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1. Introduction

Most optimal control algorithms construct a sequence of controls

whose corresponding costs form a monotonically decreasing, converging

sequence. Because of this, it suffices to require that the sequence of

controls and initial states constructed have at least one accumulation

point and that any accumulation point of this sequence satisfies an

optimality condition, rather than to require that it converges.

In studying the convergence properties of nonlinear programming

algorithms, to which the preceding remarks also apply, it is assumed

that the sequence of points constructed by the algorithm remains in a

compact subset of R . This guarantees the existence of an accumulation

point. With the exception of penalty function methods (which are not

iterative procedures; see, for example [1,3,11]), it has been common among

inventors of iterative optimal control algorithms to assure that the

sequences of controls constructed remain in L -bounded sets, and to show
00 *

that any L^accumulation point satisfies the Pontryagin maximum principle

or some relating necessary condition of optimality. (in the absence of

constructive, generally applicable necessary and sufficient conditions,
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one cannot expect proofs of convergence to an optimum.) Unfortunately,

there is no mathematical basis for assuming that a sequence of controls

in an L^-bounded set has an L2~accumulation point.

The purpose of this paper is to present and illustrate a convergence

theory for optimal control algorithms using iteration formulas of the

form ui+1 ^A^), i= 0, 1, 2, ..., where the u. are the successively

constructed controls and A is a set valued iteration function. This

class of algorithms includes gradient and gradient projection methods,

feasible directions methods, strong variations methods and so forth.

(It does not include penalty function type methods whose analysis requires

a totally different approach). Our theory does not prove that existing

optimal control algorithms always construct controls converging to an

optimal control. This is clearly false. Instead, our theory examines

the properties of accumulation points of control sequences constructed

by optimal control algorithms. In particular, it shows that these

accumulation points satisfy some optimality condition for the relaxed

problem. The optimality condition satisfied differs from algorithm to

algorithm. The theory is based on ah extension of results in [9] and

on the use of a topology, based on relaxed controls [14], [12,12a], which

ensures that accumulation points always exist for L -bounded sequences.

The theory found in Young [14], with some minor modifications, seems

to be the most appropriate one for analyzing optimal control algorithms.

There were two reasons for the modifications. The first is that Young

specifies a priori a fixed set U in which all controls must take their

value. This is extremely inconvenient in analyzing algorithms for problems

without control constraints. We have therefore changed a number of
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definitions to make them independent of such a set U. The second reason

is that we felt it very important to preserve a connection between the

old (L. O L^) and new convergence results and have therefore modified

slightly Young's definition of convergence of relaxed controls.

We illustrate the manner in which this new convergence theory is to

be used by means of two examples: an analysis of a strong variations

algorithm due to Mayne and Polak [7] and of the Pironneau-Polak dual

method of feasible directions [8]. The latter, as well as gradient

methods, require the development of a special directional derivative.

Finally, in Appendix A, we give a short discussion of the use of optimality

conditions in the construction of optimization algorithms and in Appendix

B we establish the relation between the new and the old convergence results,

2. Compactness Properties of the Relaxed Optimal Control Problem

The algorithms which we are about to discuss solve optimal control

problems of the form:

1 min gQa,u) =1 L(x(t,5,u), u(t),t) dt +h0(x(l,£,u)),

subject to the constraints

2 -£-x(t,£,u) = f(x(t,£,u), u(t),t), t6 [0,1], a.e.

3 x(0,£,u) = £

4 g.(C,u) = h (x(l,£,u)) < 0, j = 1, 2, ..., p,

5 SjC^u) =hj(0 1 0, j=p+1, ..., p+q,

6 u(t) G U C Rm for all t G [0,1]
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where f: Rn x Rm x [0,1] -• Rn, and L: Rn x Rm x [0,1] -> P1.

The functions g., jB0,l,...,p+q are real valued and u is assumed to be

measurable.

The following hypotheses are commonly made, with T = [0,1].

Assumption 1: The functions f: R x Rm x T -* Rn and L: Rn x R x T + R

3f <}L
and their partial derivatives —, -2— exist and are continuous on

* 9x* 3x

Rn xRm xT. The functions h:Rn + R1, j=0,l,...,p+q, and their
8h. J n

derivatives —*- , j=0,l,... ,p+q, exist and are continuous on R .
3x

Assumption 2: For each compact flCR , there exists an M > 0 such

that llf(x,u,t)!I < M (flxfl + 1) for all (x,u,t) E Rn x n x T and

llf(x,u,t) - f(xf ,u,t)ll <_ M llx-x'II for all x, x' ^ Rn, u G fl, t € T.

With the original problem (1) - (6) we associate a relaxed problem,

following Young [14], as will be shown after the necessary definitions

have been introduced.

As already pointed out in the introduction, the study of optimiza

tion algorithms is substantially simplified when a number of definitions

used by Young [14] and Warga [12,12a] are somewhat modified. This is

done to avoid the a priori selection of a compact set U^R such that

u: T -*• U, since an a priori selection of a U contradicts the absence

of constraints on u(t) in control unconstrained problems. The reader

is therefore cautioned that our definitions differ from those of Young

and Warga. However, the following results can be deduced directly from

those of Young [14] and Warga [12,12a] and are presented here, without

claims of originality, so as to make the paper readily accessible to

the large number of specialists in computational methods who are not
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familiar with the theory of relaxed controls.

Definition 1: Let V be the set of non-negative unit measures (probability

measures) on Rm and let T A [0,1]. A relaxed control is any function v(-):

T+ Vwith the Property that for some compact set UC Rm, the measure

v (t) is wholly concentrated on Ufor all tG T (this will be referred

to as "v(.) vanishes outside of U").

Throughout the paper a relaxed control will be denoted by a boldface

uor y and an ordinary control (measurable function) by an ordinary u or v.

