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ABSTRACT

We discuss the thesis that one good way of achieving non-procedural
or problem-oriented languages is by constructing higher and higher level
procedural languages, and along with them, more sophisticated optimizers.
We present a set of operations called iterators embedded in a programming
language VERS2 which represent a higher level of description than currently
exists, .These are operations which, if written out, would normally in-
volve an iteration over a group of objects. We then introduce a method
(called iterator inversion) for automatically designing data structure
representations for the data structures which are iterated over. This
method has the effect of converting the part of a program to which it

is applied from a batch to an incremental algorithm.
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Introduction

Automatic programming is a field of endeavor in which we strive to
automate the work that is normally done by programmers, with the ulti-
mate goal of making computers usable by people who aie not necessarily
trained in programming [1]. We feel that one importaat approach in this
area is the automation of programming by\developing high level languages
which allow a solution to a problem to be stated more easily, and opti-
mizers (we mean this very broadly) for these languages which will make
their programs as efficient as ones written (with more difficulty) in a
lower level language. In fact, we feel that there is a continuum of
levels of description between the statement of a problem and the state-
ment of an efficient solution to the problem, and we are working upwards
along this continuum. In this paper we present some evidence that when
an algorithmic description of a problem solution is expressed at a high
enough level, it has most of the desirable properties of a problem state-
ment. We also present evidence that sophisticated optimization ﬁethods

are possible which translate these high level programs into efficient



lower level ones.

This paper represents the next step in our on-going effort to
design programming languages in which the semantics of'algorithms may
be described in as convenient a way as possible - ignoring, if desired,
issues of efficiency. It is the sequel to a previous paper [2] and
builds directly on the concepts presented in that paper. In the next
section, we summarize the relevant points of the previous paper, but
we recommend that it be read for a thorough understanding of the issues
involved.

In this paper we confine ourselves to those high level operations
which we call iterators and to a particular optimization technique
which applies to them. In another paper [5] we cover the full range of
high level operations which we consider important,

We would like to emphasize that there are two reasons for intro-
ducing high level operations into a programming language. The obvious
one is that they permit programs to be smaller and more understandable,
and they often allow a programmer (or a system which constructs programs)
to think in terms of a single conceptual unit where before he would have
had to think in terms of a complicated program with loops and tests.

For instance, the iterator
X € S| P(X)

may be used in place of a loop with an initializing statement, a test,
and a branch out of the loop. A second reason for using high level
operations is that they make the program much more available for opti-

mization. Thus in the example above, an optimizer knowing the form of P,



might choose to represent S in such a way as to make the iteration possi-
ble without generating all of S. This would be next-to-

impossible for an optimizer to discover if it had to work directly with

the loop written out.

Some existing languages have made efforts in the direction of using
high level operations which suppress sequencing. These are SETL [9],
APL [10], and the artificial intelligence languages [1l].

The operations described in this paper are being designed as part
of an experimental language VERS2 which is being implemented as an
extension of EL1 [4] and our examples will use the ELl1 syntax. For
those readers not familiar with it, the unusual features of the EL1

syntax are summarized in Appendix A.

Relational Level Data Structures

' In our previous paper [2], we worked with four basic kinds of data
structures in permitting a high level relational appraoch to data struc-
ture descriptions:

1 Tuples have a fixed number of named components, which are
usually heterogeneous. <7,SPADE> might represent a playing card, and
TUP (DENOM: INT, SUIT:SUIT) might represent the tuple type for cards.

2) Sequences are ordered collections of homogeneous values.
["T", "R", "E", "E"] might represent an English word, and SEQ(CHAR)
might represent the type.

3) Sets are unordered collections of homogeneous values with no
repeats. {1,2,3,4} 1is a set of four integers, and SET(INT) is the

type.



4) Relations are sets of tuples defining mappings between values.
They are written using the syntax given for sets and tuples, and rela-
tion types look like tuple types except that they use REL.

In addition to these, there are two more data structures in VERS2
which are relevant to this paper.

.Functions are essentially relations which define a functional map-
ping which is always total. A function has any number of domains and
one range, and there is always a range value defined for every member of
the cartesian product of the domains. As an example, we would représent

an MXxN real array as a function as follows:
FUNC({1...M}, {1...N}, REAL+0)

The construct '{A...B}" represents the set of integers between A and
B. The "<0" indicates that any component which has not yet been stored

into is initially O. We can store into a component as follows:
A(3,4) « 7.6
or access a value as
A(2,6)
We can also (as with relations) access a row
A(1,%)
or a column
A(*,3)

producing in each case a function with one less domain. The important



difference between relations and functions is that functions are total.

This means that they have a fixed set of tuples in which only the range

value may be modified by assignment. In relations, the set of tuples
varies, and modifications are made by adding or deleting tuples rather
than by assignment. In [2] we represented a two-dimensional array by a
relation, but a function does a better job.

Multi-Sets (bags) are sets in which repeating elements are permitted.
They are useful as arguments to n-ary addition or multiplication as in
QA4 (see [3]). They may be obtained as a trivial modification of sets.
All the same primitives are used with multi-sets as with sets; the& just
have a slightly different meaning. The distinction Letween the two can

be made in the type declaration.

Iterators

Typical iterative operations are the quantifiers

X ¢ S| P(X) there exists X in S such that P(X) is true,

VX € S: P(X) for all X in. S, P(X) 1is true

which yields boolean values for S a sequence or set. The existential
quantifier also has the side effect of storing the existing value into
the control variable X. An example program using these two is the

following routine CANMNULL which works on a BNF grammar:
DECL G:REL(DEF:NT, RTSIDE:SEQ(NT U TERM)) .

Here G 1is a relation representing the grammar such that G(N), where

N 1is a non-terminal, produces the set of all alternatives A of N.

