

Copyright © 1974, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

COMPUTABLE ORGANIZATIONS-REPRESENTATION

j>- BY SEQUENTIAL MACHINE THEORY

by

Hans W. Gottinger

Memorandum No. ERL-M426

March 7, 1974

ELECTRONICS RESEARCH LABORATORY

College of Engineering

University of California, Berkeley
94720

COMPUTABLE ORGANIZATIONS-REPRESENTATION

BY SEQUENTIAL MACHINE THEORY*

Hans W. Gottinger

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Abstract

In this paper we investigate certain types of organizational forms

which are considered to be sequentially computable rather than Turing

computable, i.e. we are considering those organizations which are subject

to definite resource and time constraints and which can be split into

elementary computational operations.

It is argued that organizations could be effectively modelled

in the sequential machine framework and that topics dealt within

conventional organization theory (on Hurwicz1 lines) could be treated

more generally. Furthermore, problems concerning the structure of

information technology, incentive compatibility and computational

complexity fit naturally into this approach.

Finally we expose an algebraic theory of adjustment processes

based on semigroups of transformations which could be solved by certain

types of functional equations.

Research sponsored in part by the Army Research Office - Durham, Grant
DA-ARO-D-31-124-71-G174.

*

Paper presented at the Cambridge Conference on Public Systems, Cambridge
University, November 24-26, 1973.

Visiting Professor from Universitat Bielefeld, Kommission fiir
Entwicklungsforschung, Bayerische Akademie der Wissenschaften, Munchen.

1. Introduction and Motivation

In recent years, particular research efforts have been directed

toward explaining structure, behavior and performance of economic

organizations. It has been increasingly recognized in most approaches

that we should look upon organizations in a normative fashion - from

a designer's point of view - e.g. how to construct organizations which

will perform certain tasks we want them to do. To some extent we are

interested in their existence and then ask the question how they would

perform 'best1, i.e. most efficiently or at least satisfactorily given

their existence. A particular organizational form, the competitive

economy, has received most attention. The question is essentially the

following: Let an economy oconsist of agents, involved in a competitive

process, and so, that they act in response to their changing 'environ

ments' and to actions by other agents resulting in 'messages' (prices).

Now an adjustment process in this organization, more informally, is a

kind of scheme or process which this organization reveals at each

iteration and which would satisfy certain properties to the best of all

members of this organization. In this context, an adjustment process can

be viewed as a sequence of aggregate actions (behavior patterns) taken

by each agent. A class of (economic) environments is the triple

X = (ft,cfc,~J) where 0, describes the set of resources,^ a set of

preference relations on Si and9/a set of feasible technologies. Any given

environment can be represented as a parameter x of the class X.

R>r different classes of environments, L. Hurwic2 [3] has studied

adjustment processes in terms of difference equations in which agents

respond to messages from other agents including themselves (memorizing).

-2-

(Of course, the agent may be completely or only partially ignorant about

the environment, in this case stochastic responses have to be considered).

Hence, in technical language, an adjustment process is a triple (X,6,M)>

consisting of a response function X (possibly a vector for a finite

number of agents), an outcome function 6, independent of the environment

but depending on the amount of resource endowment, trade, production, etc.

given the environment and a message space ('language1)^ whose elements

('messages') generate new messages (via the response function X) for

any given environment e. There is associated a message acting as a

stimulus on every agent. If sufficient information has been collected

by the agents (and the response resulting in different types of actions

such as trading, producing, storing, etc. is uniquely determined such

that additional information will not result in a different response),

the process is called to be in equilibrium and the message received

at that stage is stationary. To every informational equilibrium value

of the process m = X(m,e) there may correspond a (Pareto-) satisfactory

outcome level 6(m) which is not preferred to any other outcome level for

any given environment. The behavior pattern of such an economic system

can be studied in terms of a particular social welfare function satisfying

an optimality criterion (Pareto optimality) given an environment of a

particular kind (classical or non-classical environments). A class of

environments is called 'classical' if externalities and indivisibilities

are absent and if both technology and preferences are convex; otherwise

it is called non-classical. On the basis of the adjustment process new

states will be generated up to a point where the final state is compatible

with the welfare criterion. Some important results in this area have

-3-

been obtained, notably by Hurwicz [3], for a class of processes which

may or may not be Pareto satisfactory for all conceivable environments.

In particular, it has been shown that the competitive process acting in

a classical environment is Pareto satisfactory. In principle, at least,

a similar adjustment process could be established by a central agent having

only partial information about the environment, constituting an algorithmic

approach to the solution of the problem. On the other hand, in non-

classical environments with externalities and indivisibilities present

and technology not necessarily convex other types of processes different

from the competitive process have been studied w.r.t. optimality properties.

It is well known that the evaluation of the process has to be based

primarily on the informational requirements necessary to establish a

Pareto satisfactory process, and secondarily on the incentive compati

bility with the actions of the various agents. The first point has to do

with the computability of the adjustment process, i.e. with the capacity

of various agents to process and disseminate information. There are

actually two aspects of the first point: one aspect concerns the purely

'technological' problem of selecting the appropriate or even the minimal

'information-handling equipment' capable to do the job. Since information-

handling usually involves costs the other aspect relates to the problem

of selecting those information -handling equipments which cause minimal

costs. Both aspects deal with the question of informational efficiency

in various organizations. (Both aspects will come up later in a different

framework). As it is known, the question of informational efficiency, in

a more imprecise formulation, gave rise to controversies about the choice

of economic systems many years ago.

-4-

The second point involves the question of goal-compatible behavior

patterns of economic agents (incentive compatibility) which in a compet

itive system are satisfied, given the classical environment, by assuming

profit - and utility maximization. We will not deal with the second

point in this paper, although this point will come up at various instances.

Recent work on adjustment processes along Hurwicz' lines (see Reiter

[7]) contains mainly some mathematical refinements of previous results

which center around the question of informational efficiency. It is

assumed that the space of environment X, the message spaceJ\j\ and the

space of actions A are all topological spaces whereas the adjustment

process starts from some subset of the message space defined by a corres

pondence y: X -*-_AA and a response function \:J\I{ •+ A. Hence the adjustment

process (u,X) is induced by an initial message set u (x). The outcome

function 6: AA+ A may be introduced in the appropriate context. It is

clear - technicalities omitted - that the response function satisfies

some 'nice' properties which could be derived from the topological

structure of the underlying spaces. Contrary to this approach we consider

it more natural that such a response function reveals its structure and

behavior in the context of a device which is known as a sequential machine.

The perspective is to consider sequential machines as basic analogues

for modelling complex 'humanistic' systems (organizations), and to treat

adjustment processes in terms of transformations on the set of states of

a machine. Later we will give some examples demonstrating the usefulness

of this analogy. Not only would we be interested in translating the

language of the economic theory of organizations into proper machine

language but also would we like to answer some specific questions within

-5-

the framework adopted. We list these questions now, somewhat informally,

since we provide suitable definitions later.