Definition 2: Given a continuous function $(•) defined on Rm and a

measure ye V, we shall write <j>r(y) for its integral in the measure v,

i.e. <J> (v) = 1 <J>(u)dy, whenever that integral is well defined. More
J R

generally, if <Kx,u,t) is continuous in (x,u,t), the symbol <j> (x,v,t)

denotes, for fixed (x,t), the integral on Rm of <Kx,u,t) with respect

to the probability measure v, i.e. <J>r(x,v,t) = 1 c|>(x,u,t) dv.
-Rm

Definition 3: A relaxed control y(«) will be termed measurable if for

every polynomial p(u) in (the components of) u, the function

Pr(v(t)) =1 p(u)dy(t) of t is measurable.
J m

Remark: From Page 290 in Young, [14], it follows that if y(-) is a

measurable relaxed control and g(t,u) is a continuous function of (t,u),

then the function gr(t,y(t)) M g(t,u)dy(t) of tis measurable.
J m
J R

The relaxed problem is obtained from the original problem (1) - (5)

by substituting the cost

7 S0(€>y) =jLr(x(t,£,y), y(t), t)dt +h0(x(l,5,y))
0
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for the cost (1), the differential equation

8 x
(t) =f(x(t),y(t),t) £I f(x(t),u,t)dy(t),

r J m

for the differential equation (2), and the requirement that

9 y(0 vanish outside of U

for (6).

We now give an existence and uniqueness theorem for the solution to

the relaxed differential equation (8). The proof is found in Young, [14]

on pages 291-292 and 298, where the theorem is proved under weaker assump

tions .

Theorem 1: Suppose that Assumptions 1 and 2 are satisfied. Then for any

measurable relaxed control y('), which vanishes outside some compact set

U C r t and any initial state x , there exists an absolutely continuous
o

.nfunction x(.,xQ,y): T -*• R that is the unique solution to (8), satisfying

x(0,x ,v) = x .
o ~ o

In our analysis, in addition to the relaxed optimal control problem,

we will also need associated multiplier functions, defined as follows.

Definition 4: For j = 0,1,2,...p, let \.(-,£,y): T + Rn, denote the

solution of

3H.\T
10 -XjCt.C.y) =l-^-l (x(t,^,y),y(t),Aj(t,^,y),t)

»T
ah.

11 AjCUCy) =MM (x(l,£,y))

-6-



where the superscript T denotes transposition and H.: R x R

x Rn x T -* R1, j = 0,1,...,p, is defined by

12 H..(x,u,A,t) 6\Tf(x,u,t) +6jQL(x,u,t)

where 6.n is the Kronecker delta.

The relaxed optimal control problem leads to two crucial sequential

compactness theorems, as we shall shortly see. The first one of these

two theorems is due to Young [14], the second one to Warga [12a].

i i00Definition 5: A sequence {y (•)}.« of measurable relaxed controls

converges in the sense of control measures (abbreviated i.s.c.m.) to a

relaxed control v(#) if for every continuous, real-valued function g(t,u)

defined on TxRm and every subinterval Aof T the values lg (t,v (t))dt

converge to fgr(t,v(t))dt.
Ja

Notation: If {y (•)}, i€ K, converges i.s.c.m to v(-), we denote
i K-

that by y (•)"»• y(«).

The first compactness theorem which we need is proved on pages

301-303 in Young, [14].

i oo
Theorem 2: Let {y (•)} be a sequence of measurable relaxed controls

i=0

which vanish outside some fixed compact set U. Then there exists a relaxed

control v(«) which also vanishes outside of U and a subsequence indexed

by a set K C {0,1,2,...} such that vX(0 + v(-).
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Notation: Given a sequence of initial states l£ } and a sequence of
i=0

r i i00
relaxed controls Iv (•)/ , we shall denote the corresponding sequences

i=0

of trajectories and multipliers (determined according to (8) and (3), and

-f CO -J CO

(10), (11) respectively) by (x (•)} , U.(*)} , j=0,l,...p. we shall
i=0 J i=0

u u

also use the notation xU, x~, A?, A~ to denote solutions to (2), (3), (8),

(3) and (10), (11) corresponding to a measurable control u or a relaxed

control u.

i i i i iN coDefinition 6: If {(^ ,y\x ,Xq, ... ,xp)}°° is asequence of initial
i=0

states, relaxed controls, corresponding trajectories, and corresponding

multipliers such that {£ Converges to I, {y1} converges to y i.s.c.m., {x1}

converges to x uniformly, and {A*} converges to A. uniformly, j= 0,1,...,p,
j

then we denote this by (51,vi,xi,A^,.. ..A1) •* (f,v,x,A_,... ,A ).
u p - u p

Definition 7: (i",y,x,A0,... ,Ap) is called an accumulation point of

{(£ »Y »x »Aq,...,A )}°° if there exists a subsequence, indexed
* i=0

by some KC {0,1,2,...}, such that ttV".*1.** ..X1)
K ° P
•*• (?fY>x,A0,...,A ).

The second compactness theorem will be established as aconsequence of
the following lemmas.

Lemma_l: Let C, U be arbitrary compact sets in RP, Rm, respectively,

and let Sbe the set of measurable relaxed controls which vanish outside
- — _

(10) degenerates into an ordinary differential equation when u is an
ordinary control.
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of U. Let g be a continuous function from RP x r x t into Rq. Let

i — i
Y (')> Y(«) be continuous functions from T into C such that Y (•) converges

— i °°to Y(») uniformly. Let {y (•)} i=0 be a sequence of relaxed controls that

converges i.s.c.m. to a relaxed control y(*)« Then for each subinterval

A of T,

13

'A 'A

fgr(Yi(T),Vi(T),T)dT +|gr(Y(T),y(T),T)dT,
-'A •'A

Proof: Follows immediately from Definition 5 and the uniform continuity

of g on C x U x T.

The following lemma found in Filippov, [3a], will also be needed to

establish the second compactness theorem.

Lemma_2: Let {y (Oh^, where I is some indexing set, be a collection

of absolutely continuous functions from T into Rn such that {y1^))} ,-
ieI

or {y (l)}iGl is contained in a compact set of Rn. Let functions

Y : T •* R, i e i, be defined by

14 Y^t) = Hyi(t)B2 + 1.

If there exists an M>0such that |Yi(t)| <MY^t), for almost all

t€ T, i€ I, then the set {y (')}±Gl is equibounded and equicontinuous.
Furthermore, if I = {0,1,2,...}, then there exists a subsequence indexed

by a set KC {0,1,2,...} and an absolutely continuous function y(*)

such that y (•) converges uniformly to y(«) for i^K.
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Now making use of Lemmas 1, 2 and Assumption 2 it is straightforward

to show that the following compactness result, due to Warga, [12a], holds

Theorem 3: Let C and U be arbitrary compact sets in R , R , respectively,

and let S be the set of measurable relaxed controls which vanish outside

of U. If i(5 ,y ,z ,^q,...,a )} is a sequence of initial states,
i=0

relaxed controls, corresponding trajectories, and corresponding

multipliers such that it }±s=Q CC, {v }<= S, {£ }converges to £, {v.} converges
*- . "f i, — i —to y i.s.c.m., {x ^converges to x uniformly, and {X.} converges to A.

