.

A

. i -
Notation: If {v'(+)}, i € K, converges i.s.c.m to v(*), we denote
=2reron K s
that by yi(') > §(-).

' The first compactness theorem which we need is proved on pages
301-303 in Young, [14].
i
Theorem 2: Let {y (')}o° be a sequence of measurable relaxed controls
i=0

which vanish outside some fixed compact set U. Then there exists a relaxed

control §I-) which also vanishes outside of U and a subsequence indexed

| K _
by a set K C {0,1,2,...} such that v'(-) > v(-).



i,
Notation: Given a sequence of initial states {€°}  and a sequence of
i=0

relaxed controls {vl(')}m » we shall denote the corresponding sequences
i=0
of trajectories and multipliers (determined according to (8) and (3), and

(10), (11) respectively) by {xi(')lw0 , {X;(')} 0’ j=0,1,...p. We shall
. 1= l:

u u -
also use the notation x , X, A?, Aj to denote solutions to (2), (3), (8),

(3) and (10), (11) corresponding to a measurable control u or a relaxed

control g.+

. i i
Definition 6: If {(g ,vl,x ,Aé’---sl )} is a sequence of initial

i=0
states, relaxed controls, corresponding trajectories, and corresponding

multipliers such that {Ei}donverges to £, {vl} converges to v i.s.c.m., {xi}

converges to x uniformly, and{k } converges to A uniformly, j = 0,1,...,p,

then we denote this by (E ,v » X Xl,...,k ) - (E § XA -O,...,Xp).

Definition 7: (g,§,§ iO""’;p) is called an accumulation point of

i i i i .
{E7v ,x ,Ao,...,x )} if there exists a subsequence, indexed
i=0

by some K € {0,1,2,...}, such that (El 1, i, o,...,k )

-+ (E’\_Z:;{sl
The second compactness theorem will be established as a consequence of

the following lemmas.

Lemma 1: Let C, U be arbitrary compact sets in RP, R?, respectively,

and let S be the set of measurable relaxed controls which vanish outside

1.(10) degenerates into an ordinary differential equation when u is an
ordinary control.



of U. Let g be a continuous function from RP x g™ x T into R, Let

Yi(-), Y(-) be continuous functions from T into C such that Yi(°) converges
to Y(*) uniformly. Let {yi(-)} :=0 be a sequence of relaxed controls that
converges i.s.c.m. to a relaxed control §(°). Then for each subinterval

A of T,

13 s'gr(Yi(T)’Yi(T)’T)dT *'.ggr(?(r),Q(r),r)dt-
A A

Proof: Follows immediately from Definition 5 and the uniform continuity
of gonCx U x T,
The following lemma found in Filippov, [3a], will also be needed to

establish the second compactness theorem.

i
Lemma 2: Let {y (‘)}ﬂEI’ where I is some indexing set, be a collection
of absolutely continuous functions from T into R™ such that {yi(O)}fEI
i
or {y (1)}iEI is contained in a compact set of R®. Let functions

i
Y: T+ R, i€ I, be defined by

14 i) = llyi(t)ll2 + 1.

If there exists an M > 0 such that Iii(t)l_g M Yi(t), for almost all

t € T, 1€ I, then the set {yi(')}ieI is equibounded and equicontinuous.
Fdrthermore, if 1 = {0,1,2,...}, then there exists a subsequence indexed
by a set K C {0,1,2,...} and an absolutely continuous function ¥y(*)

such that yi(°) converges uniformly to y(-) for i € K.



Now making use of Lemmas 1, 2 and Assumption 2 it is straightforward

to show that the following compactness result, due to Warga, [12a], holds

m .
Theorem 3: Let C and U be arbitrary compact sets in Rp, R, respectively,

and let S be the set of meashrable relaxed controls which vanish outside

-]

of U. If {(gi,yi’xi’xé’,,,,xi)} is a sequence of initial states,

i=0

relaxed controls, corresponding trajectories, and corresponding’

multipliers such that {Ei}i=0 Cg, v} C S,{El}converges to &, {vk} converges
to § i.s.c.m.,+ {xl}converges to x uniformly, and {l;} converges to Xj
uniformly, j = 0,1,...,p. Then E(-) = X(°,E,§) and Xj(-) = Aj(',g,§),
. i i 4 i i, |
j=0,1,...,p. Furthermore, given a sequence {(f sV sX ’AO""’Ap)}i=O

such that {Ei};=o C C and {yl};=0 C S, there always exists a subsequence

that satisfies the above hypotheses and conclusions.

3. Algorithm Prototypes and Convergence Theory

The convergence theorems which we find in [9], as well as in other
sources, require that the limit points of sequences constructed by an
algorithm lie in the domain of the algorithm. Since this may not be
true for optimal control algorithﬁs, it is necessary to modify the
existing convergence theory just slightly. We now show how it is done

for the simplest case treated in [9]. The more complicated cases
discussed in [9] can be modified similarly.

The algorithm Prototype below, extends the algorithm prototype
1.3.9 in [9]. Let Z be a topological space, W be a subset of Z, and W

be a subset of W.F We use two functions, the seafch~function, A: W~ Zw,

and the stop function, c: W -+ Rl. Finally, we let the set of desirable points,

If y' > 7Vi.s.com.,with{v'} CS, it follows that v € S also.

~.

#Prototype 1.3.9 in [9] applies only when W =W and its convergence is
is established only in terms of a normed topology.