(1) Given a machine M what 'information technology' is necessary and

sufficient to realize this machine by serial, parallel, serial-parallel

or cascade decomposition into component machines. In other words, what

kind of information technology is needed to accomplish the task of the

2
original machine by an appropriate sequence of submachines.

(2) If several information technologies are compatible with the

performance of the original machine, then does there exist a unique

optimal one? If so, are the costs of information processing, induced

by the information technology feasible in view of an initial resuorce

endowment given to the machine.

(3) What a corresponding type of adjustment process could be derived for

an optimal information technology?

The ultimate goal, of course, is the attempt to construct a compu

tational theory of organization where we are able to show - as the engineer

does by constructing a machine from pieces of hardware - how an organi

zation should be structured in order to achieve its goals. It is well

known that practising engineers, although they construct all sorts of

finite machines, have so far relied predominantly on empirical techniques,

e.g. how to put various pieces of hardware together and have neglected

design methods provided by the algebraic theory of sequential machines.

Only in recent time this theory receives increasing attention in practising

circles. Now, it seems to me, that the economist should also adopt a

designer's point of view when he is talking about structure, behavior and

performance of an economic system or organization. As outlined above,

-6-

various other approaches have been suggested to arrive at a normative

theory of organization, but not much has been done to approach it on

methodological grounds of automata theory which seems to be a natural

one in designing an organization.

2. STRUCTURE OF SEQUENTIAL MACHINES

In order to keep the presentation self-contained we present some

notions of machine theory. Most of this material is taken from Hartmanis

and Stearns [2]. In general, automata as represented by sequential

machines form discrete systems, and the notions applied fall in the realm

of modern algebra. We will try to give some intuitive justification

for modelling organizations as sequential machines.

Definition: A sequential machine 1) is a quintuple <X,Y,Z,X,6> where X

is a nonempty set of inputs Y a set of outputs, Z a set of

states, X: X x Z -* Z a transitional state function,

6: X x Y -*• Y an output function.

We restrict all sets to be finite. In the context of looking at economic

systems formulated as sequential machines all sets and functions involved

have a definite interpretation. X denotes the set of environments (to

which there is associated a message setoAA so that to every message

m ^Jdy there corresponds a state of the environment x G X). We consider

the response to be represented by a function X: X x Z -*• Z and the outcome

function to be 6: X x Y + Y where the state set Z represents the physical

and informational activity of the system. Now there is one problem by

transforming the set of environments into an input set of a sequential

la)
machine. An intuitively appealing way is to let the machine only accept

-7-

those pairs of commodity bundles and production vectors as inputs which

have been chosen by the agents.

Definition: An organization is the machine (x,Y,Z,X,6) with symbols in

brackets as appropriately defined above. Let me provide an example why

it is reasonable to view an organization in machine-like terms.

Example: We consider some kind of control device where you (the designer)

want to control someone's action according to the message received. Take

such organization as an AIRPORT PARKING LOT and look at it strictly from

a designer's point of view: how should a parking lot be operated? The

first thing to do is to announce an exhaustive list of instructions and

to make it available to everyone entering the parking lot. There may be

a set of instructions such as : 'Stop until 75 cents (in coins) are

deposited (red light). 'Then go if light turns green.' Now everything is

fine if this set of instructions is complied with. However, there are

other possibilities to be taken care of by the organization constituting

a penalty-reward system. Consider the following cases:

(1) the message is not received for whatever reasons (nothing happening).

(2) the instructions are only complied with incompletely (only one

quarter is deposited but not two, three, etc.).

(3) the instructions are flagrantly violated (no money is deposited).

In all these cases appropriate actions have to be taken describing the

response to the message given the state and they are reflected in the

following table.

-8-

states

no message

received

message

incomplete
message

violated

0 stop stop, go to

row 1

alarm, go to
row 0

1 stop stop, go to

row 2

alarm, go to
row 0

2 stop to to row 3 alarm, go to
row 0

3 go go stop

next states

Figure 1.

We could look at this organization as a human automaton, but we could

also look at it as an electrical device which simulates the human machine,

in fact, it could be a device which transforms the state-message pair

into an action-next state pair. Of course, this requires quite a bit of

hardware construction, but what it mainly amounts to is to put stimulus,

response or state as voltages on a bundle of lines (wires) and to encode

them in proper from (for example in bianry form). The organization we

would like to describe as an electrical device would then be represented

by the following scheme (here -»• denotes an instruction).

states

00 oi , 10

00 00 00 + 00 10 •»• 00

01 00 00 •* 10 10 + 00

10 00 01 + 11 10 -• 00

11 01 01 + 11 00

next states

-9-

Figure 2,

In case of the states we have the following correspondences: 0-00,

1-01, 2-10, 3-11. There are similar assignments to stimuli and

responses, as exhibited in Fig. 2. Both devices, the human and the

electrical one, obviously perform the same tasks, in terms of performance

one machine is as good as the other. It is hence natural to describe

the second machine as a homomorphic image (or homomorphism) of the first,

since it is supposed to transform all operations performed by the first

machine into the same operations performed by the second machine.

Now, for this simple kind of example, which obviously is a crude

one, all that we want to conclude is that, in principle, there is no

difference between an engineering design and the design of a human

organization. Other examples of control systems and organizational

designs are discussed by T. Marschak and C. B. McGuire [5]. They describe

different control systems in terms of car-driving. Consider a car

driving along a windy road. The conditions of the road may constitute

the stimuli to the car-driver, e.g. left curb, right curb, going straight.

The question is how to control a car in order to stay on the road, hence

it concerns various steering actions given the stimuli. Incidentally,

to the best of my knowledge, Marschak and McGuire were the first to

view organizational behavior in the sequential machine framework.

Although this might be obvious for execution-type operations as

described above, we will face difficulties where managerial-type decisions

will come to play or where problems of incentives, competence, cooperation,

competition etc. enter the picture of the organization's performance.

In fact, it is this type of situation for which one might question the

applicability of sequential machine theory to the design of organizations.

-10-

In this context, John Rhodes, in a private conversation, argued that

situations requiring extensive logical operations and computations might

better be covered by a theory of TURING MACHINES rather than of SEQUENTIAL

2)
MACHINES. ' On the other hand, I do not find it unreasonable to argue

that managerial ability, for example, could find its proper treatment on

the basis of computational complexity of a sequential machine, pertaining

to such notions as speed of recollection, recognition (of observations),

execution, decoding of messages, minimal number of erroneous actions etc.

In fact, it would seem to be appropriate to view computational complexity

as a copy or multiple of elementary computations. If a machine is too

complex, i.e. generates too many states to compute its own solution we would

like to decompose it into simpler parts so that they altogether solve

the computational problem. The question of decomposition of a machine

naturally comes up in the decision-theoretic description of an economic

organization In view of suggestions due to Marschak and McGuire we

consider first two kinds of organizations, a decision and a pay-off

machine, hooked together, to make a new machine. More precisely, we could

define:

Definition: Given an organization M = <X,Y,Z,X,6>. Then it is possible

to represent M by a serial decomposition into decision machine

ML =<X,A,Z,,X ,6-> and payoff machine M =<A,Y,Z2,X2,62> to generate the

machine M^ M2 =<X,Y,Z;L xZ2>X,6> with X[(Z]L,z2), x] = [X^x.z^.X^a.z^]

= [X1(x,z1), X2 (61(x,z1),z2)] and 6[(z1,z2),x] = 62[z2,6^x^)1.