Alternatives are sequences of non-terminals or termirals. The routine
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CAN\NULL decides whether a particular non-terminal Y can generate the

null string:

CAN\NULL « EXPR(N:NT U TERM; BOOL)
BEGIN

N € TERM = FALSE;

HA € G(N)| VS € A: CAN\NULL(S) ? TRUE

END

Here we are implicitly using another high level feature which checks to
make sure that no recursive call on a routine is made with the same para-
meters as an existing uncompleted call. This error {as well as others)
is caught by the "?" operator which specifies that if there is an error
in its left hand argument that its right hand argument should be the

value of the expression.

Another iterative operation is the set former:
{X € S| P(X)} the set of all X in S such that P(X) is true .

We could use this with our grammar to produce the set of all null pro-

ductions in G:
{P € G| # P.RTSIDE = 0} .

"#8" yields the size of S, where S is a set or sequence. There is

also a sequence former
[Xes|Px)] .

Before we introduce any more itérators, we need to distinguish between

iterators and iterative operations: In the code




X € s| P(X)

"X € S| P(X)" is an iterator, and "I" is an iterative operation.
Iterators yield streams of values, and iterative operations do something
with these values to yield a result. So far we have introduced four
iterative operations: 1) existential quantifier, 2) universal quantifier,
3) set former, 4) sequence former. We have also used two forms of

iterators:
a) "X ¢ §", b) "{terator | boolexp" .

The FOR iterative operation may be used to perform any action

‘ repeatedly:
FOR iterator DO exp
for example:
FOR X € S| P(X) DO PRINT(X) .
There is also a step iterator of the form
A<« 1i, n(A), £

which initializes A to i, and then repeatedly reassigns n(A) to it
until it reaches the value f. The third argument may be left out, and
it will terminate when it reaches NIL. Using this, we can do an Algol

FOR statement:
FOR I « 1, I+l, 10 DO ——

or we can search through a linked list L with a NEXT f£field



FOR P « L, P.NEXT DO — .
There is a converge iterator
A<i, nA), e

which is similar to the step iterator except that it terminates when the

successive values generated converge. The third argument is a small
epsilon to be used for real number convergence. Thus we can compute the

square root of N by successive approximations as follows:
S <16, (N/S+8)/2, .0001 .

Here IG is the initial guess and S represents the successive approx-
imation to the square root of N. For values other than reals, epsilon
is omitted and the iterator terminates when two successive values are
equal,

The "#" iterative operation computes the number of values generated
by its iterator. Thus we could compute the number of alternatives of a

particular non-terminal N:
#PeG|P.DEF=N .

Another iterator allows us to generate one collection of values based on

another iteration:
exp FOR iterator .

The exp presumably is written in terms of the control variable of the
iterator and yields one exp value for each value generated by the

iterator. For example, we could have written out G(N) on our grammar



as follows:
{P.RTSIDE FOR P ¢ G| P.DEF=N} .
The iterative operation for collection is of the form
op / iterator

where op is an operator or routine which takes two arguments of some
type and returns a result of the same type. It applies the operator
successively to each value generated by the iterator and the previous

result, Thus
+/Xes|PE

adds togefher all values in S for which P is true. To illustrate

this on our grammar, consider the routine H which computes the set of

all terminals which can be the first symbol of a string derived from N.

H « EXPR(N:NT U TERM; SET(TERM))
BEGIN

N € TERM = {N};

U / H(FIRST(A)) ? {} FOR A € G(N)

END

Notice that this only works if the grammar cannot coatain null produc-
tions. Before we can modify this program to work in the presence of null
productions we must introduce some new iterators.
The forms
iterator WHILE boolexp

iterator UNTIL boolexp

-10-



generate values as long as or until a condition is satisfied. We also

need ways of combining iterators. The sequential combination:
iterator ; iterator

generates one set of values and then the second. Thus if S1 = [1,2,3]
and S2 = [4,5,6], the expression [X € S1; X € S2] yields

[1,2,3,4,5,6]. The nested combination
iterator * iterator

generates all of the second collection of values for each value from the
first. So we get all combinations. Thus the expression
[<A,B> FOR A £ S1 * B ¢ S2] yields [<1,4>, <1,5>, <1,6>, <2,4>, <2,5>,

<2,6>, <3,4>, <3,5>, <3,6>]. Finally the parallel combination
iterator [ iterator

generates the first one‘of each, then the second, and so on. Thus the
expression [<A,B> FOR A € S1 | B ¢ S2] yields [<1,4>, <2,5>, <3,6>].
Notice that the parallel iterator doesn't make sénse over sets because
they are unordered.

We can now write our expanded version of H using "UNTIL" and

the nested combination and the CAN\NULL routine written previously.

H < EXPR(N:NT U TERM ; SET (TERM))

BEGIN

N € TERM = {N} ;

U/ H(S) ? {} FOR A € G(N) * S € A UNTIL NOT CAN\NULL (S)

END

~11-



We needed to use "UNTIL NOT" instead of "WHILE" because UNTIL
generates the value which makes its boolean change value but WHILE

does not.

Continuing, we have three similar iterative operations

THE iterator

FIRST iterator

LAST iterator

"THE" requires that there be exactly one value generated and returns
it. The others return the first or last value generated, only. We

can illustrate "THE" by writing out the relational access primitive on
a grammar which maps in tﬁe opposite direction from what we have done so
far. "G(*,A)", where A is an alternative, returns the non-terminal
which is on the left side of A. It will return a single value and not
a set if we have declared that G is functional from its second domain

onto its first (which of course it is). We could write this out as
THE P.DEF FOR P € G | P.RTSIDE=A

Now 1let's introduce a new problem domain for our examples. Suppose

we are working with playing cards.

CARD :: TUP(SUIT:SUIT, DENoM: {1...13})
SUIT :: {SPADE, DIAM, HEART, CLUB}

HAND :: SET(CARD)

We have an iterator which sorts the values generated according to some

relation on those values. In the simplest case,
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SORT X € S

sorts the integers in S 1in ascending order. If S contains other
values such as cards, then one may sort these based on some attribute
of the card, i.e.