-10-



A, be a nonempty subset of W. The problem then is to find any point in

A where it is assumed that we have some way of recognizing points in A.

Algorithm Prototype:

Step 0: Compute a z0 € w.
Step 1: Set i =10

Step 2: Compute a point y € A(zi).

Step 3: Set zi+1 =vy.

Step 4: 1If c(zl+1)_z c(zi), stop; else, set i = i+l and go to Step 2.
The proof of the following convergence result is the same as that of
Theorem 1.3.10 in Polak, [9], except that one uses sequences instead

of closed balls.

Theorem 4: Consider the above algorithm. Suppose that

(1) for every nondesirable z € W and every sequence {zl};=0 Cwy

converging to z, {c(zi)}:=O converges to c(z);

(o]

(ii) for every nondesirable z € W and every sequence {zl}i=o Cw
converging to z, there exists an infinite subset K C {0,1,2,...}, an

integer N > 0, and a 6(z) > 0 such that
15 c(z") - c(z') <-8() <0  ¥i >N, ¥i €K, %" € A(zD).

Then, either the sequence {zi}?zo constructed by the algorithm is finite
and its next to last element is desirable, or else it is infinite and
every accumulation point in W of {zi}:=o is desirable.

With.the proper choice of Z, W, and W this algorithm prototype and
convergence theorem can be applied to a large class of optimal control

algorithms. This will be demonstrated in the following sections.

-11-



4. A Stfong:Variations Algorithm.

In this section we shall present a proof of convergence for a strong

variations algorithm developed by Mayne and Polak [7]. This algorithm is
an "L N L2 stabilized" version of a differential dynamic programming
algorithm due to Jacobson and Mayne [5]. Differential dynam;c programming
algorithms are based on fairly complex relationships between changes in
Hamiltoniﬁns and changes in cost in optimal control problems.
The interested reader is referred to the book by Jacobson and Mayne [5],
Mayne [6], and to [7] for background material. The gist of these
algorithms is generally as follows. Given a control u;, an approximation
to the optimal control, one computes the corresponding trajectories and
multipliers xul, A; by solving (2), (10), (11). Tﬁen'one constructs a

. Ui Ui Ui o
Hamiltonian H(x “(t),w,A ~(t),t), where A is a certain convex combination
of the Agi, aﬁd is an approximation at the optimal co-stapeg By minimizing
H with respect to w € U, one obtains an intermediate function i'xi(t:).'r For the
algorithm to converge, one now has to use a rather comélex way of constructing the

next control, Ui by setting it equal to u, for some points in T and to

i
ﬁi for some other points in T. The specific rule used in [7] is'derivéd
ffbm the Armijo [9] step size selection procedure commonly used in nonlinear
prog;amming. Fig. 1, reproduced from [7 ], will perhaps.help the reader

in understanding the algorithm. Although strong variations (or differedtial
dynamic programming)algorithms are difficult to understand, they have two
Histinct advantages: (i) they are'computafionally efficient, and (ii) they
'solve certain classes of problems which cannot be solved by gthef algorithms.
(In principle all optimal control problems can be solved by means of penélty

function methods, but, at least in our experience, penalty func¢tion

methods have been found to perform unacceptably on quite a few occasions).

TThun, we can think of these algorithms as being derived from the Pontryagin

Minimum Principle.
-2~



A

'The algorithm to be described solves the problem (1) - (6) under
the additional restriction that the system (5) .is replaced by ¢ = &0,
that the functions hj =0 for j = 1,2,...,pHq, and that the set U .in
(6) is compact. In other words, our initial state is fixed and wé have
no initial or terminal inequality constraints. Because of this we will
drop any reference to the initial state. 1In the discussibn below, we

[0,1] ~u.

shall denote by G the set of measurable functions u :

To insure that Algdrithm 1 is well defined we need the following

theorem which is a consequence of the McShane-Warfield Halfway Principle, [14].

Theorem 5: For any u € G there exists a & € G such that for almost all

t€T,
16 d(t) € 6(u,t) & arg min Ho(xu(t),w,kg(t),t)+
, weU .

Next, let H: GxT ~+ R! be defined by

17 He,o fwin H1 GP(0),w,05(0), 1)
| wEU

where Ho was defined in (12) and let 6: G -+ Rlvbe defined by

1
18 e ® f [H(u, ) -Hy (x"(£) ,u(t) , A (E) , £) Jde
0

For any ul, u2 € G, let Ago(uz,ul) and Aéo(uz,nl) be defined by

‘ 2 1, A 2 1
19 Ago(u ,u’) = go(u )-go(u )

., . ,
- Thus U(u,t) is the set of minimizers.

-13-



and 1

20 agy(s’,uh) éf [By (x(£) ,u” (£), 25 () ) -

0
- Hy(x(£) ,u' (1), A3 (1) , ) Jae

where g is defined as in (1). (It is shown in [ 6] that Aéo is, in a
certain sense, a first order estimate of AgO).
H
Next, for every u € G, let ﬁ(u), Iuo, and m(u) be defined respectively

by

21 (w2 tveEe: v(t) € arg min Hy (x*(8) W, A0 (8) ) for
=y

almost all t € T}.

H .
22 Iup fice Tlﬁ(u,t)-ﬂo(xu(t),u(t),lg(t),t) < 8(u)}
and

H
23w & ua )

where y is Lebesque measure.
For every u € G and a € [0,1], let Iau be any subset of T having the

following properties.