For reasons of nontriviality, M.. and M« have fewer states than M.

y ^ Fig. 3x '
*-> Ml M2

-11-

Serial connection of decision machine M and payoff machine M .

A slightly more general case is provided by a serial decomposition

of M into three types of machines

M0=<X,M,Z0,X0,60>

Mx =<M,A,Z1,X1,61>

M2 =<A,Y,Z2,X2,62>

to generate a new machine

(message machine)

(decision machine)

(payoff machine)

M()@M1@M2=M =<X,Y,ZX xZ2 xZ3,X,6>

with somewhat more complicated state and output functions as those

given in the foregoing example.

x m,d m ^[M a ^IM
t->

Fig. 4

L_ •

In an analogous way we could talk about parallel decomposition.

Definition: A (decision) machine M can be realized byparallel decomposition

into component machines to generate

M=Mx® M2 =<X1 xX2,AX xA2, Z^ xZ ,X,6> with state representation

X[(x1,x2), (z1»z2)] = (X (x1»z.),X2(x2,z„)). and output representation

6[(x1,x2),(z1,z2)] = (61(x1,z1),62(x2,z2)).

*L
1 1

*2

••> i i >

^t 2. s

xx Mi

M^2

1 al

X2
r "

1 *•*

^ *
i

Fig. 5 Fig. 6

Parallel connection Cross connection and parallel connection

-12-

Given these definitions we actually could consider a combination of both,

e.g. serial-parallel decompositions, and in terms of applications these

2a)prove to be the most interesting ones. We neglect here some more

3)
complicated versions of decompositions, which are not loop-free, for

example those known as cross decompositions as shown in Fig. 6. These

cross decompositions are usually handled in connection with abstract

network systems. However, under some restrictive circumstances we could

achieve the same effect by an appropriate serial-parallel decomposition

without loops. We only need to consider an appropriate restructuring of

the machine exhibited in Fig. 6. This is illustrated in Fig. 7.

"1

^ *i ! ai
^

—^

xi !

N Mi M2 : **f

>

i ^ M2 M|
l ^

1 ai^ r ^

x2 ;.
, a'

>» "2
^
J

ai + ai = ai

a' + a'
a2 a2

Fig. 7: Serial-parallel restructuring of two cross-connected parallel
machines.

Care must be taken of the operations ® and®, for example, distri-

butivity does not hold for both, in particular, even commutativity does

not hold for ©. One can easily check the validity of permissible

operations by drawing machine diagrams and finding the corresponding

-13-

4)
state and output representations. A somewhat stronger form of

decomposition which essentially could be treated within the same

mathematical frame work has become known as cascade decomposition.

A simple illustration of a cascade machine is this:

message (external stimuli)

\f y 1

Ml -) M2 •* M3
t ..\> « •»

4
action

Fig. 8: Cascade machine.

There are messages (external stimuli) affecting all component machines,

however, every machine produces its own messages affecting all other

machines on line. As one realizes, the information process in such

cascade form tends to be increasingly complex, the highest degree of

complexity is obtained by M . This will lead to a peculiar resolution

principle with which we are dealing later.

Which kind of decomposition one would like to choose for an

organization depends on various factors, certainly on the economic

environment it faces, on nature and extent of its performance, and last

but not least there is some other important consideration. One could

argue that decomposing an organization into information, decision and

payoff machine is a rather artificial procedure since we all know that

often parts of an organizational unit do all this simultaneously. However,

besides emphasizing the point that we are not primarily interested in

what actual organizations do, the crucial point in the attempt to

construct an organizational unit is how much information the system as a

whole needs in order to select the 'right' actions and to produce a

-14-

'desirable result.' The sacond question, equally important, is how to

disseminate information among organizational units in order to achieve

this result. A possible third question is that of cooperation or even

competition between these units so that an optimal use is ma-e in the

allocation of 'informational resulrces' (incentive compatibility)

An organization - as a machine - informs, computes, remembers, acts

and reveals its state behavior and output structure. For doing all this

the informational reuqirements may well be substantial. In fact, it might

turn out that such a machine only works on the basis of highly aggregated

messages (data) which in itself constitutes a considerable loss of

information. It is therefore essential to know whether a particular

machine preserves the original information content supplied by the messages.

The related question derived from the informational requirements to

operate a machine finds its counterpart in the economics of centralization

and decentralization. Often it has been recognized that an economic

system shows a poor performance because the computational capabilities do not

match the informational requirements given the amount of input data and

number of states in the system. In an intuitive sense one could argue

that computational complexity of a machine (organization) is related to

its 'information technology.' This notion has been introduced by C. B.

McGuire [6] by emphasizing the cost structure associated to the technology.

We here use the notion in a genuinely technological way, bound to the

machine structure, here called an 'information-handling equipment,* which

is analogous to the number of storage components, versatility of operations

etc. in a computer. We adopt this notion to describe precisely situations

which are linked up to realizations of 'big' machines by partition machines.

-15-

Cost considerations will enter the picture later, recall that we first

have to solve problem (1) in the previous section, before proceeding to

problem (2).

Before developing the structure of information technology we need to

state some preliminary definitions.

Definition: Let M be a finite machine. A machine M' = <X',Y',Z',X'6' > is

said to be a submachine of M = <X,Y,Z,X,6> if X',Y',Z' are subsets of

X,Y,Z respectively and if

X': X' x z' •*• Z', X' and X identical on X' x z';

6*: X' x z' -»• Y', 6' and 6 identical on X' x z'.

Definition: Let v(denote the set of all finite non-null sequences (the

alphabet) of X in a machine M, denote by x = x.,x2,...,x an element of

9C Define X:Q(x Z•> Z. Then two machines M- and M2 with identical input

and output alphabets are said to be equivalent (state equivalent) iff

X1(z ,x) =X2(z2,x) for all z^ ez, z2 GZ2 and xGQC. In case W^ =M2
this is trivially true. Clearly, two machines M1 and M2 with the same

input and output alphabet and state sets Z^t Z^ respectively are equi

valent iff {M : z, e Z.} = {M : z ^ Z_}, i.e. at every state one
z, 1 1 z2 I I

machine produces the same as the other machine.

Definition: A machine M is reduced to a machine M';iff z £ Z is equi

valent to z' G Z* implies z = z'.

Usually a reduced machine has fewer states, in fact, it can be made

unique in the sense that it has the smallest number of statesince every

other reduced machine with the same number of states must be isomorphic

to it.

-16-

Definition: A machine M' is a homomorphic image of machine M if there

exists a homomorphism h = (h ,h ,h,) such that h_: Z •*• Z', h_: X -»• X',

hg: Y -*• Y' are 'onto' mappings and

h^XCz.x)] = X'[h1(z),h2(x)] ,

h3[6(z,x)] = 6»[h1(z),h2(x)] .