SORT X € S BASED\ON X.DENOM
In addition, one can sort with respect to a relation other than <" by
specifying it explicitly, and a sort may also be based on primary and
secondary keys. We will not bother with examples of these. The SORT
iterator can be used with the sequence former to produce an actual sorted

data structure, or with FIRST and LAST. Thus
FIRST SORT X € S

produces the smallest value in S. In practice we will abbreviate
"FIRST SORT" by "MIN" and '"LAST SORT" by '"MAX". This is illustrated
by the following expression which produces the longest SUIT in a

HAND H,
MAX S € SUIT BASED\ON # C € H | C.SUIT=S

The form "Al, A2 € S" generates all pairs Al and A2 from S.
It is simply an abbreviation for "Al € S * A2 ¢ §". We also have a

delete iterative operation
DEL iterator

which deletes all values generated, from the set or sequence they are
generated from. Examples of these are in the next section. 1In addition

we may write

-13-



DEL which iterator

where "which" is THE, FIRST, or LAST, with the obvious meaning.

There is also a replace iterative operation.

REPL iterator WITH exp

REPL which iterator WITH exp

which replaces each value generated with the corresponding value of the
exp (which presumably is written in terms of the control variable).

And finally, the iterator "X C S" generates all subsets (subsequences)
of S. This and the replace operation are used primarily in conjunction
with pattern matching. In [5] the pattern matching facilities are
developed and more complete examples of the use of iterators are given.

The iterators are summarized in FIG. 1.

Iterator Inversion

Now let's consider the problem of taking a program which is written
in terms of relational level data structures and iterators and making it
efficient. This is a very difficult task. Clearly if we follow the
usual procedure in programming languages and represent all instances of
a particular kind of data structure (such as a set) in the same way, we
will be far from the kind of efficiency that is possible. This is
because we are dealing with structures which are fair}y far removed from
the machine. So we have set up VERS2 so that the user (and later the
system) may choose his own data structure representations from a library
(or even program his own if he chooses). We call this the implementation

facility, and it is explained in more detail in [2].
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Iterators Iterative Operations

AesS d iterator

ACs V iterator : boolexp
A<«i, nA), F {iterator}

A<1i, n(A), e [iterator]

A, B op/iterator

in place

of A above # iterator

A = pattern

pattern which iterator

iterator | boolexp DEL which iterator

iterator WHILE boolexp REPL which iterator WITH exp
iterator UNTIL Loolexp FOR iterator DO exp

exp FOR iterator

SORT iterator BASED \ON exp

iterator ; iterator (which is A|FIRST|LAST|THE)
iterator * iterator

iterator || iterator

Figure 1
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Even this is not enough, however. We have a similar problem with
iterators. If all iterators are implemented in the same way we will
still be far away from the kind of efficiency possible. We wbuld often
like to be able to pick a representation for the set >r sequence which
is being iterated over which would cut down on the number of values
being examined. This is more difficult than choosing a representation
for a structure which is not involved in an iterator for the following
reason: If the structure is not involved in an iterator we need to
consider only the primitive operations which are applied to the structure,
the frequency of executing each primitive, and the Size of the structure..
If an iterator is involved, we must also consider the kind of iterator,
the form of the boolean expression (if there is one), and the iterative
operation. With such a variety of different cases we can no longer just
choose a representation from a library, instead we must design the
representation to fit the iterator(s) involved.

Here we present a method for doing this called iterator inversion.

This method can be applied to almost any iterator, but it will not

always improve the efficiency of the program. This depends on the form
of the iterator a#d the relative frequency of execution of the iterator
vs. modification of the structures involved. Iterator inversion is only
one such method, and a complete system should have other possibilities

at its disposal, but we have found iterator inversion to be widely useful,
and in some sense a "basic" method from which others might be derived.
Using this methed, we represent the set or sequence in such a way that
whenever the iterator is to be executed, we can generate only those

values which are needed by the iterative operation on that round.
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For instance, if we have a set former
{xes|r®} |,

we maintain, along with S, the set of values in S for which P is
true, so that we just need to copy this set to execute the iterator.

We check each time an element Y is added to (or deleted from) S to

see if P(Y) is true. If it is, we add Y to (or delete Y from)

the auxiliary set. In addition, we must update the auxiliary set when-
ever P changes, since P might be expressed in terms of data structures
which can be

modified. This becomes even more complicated if the expression P
contains a free variable A; then we will maintain along with S, a
data structure function T which maps values from the domain of A

6nto subsets of S for which P is true for that value of A. We

call T the iaversion function.

Let's consider a specific example:
{Xes| Fx) =a} T

Here we will store, along with S, an inversion function T which
maps values of A into subsets of S. In more detail, if ADOM is the

domain of A, and SDOM the domain of S, then

DECL T:FUNC(ADOM, SET(SDOM) <« {}) .

+Here F 1is a data structure function. In the remainder of the paper

we will use this syntax (F(X)) to stand for either function access
or tuple selection (normally written X.F). This is because they

have identical semantics as far as iterator inversion is concerned and
it allows one transformation to apply to both constructs.
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FOR C € H| C.SUIT=S DO

where C is a CARD, H is a HAND, and S is a SUIT. To invert

this iterator, we would define an inversion function for each hand

INV\HAND :: FUNC(SUIT, SET(CARD) < {})

DECL IH:INV\HAND
then the above code would become

ADD C TO H; ADD C TO IH(C)
and
FOR C € IH(C) DO .