•J J

uniformly, j = 0,1,...,p. Then x(.) = x(»,£,v) and A.(') = A.(»,£,v),

j=0,1,...,p. Furthermore, given asequence {(^1,yi,xi,A*,...,A1)}?=n
such that {£ L=0 C c and {y }±=Q C s, there always exists a subsequence

that satisfies the above hypotheses and conclusions.

3. Algorithm Prototypes and Convergence Theory

The convergence theorems which we find in [9], as well as in other

sources, require that the limit points of sequences constructed by an

algorithm lie in the domain of the algorithm. Since this may not be

true for optimal control algorithms, it is necessary to modify the

existing convergence theory just slightly. We now show how it is done

for the simplest case treated in [9]. The more complicated cases

discussed in [9] can be modified similarly.

The algorithm prototype below, extends the algorithm prototype *

1.3.9 in [9]. Let Zbe atopological space, Wbe a subset of Z, and W

be asubset of g.# We use two functions, the search function, A: W+2W,
and the stop function, c: W-R1. Finally, we let the set of desirable points,

+ -f iIf v ->• y i.s.c.m., with {v }CS, it follows that y€S also.

^Prototype 1.3.9 in [9] applies only when W =W and its convergence is
is established only in terms of a normed topology.
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A, be a nonempty subset of W. The problem then is to find any point in

A, where it is assumed that we have some way of recognizing points in A.

Algorithm Prototype:

Step 0: Compute a z £ W.

Step 1: Set i = 0

Step 2: Compute a point y € A(z ).

Step 3: Set zi+1 = y.

Step 4: If c(zx ) j> c(z ), stop; else, set i = i+1 and go to Step 2.

The proof of the following convergence result is the same as that of

Theorem 1.3.10 in Polak, [9], except that one uses sequences instead

of closed balls.

Theorem 4: Consider the above algorithm. Suppose that

(i) for every nohdesirable z € W and every sequence {z1}" C w
- i °° -converging to z, {c(z )}.=0 converges to c(z);

(ii) for every nondesirable z£Wand every sequence {z1}" nCw

converging to z, there exists an infinite subset K C {0,1,2,...}, an

integer N >. 0, and a 6(z) > 0 such that

15 c(z") - c(zx) £-6(z) <0 Vi>N, Vi G K, Vz" <= A(z±).

i °°
Then, either the sequence {z } constructed by the algorithm is finite

and its next to last element is desirable, or else it is infinite and

every accumulation point in Wof {z1}"^ is desirable.
With the proper choice of Z, W, and W this algorithm prototype and

convergence theorem can be applied to a large class of optimal control

algorithms. This will be demonstrated in the following sections.
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4. A Strong Variations Algorithm.

In this section we shall present a proof of convergence for a strong

variations algorithm developed by Mayne and Polak [7]. This algorithm is

an "L^ H L_ stabilized" version of a differential dynamic programming

algorithm due to Jacobson and Mayne [5]. Differential dynamic programming

algorithms are based on fairly complex relationships between changes in

Hamiltonians and changes in cost in optimal control problems.

The interested reader is referred to the book by Jacobson and Mayne [5],

Mayne [6], and to [7] for background material. The gist of these

algorithms is generally as follows. Given a control u , an approximation

to the optimal control, one computes the corresponding trajectories and

"l UI
multipliers x , A by solving (2), (10), (11). Then one constructs a

Ui Ui ui
Hamiltonian H(x (t),w,A (t),t), where A is a certain convex combination

u.

of the A , and is an approximation at the optimal co-state.. By minimizing

H with respect to w € u, one obtains an intermediate function u (t). For the

algorithm to converge, one now has to use a rather complex way of constructing the

next control, u±+1, by setting it equal to u± for some points in T and to

u\ for some other points in T. The specific rule used in [7 ] is derived

from the Armijo [9] step size selection procedure commonly used in nonlinear

programming. Fig. 1, reproduced from [7 ], will perhaps help the reader

in understanding the algorithm. Although strong variations (or differential

dynamic programming)algorithms are difficult to understand, they have two

distinct advantages: (i) they are computationally efficient, and (ii) they

solve certain classes of problems which cannot be solved by other algorithms.

(In principle all optimal control problems can be solved by means of penalty

function methods, but, at least in our experience, penalty function

methods have been found to perform unacceptably on quite a few occasions).
-

Thim, we can think of these algorithms as being derived from the Pontryagin
Minimum Principle.
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The algorithm to be described solves the problem (1) - (6) under

the additional restriction that the system (5) .is replaced by t. = f ,

that the functions h. = 0 for j = 1,2,...,p+q, and that the set U in

(6) is compact. In other words, our initial state is fixed and we have

no initial or terminal inequality constraints. Because of this we will

drop any reference to the initial state. In the discussion below, we

shall denote by G the set of measurable functions u : [0,1] -»• U.

To insure that Algorithm 1 is well defined we need the following

theorem which is a consequence of the McShane-Warfield Halfway Principle, [14]

Theorem 5: For any u £ G there exists a u £ G such that for almost all

t € T,

16 £(t) e U(u,t) ^arg min HQ(xu(t) ,w,A|J(t) ,t)+
wQj

Next, let H: GxT -*• R be defined by

17 H(u,t) ^min HQ(xU(t),w,A^(t),t)
wQJ

where Hn was defined in (12) and let 6: G + R be defined by

(u) ^ f [H(u,t)-H0(xU(t),u(t),AU(t),t)],

12 2 1*21For any u , u GG, let AgQ(u ,u ) and AgQ(u ,u ) be defined by

19 AgQ(u ,u ) = gQ(u )-gQ(u )

Thus U(u,t) is the set of minimizers.
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and 1

20 AgQ^.u1) & f [HQ(x1(t),u2(t),Aj(t),t) -
0 111-H0(xX(t),u (t),Aj(t),t)]dt

where gQ is defined as in (1). (It is shown in [6] that Agn is, in a

certain sense, a first order estimate of Agn).

Ho
Next, for every u G G, let U(u), I , and m(u) be defined respectively

by

21 U(u) = {v G G: v(t) G arg min Hn(xU(t) ,w,A"(t) ,t) for
wOJ ° ' °

almost all t G T}.