That is to say M' is homomorphic to M if every state and output

configuration in M has a corresponding configuration in Mf. Likewise,

we call h = (h-,h2,h«) an isomorphism if every mapping h^t^tu is one-

to-one.

Definition: (Realization) If M' is a homomorphic image of M, then by

using the notion of homomorphism M' can be used to realize (imitate) M.

In fact, this homomorphism is an assignment of M into M', consisting of

mappings

h_: Z •*- nonempty subsets of Z',

h2: X -»• X', h3: Y •*• Y' satisfying the relations

X'[h1(z),h2(x)] Chi[X(z,x)] and

h3[6(z',h2(x))] = 6(z,x).

The homomorphism concept between machines proves to be very helpful,

for given the presumption of an operation preserving mapping between M and

M', we could realize a given machine M (or a reduced version of it) by

its homomorphic image M', for example by placing a combinational circuit

in front and back of Mf (see Fig. 9).

-17-

I

hl M' iL s1 i *•

Fig. 9: Realization of M by M' via combinational circuit.

In this case M' is state homomorphic to M.

Hence M' would perform subcomputations for M. Now realization becomes

important in case of realizing a machine by various types of decompositions.

In fact, we could look at state partitions of a particular machine, each

partition consisting of several blocks of states. Now given a machine M

we may consider a state partition of M, say it, which induces homomorphic

ir-images of M, say M . M could be thought as performing subcomputations

for M depending on which block of it contains the state of M. Looking at

the set of all partitions of a machine M' it can be verified that this

set forms a lattice under the natural partition ordering. The partial

order in this lattice is a comparative relation on the fineness or

coarseness of the underlying partition. It also permits interpretation as

a relation of comparative information as suggested in another context by

myself [1]. The very essence of information technology lies in the state

decomposition (partition) of machines and in the information structure

revealed by the partitioning. The lattice reflects the information structure

of all M machines, possibly in serial-parallel connection, which realize
IT

the original machine M. I call this the information technology of all M^

machines realizing M.

i

Example: Let us give a simple example where TT-images of a machine M perform

subcomputations which in parallel connection realize completely M. Let

Z={1,2,...,6}, let t^ = {<1,2,3>, <4,5,6» and tt2 = {<1,6>, <2,5>,<3,4»

-18-

be two partitions of Z, hence define the image machines by M and M
TT TT

It is helpful to represent M, M and M by the flow table:
"l *2

input
f— a b ^ output

1 4 3 0

2 6 3 0

3 @ 2 0

4 2 5 1

5 1 4 0

6 3 4 0

states

next

state

a b

s t s

t s t

t = <1,2,3>

s = <4,5,6>
t

p = <1,6>, q = <2,5>

r = <3,4>
t

Fig. 10

Representation of M, M and M . Circled number is a unique state given

input b, realized uniquely by M © M in block s given b and block r

given b, respectively.

As can easily be seen every block of tt1 has exactly one state of M in

common with every block of tt0. Hence the states of M and M , when2 H n2
being operated jointly, uniquely determine a state of M.

We observe that if ^ and tt? are partitions of (the states of) M,

then also it.. • tt« and tt-i + tt« form partitions of M and the binary operations

'•' and '+' determine the 'inf (g.l.b.) and 'sup' (l.u.b) respectively,

hence satisfy the definition of a lattice. Let P be the set of all

possible partitions of M, with (<Z)} being the unit partition and

{<1 , 2 , ..., n>} the null partition. Then P forms a partition lattice

and the g.l.b. iT-dr.) = tt-, • tt2 •••• tt forms the coarsest among all finest

partitions in P, likewise the l.u.b. E-i(ttj) = tt-i + tt« + ... + tt forms

the finest among all coarsest partitions in P. Since P is a lattice it is

perfectly legitimate to conceive the operations '•' and '+' or the

-19-

generalized operations '11' and 'E' as partial algebraic operations

(see [1]). In this case the equivalence holds: tt £ tt iff a l.u.b.

(7r1>'0 and a g.l.b. (tt ,tt) exists in Pfor any t^, tt £ P. Viewing the

lattice of partitions as 'information technology' we would like to give

'_<' the meaning of 'not more informative than.' Then in the lattice of

partitions, partitions are only partially ordered according to their

information content (induced by the state behavior of machines). A

machine independent approach suggesting this form of interpretation has

been proposed by the author [1], A general requirement, not always met

by structuring a machine, is that of an output consistent partition.

Definition: A partition tt on the state Z of a machine M is output

consistent iff z = z' given tt implies 6(z,x) = 6(z',x) for all x € X.

Since sometimes the lattice of partitions of Z does not fulfill this

requirement one would have to consider a sublattice of partitions if it

exists. With regard to the associated machine one might find - as an

interesting counterpart - that a possible lack of output consistent

partitions reflects redundancy of stnte information, hence by performing

computations for machine M it would be sufficient to confine the compu

tational process to the realization of a reduced machine M_. M^ can be

constructed (or induced) by a homomorphism between the original machine M

and ML. Let then M and M be those machines that compute M and VL

respectively. Then M and M are trivially equivalent. This property
TT TTR

certainly has a meaningful interpretation in organization theory.

Output - consistency, in fact, is an immediate consequence of the substi

tution property (S.P.) of machines.

-20-

Definition: A partition'^ on Z has the S.P. iff z = z» given tt **

X(z,x) = X(z',x) given tt.

This property actually ensures that if some M could perform sub-
TT

computations for M then for any given block B in tt we could find a smaller
TT

block B' contained in B where for every input the state transition
TT TT r

function acting on the smaller block generates only states in the larger

block, i.e. there is a unique block to block transformation on tt-

One technical problem might arise in the case of realizing a machine

by a sequence of M machines serially connected. For example, if M

is the first machine in line doing subcomputations for M, then we would

have to know about those remaining states which still have to be computed

in order to realize M. This is necessary to know what kind of M
TT2

machine, say, is required to do supplementary subcomputations. Now if we

could think of an organization to achieve a certain performance standard

within some time limit (in terms of computational, not historic time),

one has a fairly accurate vision which states have to be computed at

various instances of time. Hence this gives some hint on answering the

question which information technology could be used for the realization

of M by serially connected M machines. This problem is rather deep and
H

we will deal with it next in a more general way.

Adopting the idea that we can effectively compute a machine by various

kinds of compositions of its tt. - images M , we would be basically
i TT±

interested in the following ,

Problem: Given any ir-partition of a machine, could we find another

2
ir-partition which fits tt in an appropriate way.

-21-

We call such a pair (tt,tt') complete, if it exists and constitutes the

entire information technology needed to realize M. This problem can be

given different kinds of interpretation but to what it really amounts

to is to determine clearly what kind of complementary information tt'

is needed for machine M^T, in order to compute jointly with M the states

and possibly outputs of the original machine M. More generally, we could

consider the minimal partition

tta = JI(tt • (tt,tt) is complete w.r.t. M)

and a maximal partition

*

tt = Z(tt.: (tt,tt.) is complete w.r.t. M).