In this example, the changes produced by iterator inversion may
seem slight, but in an algorithm with a number of iterators, it may
radically change the processing involved. Here we present a full example
using a problem taken from Knuth [7] == the "topological sort" algorithm,

which we also used as an example in [2]. The problem is to perform a

topolqggical sort of a partially ordered set of objects. The input is a
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sequence of pairs of objects. Each pair <B,C> defines an ordering
relationship between the objects in the pair, so that B is less than
C. The goal is to output the objects in such an order that an object
appears before everything that it is less than in the ordering. See
Knuth for a more detailed explanation. The algorithm picks an object
A such that there are no pairs in which it is greater than another
object. A 1is then one of the "least" objects we have. We then output
A, delete all pairs containing A, and repeat the process until all
the objects are exhausted. If we reach a condition in which there is
no least object, but the objects are not exhausted, it means that the
input pairs do not form a partial ordering, so we give an error message.
In the high level program we have just two sets: S 1is the set of

all objects, and SP is the set of all pairs.

WHILE 3A ¢ S| ¥<-,A> € SP DO
BEGIN
OUTPUT A;
DEL A FROM S;
DEL <A,-> € SP;
s = {} = RETURN
END;

ERROR
In this program, <-,A> is a tuple pattern (see [5]) and the code
d<-,A> € SP
is equivalent to

-20~



4P € SP| P.SECOND = A

where SECOND is the second field of the pairs. There are three itera-
tors in this program, and we will invert each of them,'but first we must
extend iterator inversion to include other iterative operations. With
quantifiers and "#", we only need to store the number of elements in
each subset in the inversion function rather than the subset itself.

The transformations for this inversion are as follows:

B original code after inversion
#X es| F(X) = A + K(a)
ADD Y TO S > Y ¢ S > K(F(Y)) « K(F(Y)) +1;
ADD Y TO S
DEL Y FROM S > Ye$s+>K(F®Q)) « K(F(Y)) -1;
DEL Y FROM S
FY) « 2 > Y € S - BEGIN

K(F(Y)) « K(F(Y)) -1;
K(Z) « K(2)+1
END;

F(Y) « 2

We also need an inversion to handle the case where the boolean

expression is X.F = C, where C 1s constant:

c original code ' i_ after inversion -
{Xes| F&X) = ¢} - T
ADD Y TO S > ADD Y TO S;

F(Y) =C->ADD YTO T

DEL Y FROM S -+ DEL Y FROM S;
F(Y) = C > DEL Y FROM T

-21-



original code after inversion

F(Y) « Z > Y € S -+ BEGIN
F(Y) = C -+~ DEL'Y FROM T;
Z=C~>ADDYTOT
END;
F(Y) « z
Now we can invert the three iterators in the topological sort
program. Inverting the 3 iterator using inversion B, we introduce a
function COUNT which maps each object b onto an integer which is

the number of pairs <a,b>. We then replace "§<-,A> € SP" with

"COUNT(A) = 0". Now the line of code reads
WHILE 3A € S| COUNT(A) = O DO

This fits the pattern for inversion C since we must keep a subset rather
than a number because we are using the side effect of storing the object
found into X. This inversion introduces a set ZRCCUNT, which is the

set of all objects for which the COUNT is 0. The line becomes
WHILE ZA € ZRCOUNT DO .

We can invert the DEL iterator, using a variant of inversion A. This
introduces a function SUCC (successors) which maps an object b onto

the set of all pairs <b,a>. The line then becomes
FOR P € SUCC(A) DO DEL P FROM SP .

Notice that we don't actually want SUCC to map onto the pairs them-
selves, but rather onto the addresses within the representation of SP
where the pairs reside, so that they can be deleted easily. The

detailed effects of iterator inversion on topological sort are in Appendix B.

-22-



It is interesting to look at this in terms of the levels of data
structure description introduced in [2]. Knuth contains a machine level

description of the algorithm; [2] contains relational level and access

path descriptions written before the development of iterator inversion.
Iterator inversion exactly accomplishes the task of reducing the rela-
tional level description to the access path description, thereby presu-
mably duplicating part of the original effort of designing Knuth's ver-
sion of the algorithm.

Up till now, in all of our examples we have inﬁroduced an inversion
function in addition to the ordinary representation of the set involved.
This is not always necessary. In some cases the inversion function
duplicates the original set S closely enough that we can use it in
place of any other representation for S. This will be possible if the
inversion maps onto disjoint subsets of S which cover all of its

values. Then if we implement all the normal primitives on S so that

they work on the representation used by the inversion function, the
inversion function becomes the entire representation of 8.

So far we have illustrated iterator inversion with programs which
contained a number of iterators, but also contained a significant
amount of other code. The most startling consequences of iterator inver-
sion are apparent when it is applied to a program which consists entirely
of iterators., That is, a program which is applicative, containing only
iterators and associated expressions -- no explicit flow of control or

assignment statements. Examples are the CANMWULL and H routines

presented earlier. If you take such a program and invert all the
iterators in it (proceeding from the inside, out), it has the effect of

converting the original batch algorithm into an incremental one. That
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is, if the original routine (say the CAN\NULL routine) works on some
data structure which can change over time (in this case, the BNF
grammar), and computes a result (a boolean) based on a parameter (a non-
terminal), then the inverted algorithm will maintain a new data struc-
ture from which this result can be accessed directly (a function from

' non-terminals to booleans) and will update this structure each time the
original structure (the grammar) is modified.

This enables a programmer to write all such routines in the simpler
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batch form and then have the decision made later about whether it should
actually be called each time or handled incrementally. This is, of
course, predicated on the assumptions that the routines can be written
in applicative form and that we can invert most iterators. The latter
issue will be dealt with in the next section; here we would like to
state that some significant complex algorithms can be written

in applicative form using iterators. We have coded a simple LR(1) parse
constructor [8] in VERS2 as a completely applicative program. It has

the form described earlier of a routine which works on a data structure
which can change over time (again a grammar) and computes a result
(parsing tables). Here there is no parameter besides the grammar itself,
so the inverted data structure is just the'parsing tables (plus auxilliary
structures needed to maintain them incrementally). ‘we have actually
applied iterator inversion to this entire program, thereby producing an

incremental parse constructor automatically!