Hft _
22 IuU £{t e T|H(u,t)-H0(xU(t),u(t),A^(t),t) <0(u)}
and

a Hn
23 m(u) = u(I U)

where u is Lebesque measure.

For every u G G and a G [0,1], let I be any subset of T having the

following properties.

24 y(Iou) = a

H0
25 If a S [0,m(u)3, I C I

au u

Ho26 If a € (m(u),l], I DlU
au u

H027 Va G [0,m(u)], {t G I u, t'Gl , t < t'} => ft G I }
u au au

H028 Va S (m(u),l], {t 6T,t'6 I^I^.t <t'} =• {t Gi }.
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Next, for any u G G, for any a G [0,1], u G G will denote a function

with the following properties

29 ua(t) G U(u,t) Vt G 1^

30 ua(t) = u(t) Vt G T\IoU

Finally, let a: G+ 2[0,11 be defined by

31 a(u) = {a|a =max {g G [0,1] |AgQ(u^i ,u)

< g'0(u)/2, V31 G [0,3]}}

where uDl G G is any control that satisfies (29), (30).
p

Algorithm 1: (Mayne and Polak [7]).

Step 0: Select a u° G G.

Step 1: Set i = 0.

SteP 2: Compute x by solving (2), with £= SQ.
Step__3: Compute AQ by solving the ordinary control versions of (10) and (11)

Step 4: Compute u1 such that ^(t) G u(u ,t).

Step_5: Compute G(u1) =A^^.u1) using (20). If e(u1) =0stop.
Else go to Step 6.

Step 6: Compute an a G a(u ).

i+1 iStep 7: Set u = u ±. set i » i+1. Go to Step 2.
a

Algorithm 1 constructs a sequence of ordinary controls. However, in

proving convergence, we must use relaxed controls. Therefore, with each

ordinary control u we associate a relaxed control u which has the property

that the measure u(t) is wholly concentrated at u(t), i.e.j, r.du(t)
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w
= 1 for all t e T. We then see that Algorithm 1 defines a map A : W G 2

where W is defined by

32 W= {(u,xU,AU)|uG G}.

In other words, for any (u^x^Ajlj) Gwthe set ACU^x^Aq)) consists of
i+1 i+1 i+1

the possible (u ,x .A": ) which the algorithm can construct from

the given point du1,x1,Aj"). We will now establish our convergence result

for Algorithm 1 using the theory developed in sections 2 and 3.

As before, let S be the set of measurable relaxed controls which vanish

outside of U. We also have to make the straightforward extension of the

domain of definition of functions such as 6, H, etc. to include relaxed

controls.

For example,

1

A C - u u
33 6(u) = I [H(u,t)-H (x (t),u(t),Aft(t),t)]dt

1
u u u u

[min H (x~(t),w,A~(t),t)-H. (x~(t),u(t),A~(t),t)]dt
0 wGU U •° °- °'/

'0

The following lemma is proved in Mayne and Polak [7].

W
Lemma 3: Let A: W •+ 2 be the map defined by Algorithm 1. Then there

exists a c > 0 such that for all u G G

34 Ag()(u\u) <-[6(u)]2/c, V(uf,x" ,xjj )GA(y,x~,A~)).
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Lemma 4: Let (ux,x ,AjJ)-*• (u,x»A0) where {u }±=0 c S. Then

6(ui) •* 0(u).

Proof: This follows from Lemmas 3 and 4, the continuity of min H_(x,w,A,t)
wGu U

in (x,A,t), Lemma 1 and Theorem 3.

We can now prove the convergence result. Let W be as in (32) and

let Z and W be defined by

35 Z = Sxc [T]xC [T]
n n

and

_ u u

36 Wo {(u,x~,A~)|u G s}

where C [T] is the space of continuous n vector valued functions on T,

with the uniform convergence topology. Let the set of desirable points, A,

be defined by

u u

37 A= {(u,x~,A~) Gw|6(u) =0}.f

i i i °°Theorem 6: Suppose Algorithm 1 generates a sequence {(u ,x »An)} ,

i i i ,« i=0then either the corresponding sequence {(u ,x »^n )'.:-()

is finite, in which case the last element is desirable, or it is infinite

and every accumulation point in W (at least one exists) is desirable.

Proof: The above Algorithm 1 is obviously of the form of our Algorithm

Prototype. Letting W, Z, W, and A be defined respectively as in (32),

(35), (36), and (37) and c be gQ, we only need to verify conditions (i)

i i i
and (ii) of Theorem 4 in order to invoke this theorem: (i) If (u ,x ,AI) -*•

- 0
t
It is shown in Appendix A that 9(u) = 0 is an optimality condition.
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i— iii
(u,x,A_), Lemma 1 immediately implies gn(u ) -»• gn(u) . (it) If :(u ,x 9^q)

(u,x,A0)with 0(u) < 0, Lemmas 3 and 4 immediately imply that there exists

an n > 0 such that

X 238 8o(/,)-go(/)<-lM-)J-<.I^lI%0 .

Vi > N »

~~, if i'
VCu1 ,x» ,\~ )€A(«1,x±.xJ))

Thus Theorem (4) can be applied. The existence of at least one

accumulation point follows from the second half of Theorem 3.

5. A Dual Method of Centers.

We shall now consider an algorithm due to Pironneau and Polak [8].

Unlike the algorithm presented in the preceeding section, this one

cannot be treated by simply cannibalizing its convergence proof in

L2 n *•«,• A special directional derivative must be developed for its

analysis.

The algorithm in [ 8] solves the problem (1) - (6) under the

restriction that hQ =0 and U= Rm.

Assumption 3: We will assume that f, L, and h , i = l,...,p+q, are such

that their partials up to second order with respect to x and u exist

and are continuous in (x,u,t) on the sets on which they are defined.

The following algorithm is derived from the F. John condition of

optimality, as explained in detail in [8]. It is called a "dual" method

of feasible directions because it uses multipliers. The "primal",

Zoutendijk type methods of feasible directions [9] are derived from

the F. John condition in multiplier free form (see [9]), and do not
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extend to optimal control problems, because the direction finding

problems become as difficult as the original problems.

Algorithm 2: (Pironneau-Polak [6]): ($ G (0,1) is a step size parameter)

Step 0: Compute a £ G R and a measurable ordinary control u such that

hjU0) <0for j-p+1, ..., p+q, h^xd.^u0)) <0for j»1,
..., p. Set i = 0.