In the first case tt^ describes the largest amount of information (given

the partition II) necessary to compute the next state(s) of M for all tt

it
finer than tt^. In the latter case tt represents the least amount of

information (given tt) to compute the next state(s) of M for all it
*

coarser than tt .

Example: Given a partition ^ = {< 1,2 >,< 3,4>, <5>}, then compute all

possible states onto which all blocks of tt are mapped. Assume they are

given by the sets {4,5}, {1,4}, {2,3}, then tt^ = {(1,4,5), <2,3>}.

We already know that the set of partitions forms a lattice L under

the natural partition ordering, the set of partition pairs will be a

subset^ Clx xL£. We call ^P the pair algebra7^ satisfying aclosure,
completeness and boundedness property e.g.

-22-

a) (tt^tt.) and (tt^,tt») in ^P imply that

n^Cir^iTj), (tt^,tt^)} and ^{(tt^tt), (tt|,ttj)} are in^.

b) For any tt in ^ and tt' in L2> the trivial partitions (0,tt) and (tt,I)

are in^.

c) For some it £ L there exists tt^ = (tt,tt') and * = (tt,tt") constituting

g.l.b.'s and l.u.b.'s in ^P, respectively.

Obviously, ^P is again a lattice under the natural partition ordering

<. since O^f^) 1 (ir{»irp in \ xL2 is equivalent to it <_ ttJ in L- and

^2 1 ^2* and ^ has the zero element (0»0) and the unit element (1,1).

In some sense the lattice L- describes the ordering of information

about the machine (we have got) whereas L« describes the ordering of

information to which the previous information can be transformed by M.

Hence M is considered to be a transformation machine which already suggests

that any adjustment process, to be defined later, acts as a 'transformation

walk' on the lattice of partition pairs.

In many cases it would be sufficient to start out with a subset (not

necessarily sublattice) <P0 of ^P containing all initial partition pairs.

If additional information is needed to compute the next state(s) of M

then this information can be obtained by modifying 4^ in an algorithmic

fashion, i.e. by refing the first component and/or coarsening the second

component of the pair. In an organizational context this procedure is

very much like the process of interchange of messages between various

subunits.

Since the lattice of partition pairs is uniquely associated to the

machine structure it is possible to reveal the informational skeleton of

-23-

the machine in this way. In particular, given a machine M it is possible

by an appropriate decomposition to compute the next-states and outputs

by TT-images of the machine obtained by partition analysis. One question

then naturally arises which information obtained by partitioning the

states of the original machine is sufficient to compute the future

states of this machine? The following list is not claimed to be

exhaustive but it provides the main steps to be checked:

Algorithm:

a) Start with a certain partition based on present information and past

history.

b) Look for future states which have to be computed.

c) Look for that tt' that requires the minimal amount of information in

terms of the partition ordering.

d) If tt' does not fit tt, look for some tt" which is finer or coarser than

tt', or take concatenations tt- • tt. • ... • tt (in case of serial
12 n

decomposition) or tt + tt + ... + tt (in case of parallel decomposition)

e) Compute the partition pair and determine its locus in the lattice of

partition pairs (pair algebra).

f) Determine (technological) informational efficiency by the minimal

dimension of the sublattice in H given by the computed partition

pair (tt, tt ') as illustrated in Fig. 11.

<(I,D

(tt,tt')

(0,0)
Fig. 11. Dimension of sublattice reflects highest informational efficiency

or minimal information needed to realize M.

-24-

We could define a dimension function as a function

D: ^P-* [0,1] with the following properties:

(i) 0 <. DtTi.Tr1)] < 1 for every (tt,tt') e Cp, in particular D[(0,0)] = 0,

D[(I,I)] = 1.

(ii) If (TT,Trf) > (0,0), then D[(tt,tt')] > 0.

(iii) Let _L denote an algebraic independence relation,

n

if JUtt.^),...,^,^)}, then D(U (tt^tt^)) = Z (D(ir±,iTp>

(iv) DtOr^TTp U (TT2,TTp] + DtOr^TTp n (ir2>ir»)] =

D[(Trlfirp] + D[(7T2,TTp].

(v) D is order-preserving on r, D can be shown to be unique.

The algorithm then contains the following instruction. Choose that

(TT,Trf) in P which has minimal dimension in terms of D. Of course, in

case P represents a metric lattice-D would be identical to a metric oner .

Again, the economic analogue of this procedure can be easily presented,

it relates to the problem of how much and what kind of informational

decantralization is necessary (and not whether it is necessary at all)

to resolve the computational burden brought upon by a highly complex

organization. On the other hand, given a set, say of parallel connected

component machines M , M ,...,M realizing M, could we find a simpler
*1 *2 *n

set of component machines which will do the job as well. This relates to

the question of information redundancy and amounts to finding the smallest

sublattice within the lattice of partition pairs, given the performance

standard of the original machine, where informational efficiency could be

measured by the dimension of the sublattice. The task to avoid information

-25-

redundancy can be approached by an algorithmic search procedure substituting

M^ by M^,, in case both are equivalent machines (in the precise meaning

defined above) but where tt' is finer than tt so that M , requires less

information than M^. Such an algorithmic procedure finds its counterpart

in a policy aiming at the change of the organizational design (organizational

change).

We have to mention at least one technical difficulty arising in the

case of redundant information. Suppose that partitions tt and tt are

sufficient to realize M. Then the sum tt + tt represents a redundant

computation which should be factored out, but in some instances it might

occur that factoring out will cost additional memory. Thus, in general,

when dealing with the problem of factoring out information redundancy one

should only select partitions which do not enlarge the memory requirements.

Here we have dealt only with the construction of the information technology

involving the partitioning of the state set of a machine. We could,

however, think about partitioning in a broader sense affecting the input,

output and state set simultaneously. Given a machine M, we then say a

X - Z partition determines an 'input-state' set, accordingly, a Z - Y

partition determines a 'state-output' set, both sets form pair algebras.

In general, M = <X,Y,Z,X,6> could be replaced by the partition machine

M' = ^XT> Y^* Z^* X^, 6 > x, a), tt denote partitions, induced by a

TT-partition on Z of M. In fact, M' is a homomorphic image of M where

b-, : X -»• X , h2: Y -*• Y and h_: Z -»• Z , and M may be realized by a serial-

parallel decomposition of M'. In all discussions concerning performance of

economic systems (Reiter [7]) the question of performance and size of

message space arises. It is generally acknowledged that there exists some

-26-

kind of trade-off between both, characterizing an efficiency frontier of

allocating information. In particular, a legitimate question is what is

the minimal size of the message space still able to sustain a certain

performance standard. Nothing is known about the absolute size of a

message space but something could be said about the ordering of message

spaces given different economic environments where the competitive process

is the most natural to start with because of its Pareto optimal property.

The efficiency question can be translated appropriately in our framework.