Extending Iterator Inversion

Thus far we have shown how to invert only a very limited variety of
iterators: those of the form "iterator|boolexp" for two specific forms
of boolean expressions and for two cases of iterative operations (those
needing the subset and those needing only a count). In this section we
describe how it can be extended to cover almost all boolean expressioms,
iterators, and iterative operations. The exact details of this are very
complicated and would not be of interest to most of our readers, so we
will present here only main concepts and indicate wh’ch forms can be

inverted.
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First we extend the method to cover more boolean expressions. As

an example, consider the iterator
{x € s| F(G(X)) = A}

where A is a variable. If we add or delete an element in S, this
is handled similarly to the wéy it is handled in transformation A,
using the same inversion function T, but using F(G(Y)) in place of
F(Y). Storing a value into G is also handled similarly. The diffi-
cult modification is "F(Y) « Z." Here we must determine all the
possible X values affected by this change and the corresponding A
values for them, so that we can update T correctly. If we imagine
that function G has an inverse G_l, then the X values are G-l(Y)

and the A wvalue is F(Y), and we update by executing

DEL G'l(Y) FROM T(F(Y))
ADD G'l(Y) TO T(2Z)

If G is one-to-one, there will be just one X value, and otherwise,

there will be a set of them, and T will have to be updated for each

member of the set.
Notice that we can construct explicitly the relevant restriction

of G-l; it is the inversion of the following iterator
xes|ex =Y} .

Furthermore, we can generalize this to other boolean expressions as

follows. Consider
{X e s| F(E) = A}
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where E is any expression involving X and no free variables. Then

in order to handle the modification
F(Y) <« 2z
we invert the iterator

{Xes| E=yY}

and use the resulting function, similarly to the way we used G-l.

This illustrates an important point: Whenever a modification is
to be processed, the crucial problem is to get from the values given in
the modification to the values for X (the control variable) and each
of the free variables in the boolean expression which are affected by
the modification. This is because we will usually have set up the
inversion function T so that it maps from these free variable values
onto sets of X values. Thus if the iterator contained two free
variables, A and B, the inversion function would be "T(A,B)".

This is not always the case, however. Consider the iterator
{xes| FX) =6QA)} .

Here we don't want to map from A, but rather from G(A), because .
this makes the inversion easier to do. That is, in updating "F(Y) + z",
the mapping to be updated is simply T(F(Y)). If we were mapping fromg‘;
A, it would be T(G-l(F(Y))) and this might even involve iteraﬁing |
over a set of values. Notice that we could map from an expression con- _
taining more than one free variable, such as G(A,B), but not from one

containing X as well, such as G(A,X).
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We might also decide not to map from a free variable at all if it
is rarely stored into., Instead we could update the inversion function
each time the variable is stored into. That is, in the previous example,
we would store a subset of all X such that F(X) = G(A) for the current
value of A, and update it whenever A is stored into. For each free
variable in the boolean expression we have three choices: 1) Map from
it, 2) Map from an expression containing it, 3) ﬁpdate the inversion
function whenever it is stored into. The choice of which to do, and in
fact, the choice of whether to invert at all, is dictated by a variety
of factors which we discuss in the next section.

Using generalizations of the methods described so far, we can
handle boolean expressions of the form El = EZ’ where the E's contain
only functional accesses. Now we extend it to include other relational
operators. If the iterator is {X € SI F(X) < A}, we use the same
inversion function as we did for "=", but instead of using T(A) in

place of the iterator, we use
U/T(I) FOR I € ADOM| I < A

where ADOM is the domain of A. The same thing is used for <, >, 2.
The operator "#" is a little confusing; we could also just use the
"=" inversion function and then take the union of all subsets except
T(A). However, this doesn't buy us much unless the domain of A is
very small and the subsets large. It may frequently be the case that
we will not want to invert "#" expressions.

Now consider an iterator involving arithmetic expressions:
{X e S| FX)+6G(X,B) = A}
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where A and B are free. It is easy to handle modifications to S
or G, but stores into F require a second look. If we are handling
"F(Y) + 2", all B values are affected by the modification, and so
the only way we can update the inversion function is to consider all
possible valués that B can take on. For each of these, we can calcu-
late an A value and thereby update the function. So inversion is
possible, but unless the domain of B 1is relatively small, it may not
be desirable.

Finally, we extend our method to boolean operators:
{Xes| F(X) = AORG(X) = B} .

Here we create two different inversion functions, one for each disjunct,
and take their union to get the result of the iteration. In the case

of conjunction:
{X € S| F(X) = A AND G(X) = B}

we map from both A and B in the inversion function, T(A,B) and
modifications are fairly straightforward, we just must take both con-
juncts into consideration.

Now we complete our description of the handling of boolean expres-
sions and define those which can be inverted.

First we require that the boolean expressions cuntain no computed
routine calls, so that we may examine the body of any routine called
from the expression in doing the inversion. Second, we require that the
expression and any routines called from it are applicative -- that is,

they contain only applications of routines (primitive or programmer
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defined) to arguments -- no explicit flow of control or assignment state-
ments. Furthermore we require that any iterators in *he expression be
invertible. We then invert all these iterators, obtaining in their
place either a constant or a function application, depending on the form
of the iterator. Most of the higher level data structure operations
(such as €, U, C, relational access, etc.) can be expanded as applica-
tive expression involving iterators. For example, "A C B" can be
expanded as "VX € A: X € B". Then these iterators can be inverted.
This leaves us with an expression consisting of arithmetic operators

+, -, *, \), relational operators (=, >, <), boolean operators

(AND, OR, NOT), functional access, and conditional expressions. We

move all conditional expressions toward the outside by performing the

transformation
F([A = B; CD) + [A=F(B); F(C)]

then move these out of the relational operator (such as "=") by doing
fA=B; CJ =D + [A=B=D; C=D] .