Step 1: Compute z « (5 ,u ,x ,AQ,...,A ) according to (2), and the

ordinary control versions of (10), and (11).

Step 2: Compute Vg.(£ ,u ), j • 0, ..., p+q, according to

T
3H

39a vg^Su1) -(a^O.^u1), "^ (xO.^.u1), uV), *<• .-^.u1) ,•)),

j « 1,2,...,p

39b Vg tt1.!!1) -(VhjU1)^), j=p+1, p+2,...,p+q.

Step_Jl: Compute y(zi) A(u^z1), ..., ^(z1)) GRP+«+1 a8 asolution of

40 Kz1) ffl max{£ y^^xd,?1^1)) +£ W

+ 2 VAC51) -0/2)12: M1Vg.(C1fu1)§f

.1 „ *« ,I •£ y, - 1, y ^0, j = 0,1, ..., p+q},
j=0

where D«ll2 denotes the Ln[0,l] norm.

SteP 4: If ♦ <*" ) =0, set FBK1 and u - u1 and stop; else, go to Step 5.

Step 5; Set
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i u *& , u 3hjT ,,U41 oi1 = - £ p,(zx) a.(o,s\u ) - £ y.(z ) tt1 (5 )
j-0 J J j=p+i 3

T

-i p -i 9H-i i i i i42a v1(t,u) = - V y.U1) -r^- (x(t,r,u ),u, A(t,£ ,u ),t)
jtb J 3u J

for all (t,u) G TxRm.

42b vX(-) = v1(-,u1(.)).

Step 6: Compute the smallest integer k, such that

maxjj JL^xa,^1 +W.u1 +3kvi),ui(t) +3^(0, t)

-L(x(t,Ci,ui),ui(t),tj|dt;

h^xd.e1 +3V,u1 +bV)), j=l,...,p;

h.U1 +3V), j=p+1, ..., p+qi -|- (Kz1) £0.

Step 7: Set 5±+1 = S* + 3V, set ui+1(-) =u1^) + 3^(0, and

go to Step 1.

Before proving any convergence results for the above algorithm, we

must develop some more theory to make the transition from ordinary controls

to relaxed controls. Again this is necessary because, we want to study

relaxed controls which are accumulation points of a sequence of ordinary

controls. In particular, we need to construct a special directional

differential, and we develop a variational equation for this purpose.

We first define the following functions which are generalizations of

the differentials for functions of ordinary controls.

Definition 8: For any £G Rn and v ameasurable relaxed control, let
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Vgj(€,v:): TxRm -* RnxRm, j=0, ..., p+q, be defined by

T

43a vgj(£,v)(t,u) =(Xj(0,^,v), ^- (x(t,?,v),u,Aj (t,S,y),t))

for j = 0,1,...,p, and

T
8h/

43b Vgja,Y)(t,u) =(^-1 (0,0)

for j = p+1,...,p+q where A and H. are as defined in Definition 4.

It will be shown in Theorem 9 that the Vg.(£,v) are analogous to L
J o

gradients, (see (56), (57)),

Definition 9: Let v be a measurable relaxed control, let £, V G Rn,

and let y, y' be continuous functions from T x Rm into Rm. Then

<(C,y), (€\yf)>v and |(S,y)lv will denote

,y), (S',yf)>v =<£,£'> +I ff <y(t,u),y'(t,u)> dv(t)j

and

1 1/2

45 |(5,y)| =[<£,£> +l{1 Hy(t,u)il2dy(t)jdt]
0VJRm " /

where <•,•) denotes the Euclidean scalar product and D•B denotes the

Euclidean norm.

Definition 10: Let W and W be defined by

46 W= {?,v»xv,Aq,. ,.,Ap|where v is arelaxed control associated

with the ordinary control v, £ G Rn and g (£,v) <_ 0, j = 1, ..., p+q)
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and

ttA v v
47 W - {(£,y,x ,Aq,...,A )|v is a measurable relaxed control,

£G R and g..a,y) <0,J = 1, ..,, p+q}.

Definition 11: Let A, the set of desirable points, be defined
y y v

A={(€>Y>X ,Aq,...,A") G w| there exists multipliers

V., j=0,1,...,p+q such that, (i) yj >0, j=0,1,...,p+q,
p+q

•~0 yj =1' (iii) yj8j(^y> =0for j=l,...,p+q,
>+q

(ii)

p+q

<lv>|'£ y.vg^cy)!2 =o}.
j=o J J y

Assumption 4: The set {(^,u,xU,Aq,..,,AU) G w|g.(?,u) <0, j=1,...,
p+q} $ 0.

The following definition is an extension of 4> in (40) to relaxed

controls.

Definition 12: Let z = (£ ,v ,x ,AQ,A ,...,AX). Then

i P i i48 *(z ) =max{V; y h,(x(i,5 ,v ))
J=l J J

P+q . p+q

j=p+l J J j=Q J J v1

p+q

£ Pj -1, V. 10, j=0, 1, ..., p+q}.
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Thus Algorithm 2 defines a map A: W -*- W.

We can establish convergence properties only for bounded infinite

sequences {51,u1,x1,A ,....A1 } constructed by Algorithm 2. We there

fore introduce an arbitrary compact set C C R which will be assumed to

contain U1} and an arbitrary compact set U C Rm which will be assumed to

contain {u (t)}, t G T. In addition, we shall make use of an arbitrary

compact set D containing C in its interior, and we shall denote by S the

set of measurable relaxed controls which vanish outside of U.

Lemma 7: Let ^±}<°±=0C C, ^u^o Cs be such that (g1,;/.x1^j,... ,A*)

•*• (£ ,y,x,AQj. •. ,A )• Then there exists a subsequence indexed by

Kc {0,1,2,...} such that <J> (z1) £<J>(z), where z = (£ >u1,x1,* ,.... ,A )

and z = (C,u>x,X .. ,A ).

i it00Proof: Let y be a solution to (47). Since {y }._Q is contained in a

compact set, there exists a subsequence indexed by Kc (0,1,2,...} and

- pi? -
ayG RP+q+l such that y1 *", E ^ -1, and P >0for

j=0 J J
i. K .,P

J = 0,1,...,p+q. By Lemma (1) we obtain <j) (z1) £ (£ y.h. (x(l,S,u))
j=l J 3'

p^ - ,p+q _ ,o
+ L wh(C)-a/2)l£ p.vg.(Cu)r).
j=p+l J J j=0 J J ~ u

p- - - p+? _ _ ,p+q _ l9
Now<f>(z)>{£ P,h (x(l,5,u)) + E U,h.($)-<1/2)|£ P.Vg,(5,u)l>.