24 “(Iau) = q
Bo
25 If o« € [0,m(u)], Iau c Iu
Ho
(S
26 If o € (m(u),1], Ior.u o Iu
Ho .
27 Vo € [0,m(u)], {t € I, t' € Iau, t<t'}={t€ Iau}
HO

= ' ' €
28 ¥o € (m(u),1], {t €T, t IaJ\Iu

,2t<t'}={t€1 }.
au

~14~



Next, for any u € G, for any o € [0,1], u, € G will denote a function

with the following properties

v
29 ua(t) € U{y,t) ¥t € Iau
30 ua(t) = u(t) ¥t € TN\,

Finally, let u: G » 2[0’1] be defined by
31 a() = {a]o = max {g € [0,1]|Ag0(u6',u)
< 8'e()/2, ¥8' € [0,8]}}

where u,, € G is any control that satisfies (29), (30).

Bl
Algorithm 1: (Mayne and Polak [7]).

Step 0: Select a uO € G.
Step 1: Set i = 0.

Step 2: Compute xi by solving (2), with £ =

Step 3: Compute A; by solving the ordinary control versions of (10) and (11).

. ‘ i
Step 4: Compute 4’ such that ﬁi(t) € UL ,t).

Eo'

Step 5: Compute eo(ul) & 88, (%, u") using (20). 1If 6ul) = 0 stop.
Else go to Step 6.
Step 6: Compute an at € a(ui).

+
Step 7: Set ot o Uii. Set i = i+l. Go to Step 2.

a

Algorithm 1 constructs a sequence of ordinary controls. However, in
proving convergence, we must use relaxed controls. Therefore, with each
ordinary control u we associate a relaxed control y which has the property

that the measure u(t) is wholly concentrated at u(t), i.e.J;u(t)}dg(t)

-15-



=1 for all t € T. We then see that Algorithm 1 defines a map A : WE 2

where W is defined by
A u.,u
32 W= {(E,x ,)\O)lue G}.

i i oiidi
In other words, for any (ul,xi,xl) € W the set A((E »X ,AO)) consists of

the possible (gi+1,x1+1,kg+l

the given point Gui,xi,ki). We will now establish our convergence result

) which the algorithm can construct from

for Algorithm 1 using the theory developed in sections 2 and 3.

As before, let S be the set of measurable relaxed controls which vanish

outside of U. We also have to make the straightforward extension of the

domain of definition of functions such as @, ﬁ; etc. to include relaxed

controls.

For example,
1

_ u u |
f [y, £)-Hy (x (£),8(0),25(E), ) dt
0

r

ne>

33 0(u)

1

g u u u
f [min Hj(x (t) Wy Aq(8),8)-Hy (x (t),u(t),45(t) ,t) Jdt.
= r

fic>

The following lemma is proved in Mayne and Polak [7].

Lemma 3: Let A: W~ Zw be the map defined by Algorithm 1. Then there
exists a ¢ > 0 such that for all u € G

? )

Ago(u »u) < = [6(w)]7/c, ¥(u',x sAg ) € A(g,x~,A0))-

-16-



. q —— — . i,
Lemma 4: Let (gl,xijxé)-+ (g,x,lo) where {u }i=0 Cs. Then

6(uh) + 8(R).
Proof: This follows from Lemmas 3 and 4, the continuity of min Ho(x,w,x,t)
~ weU
in (x,A,t), Lemma 1 and Theorem 3.
We can now prove the convergence result. Let W be as in (32) and

let Z and W be defined by

35 z = 8xC_[T]xC_[T]
and
- ¢ ou
36 W= {(g,x ;0 |u €5}

where Cn[T] is the space of continuous n vector valued functions on T,

with the uniform convergence topology. Let the set of desirable points, A,

be defined by

+

g u —
37 A = {(u,x ,X4) € Wle(u) = 0}.

Theorem 6: Suppose Algorithm 1 generates a sequence'{(ui,xjf,)\é)}°° s
© i=0

then either the corresponding sequence {(gi,xi,xé)}4=0

is finite, in which case the last element is desirable, or it is infinite

and every accumulation point in W (at least one exists) is desirable.

Proof: The above Algorithm 1 is obviously of the form of our Algorithm
Prototype. Letting W, Z, W, and A be defined respectively as in (32),

(35), (36), and (37) and c be 8gs Ve only need to verify conditions (i)

and (ii) of Theorem 4 in order to invoke this theorem: (i) If (ui,xi,xé) >

+

It is shown in Appendix A that 6(u) = 0 is an optimality condition.

-17-
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—_— — : % R S
g,x,ko), Lemma 1 immediately implies go(gi) > go(g). (11) 'If .(u ,x ,lo) +
(E;E;Xb)with'e(g) < 0, Lemmas 3 and 4 immediately imply that there exists

an N > 0 such that

Iy

i - _ ,
2 u 2
iy i 18217 (18 )]
38 80(9 ) 80(9 x Tf_ e <0 >
yi >N »
P A L

i' N
va Lt %) e acetatady)

Thus Theorem (4) can be applied. The existence of at least one

accumulation point follows from the second half of Theorem 3.

5. A Dual Method of Centers.

We shall now consider an algorithm due to Pironneau and Polak [ 8].
Unlike the algorithm presented in the preceeding section, this one
cannot be treated by simply cannibalizing its convergence proof in
L2 nLm. A special directional derivative must be developed for its
analysis.