Now all expressions involved are boolean, so we can perform a final

transformation.

[A = B; C] > A AND B OR NOT A AND C

We then convert the boolean expression to disjunctive normal form and
move the NOT's in with the relational operators. This leaves us with a

boolean expression of the following general form:
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BE~DOR ++- ORD

D~ C AND --- AND C

C~ EROPE

e

ROP ~ =[#]<|<]>|>

where E is an expression consisting solely of arithmetic operations
and functional accesses.

The resulting expression consists of constructs for which we have
already introduced inversion methods, so generalizing on these in fairly
straightforward ways, we can invert the transformed iterator.

Now let's consider the case where the set being iterated over is

not always the same:
{X € E| FX) = A}

Here E 1is an expression which yields a set as its value. We handle
this case by mapping from both A and E, T(A,E). We now must update
the inversion function whenever a set in the domain cf E is modified.
In addition, when we are handling "F(Y) « 2", we must find the iden-
tities of the sets which are affected by this. This is handled by the
VERS2 primitive SUPER: SUPER(Y,D) yields the set or sets from domain
D which contain Y. So the mapping to be updated is

T(F(Y), SUPER(Y,EDOM)). Notice that SUPER(Y,D) is in fact the

iterator
{seE|Yes} |,

so 1t can be inverted to make the above code efficient.
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In a number of the previous examples, we have usad the domain of
a variable or expression in inverting an iterator. For this to work

well, the programmer must have declared the relevant variables in such
a way that their types are known at compile time. This will usually be
the case because the VERS2 language encourages programmers to type
variables accurately, and other optimizations also depend on typing.
Equally important, however, is that the type of an object accurately
reflect its usage, so that in most cases the domain of the inversion
function contains only the relevant objects. This iz accomplished in

VERS2 by allowing sets as domains, e.g.
DECL AGE: {1...12}

and by having "tagged types", so that an object is tagged with an indi-

cation of its intended usgae., For example, by writing

HAND :: SET(CARD)
DECL H: HAND

we know that the domain of H includes only HAND's and not any other
sets of cards that may exist.
We will now briefly mention how other iterators are handled.

Consider
{F(X) FOR X € 8| G(X) = A} .

We set up the inversion function as before but now it maps onto sets of

F(X) values, rather than subsets of S. We must handle the additional

case where F is stored into, but this is similar to previous examples,

-31-



Now consider
{F(X,Y) FORX e S| FX) =A xYe T(X)} .

Here we map from A and T(X) onto sets of F(X,Y) values, but now
modifications to F or S must find those T(X) sets which are
affected, and modifications to T must find those A values affected.
This is done using ideas similar to those already presented, so we will
not go into more detail. The sequential iterator combination (";")
is handled similarly. The step and converge i;erators cannot be
inverted because they do not iterate over a data structure at all. The
"CQ' iterator is rarely used except in pattern matching, so we are not
considering it.

This leaves the WHILE, UNTIL, SORT, and "{|" iterators. We
are considering these together because they are the ones which involve
ordering on the data structures involved. Thus far we have assumed that
we were working.exclusively with sets. In fact, in the previous examples,
sequences could also be used without making a significant difference
because the iterators did not make use of the ordering that a sequence
has. These four iterators do, and therefore the inversion function must
take this into account. In handling the WHILE and UNTIL iterators, the
inversion function must map onto a pair consisting oi 1) the subsequence which is
the result, and 2) an integer which is the index of the sequence element
at which the value of the boolean expression changes. Then whenever the
original sequence is modified, we compare the index at which the modifi-
cation takes place with the stored index to determine how to update the

inversion function. The parallel iterator combination is treated almost
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the same as the other combinations except that the inversion function
maps onto sequences, and a correspondence must be maintained between

the elements of the original sequences and the elements of the inverted
sequence so that modifications can be passed along efficiently. The

SORT iterator is handled by mapping onto sorted versioﬁs of the original
data structure. Then new items are simply inserted in their p;oper
place, and any modification to the BASED\ON expression will cause a
reordering to be done.

Now we consider the iterative operations. These mainly influence
the type of value which the inversion function maps onto. The set
former, the FOR statement, the THE operation, and existential quan-
tifiers which use the value assigned to the control variable, all
require the inversion function to map onto sets. The sequence former
and the FIRST and LAST operations require it to map onto sequences.
"3" (when control variable value is not used), "V", and "#" need
only a count. With the universal quantifier it is most efficient to
keep a count of those set elements which do not satisfy the boolean
expression. Then it can easily be tested against 0. The DEL and
REPL operations require a set to be stored, but not a set of the values

involved, rather a set of pointers to the locations of the values in the

representation of the set or sequence from which the values are to be
deleted, The collection iterative operation ("/") can be handled

nicely if the operator involved has an inverse. Thus if we are

inverting

+/X € s| P(X)
we map onto the actual sums. We need the inverse of + so that we can
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subtract the appropriate value from this sum whenever an element is
deleted from S. Luckily the two commonly used operators are '"+" and
"W, Set union does not have an inverse, but with nulti-sets,
difference is the inverse of union. So in the case of "' we store
multi-sets in the inversion function and then use them like sets when

they are accessed.

Efficiency Factors

In applying iterator inversion to a particular iterator, we must
decide the best domains to map the inversion function from. And we must
also decide if even the best mapping is good enough to be worthwhile —-
that is, we must decide whether to invert the iterator or not. These
decisions are influenced by many factors. The speed issues are the
frequency of execution of the iterator vs. the frequency of execution of
modifications to the iterator and the amount of time required to update
the inversion function for each modification. Notice that in some cases
(though not often), ﬁpdating the inversion function requires iterating
- over a set of values, so it is quite possible that inversion would slow
down a program; not speed it up. We are assuming that the frequency
information we need is either supplied by the programmer directly or
computed by the system by running sample data sets supplied by the
programmer., So from this information we decide on the most efficient
set of free variables or expressions to map from, and then we compare
this with the non-inverted implementation to determine if it is faster
and by how much.