j=l J J ~ j=P+l 3 3 j=0 J J - u

Suppose the inequality is strict and let P = (y.,...,y J be a solution
U p+q

of (47)» for z = z» that gives <J>(z). Then we must have that
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p = i p+3 - -j p+q _
(E iAdtt-f1.; )) + E JAffVttftllj: J.vg.^,,,1)!2,)
j=i J J j=P+i J 3 j=o J 3 ~ u1

* <f>(z)- But this implies that for sufficiently large i G k,

P = £ £ p+q _ . p+q

(£ Vj(x(1'S >u » + £ yjhj(0-a/2)|E p.vs.c^u1)!2,) >♦(**>
3-1 J=P+1 J J j=0 J 3 u1

This is a contradiction of (47). Therefore

P _ _ _ p+q
49 <j><z> = £p.h (x(l,£,u)) + 23 P>,(i)

j=l J J - j=p+i J J

p+q
- (1/2)1 L y.Vg (C,u)|7f

4^n J J - uj=0

Thus ^(z1) 5 <{,(z).

The following lemma can be deduced from an analogous result in [8]

Lemma 8: Let (J>: W -»• R be defined as in (47) and let z G w be

arbitrary. Then <|>(z) < 0, and (|>(z) = 0 if and only if z G A.

Lemma 9 (see [8]): Suppose that z G W is such that <f>(z) < 0 and that

y(z) = (yn(z), ...,y . (z)) is a solution to (40) for z = z. Then
u p+q

p+q

50 max{ <Vg (£,u), - £ y,(z)Vg (£,u) I;
U j=0 3 3

p+q
g U,u) +<Vg (5,u), - £ Vi,(z)Vg (5,u) >2,

j=0

p+q .l2
j = l,...,p+q} £ *(z) -(1/2)11 £ P,(z)Vg.(C,u)« < 0.

j=0 J 3

Vt



The following corollary to Lemma 9 is obtained by application of

Lemma 1.

Corollary 1: Suppose that z G w is such that <f>(z) < 0, then there exists

a p(z) such that

p+q
51 max{ <Vgn(C,v), - £ p,(z)Vg (5,y) > ;

U ~ j=0 3 3 ~

p+q
«.U,y) +<vg.U,v)f - £ pi(z)vg.(5,y)> ,
3 J j=o J J *

p+q

j = i,...,P+q> < ♦<*) - a/2) | £ y,(z)vg,(^u)| < 0.
j=0 J J ~

At this point we develop a set of variational equations defining

a special directional differential which we shall need to show that

Algorithm 2 satisfies (ii) of Theorem 4.

Definition 13: For any £ G r f any measurable relaxed control v, any a£[-l,l]

and any yG cJT xRm], let x(t,£,y,a,y) denote the solution of

— x(t,£,y,a,y) = 1 f(x(t,£,y,a,y), u+ ay(t,u),t)dy(t)52
dt - """ J

uGr

x(0,£,v,a,y) = £.

t i i
Note: If z -*- z where z G w, then a y(z) that is an accumulation point

of {y(z )} satisfies (50).
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The following results can be established by lengthy, but straight

forward calculations. For a proof see [13].

.nDefinition 14: For any £ G r , any measurable relaxed control v, any

aG [-1,1], any yG CjTxR111], and any 6£ G Rn, iet x(t) =x(t,£,y,0,y)

and let 6x(x,6£,y,cx) (•) denote the solution of

53 Sx(x,6£,y,a)(t)= I|||(x(t),u,t)6x(x,6C,y,a)(t)
Rm

+|^ (x(t),u,t) .ay(t,u) dy(t), tG T,
9u

and

54 5x(x,6C,y,a)(0) = §z

Theorem 8: There exists a K >0such that ilx(t,£+S£,y,a,y) - x(t,S,y,0,y)||

<K(|o|+B6gfl) for all tG T, for all aG [-1,1], for all ?GC, for all

y G s and for all S£ G Rn such that J + 6£ G D.

Theorem 9: Let y(«) and x(») be as in Definition 14. Then there exists

an M>0such that II 6x(x,6£,y,a)(t) _(x(t,£+S£,y,a,y) - (x(t,S,y,0,y)]fl

£ M(!l6Cll+|a|)2 for all tG t, for all aG [-1,1], for all £G C, for all

v G s, and for all &E, G Rn such that £+ 65 G d.+

The following theorem is a consequence of Theorem 9.

Theorem 10: Let L: Rn xRm xt->• R1, and <J>: Rn -* R1, h.: Rn -»• R1,

j = l,2,...,p, be functions whose partial derivatives with respect to

x and u exist and are continuous in (x,u,t) up through second order, then

t
Thus, <5x(x,S£,y,ct) (•) is a kind of directional differential.
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there exists a P > 0 such that for all a G [-1,1], v G s, 5 e C, and 65

such that 5 + 65 ^ D,

55 I \ ( 1 L(x(t,5+65,y,a,y),u+ay(t,u;,t)dy(t) dt

°VRm

+<f>(x(l,5+65,y,a,y)) - 1( I L(x(t) ,u,t)dy(t)]dt

- ♦(!(!)) -o \ (\ ( iT Wt),u,A(t),t),
°VRm

y(t,u)> dv(t)j dt -<^(0),65>| <P(|a|+ll65tD2 ,

56 |h.(x(l,5+65,Y,a,y)) - h (x(l,5,v,0,y)) - a If I <^(x(t),u,
3 3 ~ i\{*

A.(t),t),y(t,u)>dy(t)jdt-<A (0X65 >I<. P(|o|.+D6CB)2

where the A., j = 0,l,2,...,p and ft are defined as in Definition 4.
j ^

To relate Theorem 10 to Gateaux differentials in L„ n L^, we observe

that Theorem 10 implies that there exists a Pf such that with g defined

as in (4), (5) and Vg. as in (43a), (43b).,

57 Ih.(x(l,5+cc65»y>a,y)).- h (x(l, £,y,0,y)
j j

-a<vgj(5,y), (65,y)>y |<P'a2, j=l,2,...,p+q.
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and

181 | L(x(t,5+a65,y,a,y)dy(t))dt +<Kx(l,5+a«5,v,a,y)
-0 V1

fl( j L(x(t,5,v,0,
•Mr

2
< Pfa .