The algorithm in [ 8] solves the problem (1) - (6) under the

restriction that h, = 0 and U = R?.

0

Assumption 3: We will assume that £, L, and hi’ i=1,...,pHq, are such

that their partials up to second order with respect to x and u exist

and are continuous in (x,u,t) on‘the $§f§ on which they are defined.
The following algorithm is derived from the F. John condition of

optimality, as explained in detail in [8]. It is called a "dual" method

of feasible directions because it uses multipliers. The "primal",

Zoutendijk type methods of feasible directions [9] are derived from

the F. John condition in multiplier free form (see [9]), and do not
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extend to optimal control problems, because the direction finding

problems become as difficult as the original problems.

Algorithm 2: (Pironneau-Polak [6]): (B € (0,1) is a step size parameter).

Step 0: Compute a EO € R" and a measurable ordinary cont:rol,u0 sucﬁ that
0
By(£%) <0 for § = pH, ..., pHa, hy(x(1,6%,u’)) <0 for § = 1,

LA IR ) p. Set i = 00

Step 1: Compute zi = (Ei,ui,xi,kg,...,li) according ﬁo (2), and the

ordinary control versions of (10), and (11).

Step 2: Compute ng(gi,ui), j=0, ..., ptq, according to

T
oH

9a vg, ety = (y 0,8l B, wte), acieth, ),

j = 1,2’ooc,p

'39b ng (gi’ui) = (th (Ei):o)a j = ptl, P+2:"’- ,P"'qQ

. 1, A 1 - o |
.Step 3: Compute u(z") = (uo(z ),...., up+q(zi)) € RP+q+l as a solution of

0 ezh = m{{‘1 ueh, (x(1,el,uly) +
boge

ptq ptq
i : i 1,42
+ h -@/2)l
12: L uj j(§ ) -(1/2) ;g% ujVsj(ﬁ su )52
ptq
l }é% uj = }, u >0, 3= 0,1, cees PHql,

"where ﬂ'uz denotes the L;[O,I] norm. .
 Step 4: If ¢(z1) =0, set T = £ and § = ul se, go p 5.
X $(z7) » 8¢t £ = £ and u = u” and stop; else, go to Step 5.

Step 5: Set v
-19-



. P . . p+q i oh. i
i i i i _J
41 = - () 2,0, ,u) - 3, wu.(2) ()
i 14 1 "’HJ'T i 4 i i
42a \Y (t,u) = - Z;O ]-lj (Z ) 3u (x(t,E »u ),u, }‘j(tsg »u )3t)

for all (t,u) € TxR".
426 V) = vV e,uten.

Step 6: Compute the smallest integer k, such that

1
max{f {L(x(t,gi + Bkwi,ui + Bk\_)i),ui(t) + Sk\_)i(t), t)
A .
- L(x(t,g",ul).ul(t),t)} dt;

hj(x(l,gi + 8%, ot + BkGi)), i=1,...,p;

k
n e+ 8%, 3 = e, L, p+q} -5 s6h <o

By = o) + 658y, and

Step 7: Set gi+l = gi + Bkmi, set u
go to Step 1.

Before proving any convergence results for the above algorithm, we
must develop some more theory to make the transition from ordinary controls
to relaxed controls. Again this is necessary because. we want to study
relaxed controls which are accumulation points of a sequence of ordinary
controls. In particular, we need to construct a special directional
differential, and we develop a variational equation for this purpose.

We first define the following functions which are generalizations of

the differentials for functions of ordinary controls.

Definition 8: For any £ € Rn and V a measurable relaxed control, let

=20~



Vg, (£sw): TxR™ > R™xR™, j = 0, ..., p+q, be defined by

5H, T

438 VBBV (E0) = ((0,E5,V), 5T (x(£,€,9)5 1,1, (£,6,1),t))

for j = 0,1,...,p, and

, 3h, T
43b Ve; (£,) (t,u) = (a—xl (€),0)

for j pt+l,...,ptq where Aj and Hj are as defined in Definition 4.

It will be shown in Theorem 9 that the ng(g,y) are analogous to L_

gradients, (see (56), (57)).

Definition 9: Let v be a measurable relaxed control, let &, £' € R",

and let y, y' be continuous functions from T X R" into R®. Then

(E,y, (6';y'))v and I(E,y)lv will denote
) i 1

44 CEy, €y, =LE,en +s , s (y(t,u),y" (t,u) ) dy(e))de
) 0 g
and
1 1/2
45 I(E,Y)Iv = [g,8) +j § "y(t,u)[lzdy(t) dt]
) 0 m

R

where (','> denotes the Euclidean scalar product and #<l denotes the

Euclidean norm.

Definition 10: Let W and W be defined by

46 W é‘{g,v,iv,xg,...,x;)| where v is a relaxed control associated

with the ordinary control v, £ €R" and g,(§,v) <0, j =1, ..., p+q}
j —
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and

‘ vy v
{(E,v,x ,AO,...,AP)IY is a measurable relaxed control,

[[[>g

47 W

n
£ €ER and gj(g,y) 20,.3=1, ..., ptql.

