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1. Introduction

Consider a p-component stationary full rank random process

y = {y^|t integer} with a one-sided moving average representation, or

Wold-decomposition

° Vt Vt-i

see e.g. [1]. Then (|)q is invertible and the subspaces spanned by

{u^it <n, i=l,...,p} and {y^\t £ n, i=l,...,p} are the same. For a
t ^

given process y the orthonormal process u is uniquely determined and

(j) = ((J>Q,(|)^,...) is unique up to right multiplication by orthogonal

matrices. By choosing all sequences 0 such that is upper triangular

with positive elements on the diagonal we obtain a one-to-one relation

between ^ and the covariance function of y. In addition, suppose that y

is finitely generated in the sense that there exist two sets of (real)

matrices A= (Aj^,...,A^) and B= (Bqj»»«»B^) such that

+ Vt-l Vt-n = Vt Vt-n-

As is well known, the covariance function of y is then rational.

We are interested in the problem of estimating the matrices A and

B from increasing sequences y^, ...» of the observations of y by

the maximum likelihood technique. Our aim, in particular, is to study

the consistency of the resulting estimator.

In the general case with vector processes y there is an immedaite

difficulty to be dealt with before a consistency proof can be attempted.

This comes from the fact that there are in general several matrix pairs

(A,B) which generate y from the orthonormal process u by (1.2); i.e..
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such that

A^(z) B(z) = (})(z) = <I>Q + + ... , (1.3)

where

n

A(z) = I + A^z + ... + A^z

(1.4)

B(z) = Bq + B^z + ... + B^z .

And this is true even if all the cancellations of common factors in the

elements of B(z) and det A(z) have been made.

The source of difficulty lies in the fact that the parameters (A,B)

are not independent. As studied in [2] and [3] an independent set of

such parameters can be found but a part of this set consists of p non

negative integers determined by (|)(z), the so-called Kronecker indices,

which may be said to define the structure of the system. Once these

indices are known A(z) and B(z) can be expressed in suitable canonical

forms with independent real-valued parameters.

Unfortunately, the dependence of the Kronecker indices on (|)(z) is

such that two sequences (j> » (<j)Q, (j)^,...) and = (^q» •••) can be

arbitrarily close in, say, the 1^-metric for such sequences and yet give

rise to two different sets of Kronecker indices. This means that a

sequence of m.l estimates (A^,B^), even if expressed in canonical forms,

cannot possibly converge unless they all have the same Kronecker indices

The estimation of the Kronecker indices while certainly possible

seems to be a fairly complex matter which we shall not go into in this

paper; for a recent study of these and related matters, see [4,5].

Instead, we shall prove the result that if (A^,B^) denotes a pair (not

-3-



necessarily unique) which maximizes a likelihood function constructed

from the observed data and the degree n of A (z) is not
o N ° .

less than that of the true polynomial A(z) in (1.3), then <j) -> (|) in 1^^

a.s., where <{>^(z) = (A^(z))"'V(z). This means that if the
N N

Kronecker indices have been consistently estimated then (A (z), B (z)),

when expressed in the corresponding canonical forms, alsd converge to
o o

(A(z), B(z)) a.s. .

We should also add that an analogous estimation problem results

when (1.2) is written in terms of a Markovian state process; see [4]-[8]

The classical result of Wald [9] established the consistency of

the m. 1. estimate for independent identically distributed observations

and formed the basis for the analysis of Kendall and Stuart [10].

Subsequently, consistency results were studied in [11] - [13] and [8],

amongst others; reference [12], in particular, shows how the assumption

of independent observations in the classical approach can be relaxed

by using the ergodic theorem. This idea, suitably complemented and

made precise, also allows us to establish the main theorem, for which

to our knowledge no correct proof has appeared before.^

2. Recursive Prediction and the Likelihood Function

As is well known [15] the way to obtain the likelihood function

for the observations and the parameters to be estimated is to

orthogonalize this sequence. This amounts to finding the least squares

predictions of y^ given {yQ* ***describe this let

Y denote the Euclidean space spanned by the components of the vector
0, t

^The proof given here was outlined in [14].
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•••P \ TT til©variables yg,...,y^. Let y[ = (y^,...,yp. where y^. denotes
i

orthogonal projection of on and write

, Ee^e^ ~ ^t' ^ ~ 0,1,... (2.1)

Since the process y is full rank is invertible.