y)dy(5))dt - ♦(x(l)) - a(Vg0(5,y),(65,y)>v|

In 1

Definition 15: Let 6: R x (R x C [T]) x C x s + R be defined by

59 e(a,(65,y),5,y) =maxjl II (L(x(t,5+a65,y,a, y), u+ay(t),tI
l0 RnA

-L/x(t,5,Y,0,0),u,tjl dy(t) dt; h(x(l,5+a65,V,a,y)),

j = l,...,p; h (5+a'65), j= P+1,...,P+q I

Proposition 1: Let (z1}^ £{(5i,yi,xi,AJ)} Cwbe asequence

converging to i= (5,y,x,A0>... ,AQ), with {y1} Csand *(£) <0.
Then there exists an integer k(z) such that

, ,—. p+q _ _
60 e(e*w, - £ y (z) Vg (5,v), 5, v) -3/4 0k(z)cKz") <0

j=0 3 3 ~

where y(z) is an accumulation point of a sequence {y(z )} corresponding to

{z1}.

Proof: This result follows directly from the definition of Vg.(z),

j = 0,...,p+q, Theorem 10 and the fact that by inequality (50), <Vg (z),
p+q _ _ _ p+q _ _

- E P,(z)Vg.(5,y)>_ < <J>(z), and<Vg (z), - £ y. (z)Vg.(5,v)>_ 1 <|>(z)
j=0 J J y J j=0 3 3 ~ y
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for all j G fl,...,p+q] such that g (5,v) = 0.

The tollowlng Lemma is obtained by repeated utilization of Lemma 1.

Lemma 10: Let {z }7=0 =((5 ,y ,x ,AQ,... »* HJ°_q cWbe asequence converging to

z=(5,y,x,A0,...,A ), where (vi}^ss() CS, U1)^ CC, and suppose that a
i °°corresponding sequence of solutions to (47), {y(z )}._0» converges to a

y(z). Then for any a G [-1,1], there exists an infinite subset J(a) c {0,

1,2,...} such that

61 (a, -X? yj(zi)vgj(5i,yi), c1.^) J^e(a, -£yd(7) Vg.(5,y),5,y)

Lemma 11; Let {(£ ,y ,x »AQ»..v,Ap)}^=0 be asequence in Wconverging
to z = (5,y,x,A0,,..,A ), that satisfies the hypotheses of Lemma 10.

Suppose that <\>(z) < 0. Then there exist a 6(z") < 0, an integer M > 0,

and an infinite subset KC {0,1,2,...} such that

62 g0(5i+1,y1+1) -gQ^y1) <6(z) Vi GK
Vi _>• M

. ri+l , i+1
where 5 and v are respectively the initial state and the

measurable control that Algorithm 2 would construct from the control

•f *

v and initial state 5 .

T

9HiProof: For j=1,2,...,p, let Y^t.u) =j^- (x(t,5,v) ,u,A.. (t,5,v),t).

Then by Proposition 1 there exists an integer k(z) >_ 0 such that
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63 5+Bk(z)Al(L{'(- p _ p+q _ - _ .

j=0 3 3 j=p+i J 8x J"

' '- E M.(z)y (t.u)
j=0 J •'

u (/.) y \, u + p.
.R

dh

»,Bk(z)

,t)

-Lfx(t,5,y,0,0),u,t\ jdy(t) dt

ie(sk(z), -Eq P,(i")Vg.(5,v) ,5,v) <3/4 3k(z)<Kl) <0,
\ j=0 J 3 " I ~

By Lemmas 10 and 1 and inequality (63), there exists an integer M* > 0

such that

64 f L(x(t,5i+3k(z)wi,yi +3k(zV),

1

dtv1(t) +3k(z)yi(t)),tjdt -f L(x(t,5i,vi),yi(t),t)
•X)

-|1[f(l(»««,!V»[-]4„)<AVo,cV»
P+q , 3h. "

j=P+i J dx
,vi,3k(z)

u+3k(z)["- £ p(z^y (t,u)l ,t)
L j=o J J J /

•]•

- E M*1) yJ
j=0 J J/

-L(x(t,5\y\o,0),u,tjW(t) dt <e(ek(z) ,

- E y,(zi)vg,(5i,vi),5i,vi)
j=0 J J 7

<_l/2 Bk(z)<J)(zi) <0 Vi >_M'

Vi G J(3k(z)).
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Now consider the control v1 and initial state 5* and the
. n i+1 , . . . , i+1

control v and initial state 5 which Algorithm 2 constructs. t.'»e

control v is given by

65 rt+lC) -/<•) +f^'Vo

and initial state by

,, e±+l e± , ^(z1) i66 5 = 5 + 3 w ,

where k(z ) is the integer computed in Step 6 of Algorithm 2. It

k(z ) VlCz)follows from (64) that 3 v ' >_ 3 . Therefore by construction we get

p+q

67 g0(Si+\vi+1) - g^eV) <eLk<*\ - E ^(zWcsV^cV)
x j=0 J J /

<1/2 3k(z ^(z1) < l/23k(z)(|)(z:L) Vi > M'

Vi G J(3k(z)).

Since <f» (z ) ->• <J>(z), there exists an integer M >_ M1 such that

67 g0(5i+1,vi+1) -g0(5i,vi) <l/43k(z)<J>(i) Vi >M
Vi G J(3k(z)).

which completes our proof.

We now give the main result of this section.

i i i i i °°
Theorem 11: Let {(5 ,v ,x ,A_,...,A )}. be a sequence of initial

U p 1=U

states, measurable controls, corresponding trajectories and correspond

ing multipliers constructed by Algorithm 2. If there exist compact

sets CC Rm, uC Rm such that 5* G C and u^t) G u, tG T, for all i=

0, 1, 2, ..., then either the sequence is finite, in which case the
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last element is desirable, or it is infinite and every accumulation point

of this sequence is desirable. Furthermore, at least one accumulation

point exists.

Proof: The above Algorithm 2 is basically of the form of our Algorithm

Prototype. With W, W, and A defined as in definition (10 and (11),

c = gQ, we only need verify conditions (i) and (ii) of Theorem 4

in order to invoke Theorem 4. Lemma 2 immediately implies (i) and

Lemmas 7 and 11 immediately imply (ii). The existence of at least

one accumulation point is guaranteed by Theorem 3.