Definition 11: Let A, the set of desirable points, be defined by
vV v - v -
A= {(E,y,x ,AO,...,AP) € WI there exists multipliers

uj, j = 0,1,...,p+q such that, (i) uj_z 0, j = 0,1,...,p4q,

1 Y
1 =1, (iii . - .
. uJ (iid) ung(E,y) 0 for j 1,...,ptq,

Py
. 2 _
(1v)lj§=0: w985 (60 = 0.

Assumption 4: The set {(E,g,xu,lz,...,lg) € w]gj(g,u) <0, j=1,...,

ptql # @.

The following definition is an extension of ¢ in (40) to relaxed

controls.
Definition 12: Let zi = (gi,gi,xi,ké,ki,...,ki). Then
. P i
48 o(z) = max{f: p.h.(x(-,& ,v))
j=1 31

N piq 1 A i i.,2
u.h, (£7)-(1/2 .Vg.
R )IEO hiV8 (€7, )Ivil

=
]
=
»
=
\'
o
A J
(SN
]

i 2 0, 1, ..., ptql.
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Thus Algorithm 2 defines a map A: W - W.

We can establish convergence properties only for bounded infinite

sequences {gl,ul,xl,ké,...,)\l } constructed by Algorithm 2. We there-

ptq
fore introduce an arbitrary compact set C C R" which will be assumed to
contain {gl} and an arbitrary compact set U C R™ which will be assumed to
contain {ui(t)}, t € T, In addition, we shall make use of an arbitrary

compact set D containing C in its interior, and we shall denote by S the

set of measurable relaxed controls which vanish outside of U.

Lemma 7: Let {‘e;i}z:o cc {91}0;:,:0 C's be such that (57, dx, l(])',...,)\;)
> (E’I}»;’Xo"“’ip)' Then there exists a subsequence indexed by

K €{0,1,2,...} such that ¢ (z%) X ¢ (z), where 2t = (Ei,g'i,xi,lg,...,)\;)
and z = (g,u,x,xo,...,x ). ’

Proof: Let ul be a solution to (47). Since {ui}:=0 is contained in a

compact set, there exists a subsequence indexed by K - {0,1,2,.. .} and

a# € RPYI* guch that wl 7 ZO My T 1, and u 2 0 for
j=0,1,...,p+q. By Lemma (1) we obtain ¢ (z3) ¥ (Z Wby (x(1,E,))
j=1

+ 2 i b, ©) a/z)lz M Ve, E .

""p+1 =0 u
Now ¢ (z) > {2 Wb (LLE,0) + Z uih, (B)-(1/2) | Z HiVs Ew 2.

j=1 j=pt+l 3 3

Suppose the inequality is strict and let ﬁ = (1=1 n ) be a solution

i 0,'..’ p+q
of (47), for z= = z, that gives $(z). Then we must have that

-23-~



p = | =
';u (el uly) + o B (1) (1/z)|2qu &)

j=ptl u
X 4(). But this implies that for sufficiently large i € K,
P _ ptq piq
= i = . .
g ushy Ce(l, gy + Y Wb () -/2) Y wve (e %) > si2h).
=1 jep+H1 J j=o0 337 = 74

This is a contradiction of (47). Therefore

_ P _ _ PHq _ -
49 $(z) = P uh.x@,eu)) + ), u.h (&)

ptq _ - -
- (1/2)] jgo niV8; (Esu) '§

Thus cp(zi) Yo,

The following lemma can be deduced from an analogous result in [8].

Lemma 8: Let ¢: W > R; be defined as in (47) and let z € W be

arbitrary. Then ¢(z) < 0, and ¢(z) = 0 if and only if z € A.

Lemma 9 (see [8]): Supposé that z € W is such that ¢(z) < 0 and that

— - i —
p(z) = (uo(z), ...,up+q(z)) is a solution to (40) for z~ = z. Then
ptq
50 max{ (Vg (£,u), - jz=:0 uy(2)7g, (€, u) b
( R )
gj(gﬂl) + ng(gyu)s = jz_-:o uj(Z)ng(E,u) 99

ptq 2
i=1,...,pta} < ¢(2) - (/)] 'Z‘b uj(Z)ng(E,U)“Z <
j'_—

24



The following corollary to Lemma 9 is obtained by application of

Lemma 1.

Corollary 1l: Suppose that z € W is such that ¢(z) < 0, then there exists

a p(z) such that

pHq
51 max{ (Vg (£,v), = 2, uy(2)78, (£, 7) )3
j=0 ~

ptq
g (5,7) + <ng(€,y), - go uj(Z)ng(E,yﬁY,

s 2 t
i =1y...,ptq} < ¢(2) - @/2)]| Y uj(z)ng(s,g)l v <0

j=0
At this point we develop a set of variational equations defining

a special directional differential which we shall need to show that

Algorithm 2 satisfies (ii) of Theorem 4.

. n
Definition 13: For any §{ € R, any measurable relaxed control v, any a€[-1,1]

: m
and any y € Cm[T x R7], let x(t,&,y,a,y) denote the solution of

52 S x(e,g,v.0.y) - 5 £Ge(t,8,v50,5), u+ ay(t,u),t)dy(t)

uER.m
_X(O,E’Y,,a’ Y) = £.

1-Not:e: If zi -+ z where zi € W, then a p(z) that is an accumulation point
of {u(zl)} satisfies (50).
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The following results can be established by lengthy, but straight-

forward calculations. For a proof see 31].