We now regard the y-process as being gaussian. Then the variables

e are independent, and with Bayes' formula the probability density

function for the joint vector random variables yQ,...,yjj can be written

as

N -k
n

t=o

lj,(yg,...,yj,) =(21.) 2 n (|Zt.| ^exp - |e^ z;\), (2.2)

where the y^ '̂s appear implicitly in the via (2.1); we write 1a| for
the determinant of A.

A

It remains to describe the projection y^ in terms of the parameters

A and B. This could be done by constructing the Kalman predictor for

the process y via another state-process where the associated Riccati-

equations, [16], are to be supplied with certain initial conditions

determined by A and B. For the present situation a more direct approach

is to construct the predictor equations in another form as intorduced in

[17]; in particular, the Riccati-equations are replaced by an algorithm

resulting from the Cholesky-factorization of a covariance matrix. The

algorithm generalizes an old algorithm due to Bauer [18].

2
We regard the vector random variables as column arrays of their

components, and a prime indicates the transposition. For typographical
reasons arrays are always written as rows.



This solution to the predictor problem is an extension of the

classical approach of Wiener's based on factoring the spectrum of a

stationary process. As the outlined method for obtaining recursively the

predictions of the y-process is not, perhaps, well known we shall give the

relevant results in the theorem: (For more details we refer to [17]).

Theorem. For the process (1.2) the least squares predictions

are given by the equations:

A

t > n (2.4)

where

C . = B^.bT^, t >n, t-1 <j <t-n; <2.5)
t,j tj jj' -

and the B /s are defined as the pxp-block elements of the uppert, t- i

triangular factor Bof a positive definite band covariance matrix R,

(2.6)
R = BB*

defined as follows:
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n+1

R = E

V
n

Cl ••• yo '̂ (2.7)

with ^ + ... + factors Bare, moreover,

made unique by requiring to be upper triangular with positive
/S /N

elements on the diagonal. Finally, the initial conditions yQ> *• •

are given by:

^ \

J

B -1 /}..B in
n-l,n-2 n-1,0

10 J

YO - 0.

B A r>**^ on
n-2,n-2 n-2,0

00

-1

n-2

(2.8)

Remark. A comparison of the elements in (2.6), starting with right-

bottom corner, gives easily recurrence relations for the B^ '̂s, see [17]

or [14], which we omit since they are not needed here.

In order to give the reader an impression of the appearance of R

and the way its elements are determined by A and B we describe the

factorization (2.6) for n = 2:
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where

• ®0 R-

®0 Q' ®2

®2 Q

0 ®2 ®0

®22 ®21 ®20

®11 ®10
B

00

•^0 = Vi + ®2»2

h " ®0®1 ®1®2

h " ®0®2

Q = - Aj^Bq

®0 ° ®^0^0

D I 0
®22

®k ®ll

®20 ®io ®00

?! - E yj^yJ

We omit the well-known equations which determine and as continuous

functions of A and B.

Observe, in particular, that apart from the initial 2np x 2np-portion

of R it is a band block Toeplitz-matrix. We add that if we are willing
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to consider that near-maximum likelihood problem obtained by putting

y = ... = y , = 0 then the factorization R in (2.6) can be done in
•^0 n-1

an order of magnitude fewer arithmetic operations than the straight

forward comparison algorithm above, which is basically just a Gauss-

elimination scheme, see [19].

The scaled log-likelihood function, log (2tt) - log

is now completely described in terms of the parameters .0 = (A,B)

and the data y^,... ,yjj:

Lu(yO.---.yN'®> =m ? (2-9)

where

6^(6) = y^ - yj.(e); ^^(e) = (2.10)
^ 3

and y^CQ) Is the solution to (2.4); we also wrote as

emphasize the dependency on 0.

3. Auxiliary Lemmas

We begin by defining the space of the parameters as the subset of
2

the euclidean space consisting of all sequences 0 = (A^,...,

A^, Bq,...,B^) for which the roots of |a(z)| and |b(z)|, see (1.4),
are outside the unit circle. Then, calearly, B^ = B(0) is invertible,

and (1.2) describes a full rank stationary process y which has a 1-

sided moving average representation. Furthermore we shall restrict

^In the literature the initial conditions frequently
considered as independent parameters, which clearly Is not the case.
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the set of admissible parameters so that Bq is upper triangular with

positive elements on the diagonal.