Now translated in the language of machine theory we are interested in

finding the minimal information technology sustaining the realization of

a machine. Whereas the traditional approach actually studies the size of

a message space (or information-carrying capacity) in terms of topological

properties we believe that this is rather unnatural from a machine-theory

viewpoint where information technology (here message-transferring

technology) really has an algebraic counterpart.

Although principally, we could solve the technological aspect of

informational efficiency we still have to take care of the economic problem

of finding an information technology with minimal costs. Here machine

theory doesn't provide tools for the direct solution of this problem. The

reason is that engineers and computer scientists are not so much worried

about monetary costs of operating components or pieces of hardware, all

that they are worried about is the feasibility of the design with the

performance standards set out in advance. However, they are much concerned

about problems like computational complexity (measured in terms of number

of diodes used in the realization), real-time computation, and algorithmic

efficiency of a machine. These are important parameters of 'computational

-27-

costs' and they have some relevance for economic considerations, too.

Nevertheless, we wish to treat costs associated to the information

technology in a more unified analytical way. If we could find some link

between computational complexity and costs of information we will be able

to speak intelligently in economic terms about the optimal size of a

machine. Now it seems intuitively reasonable to argue that the cost of

operating a machine is associated to the information technology necessary

to realize the machine, or more explicitly, is associated to a certain

partition pair satisfying this requirement. Hence, we would like to

associate the cost function to the lattice of partition pairs mapping

the state set generated by the partitions into an appropriately defined

vector space, the cost space. Unfortunately, we do not know much about

the properties of this function, except, perhaps, that it is monotone-

increasing. Informally, this means that handling more information is more

expensive, or that handling more complex messages causes higher information

costs. However, this implicitly assumes that information handling equipment

is completely divisible and equally effective for all kinds of computations,

i.e. independent of the size and complexity of computations. On the other

hand we know that more complex computations could be handled more

efficiently by more advanced technology which introduced might even

decrease total unit costs of information-processing. Hence, there is no

uniform pattern regarding cost function specifications of information

technology and this basically requires a broad range of empirical investi

gations on that matter. The problems of specification of cost functions

for a certain information technology often appear in discussions on

advantages or disadvantages of decentralized or centralized economic

-28-

organizations. In general, however, if we consider large organizations

it is safe to argue that costs of information processing are roughly

proportional to 'computational complexity' of the machines which is

increasing with the dimension of the lattice of partition pairs measured

from its zero element. This brings us closer to the concern of computer

scientists representing a measure of computational complexity by costs of

computation. The problem of computational complexity will arise later in

another context.

One possibility to deal analytically with the problem of costs of

information processing should be pursued here explicitly in some general

form.

Definition: A partially ordered vector space is a cost space C if

1) C is endowed with a tolerance relation R, saying that for any pair of

elements (c,c') £ R. (Any costs should be feasible with the given

tolerance R)

2) For each c G C there exist a, b £ C such that a < c < b and

a < c' < b implies (c,c') € R.

Now, given a machine M = (X,Y,Z,X,6) and its homomorphic image

M1 = (X ,Y ,Z ,X ,6), and a cost space C associated to Z , a cost function
X ' 0) ' TT * TTT ' TO) r TT

for M' is a function <f> :X x Z •> C with representation <j>(x,z)= E d>(x ,z).
X TT Y X TT „ep T v

We could then formulate an optimal control problem in a tentative way.

Problem: Let z and z. be two states of Z and Z . respectively, called
O 1 TT TT1 r J >

the initial and the terminal state. We say that x = (x,,.. .,x) G X
xln

transfers M' from zq to z1 if A(zQ>x) = z1 for all x , whereby

X(z ,x^,...,x^) f z, if k < n. Among all such x in X find that sequence

-29-

z ,...,z for which d>(x »z) is a minimum.
TT, TT X TT
1 n

Let then M'=<X,Y,Z xC,X ,6 >be the machine with cost function
X 0) TT XTT XO)

/ C C \<J> and cost space C. We define the machine (M',<|>) = <X ,Y .Z^ x CjX^^^J

by X^(Zit,c,xt) = (Xx7r(Z7r,xT),c +*(vxT)), a»d C(Vc'x) =6xu>(Vx)*
Some of these ideas will come up later if we turn to generalized

adjustment processes.

3. CASCADE DECOMPOSITION OF ORGANIZATIONS

In this section we basically show that the main ideas and concepts,

valid for serial-parallel decompositions, apply as well to cascade

decompositions - with some modifications. Looking at the cascade machine

of Fig. 8 we realize that the information technology of M^ 'covers'

that of M2 and that of M2 'covers' that of M^ In general, this cover

property of information technologies revealed by component machines is

used to prove a decomposition theorem for cascade machines.

1) First we have to make sure that a realization of a machine M by cascade

decomposition really exists, that is we have to verify that a nested

sequence of partitions (constituting the information technology of

cascade machines) can be constructed.

2) Suppose we could find another information technology for M and M could

be realized by a different cascade decomposition which is finer than

the former (obviously it cannot be coarser). Then we require that the

latter partition is a nested sequence of preserved partitions which keeps

most of the information of the former partition. This can be made clear

by the following construction

z *
h

2

I
V

-30-

K, J index sets R£j,

and this diagram commutes, i.e. Z-*-Z-»-Z=Z-»-Z-»-Z . Now this
•J K K

property gives us a possible criterion to find that minimal partition

which still yields a nested sequence of preserved partitions. It

tells us something about availabilities of different information

technologies preserving the capabilities of a given machine.

3) Suppose a machine M is given permitting realization by cascade

decompositions. We want to construct a machine M' such that M* is a

homomorphic image of M.

Analogously we consider the diagram:

Z' >Z'

8 t h 1 •
Z ii—»Z

i i
Z= *Z„ to commute.

With the interpretation we proceed according to step 2), except that the

homomorphic image of a machine could be considered as a redesigned machine.

When we consider (at least partial) dependence between various states

obtained by a cascade machine it is appropriate to consider a nested

sequence of covers instead of partitions. In distinguishing covers from

partitions we note that partitions contain mutually exclusive blocks

whereas covers don*t. We then call a cover C-, coarser than a cover C«

(C2 finer than C.) iff each block of C2 is a subset of some block of C-.

The definition of a cover lends itself to; the consideration of set

systems in the sense of Hartmanis & Stearns [2]. This can easily be seen

from the definition of a set system:

-31-

Definition: A class of distinct (not mutually exclusive) sets o = {S^

of the set S is a set system if

(i) J S± = S ,

(ii) S± C Sj => S± = Sj , it j.

Hence every element of S belongs to at least one subset (block) of i»

and no block properly contains another block although blocks may be over

lapping. If blocks in 2 are increasing in size then we could identify

blocks as covers. Covers can be treated in a lattice-theoretic context and

lend themselves to considerations of information technologies via pair

algebras. The same techniques go through in this respect. The choice of

the information technology could be constrained by - what is known as - the

computing power of the machine. In case of cascade decomposition of the

machine the informational process might get too complex to be compatible

with the computational abilities of some cascade machines. This would put

a 'technological' limit on the performance of the machine with which the

organizational designer as well as the computer engineer has to cope with.