Definition 14: For any § € Rn, any measurable relaxed control v, any
«a € [-1,1], any y € Cm[TXRm], and any &8¢ € Rn, let x(t) = x(t,gl,y,o,y)

and let 6x(x,8E,y,a)(*) denote the solution of

53 6}.(()(, 6E’Y,a) (t) = 5 ['g_}f{ (X(t)9u,t) 6X(X96Esy’a) (t)

.Rm

+ g—fl (x(t),u,t) - a}'(t,u)] di’(t) , t €T,

and

> 9%, 88,y,0) (0) = ¢

Theorem 8: There exists a K > 0 such that b (t,e+68,v,a,y) - x(t,&,v,0, )
< K(|a|+lsgl) for all t € T, for all ¢ € [-1,1], for all £ € ¢, for all

ge S and for all 6 € R™ such that E + 8¢ € D.

Theorem 9: Let y(+) and x(*) be as in Definition 1l4. Then there exists
an M > 0 such that léx(x,8€,y,a)(t) - (x(t,&+6£,y,a,y) - (x(t,&,y,o,y))"
§.M("Gg"+|a|)2 for all t € T, for all o € [-1,1], for all £ € ¢, for all

v € 8, and for all 8¢ € R" such that £ + 8E € D.'l-

The following theorem is a consequence of Theorem 9.

Theorem 10: Let L: R™ x R® x T + R', and ¢: R - RY, h.: R® - R',

3

j =1,2,...,p, be functions whose partial derivatives with respect to

x and u exist and are continuous in (x,u,t) up through second order, then

1"l'hus, 8x(x,6E,y,0)(*) is a kind of directional differential.
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there exists a P > 0 such that for all o € [-1,1], vE S, £ € C, and §¢

such that £ + 8¢ €D,

1

55 | § L(x(t,E+8E,v,0,y) ,utoy(t,u),t)dy(t) dt
0 "

1

+ ¢(x(l9£+653zsa’y)) -g <§ L(x(t) ,u,t)dY(t)>dt
0 . .

Rm

1 T
BHO
- ¢(X(1)) =0 S S ( —371—. (x(t)yu3x(t)st)9

0 Rp

y(e,u)) dT(e) | dt - (30, 68)] < p(|a|+lse?

| BH
56 Ihj (x(1,54+88,v,02,y)) - hj (x(l’g’Y,O’Y)) - ali(!‘ (E;'j (x(t),u,
0 m

Aj (t),t).,y(t,u.)) dy(t))dt-(’\j(O),ég > I < P(|a|,+ll<sgll)2

where the Aj’ j=0,1,2,...,p and gj are defined as in Definition 4.
To relate Theorem 10 to Gateaux differentials in L2 N L, we observe
that Theorem 10 implies that there exists a P' such that with gj defined

as in (4), (5) and ng as in (43a), (43b),

57 lhj(x(1,5+aag,§,a,y)).— hj(x(l,g,§,0,y)

- of ng(g’Y)9 (659)'))\1 | = P'az’ J = 1s2’°-')P+Q-
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and

| (ﬁ‘L(X(t,EMGE,Y,u,Y)dY(t)>dt + ¢(x(1,g+a6€,y,a,y)
m .
0 YR

1
- j({ L(x(t,E,v,O,y)dy(E))dt - ¢(x(1)) - VgO(E,Y),(SE,Y))V[
m
0 YR -

< P'az.

Definition 15: Let 6: Rl X (Rn x Cm[T]) XxCx 8-> Rl be defined by

59 e(a,(GE,Y),E,y) = maX{sl [s (L(X(t,zﬂﬁ’c:.’y,a,}'), u + ay(t),t)

0 Rm

- L(X (t,E,Yso,O),ust)) dY(t)] dt; hj (x(l,&+a6£,¥.,a,'y)),

i=1,0..,P3 hj(&‘l'ct'5§), j= p+l:"°’p+Q}

: . i,» A i i =
Proposition 1l: Let {z }i=0 = {(& ,yi,xi,ka‘)} C W be a sequence

converging to z = (E,\-Z,;,AO,...,XO), with {yi} C S and ¢(z) < 0.

Then there exists an integer k(z) such that

- ptq — - zZ). -
60 o(s“®, -y w @ 78, &, E, 9 -3/4 85F) <o
§=0

where u(z) is an accumulation point of a sequence {u(zi)} corresponding to

{z1}.

Proof: This result follows directly from the definition of ng (;),

j =0,...,ptq, Theorem 10 and the fact that by inequality (50), (Vgo(_z-),
q - _ - — ptq —_ —_— —
- u;(2)Vg, (E,¥))_ < ¢(2), and (Vg,(2), - Y . (DVg. (E,9) _ < ¢(2)
i j v | i 3 3 v
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for all j € (1,...,p+q) such that 81(E,§) = 0.

The tollowing lemma 1s obtained by repeated utilization of Lemma 1.

o i i i.d iyy® i
Lemma 10: Let {zi}:.L= {(€7,v,x ’AO’ ..,A )};_o © W be a sequence converging to

- == = i © t
z = (§,7,% Ap)’ where {v }i= C S {g } o €€ and suppose that a

0,...,

corresponding sequence of solutions to (47), {u(z )}i=0’ converges to a

u(z). Then for any a € [-1,1], there exists an infinite subset J(a) C {0,

1,2,...} such that

p+q . . ptq - —_— — —
61 G(G,- ) u.(zl)Vg.(Ei,yl), Ei,yi) J(g)e(a,- 2, (2)vg, (5,v),E,v
J-._.O J J J’:O j j - ~

N—

Lemma 11; Let {(gi,vi,xi,xé,...,l )}:_ be a sequence in W converging
to z 4 G, § X, A _0,...,1 ), that satisfies the hypotheses of Lemma 10.