Let S denote any closed and bounded subset of the parameter space
o 00,

containing a "true" parameter 0 = ^A,B) for (1.2); i.e. any parameters

which produces the given gaussian process from which the data yQ,

is being drawn.

Consider now a process (1,2) for a given 9 ^ S and for all integer

values of t. Let yj. = (yj,...,y^) where y^ is the orthogonal projection
of v^ on Y the Hilbert space spanned by {y |̂ i=l,...,p,k<t-l}.

t -<»,t-l

Then,

yt = ®'t °

As is well known the stationary process {y^} is generated by the

difference equation:

Vt-l Vt-n = Vn-

where This equation, indeed, defines a stationary process,

since for 9^8 the system (3.2) is asymptotically stable. We have the

solution

yt = / yi
i=-o°

for which, moreover, two positive numbers and (x, a < 1, exist such

that

IIr II < for all 9^8 uniformly. (3.4)
t 1

Here, of course, r » F (9) is regarded as a function of 9 and HaH
t t

denotes any of the norms of a matrix A.
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We shall give a detailed proof of the following fundamental result,

which sharpens the results of [17] and [20]. Analogous results have

been proved for the Riccati equation in the recent theory of positive

real functions, [7], [22].

Lemma. (1) There exist pxp-matrices Bq(0), ...,B^(6) and two positive

numbers K and a, a < 1, such that for all 0 ^ S,

IIb ,(0) - B. (0)11 < Ka^, i = 0,...,n. (3.5)
t.t-1 1

r n.(2) All the roots of det(BQ + B^z + ... + B^z ) are outside the unit

circle.

Proof. By the Theorem in section 2 we have

V = e + v = B w +y,
^t t ^t tt t -^t'

t > 0 (3.6)

1/2where {w^} is an orthonormal process. Write 11 xH = (Ex*x) for
K- = (x\...,xP) and x^ G As ^o.t-l
is orthogonal to and the orthogonal projections of yj and y^ on
Yq ^^are equal, namely, yj. Therefore, if we write (3.3) as

+ Yt'

where

t-1 0

5 = Z and = Z y.
i=0 i=-a>

we have

-i

I'Yt " ^t" —"^t "" '̂ t" ° "'''t" (3.7)
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which merely states that is closer to y^^ than the point

Further, by (3,3) - (3.4)

II Yt" ^ 11^ '
i=_oo

By (1.2) ilyQil is a continuous function of 8 over the compactum S and

consequently has a maximum for some positive K^jHy^-H < for all

0 ^ S. From (3.1), (3.6), and (3.7):

lie - B w I! < K«a^. (3.8)
t tt t 2

This gives in turn for some positive K^,

He - B^^Bj.^!! < for all 8 ^ s.

Let Bq be the upper triangular factor in E= BqBq with positive elements

on the diagonal. Then the last inequality implies the claim (3.5)

for i =" 0.

To prove (3.5) for the other values for i write,

° Vt

where the process is orthonormal. From what was just proven,

we have for some positive K^:

llu - w II < K,a^ for all 8^8. (3.10)
t t q

From the theorem in section 2 the. stationary process {v^|t n} is given by:

V = B_u + B,u - + ...+ B u = B w + ... + B W (3.11)
t 0 t 1 t-1 n t-n tt t t,t-n t-n
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If we express relative to the orthonormal process we get

't = Vt + ••• + Vt-n'

where

= E

From (3.10) - (3.12) we conclude (3.5), or part (1) of the lemma.

As the process {y |̂1=0,1,...> is of full rank the matrix Rin (2.7)
is positive definite; i.e., all its initial tp x tp-sections are greater

than kl . where I is the identity matrix of the indicated
tpxtp tpxtp

size and k > 0. This means that the inverse of R and, thus, of B exist

as bounded operators; in particular, the rows of B are square summable,

Then the block-elements of the block rows of B^ define the impulse

response of the following dynamic system obtained from (3.11).