One way out of this difficulty would lead to a restructuring of the

information technology, e.g. by constructing a different lattice of

partitions or covers. In other words, we would try to refine the information

technology in the sense that we could break a given partition into finer

'pieces' (i.e. more blocks) which would reduce the computational burden of

the individual units.

4. ADJUSTMENT PROCESSES

The current status of sequential machine theory suggests three different,

though related conceptualizations of finite state sequential machines, e.g.

-32-

1) a structural description in terms of machine language as that given

at the beginning,

2) an abstract finite semigroup S, a complete algebraization of 1)

3) a transformation semigroup (Z,S) where S is a set of transformations

acting on Z describing state transitions on Z induced by input

sequences.

We find it most useful to adopt the last approach for it leads naturally

to investigations of dynamic properties of machine behavior. This yields

a new interpretation of adjustment processes in organizations. Given the

information technology and the lattice of partition pairs one could describe

a sequential machine as a set of mappings of the set of states into itself

where each mapping corresponds to an input. If we have an input sequence

then a composition of mappings corresponds to this input sequence. In

general, these mappings form a finite semigroup of transformations on

9)
the set of states of the machine.

Example: The concept of the semigroup of transformations is very natural

for various branches of sciences, and certainly pertains to dynamic processes

of economic or social systems. Let £ be an economy which by generating

messages occurs in various states s,s',s",... according to certain actions

of its agents interacting with each other. Suppose the system is in some

state s then as a result of the aggregate actions of the agents it will be

'transformed' to a new state s', say (which may of course coincide with the

original s if the given state is not affected by the actions). Thus every

action in fiis simply a transformation in the set of states of the system,

and a sequential machine forms such an appropriate system. Consider now

that actions are sequentially produced by certain activities of the agents,

-33-

then sequential actions could be concatenated to produce new actions. Then

obviously the transformation, produced by the last action (in a sequence) is,

so to speak, conditioned on its past history, and forms the product of

subsequent transformations corresponding to successive actions.

In this way the totality of the actions in the economic system, being

closed with respect to successive applications is naturally a semigroup

of transformations of the set of all states of the system under consideration,

Hence, it is simply a matter of taste whether we regard the process

of transformation in a system as a machine (and so describe it explicitly in

machine-thoeretic language) or whether we consider it, more abstractly, as

a semigroup of transformations of a set of states. Since to every machine

structure there is a corresponding semigroup structure, partitioning of a

machine involves a decomposition of semigroups. Both descriptions are

formally equivalent, although the first seems to be more appropriate for

modelling an organizational form, whereas the second gives more insight into

the algebraic and computational structure of a machine, in particular, in

connection with finding solutions via functional equations. The semigroup

of transformations can be understood as the 'computational capability1 of

a machine to transform a past history into future states and may be viewed

as an adjustment process acting in an organizational design given the

information technology with which this design is associated, and given the

performance standards. Here again the structural behavior of a machine is

reflected by an algebraic concept of a sufficiently general nature. For

the simple case of a state machine <Z,X,X> the semigroup induced by inputs

is the set of input functions

x: Z -»• Z for all x G x,

-34-

represented by (z)x = x(z) = (z,x). To put the input function x(z) in

the form (z)x is convenient for considering the more general case of an

input sequence x..,x9,... where the semigroup consists of a concatenation

of input functions x.. • x« ... associated to Z, hence (z)x_ • x2

This concatenation satisfies the closure and associativity postulate of a

semigroup. Depending on the length of the input sequence one could

enlarge the state flow table up to the number of possible concatenations

of the input functions. Hence, we consider an adjustment process as the

behavior of a machine M associated to its semigroup of state transformations

for a given information structure (lattice of partition pairs), and we denote

it by (M,<|>) where <j> = (z)x1 • x2 ... x . One key notion which comes up in

connection with this type of adjustment process is that of computational

capability containing a slight generalization of the notion of realization

by machines. Take again the simplest case of a state machine.

Definition: A state machine M = <Z,X,X> has the same computational

capability as state machine Mf = <Z',X',X' >iff there exists an assignemtn

(a,$) such that

a) a: Z' -*- (fiis the class of non-empty disjoint subsets of Z)

b) 3: X' -+9CQ(is the set of sequences over X)

c) X(z,3(x')) *= a(X'(z\x)) for all z G z, z' € a(z), and x' <= X'.

The difference to the realization concept is that here 3 maps inputs

into input sequences, and a maps states into subsets of states.

There are structural constraints which limit the possibility of serial

decomposition of a machine M. M is called a reset machine iff each input

is an identity or constant mapping. For example, if M is realized by a

-35-

serial decomposition M 0 M. and if M has the capability of a two-state

reset machine then either M or M have the same capability. These machines,

M1 and M , represent prime capabilities which cannot be further decomposed.

In other words, they are simple machines whose semigroups are simple

groups and machines which are two-state reset machines. A reset machine

actually implies that the organization adopts a stationary (cyclical)

pattern, i.e. is not moving along newly generated states.

Let P be some decomposition of M, characterizing its information

technology. If S denotes the semigroup of transformations on M, then

(P,S) is a transformation group. The group complexity of S is defined as

the cardinal number /iL(S), and the group complexity of M is given by

#G(M) = min{#G(Tr): tt G p}.

This complexity measure can be used for measuring the computational

complexity of adjustment processes in machines, and in fact, it corresponds

to the minimal dimensionality of the lattice of partition pairs. Hence,

we get different algebraic measures for complexity of computations in

organizations.

5. CONCLUSIONS

We have presented a fragment containing several ideas how to design an

organization which performs certain tasks. As a starting point we chose

the well-developed economic theory of optimal organizations and we attempted

to translate some of the key notions into the language of sequential machine

theory. The former theory shows several shortcomings which we wish to

avoid: First, it does not provide a theory on the design of an organization,

hence it does not show the 'architecture of complexity' and the 'economy of

-36-

construction.' Second, it does not come to grasp with the problem of

information decentralization generated by an appropriate information

technology. Third, it does not provide means to perform computations in

organizations since the analytical framework used does not lend itself to

computational experience. The practical aspects of sequential machine

theory in the design of organizations would be two-fold. First, given

certain performance standards is the design of a particular organization

compatible with meeting these standards? If so, does there exist a 'better'

design in terms of being more efficient and/or less costly?

Second, given certain performance standards how would you design an

organization which meets these standards in a most efficient and/or in

a least costly way.

Although both aspects seem to be related, they represent different

approaches to the problem. In the former case the 'organizer' is engaged

in a check-up of the existing organizational structure and proposes changes

if the feasibility requirement is not satisfied. In the latter case, the

organizer is actively involved in the design of the organization and is

left with considerable leeway to construct the organization subject only

to meeting some performance standards. It is this case to which most of

the research interest will be directed, hopefully.

In the former case, where existing organizations reveal inefficiencies

of various sort, due to rigid structural conditions (bureaucratization),

bottlenecks in informational allocation (over-centralization) or

informational redundancy (over-democratization), much emphasis should be

put on minimizing losses of efficiency caused by bottlenecks and waste.