Suppose that ¢(z) < 0. Then there exist a 8§(z) < 0, an integer M > O,

and an infinite subset K C {0,1,2,.,.} such that

62 gy(e" v - gyl < 6@ vi €K

Vi > M

where £i+1 and vi+l are respectively the initial state and the

measurable control that Algorithm 2 would construct from the control

vl and initial state .

T
3H C o
Proof: For j = 1,2,...,p, let yj(t,u) = 3;1- (x(t,g,v),u,kj(t,a,vxt)-

Then by Proposition 1 there exists an integer k(z) > 0 such that
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T
ptq oh,

- k(z P — - — — -1 - k(z
f (L<X(t,€+8k(2) [" Z llj (Z))\j (O’ggv)- ’ Z l—lj (Z) &J' (g)],YsBk(Z)’
b L\ 4o : §=0 jeptl

P k o p -
- glj(/) y ), u+ i (2) [_ Jgo pj(Z)yj(t,u)],t)

- L(x(t,?;',§,o,0),u,c))d?}(t)]dt

= ptq 4 —— - - 7)) -

ie(ek(z), - 3 u @ EY ,F,,y) < 3/4 8543 <.
i=0

By Lemmas 10 and 1 and inequality (63), there exists an integer M' > 0

such that

1
64 J‘ (x(t £+Bk(z) 1Ay k(z)gi)’
0

1
ity + @5y, t)dt -I L(x(e,g,vh) v (0) ¢ )ae
0

-l

P . .
f( (X(t £ +Bk(z)[ > uj(zl))\j(O,&i,yl)
m

R 3=0
p+q' i — P .
- _J_ i k(z) _ i ,
j"§p+;l uJ(z ) (& )] »B s j‘g‘o uj(z ) YJ-)

~ p
u + Bk(Z) [- Z u-(zi)Y-(t9u)] at)
- L(x(t,Ei,yi,0,0),u,t))dyi(t)]dt < o(s®,
L (et (et oYy, e v')
- j;o uj 2 gj LI ’ L

<1/2 k@ .1y < o Vi > M

vi € 3(g¥(#)y,
..30_



Now consider the control v1 and initial state Ei and the

i+1
control v and initial state Ei+l which Algorithm 2 constructs. ..Le

control vi+l is given by

i+l

i
65 ey = i) + gKEFE

)

and initial state by

i+

i
66 gl _ gl gkG)

where k(zi) is the integer computed in Step 6 of Algorithm 2. It

i —
follows from (64) that Bk(z ) z_Bk(z). Therefore by construction we get

. ptq
. 1 . .
67 g (E.iﬂ,vlﬂ) -8 (Ei,vi) < G(Bk(z ), -2 u.(zi)Vg.(El,vi),Ei,v])
k(zd), , i k(). , i
<1/2 8 o (z7) < 1/28°% ¢ (zh) ¥i > M

vi € k@),

Since ¢(zi) + ¢(z), there exists an integer M > M' such that

67 g oM — gt vty < 17483 Wi u

vi € 38*®)y

which completes our proof.

We now give the main result of this section.

l,xi,ki Xi)}m

0’2 2p) iz be a sequence of initial

Theorem 11l: Let {(Ei,v

states, measurable controls, corresponding trajectories and correspond-
ing multipliers constructed by Algorithm 2. If there exist compact
sets C C Rm, U C R® such that &1 € C and ui(t) €U, t€T, for all i =

0, 1, 2, ..., then either the sequence is finite, in which case the
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last element is desirable, or it is infinite and every accumulation point
of this sequence is desirable. Furthermore, at least one accumulation

point exists.

Proof: The above Algorithm 2 is basically of the férm of our Algorithm
Prototype. With W, W, and A defined as in definition (10 and (11),

c = go, we only need verify conditions (i) and (ii) of Theorem 4

in order to invoke Theorem 4. Lemma 2 immediately implies (i) and
Lemmas 7 and 11 immediately imply (ii). The existence of at least

one accumulation point is guaranteed by Theorem 3.

Conclusion

The two examples we have included in this paper illustrate the use
of the new convergence results for optimal control algorithms. Many
other and much more complex aléorithms can be analyzed in a similar
way. The interested reader can find further results in [9]. The
net effect of our work is to show that optimal control algorithms are

very well behaved, contrary to the misgivings felt by some theoreticians.

-32~



APPENDIX A: Optimality Conditions in Optimization Algorithms.

1) A careful examination of nonlinear programming algorithms (see
e.g. Ch. 4 in [9]) shows that they are frequently derived from variants
of some basic optimality condition. For example, Rosen's gradient
projection method is based on the Kuhn-fucker conditions in standard
form. The Zukhovidskii-Polyak-~Primak method of feasible directions is
based on the Kuhn-Tucker conditions stated as a multiplier free con-
strained optimization problém. The Zoutendijk and Demyanov methods of
feasible directions are based on the F. John condition stated as a
multiplier free min max problem, and the Pironneau-Polak method is
based on the F. John conditions stated as a max problem with multipliers,
which also happens to be the dual of a multiplier free min max problém.
Many more such examples can be cited.