"t ° ®tt 'f

Its solution is then given by

"t = »tt^ "t.t-TVx +

(3.14)

where n (w w ) is the homogeneous solution to (3.13),
t,T T—1 T—n

also given in terms of . The square suramability of these implies

\,TK-l>---'"T-n> ' ^ "•
From (3.12) we get in the same manner

"t ° Vt ••• "t-tK-l'-'-'^T-n-
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where is the impulse response of the system:

"t ®nVn^ =K\-
We shall prove that this system is asymptotically stable.

By substituting in terms of u^ from (3.11) in (3.14) and (3.15)

we get:

"t ° "tt"t + ••• +^t.t-T-nVx-n "x-n^

"t "tt^t + •••"*• \,t-x-nVx-n * Vx^Vl'""Vn^

for certain matrix coefficients M.. and N • The components
ij ij t, T

^ being linear functions of **•'̂ ^--n ^t-1'* **'̂ x-n*

respectively, belong to x-1* Since ^ ^ n+Zx-l)

are orthogonal to this subspace we get with (3.10) from (3.17):

'lt,x(Vr--"Vn^ - Vx^Vl'---'Vn>

as t -♦- «>. This with n 0 implies ri. 0 as t -> «>. Further,
t,T t-T

(3.15) then implies that is square sumroable, which implies

that det(BQ+B^z+...+B^z^) has all the roots outside the unit circle.
The proof of the lemma is complete.

o

In the next results we regard the process y^ = 7^(0) as fixed and
o

given by (1.2) for 0 = 0, a "true" parameter. With this process as

the input the two predictor equations (2.4) and (3.2) still describe
^ ^ o

the corresponding predictions for each 0 G S, say, y^ = y^(0»0) and
o

y* = y*(0,0), respectively, which, of course, no longer conicide with
t t

the orthogonal projections of y^ on and respectively.
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o

unless 0=8. For later reference we rewrite these equations here:

y = foi^ t = o,...,n-i
t t

y* + ••• V?-n = ^t-i "^ •••

... + (C -A )y^ , all t.
^ n n^t-n

Lemma 2. With e (0,0) = y^(0) - y*(0,0) (defined above) and

KO) = Bg(0) Bj(0),

^ Z e;(0,0) i:"^(0) e (0,0) ->• Ee^(0,0) e"^(0) £3(0,0)
t=0

(3.18)

a.s. uniformly in 0 S S.

Proof. For each 0^8 the indicated convergence results from the
o

ergodic theorem since the covariance sequence of e^(0,0) is summable.

The limit function is by (3.18) a uniformly continuous function over

the compactum S. Since, similarly, each of the converging functions

is uniformly continuous over S the result follows.

Lemma 3. With e^(e,0) = y^.(e) - y^(e,0) and e^(0,e) =y^(0) - y*(0,0)»
L^,(y.,...,y„,e,0) L(e,e) a.s. uniformly in 0 ^ s, where

N •^0 N

L^(y3,...,yj,,0,0) =N^ J [log|!;t(0)| +e'(0,0) z;^(0) e^(0,0)] and
O O -l

L(0,0) = iog|z(0)| + E£^(0,0) t. (0)£ Q(e,e).
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Proof. Write

1 ^A;(6)=-jj^ (log|Et(9)l -1oe|z;(6)|)

=-si? 2: [e'(e,e) Z"^(9)e (6,6) - (3.19)N N+1 t=0 ' ' '

- e;(e,§) Z"^(e) £^.(8,6)]

-1By further writing Z^(0) = 2(0) + AZ^(0) = E(0)(I+E (0)AE^(0))

we have

1 N 1A^(0)=:g^ A^ log| I+2'•(0) AE^(0)1.

By Lemma 1 2~^(0) AE^(0) •> 0 and hence the product of the eignevalues
of I +2'"^(e)AE^(0) converges to 1^ all exponentially uniformly in 0^ S,
This implies that A^(0) 0 uniformly in 0 ^ S.

Let

d^(0,0) = e^(0,0) - e^(0,0) = y*(0,0) - y^.(0,0)
(3.20)

Q^(e) =i^^O) - r^(e).
o

To abbreviate the following expressions we drop the arguments 0 and 0.

Then

I - d'z;^d^]. (3.21)

The first sum is majorized by

t^O

-16-



By Lennna 1 0 exponentially uniformly in 6 ^ S, and by the

ergodic theorem

1
Ẑ ele E cle^ a.s. .