Conclusion

The two examples we have included in this paper illustrate the use

of the new convergence results for optimal control algorithms. Many
other and much more complex algorithms can be analyzed in a similar

way. The interested reader can find further results in [9]. The

net effect of our work is to show that optimal control algorithms are

very well behaved, contrary to the misgivings felt by some theoreticians.
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APPENDIX A: Optimality Conditions in Optimization Algorithms.

1) A careful examination of nonlinear programming algorithms (see

e.g. Ch. 4 in [9]) shows that they are frequently derived from variants

of some basic optimality condition,. For example, Rosen's gradient

projection method is based on the Kuhn-Tucker conditions in standard

form. The Zukhovidskii-Polyak-Primak method of feasible directions is

based on the Kuhn-Tucker conditions stated as a multiplier free con

strained optimization problem. The Zoutendijk and Demyanov methods of

feasible directions are based on the F. John condition stated as a

multiplier free min max problem, and the Pironneau-Polak method is

based on the *F. John conditions stated as a max problem with multipliers,

which also happens to be the dual of a multiplier free min max problem.

Many more such examples can be cited.

The same phenomenon holds true in optimal control algorithms, as

illustrated by the two algorithms presented in this paper. We shall now

show the relationship between the optimality conditions 0(z.) = 0, <|>(z.) >

0 used in Algorithms 1 and 2 with the relaxed minimum principle.

Theorem Al: The Relaxed Minimum Principle:

If u is optimal for the relaxed optimal control problem (7), (8),
u

(9), (4), (5), and x is the corresponding optimal trajectory, then
u u

x~ (1) satisfies (4), x~ (0) » 5 satisfies (5), u(.) satisfies (9),

0 " u
and there exist a scalar A and a co-state trajectory A , with

(A ,A~(t)) i 0, such that A ^ 0 and

Al
d A_, ,0 , 3LV ,u_ _ ., , af VT ,u TrMt)--r(^) (x (t).u(t).t) - (^ ) (x (t),u(t),t)
Ut <)X „ - fIX X

u

A~(t), t G T,

r
u
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with

up u

A2 A~(l) = £ P.Vh (x~(l))
j=0 J J

u p+q u
A3 A~(0) = - E Vi.Vh^x^O))

j=p+l J J

where y
u~

u

j « 0 for j =0, 1, 2, ..., p+q, y^^CO) =0 for j =1, 2, ..., p,

yjhj^X ^°^ =° for 3 = p+1» •••» P+q and for a11 admissible relaxed
controls u,

u u u u

A4 AH(x~(t),A~(t),u(t),u(t),t) S A° Lr(x~(t) ,u(t)t) +<AU(t) ,fr(x~(t) ,u(t) ,t))>

-(a° Lr(x"'(t),u(t),t) +<Au(t),fr(x~(t),u(t),t)^>)< 0.

Now consider Algorithm 1, which solves the fixed initial state, free

terminal state problem. Since (see (33)) 6(z) £ 0 for all admissible z

and since whenever 0(z) < 0, the algorithm will construct a zf

resulting in a lower cost, it is clear that if z is optimal, then 6(z) = 0.

The relationship of 0(z) = 0 to the relaxed maximum principle is as follows.

Theorem A2: Consider the optimal control problem solved by Algorithm 1

with the accompanying assumptions. Suppose that W is defined as in (36)
u u u

and that z= (u,x",A^) is such that 6(z) = 0, then A~ satisfies Al, with

A = 1, Aq(1) satisfies A2 with P° =1, p =0, j=1, .., pand A3 with
j 3
P - 0, j = p+1, .., q, and for all admissible relaxed controls u,

f u u

A5 1 AH(x~(t),A~(t),u(t),u(t),t)dt <.0.
J0
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Thus, 6(z) =0 is seen as an integral form of the relaxed maximum principle,

Now consider the problem solved by Algorithm 2. Again, by construc

tion, it is clear that <j>(z) =0 (see (40)) is a necessary condition of

optimality. Its relation to the relaxed minimum principle is as follows.

Theorem A3: Consider the optimal control problem solved by Algorithm 2,

with the accompanying assumption. Suppose that W is defined as in (45)
u u u

and that z = (u,x ,AQ,...,A ) is such that <j>(z) = 0, and let y. (z) , j =
3 u

0, 1, ..., p+q be computed according to (40). Then the co-state A~(t) =
P u

E y,(z)A~(t) satisfies (Al) with xu = yn(z)> 0, (A2) with y. = y,(z), '
j=0 3 3 U 3 3
j = 0, 1, .., p, and (A3) with y. = y. (z), j = p+1, .., p+q. Furthermore,

11 X <!£> (x~(t),u(t),t) +(II )(x~(t),u(t),t)A~(t)ll2dt =0.
u r r

Thus, the condition <j>(z) ° 0, is seen as a weak, or "differential," form of

the relaxed minimum principle.
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APPENDIX B: Convergence in L2 and I.S.C.M.

We will now present the link between the convergence of a sequence

{u1} of controls in L* [0,1] n£ [0,1] in the L£ norm, and the convergence
of the associated sequence of measurable relaxed controls {u1}, in

he sense of control measures. We first give the definition of almost

uniform convergence of measurable function defined on a closed interval T.

Definition Bl: A sequence of measurable functions, {u (•)}?_ , is

said to be almost uniformly convergent to a measurable function u(.) if

for each 6 > 0 there is a set E. in T with y(Ej < 6 such that
o o

u (•) converges uniformly to u(.) on T/E-.
o

The following theorem is found on page 75 in Chapter 7 of Bartle,

[9].

Theorem Bl: If a sequence of measurable functions, fu^O*00
L v ' s±=o'

converges to ameasurable function u(.) in the L2 norm, then there

exists a subsequence which converges almost uniformly to u(.).

In the standard L2 theory of convergence of optimal control

algorithms, one assumes that the sequence of measurable controls

{U (-)}i=0 constructe<* by an optimal control algorithm, has a subsequence

which converges in the L2 norm to a measurable function u(.). Theorem Bl

shows that when the above assumption is made, it is automatically

assumed that there exists asubsequence of {u^O}^ which converges
almost uniformly to the function u(.).
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The following theorem shows that almost uniform convergence of

measurable controls implies i.s.c.m. convergence of the associated

measurable relaxed controls.

Theorem B2: Let. {u1}^ CLm [0,i] OLm [0,1] be asequence of

uniformly bounded measurable controls which converges almost uniformly

to u, and let iv >i=Q,v be associated measurable relaxed controls.

Then v converges i.s.c.m. to v.

-i/-
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