The same phenomenon holds true in optimal control algorithms, as
illustrated by the two algorithms presented in this paper. We shall now
show the relationship between the optimality conditions e(zi) = 0, ¢(zi) =

0 used in Algorithms 1 and 2 with the relaxed minimum principle.

Theorem Al: The Relaxed Minimum Principle:

If u is optimal for the relaxed optimal control problem (7), (8),
9, 4), (5, and :-:":I is the corresponding optimal trajectory, then
xl~1 (1) satisfies (4), x9 (0) = ¢ satisfies (5), u(-) satisfies (9),
and there exist a scalar AO and a co-state trajectory AE, with

0 .% 0
(A",2 (t)) 2 0, such that A~ > 0 and

u
oS -0 () Gowma - (E) @owm.er

r
u

A(t), t €T,
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with

u p u

A2 ATQ) = W, Vh, (x (1))
5 nm

u ptq v

A3 A (0) = ~ - u,Vh.(x (0))
s "1™

> u

where uj =0 forj=0,1, 2, ..., pHq, pjhj(x M) =0for j=1, 2, ..., P,

u
ujhj(x (0)) =0 for j = p+l, ..., ptq and for all admissible relaxed

controls u,

u

g ¥ - A .0 v
A MH(x (£),) (8),u(t),a(t),t) &

u
LG (0) ,u(e)e) + A%(E) £ (x () ,u(t),£))
0 b R u LS R
-,(A L (x (£),8(0),8) + Q3%(e), £ _(x (t),g<t>,t)>):o.

Now consider Algorithm 1, which solves the fixed initial state, free
terminal state problem. Since (see (33)) 8(z) < 0 for all admissible z
and since whenever 6(z) < 0, the algorithm will construct a z'
resulting in a lower cost, it is clear that if z is optimal, then 6(z) = 0.

The relationship of 6(z) = 0 to the relaxed maximum principle is as follows.

Theorem A2: Consider the optimal control problem solved by Algorithm 1

with the accompanying assumptions. Suppose that W is defined as in (36)

A

u u u .
and that z = (u,xi,AEp is such that 6(z) = 0, then Aa satisfies Al, with
0. g, Ag(1) satisfies A2 with W = 1, My=0, 4 =1, .., p and A3 with
uj =0, j =ptl, .., q, and for all admissible relaxed controls §,

1
u u
A5 .{ AH(x (£) A" (t),u(t),u(t),t)dt < 0.
0
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Thus, 6(z) = 0 is seen as an integral form of the relaxed maximum principle.
Now consider the problem solved by Algorithm 2. Again, by construc-
tion, it is clear that ¢(z) = 0 (see (40)) is a necessary condition of

optimality. Its relation to the relaxed minimum principle is as follows.

Theorem A3: Consider the optimal control problem solved by Algorithm 2,

with the accompanying assumption. Suppose that W is defined as in (45)
u u u
and that z = (g,x~,A~,...,l;) is such that ¢(2)

0, and let u.(z), j =
I

0, 1, ..., ptq be computed according to (40). Then the co-state A (t) =
P u
2: uj(z)ka(t) satisfies (Al) with AO = uo(z)g_o, (A2) with uj = uj(z),
=0
j=0,1, .., p, and (A3) with uj = uj(z), j = ptl, .., ptq. Furthermore,
g 0, 3L, Y of L U v,
A6 f" AT Cgg) (x(B),ue),t) + (7)) (x (£),u(t),t)A (e)l“de = o.
T T :
0

Thus, the condition ¢(z) = 0, is seen as a weak, or "differential," form of

the relaxed minimum principle.
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APPENDIX B: Convergence in L2 and I.S.C.M.

We will now present the link between the convergence of a sequence

{ui} of controls in L? [0,1] N L: [0,1] in the L2 horm, and the convergence

of the associated sequence of measurable relaxed controls {91}, in
he sense of control measures. We first give the definition of almost

uniform convergence of measurable function defined on a closed interval T.

oo

Definition Bl: A sequence of measurable functions, {ui(-)}i=0, is

said to be almost uniformly convergent to a measurable function u(s) if
for each § > 0 there is a set E6 in T with “(EG) < § such that

ul(-) converges uniformly to u(.) on T/EG'

The following theorem is found on page 75 in Chapter 7 of Bartle,
[91.

Theorem Bl: If a sequence of measurable functions, {ui(-)}:;o,
converges to a measurable function ;(-) in the L2 norm, then there

exists a subsequence which converges almost uniformly to ;(-).

In the standard L2 theory of convergence of optimal control
algorithms, one assumes that the sequence of measurable controls
{ui(-)};=O constructed by an optimal control algorithm, has a subsequence
which converges in theL2 norm to a measurable function G(-). Theorem Bl
shows that when the above assumption is made, it is automatically
assumed that there exists a subsequence of {ui(o)};=0 which converges

almost uniformly to the function u(.).
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The following theorem shows that almost uniform convergence of

measurable controls implies i.s.c.m. convergence of the associated

measurable relaxed controls.

Theorem B2: Let.{ul}:=0 Cc L? [0,1] N LZ [0,1] be a sequence of
uniformly bounded measurable controls which converges almost uniférmly.

tc u, and let {vi}:=o,; be assoeciated measurable relaxed controls.

Then vi converges i.s.c.m. to v.
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