N+1 t t 00

Moreover, by (3.18) ^ for all 0 ^ S. Hence, the first sum in

(3.21) converges to zero a.s. uniformly in 0 ^ S. Since by Lemma 1

(6) < k'l we see that the absolute value of the second sum in (3.21)

is majorized by

and the third sum by

^ Z d' d (3.23)
N+1 t=0 ' '

Consequently to prove the second and third sums in (3.21) converge to

zero it is sufficient to prove that

I d' d 0 (3.24)
N+lt=0 ' '

a.s. uniformly in 0 ^ S.

Manipulating the equations (3.18) and (3.20) yields:

+ ••• + '^t.t-nVn '

° + ••• + ''t-n

-17-
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Its solution is given by:

t-1 n-1

d = Z (J>. + Z d , t >. n (3.26)
^ i=0 i=0

where the second term is the homogeneous solution. By Lemma 1,

llC.-C 11 < Ka^. j = 0,...,n. It follows by standard stability
3 t,t—j

analysis, [21], that the system (3.25) is uniformly asymptotically stable

since the constant system defined by the limits is such. Moreover, if

—is the modulus of the smallest of the roots of det(I+C-z+...+C z^)
B X n

then B < 1 and

(3.27)

ll<j,till <

for some positive constants K^, K^.

By picking a so that B < a < 1 and putting B = Y * a we get the

following estimates:

II .11 < ^
ti 1

n-1

Next, by writing w = S , we calculate:
t i=o

(3.28)

N , N t-1 t-1

Zdid =TjW Z [wloj +2a)' Z + Z eI4>1j<1>,.41 (3.29)N+i t t m t t t ^^0 •'ti i i ti tj j
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The first sum is bounded by:

N K-, N « . . n-1

IH-l ^^0 t t N+1 ^^0 ' i j'

so that this term converges to zero a.s. . Moreover, as the K^, K^ja,

and 3 may be chosen so that (3.28) hold uniformly in 0 ^ S, the a.s.

convergence is uniform in 9 ^ S. For the second sum in (3.29) we get

N t-1

^ r |w' I $ ej
N+1 t«0 i=0

2K« N-1 t-1 . . ,< 2 j, u ij j. ^t ^t 1|| I,
N+1 t=o ^ i»0

< Id-d t • i Oe^ll (3.30)
N+1 ' i j ^^0 t i=o

. t

The process {£.} is ergodic. Hence, ~ 2 He.H converges a.s. . The
1 i«0

convergence, moreover, as in Lemma 2, is uniform in 0 ^ S. Hence, for
o o

each sample of the process {yQ(0)jy^C®)»•••^ ^ with probability
1 t Q

1 the sums — 2 fle4(0»0)" are bounded uniformly in t and 0^8. This
t 1=0 ^

with (3.30) implies that the second sum in (3.29) converges to zero

a.s., uniformly in 0 ^ S.

For the last term in (3.29) we have with (3.28):

which by the same arguments as in the preceding case is seen to converge
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to zero a.s., uniformly in 6 ^ S. Consequently, we have proved (3.24).

It then follows that Ajj ->• 0 a.s. uniformly in 6^ S, and with Lemma 2

and (3.19) we conclude Lemma 3.

4. Main Theorem

N
As the maximum likelihood estimates 6 of the true parameter

o o o ,

e = (A,B) themselves do not necessarily converge we pass over to tne

parameters <{> ~ ^ obtained from the matrix coefficients of

the expansion

a''(z)-V(z) = +♦Jz +... + ^ (A-1)

where

B^(z) =Bq +B^z +... +B^z'̂

N N , aN nA (z) = I + Aj^z + ... + A^z .

Theorem. If 0^ = (A^,B^) minimizes ]^(yQ,... ,yj^,0,0) over S, then

® o

Z - (|> II 0 a.s. as N », (4.2)
i«0

O O o

where <|>(z) = A(z) B(z).

o o o

Proof. First, for 0 = 0 in (3.18) y*(0,0) is the orthogonal projection

of Ya. on Y -. Hence, for all 0 G S,
t —0>,t*"l

EsgCe.e) ej(0,6) >Ee^Ce.e) e^(6,0) =1(0). (4-3)

O

As y = y(0) is a full rank process we have.
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y*(6.6) = r^y^_^(e) + r2y^_2(9) +

for a unique set of pxp-matrix coefficients. By (1.2) another
o ^ o

parameter 6 generates also the process {y^(0)} if and only if 0 - 6
-1 ®-l °

in the usual sense that A (z) B(z) = A (z) B(z). Therefore, the
o

equality in (4.3) holds if and only if 0 = 0.