This might not be possible if the 'organizer' simultaneously acts under

-37-

customary constraints of meeting the performance standards and

maintaining the basic organizational structure. Then either he has to drop

some standards or to 'revolutionize' the organization - in either case

he might get fired. There are quite a few organizations which 'organize'

to achieve certain goals and sequentially commit errors in their computations

and where further computations at least partially consist of trying to

erase such mistakes, to the effect that these computations again may be

subject to mistakes, etc. In this case, by maintaining the basic organi

zational structure as a constraint, the 'organizer' is likely to minimize

possible losses of efficiency.

What we tried to show here is that the machine theory approach

provides interesting models for organizational design, beyond that one

might speculate and test on a sound basis that it will form the core of

'organizational science' comprising many fields and some parts of social

science.

In future studies, we have in mind to expose this theory to some

experimental work, i.e. to select a reasonable class of 'red-tape

organizations' and to check whether, given their alleged performance

standards, they are able to meet these standards under present design

conditions.

-38-

Footnotes

1) In many instances it is more appropriate to consider a more general

definition of a sequential machine and to replace X by a nonempty set

of finite sequences over X, denoted by EX or "^X.. A sequential machine

is then a mapping F: EX -* Y and f(x ,...,x) = y is the output at

time n if x. is the input at time i for 1 <_ i <_ ri. In this case the state

set is not explicitly considered, although it is generated by 'real

time computation.1 For reasons of considering the 'information

technology' given the set of states we will stick to the previous

definition, for which J. Rhodes [8] uses the term (sequential)

circuit reserving the term 'machine' for the more general definition.

la) We only consider the environment as an 'input', hence as a fixed part.

Beyond this rather narrow viewpoint presented here, it is perfectly

legitimate, not only mathematically interesting, to view the environ

ment itself as a machine (variable part). In fact, this problem of

machine interaction is pursued by J. Rhodes [8] in most of his appli

cations of automata theory to biology, psychology and psychiatry. The

distinction resembles that of decision-theory (games against nature)

and game theory proper.

2) This idea has been further elaborated in recent notes by John Rhodes

[8]. In these notes certain situations are analyzed, involving quite

distinct areas, but all situations involve 'real time computation' where

'machines' respond in real time with its environment just to stay alive.

The situation is quite different for Turing machines, where there is

no time and no space constraint with unlimited computability.

-39-

(Computer scientists speak in the first case of on-line computing, in

the second of off-line computing.) These qualifications have to be

adjusted to concrete situations. In universities, for example, the

organization of research by competent scientists is hard to evaluate

in the sequential machine framework. On the other hand, the usual

type of work performed by secretaries and administrative assistants,

less so on a more professional level can be subject to 'organizing'

via sequential machine theory.

2a) One way to increase computational power in the realization of machines

is by emphasizing parallel decompositions given some level of serial

decomposition. Thus, the computational power (speed) of an organization

realized by serial-parallel decomposition can be substantially increased

by increasing the number of parallel connections, if possible. As

an interesting analogy we mention that the design of high speed

computers relies heavily on parallel computations.

3) We do not explicitly consider feedback maps which could be considered

as 'two-sided internal stimuli' acting on component machines in the

process of realization. Feedback would substantially increase

complexity of computations. This is in perfect agreement with on-line

computation, and simplifies certain aspects which are at the present

stage of greater importance.

4) See Hartmanis and Stearns [2].

5) As indicated before, the question of incentive-compatibility remains

open here, at the present stage it suffices to say that incentive-

-40-

compatibility will appear in simpler form than it does in the

conventional economic theory of organizations (see Hurwicz [4]).

Here what it really amounts to is that organizational units perform

computations in accordance to what they are expected to achieve under

'real-time computation.' Delay in computations, misspecification of

messages, misallocation of funds, resources etc. - these possibilities

might jeopardize the process of realizing the original machine and,

provided all other structural conditions are met, may basically reflect

'incentive incompatibility.'

6) We use the concept of computational complexity in a different, but

related sense to Rhodes' treatment of complexity who exposes an

algebraic theory of complexity for sequential machines: First, complexity

is related to the computational capability of a machine, e.g. the more

capable a machine is (in terms of input received and output generated)

the more it is considered to be complex. Second, complexity of a

machine to be realized is (at most) the maximum of complexities of its

component machines. Here we are more interested in a narrower concept

of complexity related to the structure of information technology.

7) Recall from above that every partition pair constitutes by itself a

feasible information technology. Thus every point of the lattice of

partition pairs (or pair algebra according to [2]) is itself a lattice,

hence we can speak of a lattice of lattices. Instead of considering a

pair (tt,tt'), for simplicity, we could take an n-tuple (tt, ,... ,TTn)

(corresponding to a sequential process in n-stages) which itself forms

a lattice.

-41-

8) Furthermore, if D and D' are both dimension functions and exist, then

D and D; are uniquely related up to positive linear transformations,

hence dimension in a lattice is measurable on an interval scale. We

consider the minimal dimension of the lattice as a measure of compu

tational or informational efficiency.

9) A mapping of the set Z into itself is called a transformation. We could

denote S_ as the set of transformations on the state set Z, and this is

a (finite) semigroup with respect to the operation of forming the

product transformations under successive application of concatenating

inputs (in terms of mappings), hence S„ is a multiplicative set of

transformations of the set Z. One could consider a semigroup of

transformations as a natural tool for the study of general processes

with a wide range of applications. The semigroup property for multi

stage decision processes such as dynamic programming has already been

recognized by R. Bellman (1957). This property is strongly connected

with the representation of such processes by functional equations.

In fact, if we think of actual computations of a semi-group of trans

formations they would involve appropriate solutions of functional

equations.

-42-

References

[1] H. W. Gottinger, Qualitative Information and Comparative Informativeness,

Kybernetik 13, 1973, 81-94.

[2] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of

Sequential Machines, Prentice-Hall: Englewood Cliffs, 1966.

[3] L. Hurwicz, Optimality and Informational Efficiency in Resource

Allocation Processes, Ch. 3 in: Math. Methods in the Social Sciences,

Stanford Univ. Press: Stanford, Calif. 1959.

[4] L. Hurwicz, On Informationally Decentralized Systems, Ch. 14 in:

Decision and Organization (R. Radner and C. B. McGuire, eds.) North-

Holland: Amsterdam 1972.

[5] C. B. McGuire and T. Marschak, Design for Organizations (unpublished

notes: University of California, Berkeley 1971).

[6] C. B. McGuire, Information Technology (unpublished notes: University

of California, Berkeley 1972).

[7] S. Reiter and K. Mount, The Informational Size of Message Spaces,

Center for Math. Studies in Economics and Management Science,

Northwestern University, Evanston, 111., Discussion Paper No. 3,1972.

[8] J. Rhodes, Applications of Automata Theory and Algebra (unpublished

notes: University of California, Berkeley, 1973).

-43-

	Copyright notice 1974
	ERL-426