Frequently the inverted iterator will be faster, but then we must
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subtract the appropriate value from this sum whenever an element is
deleted from S. Luckily the two commonly used operators are "+" and
"U'., Set union does not have an inverse, but with multi-sets,
difference is the inverse of union. So in the case of '"U' we store
multi-sets in the inversion function and then use them like sets when

they are accessed.

Efficiency Factors

In applying iterator inversion to a particular iterator, we must
decide the best domains to map the inversion function from. And we must
also decide if even the best mapping is good enough to be worthwhile —-
that is, we must decide whether to invert the iterator or not. These
decisions are influenced by many factors. The speed issues are the
frequency of execution of the iterator vs. the frequency of execution of
modifications to the iterator and the amount of time required to update
the inversion function for each modification. Notice that in some cases
(though not often), ﬁpdating the inversion function requires iterating
- over a set of values, so it is quite possible that inversion would slow
down a program; not speed it up. We are assuming that the frequency
information we need is either supplied by the programmer directly or
computed by the system by running sample data sets supplied by the
programmer, So from this information we decide on the most efficient
set of free variables or expressions to map from, and fhen we compare
this with the nun-inverted implementation to determine if it is faster
and by how much,

Frequently the inverted iterator will be faster, but then we must
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examine the space issues to see what price we are pay’ng for the speed.
The main issue here is the amount of duplication introduced. First we
must determine whether the inversion function must exist along with the
original set or whether it can replace it. This is only possible if
the inversion function maps onto subsets, if they are disjoint, and if
the crucial primitives on the original structure can be done efficiently
on the inversion function.
There is also a duplication problem if there is more than one iterator
on the same data structure -- this requires a separate inversion func-
tion for each one. Finally, the subsets being mapped onto may not be
disjoint. The examples we have shown so far have each contained one (or
no) free variables, and in each case, by mapping from that variable we
have obtained a function which maps onto disjoint subsets of the original
set. This is not always the case. Sometimes the subsets will overlap,
causing values to be duplicated within the inversion fuﬁction. The
amount of duplication will depend on the size of the original set, the
size of the subsets mapped onto, and the number of subsets. This infor-
mation again can be gotten from the user or by gathering statistics on
sample data sets.

Now if (as will frequently be the case) we are gaining some speed
at an increase in space, we will have to rely on the user's desires as
far as the relative importance of time and space for his program.

It is important to mention that the expansions produced by substi-

tuting the updating code in line will contain a lot of redundancy. This
can be seen clearly in the example in the Appendix. In order to really

obtain the efficiency that we expect from applying iterator inversion to
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parts of a program, we will need a fairly sophisticated optimizer to

remove all the redundant code.

Conclusions

We have not yet implemented iterator inversion as part of the VERS2
system and gotien experience with it, so much remains to be learned
about its practical use. In addition, we feel that, as powerful as it
is, it is only the first of a number of methods of designing data struc-
ture representation from iterators which might be developed. Some of
these may even use iterator inversion as a starting point.

As an example, consider the following problem: Given a word G
from a dictionary, return the set of all words which contain at least
one letter from G. Assuming that a word is a sequence of letters and

a dictionary is a set of words, this can be written
{W e DICT| aL e W| L € G} .

If we just inverted this directly, we would get a function which mapped
each word in the dictionary onto the set of all words to be returned.
For normal sizes of words and dictionaries, this would take an astrono-
mical amount of space, so we would like to find another method. A
reasonable one would be to construct a function.mappiag each letter onto
the set of all words containing that letter. If this were WU, then

the solution would be
U/WUO(L) FORL € G .
Now this might have been derived from the original code as follows:
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We could transform the first line into the equivalent expression
U/{W € DICT| L € W} FORL ¢ G

then if we invert just the inner iterator, we get WU as the inversion
function and it yields the solution above., We haven't gone any further
with this, but it seems like a promising direction.

When we write a program, such as the simple LR(1) parse constructor,
in completely applicative form using iterators, we are doing something
similar to Dijkstra's notion of structured programmiﬁg [6], except carry-
ing the notion further. Dijkstra urges that, in, the interest of clarity
and an enhanced ability to prove assertions about programs, we eliminate
GOTO's and substitute higher level control structures for them. We are
also eliminating assignment statements and the whole aotion of explicit
flow of control and substituting iterators for them. Just as in pure Lisp,
there is no specified order of evaluation in an applicative program. The difference
between applicative VERS2 and pure Lisp is that we have introduced
enough high level control operations (iterators) that it is now possible
to express complex algorithms in a hatural way in a purely applicative
langu#ge. One might call this "highly structured programming". This
should make it much more feasible to automatically optimize and prove
things about these programs. Iterator inversion is the first evidence
of this, but we expect more to follow. We hope that this paper will
encourage others (especially those interested in proving assertions about

programs) to investigate these possibilities.
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Appendix A: EL1 Syntax

The following are the unusual EL1 features:
R « EXPR(A:Al1,B:B1;C) BEGIN--+END

declares R to be a routine with formal parameters A and

Al and Bl fespectively retufning a result of type C.
DECL X:T
declares X to be a variable taking on values of type T.
A:: T
declares A to be a special name for type T.
A.B
selects the B field of tuple A.
A\B
is just an identifier. "\" is just used as a letter.
| bool » exp
stands for "IF bool THEN exp".
bool = exp

means that if the bool is true return the value of the exp

result of the enclosing block.
[---1

is a BEGIN--+END block.
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Appendix B: Iterator Inversion Applied to Topological Sort

The new code in each figure is underlined.