Next, recall the inequality:

log|x| + trace (AX ^) ^ log|A| + trace I,

o o

which with X= E(0), A» ££^(0,0) ej(0,0), and the fact that trace

(E yy') B = E y* By gives

o o o

L(0,0) >. log|EeQ(0,0) eQ(0,0)| + trace I.

o o , I o I
By (4.3) log|EeQ(0,0) ej(0,0)l > log|Z(0)|, and therefore

o o o o
L(0,0) ^ log|E(0)| + tr I = L(0,0). (4.4)

o

Here, equality again holds if and only if 0 « 0.

Let = (<I»Q,<I>^,...) denote the Impulse response sequence (4.1).
Since the function (A(z),B(z)) A"^(z) B(z) =itiQ-H>j_z+... is continuous
when the space of the image sequences is given the l^^-metric in (4.2),

the set T=Uiz) =A^^(z) B(z)|(A,B) ^ S) is compact. Consider the
subset of T corresponding to the m. '̂. estimates 0 ^ S for

N=l,2,... We shall construct accumulation points of {<(>^} in Twhich
are measurable random variables with respect to a o-field generated by

the y process. The following measurable selection rule achieves this:

Let ^ denote the i, j entry of the matrix <!>_ in the sequence defining
ij - N aN

<}>. To begin, we define <j)^ = lim sup and = lim inf 9 .
°11 11 - 11 N-^ 11
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These random variables are measurable with respect to the tail a-field

of the y process. We may now select subsequences ^
C{Nq where {Nq ~{N^} for which these accumulation points

are limit points.

At stage Vwe define <j) = lim sup (|) , N€= j^}, and
ij ^^2

(J) = lim inf ^ » N^ {N . where v = np + (i-1) P + j.
-""ij ""ij '
The subsequences ^ ^^v-l,k^ ^ ^^-l,k^
extracted and the process repeated. Continuing in this way we clearly

obtain accumulation points ^ and ^ of {<1'̂ } which are measurable with
respect to the tail a-field of the y process.

Let 4)* denote either $ or ^ and let e be any parameter (A,B)

chosen by some specified rule such that A(z) ^B(z) =<|>q + <|>j^ z 4- ... .
Finally, let Mdenote any member of the appropriate subsequence for

which lim 6=0.

By writing bjj(yQ,... ,yj^»0»0) as L^(0,0) we have L^(0,0) ^1^(6 »®)
by the minimizing property of 0^. By Lemma 3, for each e >0, there

M
exists N , not dependent on 0 G S, such that

e

LyCe'̂ .e) >. LCe^.e) -e a-s. for all M>

But then from these two inequalities we get:

L(0,0) =lim 1^(0,0) ^ lim 1(0^»0) =L(0*»0) ^.s. . (4.5)
M-x*)

The inequalities (4.4) and (4.5) with 0—0* give

o o o

L(0,0) = L(0*,0) a.s.
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o o - 0
which implies 0* 3: 9 and (ji* = 0 a.s. . It follows that (f» = ij) a.s.

and ^ = 0^ a.s. By the construction of these limits this implies
N NO

that lim <J) exists with lim ^ = <|> a.s. and this gives the theorem.
N-x» N-^

Concluding Remarks

N
If from each estimated sequence (j) one also estimates the

N
Kronecker indices in a consistent manner then 8 can be picked in a

suitable canonical form, as described in [2] and [3], and the sequence

N
9 itself converges a.s. .

Often in a system of type (1.2) is not invertible, e.g. the u-

process has fewer components than the y-process. Such systems are

pathological in the sense that the y-process is not of a full rank and

the maximum likelihood function (2.9) is not valid for such processes.

What one can do in such a case is to pick a largest full rank process

out of the components of the y-process, and estimate the parameters as

above for that subprocess.
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