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ABSTRACT

Recently, algorithms have been developed which use depth-first search

to efficiently test some connectivity properties of graphs. Depth-first

search is not always necessary for efficiently testing such properties,

however. This note presents an efficient algorithm which uses any

search method to find all the bridges of a graph.

Keywords: algorithm, bridge, connectivity, search, spanning tree,

This research was partially supported by the National Science

Foundation Grant GJ-35604X1.



A NOTE ON FINDING THE BRIDGES OF A GRAPH

R. Endre Tarjan

Recently, algorithms have been developed which use depth-first

search to efficiently test various connectivity properties of graphs.

Examples include algorithms to find the connected, biconnected, and

triconnected components of an undirected graph [1,2,3] and the

strongly connected components [2] and dominators [4] of a directed

graph. Depth-first search is not always necessary for efficiently

testing connectivity properties like these, however. This note

presents an efficient algorithm which uses any search method to

find all the bridges of a graph.

A graph G » (l/,E) is a set of vertices 1/ and a set of edges

E. The edges are either unordered pairs (v,w) of distinct vertices

(the graph is undirected) or ordered pairs (v,w) of distinct vertices

(the graph is directed). We denote the number of vertices by V and

the number of edges by E. Graph G1 = (1^,^) is a subgraph of G if

1/ C V and E. C E. A sequence of edges (v^, vj, (v2> v3), ...

(v , v ) is a path from v. to v . A path is simple if all its
v n-1' n * 1 n

vertices are distinct. There is a path of no edges from any vertex

to itself. An undirected graph is connected if there is a path between

every pair of vertices. If there is a path from a vertex v to a vertex

w in G but every path from v to w contains edge e, then e is

said to be a bridge of G. An undirected graph is bridge-connected if



it is connected and has no bridges. The connected (bridge-connected)

components of a graph are its maximal connected (bridge-connected)

subgraphs.

A tree is an undirected graph with exactly one simple path

between every pair of distinct vertices.' A spanning tree of a graph is a

subgraph which is a tree and which contains every vertex of the graph.

A directed, rooted tree is a directed graph with a unique root such

that there is a unique path from the root to any other vertex in the

tree. We denote the existence of an edge (v,w) in a directed,

rooted tree by v ->• w and the existence of a path from v to w in

*

a directed, rooted tree by v •*- w. If v •*• w, v is the father of

*
w and w is a son of v. If v •*• w, v is an ancestor of w and

w is a descendant of v.

We wish to find all the bridges of an undirected graph G.

Without loss of generality we may assume that G is connected;

otherwise we can apply the procedure below to each connected component

of G. Let T be any spanning tree of G. We can convert T into

a directed, rooted tree T by choosing an arbitrary vertex r of T

as root and, for every path from r to a vertex v in T, directing

the edges on this path so that it is a directed path from r to v.

We denote the existence of a non-tree edge (v,w) in G by v — w.
-»•

Number the vertices of T from 1 to V in postorder [5]. This
-*•

ordering corresponds to applying the following algorithm to tree T:
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begin

procedure POSTORDER(v); begin

for w such that v -* w do POSTORDER(w)l;

NUMBER(v):«i:«i+l;

end;

i:=0;

POSTORDER(r); comment r is the root of T;

end;

Henceforth we shall refer to vertices by their number. For any

vertex v, let ND(v) be the number of descendants of vertex v

(including v itself).

it A

Let S(v) = {w | v -»• w} U {w |3u ( v -»• u and u — w)}, let

L(v) - minimum (S(v)), and let H(v) - maximum (S(v)).

The following lemmas are easy to prove:

Lemma 1;

*

v -• w iff v - ND(v) < w £ v.

Lemma 2:

ND(v) = 1 + E ND(w).
v-*w

Lemma 3:

L(v) = min {v-ND(v)} U {L(w) |v -* w} U {w|v — w}
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Lemma 4:

H(v) « max {v} U {H(w) |v -»• w} U {w|v — w}.

Our main result is:

Theorem 5:

Edge (v,w) is a bridge of G if and only if v -»• w

in T, H(w) <. w, and L(w) > w-ND(w).

Proof: Obviously, no non-tree edge is a bridge. Consider any

tree edge v -»• w. This edge is a bridge if and only if no descendant

of w is joined by an edge to a non-descendant of w. This condition

is equivalent to that stated in the theorem, by Lemma 1 and the

definitions of L(w) and H(w).

To find all the bridges of G, we calculate ND(v), L(v), and

H(v) for all vertices v using Lemmas 2,3, and 4 and test the

condition in Theorem 5 for each tree edge. The entire algorithm is:

for each connected component G. of G do begin

let G- have V- vertices;

a: find a spanning tree T of G^;

b: convert T to a directed, rooted tree T;

c: number the vertices of T in postorder;

for v:« 1 until V1 do begin

ND(v):=» 1 + £ ND(w);
v*w

L(v):= min {v-ND(v)} U {L(w)|v -*• w} U {w|v — w};

-4-



H(v):= max {v} U {h(w) | v •*• w} U {w |v — w};

end;

for v -*• w do if H(w) <_ w and L(w) > w - ND(w) then

denote (v,w) a bridge;

end;

Finding the connected components of G and carrying out steps

a, b, and c on each component requires 0(V+E) time using any search

method, if graph G is represented by a list structure [1, 2]. The

computations of ND, L, and H are well defined since if v -*- w,

v > w by the postorder numbering. These computations take 0(V+E)

time. Thus, finding all the bridges of G requires 0(V+E) time

with this algorithm. Knowing the bridges of G, it is an easy

matter to find the bridge-connected components of G in 0(V+E)

additional time.
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