Figure 1
Original
DECL S:SET(T)
PAIR :: TUP(FIRST:T,SECOND:T)
DECL SP:SET(PAIR)
FOR P € INPUT() DO
BEGIN
ADD FIRST(P) TO S
ADD SECOND(P) TO S

ADD P TO SP
END
WHILE 3A € S| 4<-,A> € SP DO
BEGIN
OUTPUT A
DEL <A,-> ¢ SP
DEL A FROM S
#S=0 - RETURN()
END
ERROR
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Figure 2

Initial Expansions

DECL S:SET(T)
PAIR :: TUP(FIRST:T,SECOND:T)
DECL SP:SET (PAIR)
FOR P ¢ INPUT() DO
BEGIN
ADD FIRST(P) TO S
ADD SECOND(P) TO S
ADD P TO SP
END
WHILE 3A € S| 3P e SP|SECOND(P)= A DO
BEGIN
OUTPUT A
FOR Q € SP|FIRST(Q) = A DO DEL Q FROM SP
DEL A FROM S
##8 = 0 -+ RETURN()
END
ERROR
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Figure 3
Q € SP| FIRST(Q) =A becomes Q € SUCC(A)

DECL S:SET(T)
PAIR ::, TUP(FIRST:T,SECOND:T)
DECL SP:SET (PAIR)
DECL SUCC:FUNC(T,SET(PAIR) < {})
FOR P ¢ INPUT() DO
BEGIN
ADD FIRST(P) TO S
ADD SECOND(P) TO S
ADD P TO SP
ADD P TO SUCC(B)
END
WHILE 3A € S| ¥P e SP| SECOND(P)=A DO
BEGIN
OUTPUT A
FOR Q € SUCC(A) DO
BEGIN
DEL Q FROM SP
DEL Q FROM SUCC (FIRST(Q))
END
DEL A FROM S
#S =0 + RETURN ()
END
ERROR
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Figure 4
4P € SP| SECOND(P) =A becomes COUNT(A) = 0

DECL S:SET(T)

PAIR :: TUP(FIRST:T,SECOND:T)
DECL SP:SET(PAIR)

DECL SUCC:FUNC(T,SET(PAIR) + {})
DECL COUNT:FUNC(T, INT + 0)

FOR P € INPUT() DO
BEGIN
ADD FIRST(P) TO S
ADD SECOND(P) TO S
P ¢ sp -~
BEGIN
COUNT (SECOND(P)) < COUNT (SECOND (P) )+1
ADD P TO SP
END
ADD P TO SUCC(B)
END
WHILE 3A € S| COUNT(A) =0 DO
BEGIN
OUTPUT A
FOR Q £ SUCC(A) DO
BEGIN
Q € SP
BEGIN
COUNT (SECOND (Q)) <+ COUNT (SECOND (Q))-1
DEL Q FROM SP
END
DEL Q FROM SUCC(FIRST(Q))
END
DEL A FROM S
#S= 0 > RETURN()
END
ERROR
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Figure 5
A € S| COUNT(A) =0 becomes A € ZRCOUNT

DECL S:SET(T)
PAIR :: TUP(FIRST:T,SECOND:T)
DECL SP:SET(PAIR)
DECL SUCC:FUNC(T,SET(PAIR) « {})
DECL COUNT:FUNC (T, INT < 0)
DECL ZRCOUNT: SET (T)
FOR P € INPUT() DO
BEGIN
ADD FIRST(P) TO S
COUNT (FIRST(P)) = 0 + ADD FIRST(P) TO ZRCOUNT
ADD SECOND(P) TO S '
COUNT (SECOND (P)) = 0 + ADD SECOND(P) TO ZRCOUNT
P ¢ SP
BEGIN
SECOND(P) € S -
BEGIN
COUNT (SECOND (P)) = 0 -+ DEL SECOND(P) FROM ZRCOUNT
COUNT (SECOND(P) )+1= 0 - ADD SECOND(P) TO ZRCOUNT
EHR'
COUNT (SECOND (P)) < COUNT (SECOND (P))+1
ADD P TO SP
END
ADD P TO SUCC(B)
END
WHILE A ¢ ZRCOUNT DO
BEGIN
OUTPUT A
FOR Q € SUCC(A) DO
BEGIN
Q € SP
BEGIN
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SECOND(Q) € S +
BEGIN
COUNT (SECOND(Q)) = 0 -+ DEL SECOND(Q) FROM ZRCOUNT
COUNT (SECOND(Q))~1 = 0 - ADD SECOND(Q) TO ZRCOUNT
END
COUNT (SECOND(Q)) + COUNT (SECOND (Q) )-1
DEL Q FROM SP
END
DEL Q FROM SUCC(FIRST(Q))
END _
DEL A FROM S
COUNT(A) = 0 - DEL A FROM ZRCOUNT
#8 = 0 - RETURN()
END
ERROR
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Figure 6
Redundancies Cleaned Up
DECL S:SET(T)
PAIR :: TUP(FIRST:T,SECOND:T)
DECL SUCC:FUNC(T,SET (PAIR) < {})
DECL COUNT:FUNC (T, INT « 0)
DECL ZRCOUNT:SET (T)
FOR P ¢ INPUT() DO
BEGIN
ADD FIRST(P) TO S
COUNT (FIRST (P)) = O - ADD FIRST(P) TO ZRCOUNT
ADD SECOND(P) TO S
COUNT (SECOND (P) ) + COUNT (SECOND (P))+1
ADD P TO SUCC(FIRST(P))
END
WHILE A € ZRCOUNT DO
BEGIN
OUTPUT A
FOR Q € SUCC(A) DO
BEGIN
COUNT (SECOND(Q)) =1 -+ ADD SECOND(Q) TO ZRCOUNT
COUNT (SECOND(Q)) <« COUNT (SECOND (Q) )-1
DEL Q FROM SUCC(A)
END
DEL A FROM S
DEL A FKOM ZRCOUNT
#S= 0 -~ RETURN()
END
ERROR
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